mmu.c 161.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

P
Paolo Bonzini 已提交
56 57
extern bool itlb_multihit_kvm_mitigation;

58
int __read_mostly nx_huge_pages = -1;
59 60 61 62
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
63
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
64
#endif
P
Paolo Bonzini 已提交
65 66

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
67
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
68

69
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
70 71 72 73
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

74
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
75 76 77 78
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
79 80
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
81 82 83
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
84

85 86 87
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

88 89 90 91 92 93 94
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
95
bool tdp_enabled = false;
96

97
static int max_huge_page_level __read_mostly;
98
static int max_tdp_level __read_mostly;
99

100 101 102 103
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
104 105 106
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
107
};
108 109

#ifdef MMU_DEBUG
110
bool dbg = 0;
111
module_param(dbg, bool, 0644);
112
#endif
A
Avi Kivity 已提交
113

114 115
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
116 117 118
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
119
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
120

121 122 123
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
124 125 126 127 128 129 130 131

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
132 133 134
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
135

136 137
#include <trace/events/kvm.h>

138 139 140
/* make pte_list_desc fit well in cache line */
#define PTE_LIST_EXT 3

141 142 143
struct pte_list_desc {
	u64 *sptes[PTE_LIST_EXT];
	struct pte_list_desc *more;
144 145
};

146 147 148 149
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
150
	int level;
151 152 153
	unsigned index;
};

154 155 156 157 158 159 160
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
161 162 163 164
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

165 166 167 168 169 170
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

171
static struct kmem_cache *pte_list_desc_cache;
172
struct kmem_cache *mmu_page_header_cache;
173
static struct percpu_counter kvm_total_used_mmu_pages;
174

175
static void mmu_spte_set(u64 *sptep, u64 spte);
176 177
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
178

179 180 181 182 183 184
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

185 186 187
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
static inline bool ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
static inline bool is_##reg##_##name(struct kvm_mmu *mmu)	\
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

230 231 232 233 234 235 236 237 238 239
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
240

241 242 243 244 245 246 247 248 249 250 251 252 253
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}

254 255
static inline bool kvm_available_flush_tlb_with_range(void)
{
256
	return kvm_x86_ops.tlb_remote_flush_with_range;
257 258 259 260 261 262 263
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

264
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
265
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
266 267 268 269 270

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

271
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
272 273 274 275 276 277 278 279 280 281
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

282 283 284
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
285
	u64 spte = make_mmio_spte(vcpu, gfn, access);
286

287 288
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
289 290 291 292
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
293
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
294

295
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
296 297 298
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
299 300 301 302
}

static unsigned get_mmio_spte_access(u64 spte)
{
303
	return spte & shadow_mmio_access_mask;
304 305
}

306
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
307
{
308
	u64 kvm_gen, spte_gen, gen;
309

310 311 312
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
313

314
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
315 316 317 318
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
319 320
}

321 322 323
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
324
	/* Check if guest physical address doesn't exceed guest maximum */
325
	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
326 327 328 329
		exception->error_code |= PFERR_RSVD_MASK;
		return UNMAPPED_GVA;
	}

330 331 332
        return gpa;
}

A
Avi Kivity 已提交
333 334 335 336 337
static int is_cpuid_PSE36(void)
{
	return 1;
}

338 339 340 341 342 343 344
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

345
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
346
static void __set_spte(u64 *sptep, u64 spte)
347
{
348
	WRITE_ONCE(*sptep, spte);
349 350
}

351
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
352
{
353
	WRITE_ONCE(*sptep, spte);
354 355 356 357 358 359
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
360 361 362

static u64 __get_spte_lockless(u64 *sptep)
{
363
	return READ_ONCE(*sptep);
364
}
365
#else
366 367 368 369 370 371 372
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
373

374 375
static void count_spte_clear(u64 *sptep, u64 spte)
{
376
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
377 378 379 380 381 382 383 384 385

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

386 387 388
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
389

390 391 392 393 394 395 396 397 398 399 400 401
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

402
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
403 404
}

405 406 407 408 409 410 411
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

412
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
413 414 415 416 417 418 419 420

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
421
	count_spte_clear(sptep, spte);
422 423 424 425 426 427 428 429 430 431 432
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
433 434
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
435
	count_spte_clear(sptep, spte);
436 437 438

	return orig.spte;
}
439 440 441

/*
 * The idea using the light way get the spte on x86_32 guest is from
442
 * gup_get_pte (mm/gup.c).
443 444 445 446 447 448 449 450 451 452 453 454 455 456
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
457 458 459
 */
static u64 __get_spte_lockless(u64 *sptep)
{
460
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
480 481
#endif

482 483
static bool spte_has_volatile_bits(u64 spte)
{
484 485 486
	if (!is_shadow_present_pte(spte))
		return false;

487
	/*
488
	 * Always atomically update spte if it can be updated
489 490 491 492
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
493 494
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
495 496
		return true;

497
	if (spte_ad_enabled(spte)) {
498 499 500 501
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
502

503
	return false;
504 505
}

506 507 508 509 510 511 512 513 514 515 516 517
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

518 519 520
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
521
 */
522
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
523
{
524
	u64 old_spte = *sptep;
525

526
	WARN_ON(!is_shadow_present_pte(new_spte));
527

528 529
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
530
		return old_spte;
531
	}
532

533
	if (!spte_has_volatile_bits(old_spte))
534
		__update_clear_spte_fast(sptep, new_spte);
535
	else
536
		old_spte = __update_clear_spte_slow(sptep, new_spte);
537

538 539
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

562 563
	/*
	 * For the spte updated out of mmu-lock is safe, since
564
	 * we always atomically update it, see the comments in
565 566
	 * spte_has_volatile_bits().
	 */
567
	if (spte_can_locklessly_be_made_writable(old_spte) &&
568
	      !is_writable_pte(new_spte))
569
		flush = true;
570

571
	/*
572
	 * Flush TLB when accessed/dirty states are changed in the page tables,
573 574 575
	 * to guarantee consistency between TLB and page tables.
	 */

576 577
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
578
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
579 580 581 582
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
583
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
584
	}
585

586
	return flush;
587 588
}

589 590 591 592
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
593
 * Returns non-zero if the PTE was previously valid.
594 595 596
 */
static int mmu_spte_clear_track_bits(u64 *sptep)
{
D
Dan Williams 已提交
597
	kvm_pfn_t pfn;
598 599 600
	u64 old_spte = *sptep;

	if (!spte_has_volatile_bits(old_spte))
601
		__update_clear_spte_fast(sptep, 0ull);
602
	else
603
		old_spte = __update_clear_spte_slow(sptep, 0ull);
604

605
	if (!is_shadow_present_pte(old_spte))
606 607 608
		return 0;

	pfn = spte_to_pfn(old_spte);
609 610 611 612 613 614

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
615
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
616

617
	if (is_accessed_spte(old_spte))
618
		kvm_set_pfn_accessed(pfn);
619 620

	if (is_dirty_spte(old_spte))
621
		kvm_set_pfn_dirty(pfn);
622

623 624 625 626 627 628 629 630 631 632
	return 1;
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
633
	__update_clear_spte_fast(sptep, 0ull);
634 635
}

636 637 638 639 640
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

641 642 643 644
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
645 646
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
647

648
	WARN_ON_ONCE(spte_ad_enabled(spte));
649 650 651
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
652 653
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
654 655 656 657 658
	new_spte |= saved_bits;

	return new_spte;
}

659 660 661 662 663 664 665 666
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

667
	if (spte_ad_enabled(spte)) {
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

685 686
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
687 688 689 690 691
	/*
	 * Prevent page table teardown by making any free-er wait during
	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
	 */
	local_irq_disable();
692

693 694 695 696
	/*
	 * Make sure a following spte read is not reordered ahead of the write
	 * to vcpu->mode.
	 */
697
	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
698 699 700 701
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
702 703
	/*
	 * Make sure the write to vcpu->mode is not reordered in front of
704
	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
705 706
	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
	 */
707
	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
708
	local_irq_enable();
709 710
}

711
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
712
{
713 714
	int r;

715
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
716 717
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
718
	if (r)
719
		return r;
720 721
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
722
	if (r)
723
		return r;
724
	if (maybe_indirect) {
725 726
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
727 728 729
		if (r)
			return r;
	}
730 731
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
732 733 734 735
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
736 737 738 739
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
740 741
}

742
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
743
{
744
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
745 746
}

747
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
748
{
749
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
750 751
}

752 753 754 755 756 757 758 759 760 761
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
762
	if (!sp->role.direct) {
763
		sp->gfns[index] = gfn;
764 765 766 767 768 769 770 771
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
772 773
}

M
Marcelo Tosatti 已提交
774
/*
775 776
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
777
 */
778
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
779
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
780 781 782
{
	unsigned long idx;

783
	idx = gfn_to_index(gfn, slot->base_gfn, level);
784
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
785 786
}

787 788 789 790 791 792
static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

793
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

810
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
811
{
812
	struct kvm_memslots *slots;
813
	struct kvm_memory_slot *slot;
814
	gfn_t gfn;
M
Marcelo Tosatti 已提交
815

816
	kvm->arch.indirect_shadow_pages++;
817
	gfn = sp->gfn;
818 819
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
820 821

	/* the non-leaf shadow pages are keeping readonly. */
822
	if (sp->role.level > PG_LEVEL_4K)
823 824 825
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

826
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
827 828
}

829
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
830 831 832 833 834
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
835 836
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
837 838 839
	sp->lpage_disallowed = true;
}

840
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
841
{
842
	struct kvm_memslots *slots;
843
	struct kvm_memory_slot *slot;
844
	gfn_t gfn;
M
Marcelo Tosatti 已提交
845

846
	kvm->arch.indirect_shadow_pages--;
847
	gfn = sp->gfn;
848 849
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
850
	if (sp->role.level > PG_LEVEL_4K)
851 852 853
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

854
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
855 856
}

857
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
858 859 860
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
861
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
862 863
}

864 865 866
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
867 868
{
	struct kvm_memory_slot *slot;
869

870
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
871 872
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
873
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
874
		return NULL;
875 876 877 878

	return slot;
}

879
/*
880
 * About rmap_head encoding:
881
 *
882 883
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
884
 * pte_list_desc containing more mappings.
885 886 887 888
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
889
 */
890
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
891
			struct kvm_rmap_head *rmap_head)
892
{
893
	struct pte_list_desc *desc;
894
	int i, count = 0;
895

896
	if (!rmap_head->val) {
897
		rmap_printk("%p %llx 0->1\n", spte, *spte);
898 899
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
900
		rmap_printk("%p %llx 1->many\n", spte, *spte);
901
		desc = mmu_alloc_pte_list_desc(vcpu);
902
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
903
		desc->sptes[1] = spte;
904
		rmap_head->val = (unsigned long)desc | 1;
905
		++count;
906
	} else {
907
		rmap_printk("%p %llx many->many\n", spte, *spte);
908
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
909
		while (desc->sptes[PTE_LIST_EXT-1]) {
910
			count += PTE_LIST_EXT;
911 912 913 914 915 916

			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
				break;
			}
917 918
			desc = desc->more;
		}
A
Avi Kivity 已提交
919
		for (i = 0; desc->sptes[i]; ++i)
920
			++count;
A
Avi Kivity 已提交
921
		desc->sptes[i] = spte;
922
	}
923
	return count;
924 925
}

926
static void
927 928 929
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
930 931 932
{
	int j;

933
	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
934
		;
A
Avi Kivity 已提交
935 936
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
937 938 939
	if (j != 0)
		return;
	if (!prev_desc && !desc->more)
940
		rmap_head->val = 0;
941 942 943 944
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
945
			rmap_head->val = (unsigned long)desc->more | 1;
946
	mmu_free_pte_list_desc(desc);
947 948
}

949
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
950
{
951 952
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
953 954
	int i;

955
	if (!rmap_head->val) {
956
		pr_err("%s: %p 0->BUG\n", __func__, spte);
957
		BUG();
958
	} else if (!(rmap_head->val & 1)) {
959
		rmap_printk("%p 1->0\n", spte);
960
		if ((u64 *)rmap_head->val != spte) {
961
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
962 963
			BUG();
		}
964
		rmap_head->val = 0;
965
	} else {
966
		rmap_printk("%p many->many\n", spte);
967
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
968 969
		prev_desc = NULL;
		while (desc) {
970
			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
A
Avi Kivity 已提交
971
				if (desc->sptes[i] == spte) {
972 973
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
974 975
					return;
				}
976
			}
977 978 979
			prev_desc = desc;
			desc = desc->more;
		}
980
		pr_err("%s: %p many->many\n", __func__, spte);
981 982 983 984
		BUG();
	}
}

985 986 987 988 989 990
static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
{
	mmu_spte_clear_track_bits(sptep);
	__pte_list_remove(sptep, rmap_head);
}

991 992
static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
					   struct kvm_memory_slot *slot)
993
{
994
	unsigned long idx;
995

996
	idx = gfn_to_index(gfn, slot->base_gfn, level);
997
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
998 999
}

1000 1001
static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
					 struct kvm_mmu_page *sp)
1002
{
1003
	struct kvm_memslots *slots;
1004 1005
	struct kvm_memory_slot *slot;

1006 1007
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
1008
	return __gfn_to_rmap(gfn, sp->role.level, slot);
1009 1010
}

1011 1012
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1013
	struct kvm_mmu_memory_cache *mc;
1014

1015
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1016
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1017 1018
}

1019 1020 1021
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
	struct kvm_mmu_page *sp;
1022
	struct kvm_rmap_head *rmap_head;
1023

1024
	sp = sptep_to_sp(spte);
1025
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1026 1027
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
	return pte_list_add(vcpu, spte, rmap_head);
1028 1029 1030 1031 1032 1033
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1034
	struct kvm_rmap_head *rmap_head;
1035

1036
	sp = sptep_to_sp(spte);
1037
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1038
	rmap_head = gfn_to_rmap(kvm, gfn, sp);
1039
	__pte_list_remove(spte, rmap_head);
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1055
 * information in the iterator may not be valid.
1056 1057 1058
 *
 * Returns sptep if found, NULL otherwise.
 */
1059 1060
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1061
{
1062 1063
	u64 *sptep;

1064
	if (!rmap_head->val)
1065 1066
		return NULL;

1067
	if (!(rmap_head->val & 1)) {
1068
		iter->desc = NULL;
1069 1070
		sptep = (u64 *)rmap_head->val;
		goto out;
1071 1072
	}

1073
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1074
	iter->pos = 0;
1075 1076 1077 1078
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1079 1080 1081 1082 1083 1084 1085 1086 1087
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1088 1089
	u64 *sptep;

1090 1091 1092 1093 1094
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1095
				goto out;
1096 1097 1098 1099 1100 1101 1102
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1103 1104
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1105 1106 1107 1108
		}
	}

	return NULL;
1109 1110 1111
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1112 1113
}

1114 1115
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1116
	     _spte_; _spte_ = rmap_get_next(_iter_))
1117

1118
static void drop_spte(struct kvm *kvm, u64 *sptep)
1119
{
1120
	if (mmu_spte_clear_track_bits(sptep))
1121
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1122 1123
}

1124 1125 1126 1127

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1128
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		drop_spte(kvm, sptep);
		--kvm->stat.lpages;
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1139
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1140
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1141 1142 1143 1144

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1145 1146 1147
}

/*
1148
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1149
 * spte write-protection is caused by protecting shadow page table.
1150
 *
T
Tiejun Chen 已提交
1151
 * Note: write protection is difference between dirty logging and spte
1152 1153 1154 1155 1156
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1157
 *
1158
 * Return true if tlb need be flushed.
1159
 */
1160
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1161 1162 1163
{
	u64 spte = *sptep;

1164
	if (!is_writable_pte(spte) &&
1165
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1166 1167
		return false;

1168
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1169

1170
	if (pt_protect)
1171
		spte &= ~shadow_mmu_writable_mask;
1172
	spte = spte & ~PT_WRITABLE_MASK;
1173

1174
	return mmu_spte_update(sptep, spte);
1175 1176
}

1177 1178
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1179
				 bool pt_protect)
1180
{
1181 1182
	u64 *sptep;
	struct rmap_iterator iter;
1183
	bool flush = false;
1184

1185
	for_each_rmap_spte(rmap_head, &iter, sptep)
1186
		flush |= spte_write_protect(sptep, pt_protect);
1187

1188
	return flush;
1189 1190
}

1191
static bool spte_clear_dirty(u64 *sptep)
1192 1193 1194
{
	u64 spte = *sptep;

1195
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1196

1197
	MMU_WARN_ON(!spte_ad_enabled(spte));
1198 1199 1200 1201
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1202
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1203 1204 1205
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1206
	if (was_writable && !spte_ad_enabled(*sptep))
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1218 1219
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot)
1220 1221 1222 1223 1224
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1225
	for_each_rmap_spte(rmap_head, &iter, sptep)
1226 1227
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1228
		else
1229
			flush |= spte_clear_dirty(sptep);
1230 1231 1232 1233

	return flush;
}

1234
/**
1235
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1236 1237 1238 1239 1240
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1241
 * Used when we do not need to care about huge page mappings.
1242
 */
1243
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1244 1245
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1246
{
1247
	struct kvm_rmap_head *rmap_head;
1248

1249
	if (is_tdp_mmu_enabled(kvm))
1250 1251
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1252 1253 1254 1255

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1256
	while (mask) {
1257
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1258
					  PG_LEVEL_4K, slot);
1259
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1260

1261 1262 1263
		/* clear the first set bit */
		mask &= mask - 1;
	}
1264 1265
}

1266
/**
1267 1268
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1269 1270 1271 1272 1273 1274 1275
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1276 1277 1278
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1279
{
1280
	struct kvm_rmap_head *rmap_head;
1281

1282
	if (is_tdp_mmu_enabled(kvm))
1283 1284
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1285 1286 1287 1288

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1289
	while (mask) {
1290
		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1291
					  PG_LEVEL_4K, slot);
1292
		__rmap_clear_dirty(kvm, rmap_head, slot);
1293 1294 1295 1296 1297 1298

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1299 1300 1301 1302 1303 1304 1305
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1306 1307
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1308 1309 1310 1311 1312
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1336 1337
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1338 1339
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340 1341
}

1342 1343
int kvm_cpu_dirty_log_size(void)
{
1344
	return kvm_x86_ops.cpu_dirty_log_size;
1345 1346
}

1347
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1348 1349
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1350
{
1351
	struct kvm_rmap_head *rmap_head;
1352
	int i;
1353
	bool write_protected = false;
1354

1355 1356 1357 1358 1359
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
			rmap_head = __gfn_to_rmap(gfn, i, slot);
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1360 1361
	}

1362
	if (is_tdp_mmu_enabled(kvm))
1363
		write_protected |=
1364
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1365

1366
	return write_protected;
1367 1368
}

1369 1370 1371 1372 1373
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1374
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1375 1376
}

1377 1378
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot)
1379
{
1380 1381
	u64 *sptep;
	struct rmap_iterator iter;
1382
	bool flush = false;
1383

1384
	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1385
		rmap_printk("spte %p %llx.\n", sptep, *sptep);
1386

1387
		pte_list_remove(rmap_head, sptep);
1388
		flush = true;
1389
	}
1390

1391 1392 1393
	return flush;
}

1394 1395 1396
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1397
{
1398
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1399 1400
}

1401 1402 1403
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1404
{
1405 1406
	u64 *sptep;
	struct rmap_iterator iter;
1407
	int need_flush = 0;
1408
	u64 new_spte;
D
Dan Williams 已提交
1409
	kvm_pfn_t new_pfn;
1410

1411 1412
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1413

1414
restart:
1415
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1416
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1417
			    sptep, *sptep, gfn, level);
1418

1419
		need_flush = 1;
1420

1421
		if (pte_write(pte)) {
1422
			pte_list_remove(rmap_head, sptep);
1423
			goto restart;
1424
		} else {
1425 1426
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1427 1428 1429

			mmu_spte_clear_track_bits(sptep);
			mmu_spte_set(sptep, new_spte);
1430 1431
		}
	}
1432

1433 1434 1435 1436 1437
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1438
	return need_flush;
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
struct slot_rmap_walk_iterator {
	/* input fields. */
	struct kvm_memory_slot *slot;
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1451
	struct kvm_rmap_head *rmap;
1452 1453 1454
	int level;

	/* private field. */
1455
	struct kvm_rmap_head *end_rmap;
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
					   iterator->slot);
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
		    struct kvm_memory_slot *slot, int start_level,
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1509 1510 1511
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1512

1513 1514 1515
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1516
{
1517
	struct slot_rmap_walk_iterator iterator;
1518
	bool ret = false;
1519

1520 1521 1522 1523
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1524

1525
	return ret;
1526 1527
}

1528
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1529
{
1530
	bool flush = false;
1531

1532 1533
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1534

1535
	if (is_tdp_mmu_enabled(kvm))
1536
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1537

1538
	return flush;
1539 1540
}

1541
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1542
{
1543
	bool flush = false;
1544

1545 1546
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1547

1548
	if (is_tdp_mmu_enabled(kvm))
1549
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1550

1551
	return flush;
1552 1553
}

1554 1555 1556
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1557
{
1558
	u64 *sptep;
1559
	struct rmap_iterator iter;
1560 1561
	int young = 0;

1562 1563
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1564

1565 1566 1567
	return young;
}

1568 1569 1570
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1571
{
1572 1573
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1574

1575 1576 1577 1578
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1579 1580
}

1581 1582
#define RMAP_RECYCLE_THRESHOLD 1000

1583
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1584
{
1585
	struct kvm_rmap_head *rmap_head;
1586 1587
	struct kvm_mmu_page *sp;

1588
	sp = sptep_to_sp(spte);
1589

1590
	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1591

1592
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1593 1594
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1595 1596
}

1597
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1598
{
1599
	bool young = false;
1600

1601 1602
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1603

1604
	if (is_tdp_mmu_enabled(kvm))
1605
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1606 1607

	return young;
1608 1609
}

1610
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1611
{
1612
	bool young = false;
1613

1614 1615
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1616

1617
	if (is_tdp_mmu_enabled(kvm))
1618
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1619 1620

	return young;
A
Andrea Arcangeli 已提交
1621 1622
}

1623
#ifdef MMU_DEBUG
1624
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1625
{
1626 1627 1628
	u64 *pos;
	u64 *end;

1629
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1630
		if (is_shadow_present_pte(*pos)) {
1631
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1632
			       pos, *pos);
A
Avi Kivity 已提交
1633
			return 0;
1634
		}
A
Avi Kivity 已提交
1635 1636
	return 1;
}
1637
#endif
A
Avi Kivity 已提交
1638

1639 1640 1641 1642 1643 1644
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1645
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1646 1647 1648 1649 1650
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1651
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1652
{
1653
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1654
	hlist_del(&sp->hash_link);
1655 1656
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1657 1658
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1659
	kmem_cache_free(mmu_page_header_cache, sp);
1660 1661
}

1662 1663
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1664
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1665 1666
}

1667
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1668
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1669 1670 1671 1672
{
	if (!parent_pte)
		return;

1673
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1674 1675
}

1676
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1677 1678
				       u64 *parent_pte)
{
1679
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1680 1681
}

1682 1683 1684 1685
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1686
	mmu_spte_clear_no_track(parent_pte);
1687 1688
}

1689
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1690
{
1691
	struct kvm_mmu_page *sp;
1692

1693 1694
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1695
	if (!direct)
1696
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1697
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1698 1699 1700 1701 1702 1703

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1704
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1705 1706 1707
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1708 1709
}

1710
static void mark_unsync(u64 *spte);
1711
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1712
{
1713 1714 1715 1716 1717 1718
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1719 1720
}

1721
static void mark_unsync(u64 *spte)
1722
{
1723
	struct kvm_mmu_page *sp;
1724
	unsigned int index;
1725

1726
	sp = sptep_to_sp(spte);
1727 1728
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1729
		return;
1730
	if (sp->unsync_children++)
1731
		return;
1732
	kvm_mmu_mark_parents_unsync(sp);
1733 1734
}

1735
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1736
			       struct kvm_mmu_page *sp)
1737
{
1738
	return 0;
1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1751 1752
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1753
{
1754
	int i;
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1767 1768 1769 1770 1771 1772 1773
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1774 1775 1776 1777
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1778

1779
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1780
		struct kvm_mmu_page *child;
1781 1782
		u64 ent = sp->spt[i];

1783 1784 1785 1786
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1787

1788
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1789 1790 1791 1792 1793 1794

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1795 1796 1797 1798
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1799
				nr_unsync_leaf += ret;
1800
			} else
1801 1802 1803 1804 1805 1806
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1807
			clear_unsync_child_bit(sp, i);
1808 1809
	}

1810 1811 1812
	return nr_unsync_leaf;
}

1813 1814
#define INVALID_INDEX (-1)

1815 1816 1817
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1818
	pvec->nr = 0;
1819 1820 1821
	if (!sp->unsync_children)
		return 0;

1822
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1823
	return __mmu_unsync_walk(sp, pvec);
1824 1825 1826 1827 1828
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1829
	trace_kvm_mmu_sync_page(sp);
1830 1831 1832 1833
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1834 1835
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1836 1837
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1838

1839 1840
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1841
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1842
		} else
1843 1844

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1845 1846
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1847
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1848

1849 1850
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1851
{
1852
	if (vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1853
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1854
		return false;
1855 1856
	}

1857
	return true;
1858 1859
}

1860 1861 1862 1863
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1864
	if (!remote_flush && list_empty(invalid_list))
1865 1866 1867 1868 1869 1870 1871 1872 1873
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1874 1875 1876
static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
				 struct list_head *invalid_list,
				 bool remote_flush, bool local_flush)
1877
{
1878
	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1879
		return;
1880

1881
	if (local_flush)
1882
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1883 1884
}

1885 1886 1887 1888 1889 1890 1891
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1892 1893
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1894 1895
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1896 1897
}

1898
struct mmu_page_path {
1899 1900
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1901 1902
};

1903
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1904
		for (i = mmu_pages_first(&pvec, &parents);	\
1905 1906 1907
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1908 1909 1910
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1911 1912 1913 1914 1915
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1916 1917
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1918

P
Paolo Bonzini 已提交
1919
		parents->idx[level-1] = idx;
1920
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1921
			break;
1922

P
Paolo Bonzini 已提交
1923
		parents->parent[level-2] = sp;
1924 1925 1926 1927 1928
	}

	return n;
}

P
Paolo Bonzini 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1938 1939
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1940 1941
	sp = pvec->page[0].sp;
	level = sp->role.level;
1942
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

1953
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1954
{
1955 1956 1957 1958 1959 1960 1961 1962 1963
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

1964
		WARN_ON(idx == INVALID_INDEX);
1965
		clear_unsync_child_bit(sp, idx);
1966
		level++;
P
Paolo Bonzini 已提交
1967
	} while (!sp->unsync_children);
1968
}
1969

1970 1971 1972 1973 1974 1975 1976
static void mmu_sync_children(struct kvm_vcpu *vcpu,
			      struct kvm_mmu_page *parent)
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
1977
	LIST_HEAD(invalid_list);
1978
	bool flush = false;
1979 1980

	while (mmu_unsync_walk(parent, &pages)) {
1981
		bool protected = false;
1982 1983

		for_each_sp(pages, sp, parents, i)
1984
			protected |= rmap_write_protect(vcpu, sp->gfn);
1985

1986
		if (protected) {
1987
			kvm_flush_remote_tlbs(vcpu->kvm);
1988 1989
			flush = false;
		}
1990

1991
		for_each_sp(pages, sp, parents, i) {
1992
			kvm_unlink_unsync_page(vcpu->kvm, sp);
1993
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
1994 1995
			mmu_pages_clear_parents(&parents);
		}
1996
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
1997
			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1998
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
1999 2000
			flush = false;
		}
2001
	}
2002 2003

	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2004 2005
}

2006 2007
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2008
	atomic_set(&sp->write_flooding_count,  0);
2009 2010 2011 2012
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2013
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2014 2015
}

2016 2017 2018 2019
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2020
					     int direct,
2021
					     unsigned int access)
2022
{
2023
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2024
	union kvm_mmu_page_role role;
2025
	struct hlist_head *sp_list;
2026
	unsigned quadrant;
2027
	struct kvm_mmu_page *sp;
2028
	int collisions = 0;
2029
	LIST_HEAD(invalid_list);
2030

2031
	role = vcpu->arch.mmu->mmu_role.base;
2032
	role.level = level;
2033
	role.direct = direct;
2034
	if (role.direct)
2035
		role.gpte_is_8_bytes = true;
2036
	role.access = access;
2037
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2038 2039 2040 2041
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2042 2043 2044

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2045 2046 2047 2048 2049
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2063
			continue;
2064
		}
2065

2066 2067 2068
		if (direct_mmu)
			goto trace_get_page;

2069
		if (sp->unsync) {
2070
			/*
2071
			 * The page is good, but is stale.  kvm_sync_page does
2072 2073 2074 2075 2076 2077 2078 2079 2080
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2081
			 */
2082
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2083 2084 2085
				break;

			WARN_ON(!list_empty(&invalid_list));
2086
			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2087
		}
2088

2089
		if (sp->unsync_children)
2090
			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2091

2092
		__clear_sp_write_flooding_count(sp);
2093 2094

trace_get_page:
2095
		trace_kvm_mmu_get_page(sp, false);
2096
		goto out;
2097
	}
2098

A
Avi Kivity 已提交
2099
	++vcpu->kvm->stat.mmu_cache_miss;
2100 2101 2102

	sp = kvm_mmu_alloc_page(vcpu, direct);

2103 2104
	sp->gfn = gfn;
	sp->role = role;
2105
	hlist_add_head(&sp->hash_link, sp_list);
2106
	if (!direct) {
2107
		account_shadowed(vcpu->kvm, sp);
2108
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2109
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2110
	}
A
Avi Kivity 已提交
2111
	trace_kvm_mmu_get_page(sp, true);
2112
out:
2113 2114
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2115 2116
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2117
	return sp;
2118 2119
}

2120 2121 2122
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2123 2124
{
	iterator->addr = addr;
2125
	iterator->shadow_addr = root;
2126
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2127

2128
	if (iterator->level == PT64_ROOT_4LEVEL &&
2129 2130
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2131 2132
		--iterator->level;

2133
	if (iterator->level == PT32E_ROOT_LEVEL) {
2134 2135 2136 2137
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2138
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2139

2140
		iterator->shadow_addr
2141
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2142 2143 2144 2145 2146 2147 2148
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2149 2150 2151
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2152
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2153 2154 2155
				    addr);
}

2156 2157
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2158
	if (iterator->level < PG_LEVEL_4K)
2159
		return false;
2160

2161 2162 2163 2164 2165
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2166 2167
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2168
{
2169
	if (is_last_spte(spte, iterator->level)) {
2170 2171 2172 2173
		iterator->level = 0;
		return;
	}

2174
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2175 2176 2177
	--iterator->level;
}

2178 2179
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2180
	__shadow_walk_next(iterator, *iterator->sptep);
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2192
	mmu_spte_set(sptep, spte);
2193 2194 2195 2196 2197

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2198 2199
}

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2213
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2214 2215 2216
		if (child->role.access == direct_access)
			return;

2217
		drop_parent_pte(child, sptep);
2218
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2219 2220 2221
	}
}

2222 2223 2224
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2225 2226 2227 2228 2229 2230
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2231
		if (is_last_spte(pte, sp->role.level)) {
2232
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2233 2234 2235
			if (is_large_pte(pte))
				--kvm->stat.lpages;
		} else {
2236
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2237
			drop_parent_pte(child, spte);
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2248
		}
2249
	} else if (is_mmio_spte(pte)) {
2250
		mmu_spte_clear_no_track(spte);
2251
	}
2252
	return 0;
2253 2254
}

2255 2256 2257
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2258
{
2259
	int zapped = 0;
2260 2261
	unsigned i;

2262
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2263 2264 2265
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2266 2267
}

2268
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2269
{
2270 2271
	u64 *sptep;
	struct rmap_iterator iter;
2272

2273
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2274
		drop_parent_pte(sp, sptep);
2275 2276
}

2277
static int mmu_zap_unsync_children(struct kvm *kvm,
2278 2279
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2280
{
2281 2282 2283
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2284

2285
	if (parent->role.level == PG_LEVEL_4K)
2286
		return 0;
2287 2288 2289 2290 2291

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2292
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2293
			mmu_pages_clear_parents(&parents);
2294
			zapped++;
2295 2296 2297 2298
		}
	}

	return zapped;
2299 2300
}

2301 2302 2303 2304
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2305
{
2306
	bool list_unstable;
A
Avi Kivity 已提交
2307

2308
	trace_kvm_mmu_prepare_zap_page(sp);
2309
	++kvm->stat.mmu_shadow_zapped;
2310
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2311
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2312
	kvm_mmu_unlink_parents(kvm, sp);
2313

2314 2315 2316
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2317
	if (!sp->role.invalid && !sp->role.direct)
2318
		unaccount_shadowed(kvm, sp);
2319

2320 2321
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2322
	if (!sp->root_count) {
2323
		/* Count self */
2324
		(*nr_zapped)++;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2335
		kvm_mod_used_mmu_pages(kvm, -1);
2336
	} else {
2337 2338 2339 2340 2341
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2342

2343 2344 2345 2346 2347 2348
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2349
			kvm_reload_remote_mmus(kvm);
2350
	}
2351

P
Paolo Bonzini 已提交
2352 2353 2354
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2355
	sp->role.invalid = 1;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2366 2367
}

2368 2369 2370
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2371
	struct kvm_mmu_page *sp, *nsp;
2372 2373 2374 2375

	if (list_empty(invalid_list))
		return;

2376
	/*
2377 2378 2379 2380 2381 2382 2383
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2384 2385
	 */
	kvm_flush_remote_tlbs(kvm);
2386

2387
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2388
		WARN_ON(!sp->role.invalid || sp->root_count);
2389
		kvm_mmu_free_page(sp);
2390
	}
2391 2392
}

2393 2394
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2395
{
2396 2397
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2398
	LIST_HEAD(invalid_list);
2399 2400
	bool unstable;
	int nr_zapped;
2401 2402

	if (list_empty(&kvm->arch.active_mmu_pages))
2403 2404
		return 0;

2405
restart:
2406
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2418 2419
			break;

2420 2421
		if (unstable)
			goto restart;
2422
	}
2423

2424 2425 2426 2427 2428 2429
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2430 2431 2432 2433 2434 2435 2436
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2437 2438
}

2439 2440
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2441
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2442

2443
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2444 2445
		return 0;

2446
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2447

2448 2449 2450 2451 2452 2453 2454 2455 2456
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
	 * being too agressive may unnecessarily kill the guest, and getting an
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2457 2458 2459 2460 2461
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2462 2463
/*
 * Changing the number of mmu pages allocated to the vm
2464
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2465
 */
2466
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2467
{
2468
	write_lock(&kvm->mmu_lock);
2469

2470
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2471 2472
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2473

2474
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2475 2476
	}

2477
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2478

2479
	write_unlock(&kvm->mmu_lock);
2480 2481
}

2482
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2483
{
2484
	struct kvm_mmu_page *sp;
2485
	LIST_HEAD(invalid_list);
2486 2487
	int r;

2488
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2489
	r = 0;
2490
	write_lock(&kvm->mmu_lock);
2491
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2492
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2493 2494
			 sp->role.word);
		r = 1;
2495
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2496
	}
2497
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2498
	write_unlock(&kvm->mmu_lock);
2499

2500
	return r;
2501
}
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2517

2518
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2519 2520 2521 2522 2523 2524 2525 2526
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2527 2528 2529 2530 2531 2532 2533
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync)
2534
{
2535
	struct kvm_mmu_page *sp;
2536

2537 2538 2539 2540 2541
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2542
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2543
		return -EPERM;
2544

2545 2546 2547 2548 2549 2550
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2551
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2552
		if (!can_unsync)
2553
			return -EPERM;
2554

2555 2556
		if (sp->unsync)
			continue;
2557

2558
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2559
		kvm_unsync_page(vcpu, sp);
2560
	}
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2584 2585
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2601
	return 0;
2602 2603
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2621 2622 2623
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2624
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2625 2626 2627
	return ret;
}

2628
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2629
			unsigned int pte_access, bool write_fault, int level,
2630 2631
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2632 2633
{
	int was_rmapped = 0;
2634
	int rmap_count;
2635
	int set_spte_ret;
2636
	int ret = RET_PF_FIXED;
2637
	bool flush = false;
M
Marcelo Tosatti 已提交
2638

2639 2640
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2641

2642 2643 2644 2645 2646
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2647
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2648 2649 2650 2651
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2652
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2653
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2654
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2655

2656
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2657
			drop_parent_pte(child, sptep);
2658
			flush = true;
A
Avi Kivity 已提交
2659
		} else if (pfn != spte_to_pfn(*sptep)) {
2660
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2661
				 spte_to_pfn(*sptep), pfn);
2662
			drop_spte(vcpu->kvm, sptep);
2663
			flush = true;
2664 2665
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2666
	}
2667

2668 2669 2670
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2671
		if (write_fault)
2672
			ret = RET_PF_EMULATE;
2673
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2674
	}
2675

2676
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2677 2678
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2689
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2690
	trace_kvm_mmu_set_spte(level, gfn, sptep);
A
Avi Kivity 已提交
2691
	if (!was_rmapped && is_large_pte(*sptep))
M
Marcelo Tosatti 已提交
2692 2693
		++vcpu->kvm->stat.lpages;

2694 2695 2696 2697 2698 2699
	if (is_shadow_present_pte(*sptep)) {
		if (!was_rmapped) {
			rmap_count = rmap_add(vcpu, sptep, gfn);
			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
				rmap_recycle(vcpu, sptep, gfn);
		}
2700
	}
2701

2702
	return ret;
2703 2704
}

D
Dan Williams 已提交
2705
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2706 2707 2708 2709
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2710
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2711
	if (!slot)
2712
		return KVM_PFN_ERR_FAULT;
2713

2714
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2715 2716 2717 2718 2719 2720 2721
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2722
	struct kvm_memory_slot *slot;
2723
	unsigned int access = sp->role.access;
2724 2725 2726 2727
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2728 2729
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2730 2731
		return -1;

2732
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2733 2734 2735
	if (ret <= 0)
		return -1;

2736
	for (i = 0; i < ret; i++, gfn++, start++) {
2737
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2738
			     page_to_pfn(pages[i]), true, true);
2739 2740
		put_page(pages[i]);
	}
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2757
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
				break;
			start = NULL;
		} else if (!start)
			start = spte;
	}
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2772
	sp = sptep_to_sp(sptep);
2773

2774
	/*
2775 2776 2777
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2778
	 */
2779
	if (sp_ad_disabled(sp))
2780 2781
		return;

2782
	if (sp->role.level > PG_LEVEL_4K)
2783 2784
		return;

2785 2786 2787 2788 2789 2790 2791
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2792 2793 2794
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2795
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2796
				  const struct kvm_memory_slot *slot)
2797 2798 2799 2800 2801
{
	unsigned long hva;
	pte_t *pte;
	int level;

2802
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2803
		return PG_LEVEL_4K;
2804

2805 2806 2807 2808 2809 2810 2811 2812
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2813 2814
	hva = __gfn_to_hva_memslot(slot, gfn);

2815
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2816
	if (unlikely(!pte))
2817
		return PG_LEVEL_4K;
2818 2819 2820 2821

	return level;
}

2822 2823 2824
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
{
	struct kvm_lpage_info *linfo;

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

	return host_pfn_mapping_level(kvm, gfn, pfn, slot);
}

B
Ben Gardon 已提交
2841 2842 2843
int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
			    int max_level, kvm_pfn_t *pfnp,
			    bool huge_page_disallowed, int *req_level)
2844
{
2845
	struct kvm_memory_slot *slot;
2846
	kvm_pfn_t pfn = *pfnp;
2847
	kvm_pfn_t mask;
2848
	int level;
2849

2850 2851
	*req_level = PG_LEVEL_4K;

2852 2853
	if (unlikely(max_level == PG_LEVEL_4K))
		return PG_LEVEL_4K;
2854

2855
	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2856
		return PG_LEVEL_4K;
2857

2858 2859
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
	if (!slot)
2860
		return PG_LEVEL_4K;
2861

2862
	level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level);
2863
	if (level == PG_LEVEL_4K)
2864
		return level;
2865

2866 2867 2868 2869 2870 2871 2872 2873
	*req_level = level = min(level, max_level);

	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
	if (huge_page_disallowed)
		return PG_LEVEL_4K;
2874 2875

	/*
2876 2877
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2878
	 */
2879 2880 2881
	mask = KVM_PAGES_PER_HPAGE(level) - 1;
	VM_BUG_ON((gfn & mask) != (pfn & mask));
	*pfnp = pfn & ~mask;
2882 2883

	return level;
2884 2885
}

B
Ben Gardon 已提交
2886 2887
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
				kvm_pfn_t *pfnp, int *goal_levelp)
P
Paolo Bonzini 已提交
2888
{
B
Ben Gardon 已提交
2889
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2890

2891
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2901 2902
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2903
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2904
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2905 2906 2907
	}
}

2908
static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2909
			int map_writable, int max_level, kvm_pfn_t pfn,
2910
			bool prefault, bool is_tdp)
2911
{
2912 2913 2914 2915
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2916
	struct kvm_shadow_walk_iterator it;
2917
	struct kvm_mmu_page *sp;
2918
	int level, req_level, ret;
2919 2920
	gfn_t gfn = gpa >> PAGE_SHIFT;
	gfn_t base_gfn = gfn;
A
Avi Kivity 已提交
2921

2922 2923
	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);
2924

2925
	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2926
	for_each_shadow_entry(vcpu, gpa, it) {
P
Paolo Bonzini 已提交
2927 2928 2929 2930
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2931
		if (nx_huge_page_workaround_enabled)
2932 2933
			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
						   &pfn, &level);
P
Paolo Bonzini 已提交
2934

2935 2936
		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
		if (it.level == level)
2937
			break;
A
Avi Kivity 已提交
2938

2939 2940 2941 2942
		drop_large_spte(vcpu, it.sptep);
		if (!is_shadow_present_pte(*it.sptep)) {
			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
					      it.level - 1, true, ACC_ALL);
2943

2944
			link_shadow_page(vcpu, it.sptep, sp);
2945 2946
			if (is_tdp && huge_page_disallowed &&
			    req_level >= it.level)
P
Paolo Bonzini 已提交
2947
				account_huge_nx_page(vcpu->kvm, sp);
2948 2949
		}
	}
2950 2951 2952 2953

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
			   write, level, base_gfn, pfn, prefault,
			   map_writable);
2954 2955 2956
	if (ret == RET_PF_SPURIOUS)
		return ret;

2957 2958 2959
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
2960 2961
}

H
Huang Ying 已提交
2962
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2963
{
2964
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2965 2966
}

D
Dan Williams 已提交
2967
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2968
{
X
Xiao Guangrong 已提交
2969 2970 2971 2972 2973 2974
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
2975
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
2976

2977
	if (pfn == KVM_PFN_ERR_HWPOISON) {
2978
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2979
		return RET_PF_RETRY;
2980
	}
2981

2982
	return -EFAULT;
2983 2984
}

2985
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2986 2987
				kvm_pfn_t pfn, unsigned int access,
				int *ret_val)
2988 2989
{
	/* The pfn is invalid, report the error! */
2990
	if (unlikely(is_error_pfn(pfn))) {
2991
		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2992
		return true;
2993 2994
	}

2995
	if (unlikely(is_noslot_pfn(pfn))) {
2996 2997
		vcpu_cache_mmio_info(vcpu, gva, gfn,
				     access & shadow_mmio_access_mask);
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3008

3009
	return false;
3010 3011
}

3012
static bool page_fault_can_be_fast(u32 error_code)
3013
{
3014 3015 3016 3017 3018 3019 3020
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

3021 3022 3023 3024 3025
	/* See if the page fault is due to an NX violation */
	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
		return false;

3026
	/*
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3038 3039
	 */

3040 3041 3042
	return shadow_acc_track_mask != 0 ||
	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3043 3044
}

3045 3046 3047 3048
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3049
static bool
3050
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3051
			u64 *sptep, u64 old_spte, u64 new_spte)
3052 3053 3054 3055 3056
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3069
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3070 3071
		return false;

3072
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3073 3074 3075 3076 3077 3078 3079
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3080 3081 3082 3083

	return true;
}

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static bool is_access_allowed(u32 fault_err_code, u64 spte)
{
	if (fault_err_code & PFERR_FETCH_MASK)
		return is_executable_pte(spte);

	if (fault_err_code & PFERR_WRITE_MASK)
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3096
/*
3097
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3098
 */
3099 3100
static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
			   u32 error_code)
3101 3102
{
	struct kvm_shadow_walk_iterator iterator;
3103
	struct kvm_mmu_page *sp;
3104
	int ret = RET_PF_INVALID;
3105
	u64 spte = 0ull;
3106
	uint retry_count = 0;
3107

3108
	if (!page_fault_can_be_fast(error_code))
3109
		return ret;
3110 3111 3112

	walk_shadow_page_lockless_begin(vcpu);

3113
	do {
3114
		u64 new_spte;
3115

3116
		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3117
			if (!is_shadow_present_pte(spte))
3118 3119
				break;

3120 3121 3122
		if (!is_shadow_present_pte(spte))
			break;

3123
		sp = sptep_to_sp(iterator.sptep);
3124 3125
		if (!is_last_spte(spte, sp->role.level))
			break;
3126

3127
		/*
3128 3129 3130 3131 3132
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3133 3134 3135 3136
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3137
		if (is_access_allowed(error_code, spte)) {
3138
			ret = RET_PF_SPURIOUS;
3139 3140
			break;
		}
3141

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
		if ((error_code & PFERR_WRITE_MASK) &&
3153
		    spte_can_locklessly_be_made_writable(spte)) {
3154
			new_spte |= PT_WRITABLE_MASK;
3155 3156

			/*
3157 3158 3159 3160 3161 3162 3163 3164 3165
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3166
			 */
3167
			if (sp->role.level > PG_LEVEL_4K)
3168
				break;
3169
		}
3170

3171
		/* Verify that the fault can be handled in the fast path */
3172 3173
		if (new_spte == spte ||
		    !is_access_allowed(error_code, new_spte))
3174 3175 3176 3177 3178
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3179
		 * Documentation/virt/kvm/locking.rst to get more detail.
3180
		 */
3181 3182 3183
		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
					    new_spte)) {
			ret = RET_PF_FIXED;
3184
			break;
3185
		}
3186 3187 3188 3189 3190 3191 3192 3193

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3194

3195
	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3196
			      spte, ret);
3197 3198
	walk_shadow_page_lockless_end(vcpu);

3199
	return ret;
3200 3201
}

3202 3203
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3204
{
3205
	struct kvm_mmu_page *sp;
3206

3207
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3208
		return;
3209

3210
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3211

3212
	if (is_tdp_mmu_page(sp))
3213
		kvm_tdp_mmu_put_root(kvm, sp, false);
3214 3215
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3216

3217 3218 3219
	*root_hpa = INVALID_PAGE;
}

3220
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3221 3222
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3223
{
3224
	struct kvm *kvm = vcpu->kvm;
3225 3226
	int i;
	LIST_HEAD(invalid_list);
3227
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3228

3229
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3230

3231
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3232 3233 3234 3235 3236 3237 3238 3239 3240
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3241

3242
	write_lock(&kvm->mmu_lock);
3243

3244 3245
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3246
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3247
					   &invalid_list);
3248

3249 3250 3251
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3252
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3253
		} else if (mmu->pae_root) {
3254 3255 3256 3257 3258 3259 3260 3261
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3262
		}
3263
		mmu->root_hpa = INVALID_PAGE;
3264
		mmu->root_pgd = 0;
3265
	}
3266

3267
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3268
	write_unlock(&kvm->mmu_lock);
3269
}
3270
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3271

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3299 3300 3301 3302
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3303
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3304
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3305 3306 3307 3308 3309 3310
		ret = 1;
	}

	return ret;
}

3311 3312
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3313 3314
{
	struct kvm_mmu_page *sp;
3315 3316 3317 3318 3319 3320 3321 3322 3323

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3324 3325
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3326
	hpa_t root;
3327
	unsigned i;
3328 3329 3330 3331 3332 3333
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3334

3335
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3336
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3337
		mmu->root_hpa = root;
3338
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3339
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3340
		mmu->root_hpa = root;
3341
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3342 3343 3344 3345
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3346

3347
		for (i = 0; i < 4; ++i) {
3348
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3349

3350 3351
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3352 3353
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3354
		}
3355
		mmu->root_hpa = __pa(mmu->pae_root);
3356 3357
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3358 3359
		r = -EIO;
		goto out_unlock;
3360
	}
3361

3362
	/* root_pgd is ignored for direct MMUs. */
3363
	mmu->root_pgd = 0;
3364 3365 3366
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3367 3368 3369
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3370
{
3371
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3372
	u64 pdptrs[4], pm_mask;
3373
	gfn_t root_gfn, root_pgd;
3374
	hpa_t root;
3375 3376
	unsigned i;
	int r;
3377

3378
	root_pgd = mmu->get_guest_pgd(vcpu);
3379
	root_gfn = root_pgd >> PAGE_SHIFT;
3380

3381 3382 3383
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3384 3385 3386 3387
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3399 3400 3401 3402
	r = alloc_all_memslots_rmaps(vcpu->kvm);
	if (r)
		return r;

3403 3404 3405 3406 3407
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3408 3409 3410 3411
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3412
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3413
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3414 3415
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3416
		goto set_root_pgd;
3417
	}
3418

3419 3420 3421 3422
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3423

3424 3425
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3426 3427
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3428
	 */
3429
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3430
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3431 3432
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3433
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3434 3435 3436
			r = -EIO;
			goto out_unlock;
		}
3437

3438
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3439 3440
	}

3441
	for (i = 0; i < 4; ++i) {
3442
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3443

3444
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3445
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3446
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3447 3448
				continue;
			}
3449
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3450
		}
3451

3452 3453
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3454
		mmu->pae_root[i] = root | pm_mask;
3455
	}
3456

3457
	if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3458
		mmu->root_hpa = __pa(mmu->pml4_root);
3459 3460
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3461

3462
set_root_pgd:
3463
	mmu->root_pgd = root_pgd;
3464 3465
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3466

3467
	return 0;
3468 3469
}

3470 3471 3472
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3473
	u64 *pml4_root, *pae_root;
3474 3475

	/*
3476 3477 3478 3479
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3480
	 */
3481 3482 3483
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3484

3485 3486 3487 3488 3489 3490
	/*
	 * This mess only works with 4-level paging and needs to be updated to
	 * work with 5-level paging.
	 */
	if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL))
		return -EIO;
3491

3492
	if (mmu->pae_root && mmu->pml4_root)
3493
		return 0;
3494

3495 3496 3497 3498
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3499
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root))
3500
		return -EIO;
3501

3502 3503 3504 3505
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3506 3507 3508
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3509

3510 3511
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pml4_root) {
3512 3513
		free_page((unsigned long)pae_root);
		return -ENOMEM;
3514 3515
	}

3516
	mmu->pae_root = pae_root;
3517
	mmu->pml4_root = pml4_root;
3518

3519
	return 0;
3520 3521
}

3522
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3523 3524 3525 3526
{
	int i;
	struct kvm_mmu_page *sp;

3527
	if (vcpu->arch.mmu->direct_map)
3528 3529
		return;

3530
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3531
		return;
3532

3533
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3534

3535 3536
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3537
		sp = to_shadow_page(root);
3538 3539 3540 3541 3542 3543 3544 3545

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
3546 3547
		 * mmu_try_to_unsync_pages() describe what could go wrong if
		 * this requirement isn't satisfied.
3548 3549 3550 3551 3552
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3553
		write_lock(&vcpu->kvm->mmu_lock);
3554 3555
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3556
		mmu_sync_children(vcpu, sp);
3557

3558
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3559
		write_unlock(&vcpu->kvm->mmu_lock);
3560 3561
		return;
	}
3562

3563
	write_lock(&vcpu->kvm->mmu_lock);
3564 3565
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3566
	for (i = 0; i < 4; ++i) {
3567
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3568

3569
		if (IS_VALID_PAE_ROOT(root)) {
3570
			root &= PT64_BASE_ADDR_MASK;
3571
			sp = to_shadow_page(root);
3572 3573 3574 3575
			mmu_sync_children(vcpu, sp);
		}
	}

3576
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3577
	write_unlock(&vcpu->kvm->mmu_lock);
3578 3579
}

3580
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3581
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3582
{
3583 3584
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3585 3586 3587
	return vaddr;
}

3588
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3589 3590
					 u32 access,
					 struct x86_exception *exception)
3591
{
3592 3593
	if (exception)
		exception->error_code = 0;
3594
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3595 3596
}

3597
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3598
{
3599 3600 3601 3602 3603 3604 3605
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3606 3607 3608 3609 3610 3611
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3612 3613 3614 3615
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
3616
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3617 3618
{
	struct kvm_shadow_walk_iterator iterator;
3619
	int leaf = -1;
3620
	u64 spte;
3621 3622

	walk_shadow_page_lockless_begin(vcpu);
3623

3624 3625
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3626 3627
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3628
		leaf = iterator.level;
3629 3630
		spte = mmu_spte_get_lockless(iterator.sptep);

3631
		sptes[leaf] = spte;
3632

3633 3634
		if (!is_shadow_present_pte(spte))
			break;
3635 3636 3637 3638 3639 3640 3641
	}

	walk_shadow_page_lockless_end(vcpu);

	return leaf;
}

3642
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3643 3644
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3645
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3646
	struct rsvd_bits_validate *rsvd_check;
3647
	int root, leaf, level;
3648 3649
	bool reserved = false;

3650
	if (is_tdp_mmu(vcpu->arch.mmu))
3651
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3652
	else
3653
		leaf = get_walk(vcpu, addr, sptes, &root);
3654

3655 3656 3657 3658 3659
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3670 3671 3672

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3673
	for (level = root; level >= leaf; level--)
3674
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3675 3676

	if (reserved) {
3677
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3678
		       __func__, addr);
3679
		for (level = root; level >= leaf; level--)
3680 3681
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3682
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3683
	}
3684

3685
	return reserved;
3686 3687
}

P
Paolo Bonzini 已提交
3688
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3689 3690
{
	u64 spte;
3691
	bool reserved;
3692

3693
	if (mmio_info_in_cache(vcpu, addr, direct))
3694
		return RET_PF_EMULATE;
3695

3696
	reserved = get_mmio_spte(vcpu, addr, &spte);
3697
	if (WARN_ON(reserved))
3698
		return -EINVAL;
3699 3700 3701

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3702
		unsigned int access = get_mmio_spte_access(spte);
3703

3704
		if (!check_mmio_spte(vcpu, spte))
3705
			return RET_PF_INVALID;
3706

3707 3708
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3709 3710

		trace_handle_mmio_page_fault(addr, gfn, access);
3711
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3712
		return RET_PF_EMULATE;
3713 3714 3715 3716 3717 3718
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3719
	return RET_PF_RETRY;
3720 3721
}

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
					 u32 error_code, gfn_t gfn)
{
	if (unlikely(error_code & PFERR_RSVD_MASK))
		return false;

	if (!(error_code & PFERR_PRESENT_MASK) ||
	      !(error_code & PFERR_WRITE_MASK))
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
		return true;

	return false;
}

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
		clear_sp_write_flooding_count(iterator.sptep);
		if (!is_shadow_present_pte(spte))
			break;
	}
	walk_shadow_page_lockless_end(vcpu);
}

3756 3757
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3758 3759
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3760

3761
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3762
	arch.gfn = gfn;
3763
	arch.direct_map = vcpu->arch.mmu->direct_map;
3764
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3765

3766 3767
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3768 3769
}

3770
static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3771 3772
			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva,
			 bool write, bool *writable)
3773
{
3774
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3775 3776
	bool async;

3777 3778 3779 3780 3781 3782 3783 3784
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
		return true;

3785 3786
	/* Don't expose private memslots to L2. */
	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3787
		*pfn = KVM_PFN_NOSLOT;
3788
		*writable = false;
3789 3790 3791
		return false;
	}

3792
	async = false;
3793 3794
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async,
				    write, writable, hva);
3795 3796 3797
	if (!async)
		return false; /* *pfn has correct page already */

3798
	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3799
		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3800
		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3801
			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3802 3803
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
			return true;
3804
		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3805 3806 3807
			return true;
	}

3808 3809
	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL,
				    write, writable, hva);
3810 3811 3812
	return false;
}

3813 3814
static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
			     bool prefault, int max_level, bool is_tdp)
A
Avi Kivity 已提交
3815
{
3816
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
3817
	bool write = error_code & PFERR_WRITE_MASK;
3818
	bool map_writable;
A
Avi Kivity 已提交
3819

3820 3821 3822
	gfn_t gfn = gpa >> PAGE_SHIFT;
	unsigned long mmu_seq;
	kvm_pfn_t pfn;
3823
	hva_t hva;
3824
	int r;
3825

3826
	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3827
		return RET_PF_EMULATE;
3828

3829
	if (!is_tdp_mmu_fault) {
B
Ben Gardon 已提交
3830 3831 3832 3833
		r = fast_page_fault(vcpu, gpa, error_code);
		if (r != RET_PF_INVALID)
			return r;
	}
3834

3835
	r = mmu_topup_memory_caches(vcpu, false);
3836 3837
	if (r)
		return r;
3838

3839 3840 3841
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3842 3843
	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva,
			 write, &map_writable))
3844 3845
		return RET_PF_RETRY;

3846
	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3847
		return r;
A
Avi Kivity 已提交
3848

3849
	r = RET_PF_RETRY;
3850

3851
	if (is_tdp_mmu_fault)
3852 3853 3854 3855
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3856
	if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva))
3857
		goto out_unlock;
3858 3859
	r = make_mmu_pages_available(vcpu);
	if (r)
3860
		goto out_unlock;
B
Ben Gardon 已提交
3861

3862
	if (is_tdp_mmu_fault)
B
Ben Gardon 已提交
3863 3864 3865 3866 3867
		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
				    pfn, prefault);
	else
		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
				 prefault, is_tdp);
3868

3869
out_unlock:
3870
	if (is_tdp_mmu_fault)
3871 3872 3873
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3874 3875
	kvm_release_pfn_clean(pfn);
	return r;
A
Avi Kivity 已提交
3876 3877
}

3878 3879 3880 3881 3882 3883 3884
static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
				u32 error_code, bool prefault)
{
	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3885
				 PG_LEVEL_2M, false);
3886 3887
}

3888
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3889
				u64 fault_address, char *insn, int insn_len)
3890 3891
{
	int r = 1;
3892
	u32 flags = vcpu->arch.apf.host_apf_flags;
3893

3894 3895 3896 3897 3898 3899
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
3900
	vcpu->arch.l1tf_flush_l1d = true;
3901
	if (!flags) {
3902 3903
		trace_kvm_page_fault(fault_address, error_code);

3904
		if (kvm_event_needs_reinjection(vcpu))
3905 3906 3907
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
3908
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3909
		vcpu->arch.apf.host_apf_flags = 0;
3910
		local_irq_disable();
3911
		kvm_async_pf_task_wait_schedule(fault_address);
3912
		local_irq_enable();
3913 3914
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3915
	}
3916

3917 3918 3919 3920
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

3921 3922
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		       bool prefault)
3923
{
3924
	int max_level;
3925

3926
	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3927
	     max_level > PG_LEVEL_4K;
3928 3929
	     max_level--) {
		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3930
		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3931

3932 3933
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
3934
	}
3935

3936 3937
	return direct_page_fault(vcpu, gpa, error_code, prefault,
				 max_level, true);
3938 3939
}

3940
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
3941 3942 3943
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
3944
	context->sync_page = nonpaging_sync_page;
3945
	context->invlpg = NULL;
3946
	context->direct_map = true;
A
Avi Kivity 已提交
3947 3948
}

3949
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3950 3951
				  union kvm_mmu_page_role role)
{
3952
	return (role.direct || pgd == root->pgd) &&
3953 3954
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
3955 3956
}

3957
/*
3958
 * Find out if a previously cached root matching the new pgd/role is available.
3959 3960 3961 3962 3963 3964
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
3965
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3966 3967 3968 3969
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
3970
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3971

3972
	root.pgd = mmu->root_pgd;
3973 3974
	root.hpa = mmu->root_hpa;

3975
	if (is_root_usable(&root, new_pgd, new_role))
3976 3977
		return true;

3978 3979 3980
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

3981
		if (is_root_usable(&root, new_pgd, new_role))
3982 3983 3984 3985
			break;
	}

	mmu->root_hpa = root.hpa;
3986
	mmu->root_pgd = root.pgd;
3987 3988 3989 3990

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

3991
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3992
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
3993
{
3994
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3995 3996 3997 3998 3999 4000 4001

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4002
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4003
		return cached_root_available(vcpu, new_pgd, new_role);
4004 4005

	return false;
A
Avi Kivity 已提交
4006 4007
}

4008
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4009
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4010
{
4011
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4024
	if (force_flush_and_sync_on_reuse) {
4025 4026
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4027
	}
4028 4029 4030 4031 4032 4033 4034 4035 4036

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4037 4038 4039 4040 4041 4042 4043
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4044 4045
}

4046
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4047
{
4048
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4049
}
4050
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4051

4052 4053
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4054
	return kvm_read_cr3(vcpu);
4055 4056
}

4057
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4058
			   unsigned int access, int *nr_present)
4059 4060 4061 4062 4063 4064 4065 4066
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

		(*nr_present)++;
4067
		mark_mmio_spte(vcpu, sptep, gfn, access);
4068 4069 4070 4071 4072 4073
		return true;
	}

	return false;
}

4074 4075 4076 4077 4078
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4079 4080 4081 4082 4083 4084 4085 4086
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4087
static void
4088
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4089
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4090
			bool pse, bool amd)
4091
{
4092
	u64 gbpages_bit_rsvd = 0;
4093
	u64 nonleaf_bit8_rsvd = 0;
4094
	u64 high_bits_rsvd;
4095

4096
	rsvd_check->bad_mt_xwr = 0;
4097

4098
	if (!gbpages)
4099
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4100

4101 4102 4103 4104 4105 4106 4107 4108 4109
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4110 4111 4112 4113
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4114
	if (amd)
4115 4116
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4117
	switch (level) {
4118 4119
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4120 4121 4122 4123
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4124

4125
		if (!pse) {
4126
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4127 4128 4129
			break;
		}

4130 4131
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4132
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4133 4134
		else
			/* 32 bits PSE 4MB page */
4135
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4136 4137
		break;
	case PT32E_ROOT_LEVEL:
4138 4139 4140 4141 4142 4143 4144 4145
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4146 4147
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4148
		break;
4149
	case PT64_ROOT_5LEVEL:
4150 4151 4152
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4153 4154
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4155
		fallthrough;
4156
	case PT64_ROOT_4LEVEL:
4157 4158 4159 4160 4161 4162 4163
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4164 4165
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4166 4167 4168 4169 4170
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4171 4172
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4173 4174 4175 4176
		break;
	}
}

4177 4178 4179
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4180
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4181
				vcpu->arch.reserved_gpa_bits,
4182
				context->root_level, is_efer_nx(context),
4183
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4184
				is_cr4_pse(context),
4185
				guest_cpuid_is_amd_or_hygon(vcpu));
4186 4187
}

4188 4189
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4190
			    u64 pa_bits_rsvd, bool execonly)
4191
{
4192
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4193
	u64 bad_mt_xwr;
4194

4195 4196 4197 4198 4199
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4200 4201

	/* large page */
4202
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4203
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4204 4205
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4206
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4207

4208 4209 4210 4211 4212 4213 4214 4215
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4216
	}
4217
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4218 4219
}

4220 4221 4222 4223
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4224
				    vcpu->arch.reserved_gpa_bits, execonly);
4225 4226
}

4227 4228 4229 4230 4231
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4232 4233 4234 4235 4236
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4237 4238
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4239
{
4240 4241 4242 4243 4244 4245 4246 4247
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4248
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4249 4250 4251 4252 4253

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4254 4255
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4256

4257 4258
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4259
	shadow_zero_check = &context->shadow_zero_check;
4260
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4261
				context->shadow_root_level, uses_nx,
4262
				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4263
				is_pse, is_amd);
4264 4265 4266 4267 4268 4269 4270 4271 4272

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4273 4274
}

4275 4276 4277 4278 4279 4280
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4281 4282 4283 4284 4285 4286 4287 4288
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4289 4290 4291 4292 4293
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4294
	if (boot_cpu_is_amd())
4295
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4296
					context->shadow_root_level, false,
4297
					boot_cpu_has(X86_FEATURE_GBPAGES),
4298
					false, true);
4299
	else
4300
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4301
					    reserved_hpa_bits(), false);
4302

4303 4304 4305 4306 4307 4308 4309
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4321
				    reserved_hpa_bits(), execonly);
4322 4323
}

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4334
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4335
{
4336 4337 4338 4339 4340 4341
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4342 4343 4344
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4345
	bool efer_nx = is_efer_nx(mmu);
4346 4347

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4348 4349
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4350
		/*
4351 4352
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4353
		 */
4354

4355
		/* Faults from writes to non-writable pages */
4356
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4357
		/* Faults from user mode accesses to supervisor pages */
4358
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4359
		/* Faults from fetches of non-executable pages*/
4360
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4371
			if (!efer_nx)
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4386
			 * conditions are true:
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4400
		}
4401 4402

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4403 4404 4405
	}
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4430
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4431 4432 4433 4434
{
	unsigned bit;
	bool wp;

4435
	if (!is_cr4_pke(mmu)) {
4436 4437 4438 4439
		mmu->pkru_mask = 0;
		return;
	}

4440
	wp = is_cr0_wp(mmu);
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
{
	if (!is_cr0_pg(mmu))
		return;

	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
}

4485
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4486 4487 4488
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4489
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4490
	context->invlpg = paging64_invlpg;
4491
	context->direct_map = false;
A
Avi Kivity 已提交
4492 4493
}

4494
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4495 4496 4497
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4498
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4499
	context->invlpg = paging32_invlpg;
4500
	context->direct_map = false;
A
Avi Kivity 已提交
4501 4502
}

4503 4504
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4505 4506 4507
{
	union kvm_mmu_extended_role ext = {0};

4508 4509 4510 4511 4512 4513
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4514 4515 4516 4517

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4518
	}
4519 4520 4521 4522 4523 4524

	ext.valid = 1;

	return ext;
}

4525
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4526
						   struct kvm_mmu_role_regs *regs,
4527 4528 4529 4530 4531
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4532 4533 4534 4535
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4536 4537 4538 4539 4540 4541
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4542
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4543 4544 4545 4546

	return role;
}

4547 4548 4549
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
	/* Use 5-level TDP if and only if it's useful/necessary. */
4550
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4551 4552
		return 4;

4553
	return max_tdp_level;
4554 4555
}

4556
static union kvm_mmu_role
4557 4558
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4559
{
4560
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4561

4562
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4563
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4564
	role.base.direct = true;
4565
	role.base.gpte_is_8_bytes = true;
4566 4567 4568 4569

	return role;
}

4570
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4571
{
4572
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4573
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4574
	union kvm_mmu_role new_role =
4575
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4576

4577 4578 4579 4580
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4581
	context->page_fault = kvm_tdp_page_fault;
4582
	context->sync_page = nonpaging_sync_page;
4583
	context->invlpg = NULL;
4584
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4585
	context->direct_map = true;
4586
	context->get_guest_pgd = get_cr3;
4587
	context->get_pdptr = kvm_pdptr_read;
4588
	context->inject_page_fault = kvm_inject_page_fault;
4589
	context->root_level = role_regs_to_root_level(&regs);
4590

4591
	if (!is_cr0_pg(context))
4592
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4593
	else if (is_cr4_pae(context))
4594
		context->gva_to_gpa = paging64_gva_to_gpa;
4595
	else
4596
		context->gva_to_gpa = paging32_gva_to_gpa;
4597

4598
	reset_guest_paging_metadata(vcpu, context);
4599
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4600 4601
}

4602
static union kvm_mmu_role
4603 4604
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4605
{
4606
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4607

4608 4609
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4610
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4611

4612 4613 4614 4615
	return role;
}

static union kvm_mmu_role
4616 4617
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4618 4619
{
	union kvm_mmu_role role =
4620
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4621

4622
	role.base.direct = !____is_cr0_pg(regs);
4623

4624
	if (!____is_efer_lma(regs))
4625
		role.base.level = PT32E_ROOT_LEVEL;
4626
	else if (____is_cr4_la57(regs))
4627
		role.base.level = PT64_ROOT_5LEVEL;
4628
	else
4629
		role.base.level = PT64_ROOT_4LEVEL;
4630 4631 4632 4633

	return role;
}

4634
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4635 4636
				    struct kvm_mmu_role_regs *regs,
				    union kvm_mmu_role new_role)
4637
{
4638 4639 4640 4641 4642
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;

4643
	if (!is_cr0_pg(context))
4644
		nonpaging_init_context(context);
4645
	else if (is_cr4_pae(context))
4646
		paging64_init_context(context);
A
Avi Kivity 已提交
4647
	else
4648
		paging32_init_context(context);
4649
	context->root_level = role_regs_to_root_level(regs);
4650

4651
	reset_guest_paging_metadata(vcpu, context);
4652 4653
	context->shadow_root_level = new_role.base.level;

4654
	reset_shadow_zero_bits_mask(vcpu, context);
4655
}
4656

4657 4658
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4659
{
4660
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4661
	union kvm_mmu_role new_role =
4662
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4663

4664
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4665 4666
}

4667
static union kvm_mmu_role
4668 4669
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4670 4671
{
	union kvm_mmu_role role =
4672
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4673 4674

	role.base.direct = false;
4675
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4676 4677 4678 4679

	return role;
}

4680 4681
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4682
{
4683
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4684 4685 4686 4687 4688
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4689 4690 4691
	union kvm_mmu_role new_role;

	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4692

4693
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4694

4695
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4696 4697
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4698

4699 4700
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4701
				   bool execonly, u8 level)
4702
{
4703
	union kvm_mmu_role role = {0};
4704

4705 4706
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4707

4708
	role.base.level = level;
4709
	role.base.gpte_is_8_bytes = true;
4710 4711 4712 4713
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4714

4715 4716
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4717
	role.ext.execonly = execonly;
4718
	role.ext.valid = 1;
4719 4720 4721 4722

	return role;
}

4723
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4724
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4725
{
4726
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4727
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4728 4729
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4730
						   execonly, level);
4731

4732
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4733 4734 4735

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4736

4737 4738
	context->mmu_role.as_u64 = new_role.as_u64;

4739
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4740

4741
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4742 4743 4744 4745
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4746
	context->root_level = level;
N
Nadav Har'El 已提交
4747
	context->direct_map = false;
4748

4749
	update_permission_bitmask(context, true);
4750
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4751
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4752
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4753 4754 4755
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4756
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4757
{
4758
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4759
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4760

4761
	kvm_init_shadow_mmu(vcpu, &regs);
4762

4763
	context->get_guest_pgd     = get_cr3;
4764 4765
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4766 4767
}

4768 4769
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4770
{
4771 4772 4773
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4774 4775 4776 4777 4778 4779 4780

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4781
	role.base.level = role_regs_to_root_level(regs);
4782 4783 4784
	return role;
}

4785
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4786
{
4787 4788
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4789 4790
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4791 4792 4793 4794
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4795
	g_context->get_guest_pgd     = get_cr3;
4796
	g_context->get_pdptr         = kvm_pdptr_read;
4797
	g_context->inject_page_fault = kvm_inject_page_fault;
4798
	g_context->root_level        = new_role.base.level;
4799

4800 4801 4802 4803 4804 4805
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4806
	/*
4807
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4808 4809 4810 4811 4812
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4813
	 */
4814
	if (!is_paging(vcpu))
4815
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4816
	else if (is_long_mode(vcpu))
4817
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4818
	else if (is_pae(vcpu))
4819
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4820
	else
4821
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4822

4823
	reset_guest_paging_metadata(vcpu, g_context);
4824 4825
}

4826
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4827
{
4828
	if (mmu_is_nested(vcpu))
4829
		init_kvm_nested_mmu(vcpu);
4830
	else if (tdp_enabled)
4831
		init_kvm_tdp_mmu(vcpu);
4832
	else
4833
		init_kvm_softmmu(vcpu);
4834
}
4835
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4836

4837 4838 4839
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4840
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4841 4842
	union kvm_mmu_role role;

4843
	if (tdp_enabled)
4844
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4845
	else
4846
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4847 4848

	return role.base;
4849
}
4850

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
4881 4882
}

4883
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4884
{
4885
	kvm_mmu_unload(vcpu);
4886
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
4887
}
4888
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
4889 4890

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
4891
{
4892 4893
	int r;

4894
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
4895 4896
	if (r)
		goto out;
4897
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
4898 4899
	if (r)
		goto out;
4900
	if (vcpu->arch.mmu->direct_map)
4901 4902 4903
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
4904 4905
	if (r)
		goto out;
4906 4907 4908

	kvm_mmu_sync_roots(vcpu);

4909
	kvm_mmu_load_pgd(vcpu);
4910
	static_call(kvm_x86_tlb_flush_current)(vcpu);
4911 4912
out:
	return r;
A
Avi Kivity 已提交
4913
}
A
Avi Kivity 已提交
4914 4915 4916

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
4917 4918 4919 4920
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
4921
}
A
Avi Kivity 已提交
4922

4923 4924 4925 4926 4927 4928 4929 4930
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
4931 4932
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
4933 4934 4935
	return (old & ~new & PT64_PERM_MASK) != 0;
}

4936
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4937
				    int *bytes)
4938
{
4939
	u64 gentry = 0;
4940
	int r;
4941 4942 4943

	/*
	 * Assume that the pte write on a page table of the same type
4944 4945
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
4946
	 */
4947
	if (is_pae(vcpu) && *bytes == 4) {
4948
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4949 4950
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
4951 4952
	}

4953 4954 4955 4956
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
4957 4958
	}

4959 4960 4961 4962 4963 4964 4965
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
4966
static bool detect_write_flooding(struct kvm_mmu_page *sp)
4967
{
4968 4969 4970 4971
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
4972
	if (sp->role.level == PG_LEVEL_4K)
4973
		return false;
4974

4975 4976
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
4992
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4993 4994 4995 4996 4997 4998 4999 5000

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5016
	if (!sp->role.gpte_is_8_bytes) {
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5038
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5039 5040
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5041 5042 5043 5044 5045 5046
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5047
	bool remote_flush, local_flush;
5048 5049 5050 5051 5052

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5053
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5054 5055
		return;

5056
	remote_flush = local_flush = false;
5057 5058 5059 5060 5061

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5062
	 * or not since pte prefetch is skipped if it does not have
5063 5064
	 * enough objects in the cache.
	 */
5065
	mmu_topup_memory_caches(vcpu, true);
5066

5067
	write_lock(&vcpu->kvm->mmu_lock);
5068 5069 5070

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5071
	++vcpu->kvm->stat.mmu_pte_write;
5072
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5073

5074
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5075
		if (detect_write_misaligned(sp, gpa, bytes) ||
5076
		      detect_write_flooding(sp)) {
5077
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5078
			++vcpu->kvm->stat.mmu_flooded;
5079 5080
			continue;
		}
5081 5082 5083 5084 5085

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5086
		local_flush = true;
5087
		while (npte--) {
5088
			entry = *spte;
5089
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5090 5091
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5092
			if (need_remote_flush(entry, *spte))
5093
				remote_flush = true;
5094
			++spte;
5095 5096
		}
	}
5097
	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5098
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5099
	write_unlock(&vcpu->kvm->mmu_lock);
5100 5101
}

5102
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5103
		       void *insn, int insn_len)
5104
{
5105
	int r, emulation_type = EMULTYPE_PF;
5106
	bool direct = vcpu->arch.mmu->direct_map;
5107

5108
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5109 5110
		return RET_PF_RETRY;

5111
	r = RET_PF_INVALID;
5112
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5113
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5114
		if (r == RET_PF_EMULATE)
5115 5116
			goto emulate;
	}
5117

5118
	if (r == RET_PF_INVALID) {
5119 5120
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5121 5122
		if (WARN_ON_ONCE(r == RET_PF_INVALID))
			return -EIO;
5123 5124
	}

5125
	if (r < 0)
5126
		return r;
5127 5128
	if (r != RET_PF_EMULATE)
		return 1;
5129

5130 5131 5132 5133 5134 5135 5136
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5137
	if (vcpu->arch.mmu->direct_map &&
5138
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5139
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5140 5141 5142
		return 1;
	}

5143 5144 5145 5146 5147 5148
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5149 5150 5151 5152
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5153
	 */
5154
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5155
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5156
emulate:
5157
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5158
				       insn_len);
5159 5160 5161
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5162 5163
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5164
{
5165
	int i;
5166

5167 5168 5169 5170 5171 5172
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5173
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5174 5175 5176
	}

	if (!mmu->invlpg)
5177 5178
		return;

5179 5180
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5181

5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5200

5201 5202 5203
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5204 5205 5206 5207
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5208

5209 5210
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5211
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5212
	bool tlb_flush = false;
5213
	uint i;
5214 5215

	if (pcid == kvm_get_active_pcid(vcpu)) {
5216
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5217
		tlb_flush = true;
5218 5219
	}

5220 5221
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5222
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5223 5224 5225
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5226
	}
5227

5228
	if (tlb_flush)
5229
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5230

5231 5232 5233
	++vcpu->stat.invlpg;

	/*
5234 5235 5236
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5237 5238 5239
	 */
}

5240 5241
void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
		       int tdp_huge_page_level)
5242
{
5243
	tdp_enabled = enable_tdp;
5244
	max_tdp_level = tdp_max_root_level;
5245 5246

	/*
5247
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5248 5249 5250 5251 5252 5253
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5254
		max_huge_page_level = tdp_huge_page_level;
5255
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5256
		max_huge_page_level = PG_LEVEL_1G;
5257
	else
5258
		max_huge_page_level = PG_LEVEL_2M;
5259
}
5260
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5261 5262

/* The return value indicates if tlb flush on all vcpus is needed. */
5263 5264
typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot);
5265 5266 5267 5268 5269

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
			slot_level_handler fn, int start_level, int end_level,
5270 5271
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5272 5273 5274 5275 5276 5277
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5278
			flush |= fn(kvm, iterator.rmap, memslot);
5279

5280
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5281
			if (flush && flush_on_yield) {
5282 5283 5284
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5285 5286
				flush = false;
			}
5287
			cond_resched_rwlock_write(&kvm->mmu_lock);
5288 5289 5290 5291 5292 5293 5294 5295 5296
		}
	}

	return flush;
}

static __always_inline bool
slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
		  slot_level_handler fn, int start_level, int end_level,
5297
		  bool flush_on_yield)
5298 5299 5300 5301
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5302
			flush_on_yield, false);
5303 5304 5305 5306
}

static __always_inline bool
slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5307
		 slot_level_handler fn, bool flush_on_yield)
5308
{
5309
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5310
				 PG_LEVEL_4K, flush_on_yield);
5311 5312
}

5313
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5314
{
5315 5316
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5317
	free_page((unsigned long)mmu->pae_root);
5318
	free_page((unsigned long)mmu->pml4_root);
A
Avi Kivity 已提交
5319 5320
}

5321
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5322
{
5323
	struct page *page;
A
Avi Kivity 已提交
5324 5325
	int i;

5326 5327 5328 5329 5330 5331
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5332
	/*
5333 5334 5335 5336
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5337 5338 5339 5340 5341
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5342
	 */
5343
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5344 5345
		return 0;

5346
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5347
	if (!page)
5348 5349
		return -ENOMEM;

5350
	mmu->pae_root = page_address(page);
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5365
	for (i = 0; i < 4; ++i)
5366
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5367

A
Avi Kivity 已提交
5368 5369 5370
	return 0;
}

5371
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5372
{
5373
	int ret;
5374

5375
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5376 5377
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5378
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5379
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5380

5381 5382
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5383 5384
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5385

5386
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5387

5388
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5389 5390 5391
	if (ret)
		return ret;

5392
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5393 5394 5395 5396 5397 5398 5399
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5400 5401
}

5402
#define BATCH_ZAP_PAGES	10
5403 5404 5405
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5406
	int nr_zapped, batch = 0;
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5419 5420 5421
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5422
		 */
5423
		if (WARN_ON(sp->role.invalid))
5424 5425
			continue;

5426 5427 5428 5429 5430 5431
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5432
		if (batch >= BATCH_ZAP_PAGES &&
5433
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5434
			batch = 0;
5435 5436 5437
			goto restart;
		}

5438 5439
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5440
			batch += nr_zapped;
5441
			goto restart;
5442
		}
5443 5444
	}

5445 5446 5447 5448 5449
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5450
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5464 5465
	lockdep_assert_held(&kvm->slots_lock);

5466
	write_lock(&kvm->mmu_lock);
5467
	trace_kvm_mmu_zap_all_fast(kvm);
5468 5469 5470 5471 5472 5473 5474 5475 5476

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5477

5478 5479 5480 5481 5482 5483 5484 5485 5486
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5497
	kvm_zap_obsolete_pages(kvm);
5498

5499
	write_unlock(&kvm->mmu_lock);
5500 5501 5502 5503 5504 5505

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5506 5507
}

5508 5509 5510 5511 5512
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5513
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5514 5515
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5516
{
5517
	kvm_mmu_zap_all_fast(kvm);
5518 5519
}

5520
void kvm_mmu_init_vm(struct kvm *kvm)
5521
{
5522
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5523

5524 5525 5526 5527 5528 5529 5530
	if (!kvm_mmu_init_tdp_mmu(kvm))
		/*
		 * No smp_load/store wrappers needed here as we are in
		 * VM init and there cannot be any memslots / other threads
		 * accessing this struct kvm yet.
		 */
		kvm->arch.memslots_have_rmaps = true;
5531

5532
	node->track_write = kvm_mmu_pte_write;
5533
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5534
	kvm_page_track_register_notifier(kvm, node);
5535 5536
}

5537
void kvm_mmu_uninit_vm(struct kvm *kvm)
5538
{
5539
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5540

5541
	kvm_page_track_unregister_notifier(kvm, node);
5542 5543

	kvm_mmu_uninit_tdp_mmu(kvm);
5544 5545
}

X
Xiao Guangrong 已提交
5546 5547 5548 5549
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5550
	int i;
5551
	bool flush = false;
X
Xiao Guangrong 已提交
5552

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5564

5565 5566 5567 5568 5569
				flush = slot_handle_level_range(kvm, memslot,
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5570
		}
5571 5572 5573
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);
		write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5574 5575
	}

5576
	if (is_tdp_mmu_enabled(kvm)) {
5577 5578 5579 5580 5581 5582
		flush = false;

		read_lock(&kvm->mmu_lock);
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
							  gfn_end, flush, true);
5583
		if (flush)
5584 5585
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end);
5586

5587 5588
		read_unlock(&kvm->mmu_lock);
	}
X
Xiao Guangrong 已提交
5589 5590
}

5591
static bool slot_rmap_write_protect(struct kvm *kvm,
5592 5593
				    struct kvm_rmap_head *rmap_head,
				    struct kvm_memory_slot *slot)
5594
{
5595
	return __rmap_write_protect(kvm, rmap_head, false);
5596 5597
}

5598
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5599 5600
				      struct kvm_memory_slot *memslot,
				      int start_level)
A
Avi Kivity 已提交
5601
{
5602
	bool flush = false;
A
Avi Kivity 已提交
5603

5604 5605 5606 5607 5608 5609 5610
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5611

5612 5613 5614 5615 5616 5617
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5618 5619 5620 5621 5622 5623 5624
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5625 5626 5627
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5628
	 */
5629
	if (flush)
5630
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5631
}
5632

5633
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5634 5635
					 struct kvm_rmap_head *rmap_head,
					 struct kvm_memory_slot *slot)
5636 5637 5638 5639
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5640
	kvm_pfn_t pfn;
5641 5642
	struct kvm_mmu_page *sp;

5643
restart:
5644
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5645
		sp = sptep_to_sp(sptep);
5646 5647 5648
		pfn = spte_to_pfn(*sptep);

		/*
5649 5650 5651 5652 5653
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5654
		 */
5655
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5656 5657
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5658
			pte_list_remove(rmap_head, sptep);
5659 5660 5661 5662 5663 5664 5665

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5666 5667
			goto restart;
		}
5668 5669 5670 5671 5672 5673
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5674
				   const struct kvm_memory_slot *memslot)
5675
{
5676
	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5677
	struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot;
5678
	bool flush = false;
5679

5680 5681 5682 5683 5684 5685 5686
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5687 5688 5689 5690 5691 5692 5693 5694

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5695 5696
}

5697
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5698
					const struct kvm_memory_slot *memslot)
5699 5700
{
	/*
5701
	 * All current use cases for flushing the TLBs for a specific memslot
5702
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5703 5704 5705
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5706 5707
	 */
	lockdep_assert_held(&kvm->slots_lock);
5708 5709
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5710 5711
}

5712 5713 5714
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
				   struct kvm_memory_slot *memslot)
{
5715
	bool flush = false;
5716

5717 5718 5719 5720 5721 5722
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
					 false);
		write_unlock(&kvm->mmu_lock);
	}
5723

5724 5725 5726 5727 5728 5729
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5730 5731 5732 5733 5734 5735 5736
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5737
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5738 5739
}

5740
void kvm_mmu_zap_all(struct kvm *kvm)
5741 5742
{
	struct kvm_mmu_page *sp, *node;
5743
	LIST_HEAD(invalid_list);
5744
	int ign;
5745

5746
	write_lock(&kvm->mmu_lock);
5747
restart:
5748
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5749
		if (WARN_ON(sp->role.invalid))
5750
			continue;
5751
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5752
			goto restart;
5753
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5754 5755 5756
			goto restart;
	}

5757
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5758

5759
	if (is_tdp_mmu_enabled(kvm))
5760 5761
		kvm_tdp_mmu_zap_all(kvm);

5762
	write_unlock(&kvm->mmu_lock);
5763 5764
}

5765
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5766
{
5767
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5768

5769
	gen &= MMIO_SPTE_GEN_MASK;
5770

5771
	/*
5772 5773 5774 5775 5776 5777 5778 5779
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5780
	/*
5781
	 * The very rare case: if the MMIO generation number has wrapped,
5782 5783
	 * zap all shadow pages.
	 */
5784
	if (unlikely(gen == 0)) {
5785
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5786
		kvm_mmu_zap_all_fast(kvm);
5787
	}
5788 5789
}

5790 5791
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5792 5793
{
	struct kvm *kvm;
5794
	int nr_to_scan = sc->nr_to_scan;
5795
	unsigned long freed = 0;
5796

J
Junaid Shahid 已提交
5797
	mutex_lock(&kvm_lock);
5798 5799

	list_for_each_entry(kvm, &vm_list, vm_list) {
5800
		int idx;
5801
		LIST_HEAD(invalid_list);
5802

5803 5804 5805 5806 5807 5808 5809 5810
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5811 5812 5813 5814 5815 5816
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5817 5818
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5819 5820
			continue;

5821
		idx = srcu_read_lock(&kvm->srcu);
5822
		write_lock(&kvm->mmu_lock);
5823

5824 5825 5826 5827 5828 5829
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5830
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5831

5832
unlock:
5833
		write_unlock(&kvm->mmu_lock);
5834
		srcu_read_unlock(&kvm->srcu, idx);
5835

5836 5837 5838 5839 5840
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5841 5842
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5843 5844
	}

J
Junaid Shahid 已提交
5845
	mutex_unlock(&kvm_lock);
5846 5847 5848 5849 5850 5851
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5852
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5853 5854 5855
}

static struct shrinker mmu_shrinker = {
5856 5857
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5858 5859 5860
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5861
static void mmu_destroy_caches(void)
5862
{
5863 5864
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
5865 5866
}

P
Paolo Bonzini 已提交
5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
5901
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
5902
			kvm_mmu_zap_all_fast(kvm);
5903
			mutex_unlock(&kvm->slots_lock);
5904 5905

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
5906 5907 5908 5909 5910 5911 5912
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

5913 5914
int kvm_mmu_module_init(void)
{
5915 5916
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
5917 5918 5919
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

5930
	kvm_mmu_reset_all_pte_masks();
5931

5932 5933
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
5934
					    0, SLAB_ACCOUNT, NULL);
5935
	if (!pte_list_desc_cache)
5936
		goto out;
5937

5938 5939
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
5940
						  0, SLAB_ACCOUNT, NULL);
5941
	if (!mmu_page_header_cache)
5942
		goto out;
5943

5944
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5945
		goto out;
5946

5947 5948 5949
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
5950

5951 5952
	return 0;

5953
out:
5954
	mmu_destroy_caches();
5955
	return ret;
5956 5957
}

5958
/*
P
Peng Hao 已提交
5959
 * Calculate mmu pages needed for kvm.
5960
 */
5961
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5962
{
5963 5964
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
5965
	struct kvm_memslots *slots;
5966
	struct kvm_memory_slot *memslot;
5967
	int i;
5968

5969 5970
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
5971

5972 5973 5974
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
5975 5976

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5977
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5978 5979 5980 5981

	return nr_mmu_pages;
}

5982 5983
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
5984
	kvm_mmu_unload(vcpu);
5985 5986
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
5987
	mmu_free_memory_caches(vcpu);
5988 5989 5990 5991 5992 5993 5994
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
5995 5996
	mmu_audit_disable();
}
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6025
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6026 6027 6028 6029
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6030
	bool flush = false;
6031 6032 6033
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6034
	write_lock(&kvm->mmu_lock);
6035 6036

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6037
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6038 6039 6040 6041
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6042 6043 6044 6045 6046 6047 6048 6049 6050
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6051
		if (is_tdp_mmu_page(sp)) {
6052
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6053
		} else {
6054 6055 6056
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6057

6058
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6059
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6060
			cond_resched_rwlock_write(&kvm->mmu_lock);
6061
			flush = false;
6062 6063
		}
	}
6064
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6065

6066
	write_unlock(&kvm->mmu_lock);
6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}