mmu.c 165.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
A
Avi Kivity 已提交
2 3 4 5 6 7 8 9 10
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
N
Nicolas Kaiser 已提交
11
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
A
Avi Kivity 已提交
12 13 14 15 16
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */
A
Avi Kivity 已提交
17

18
#include "irq.h"
19
#include "ioapic.h"
20
#include "mmu.h"
21
#include "mmu_internal.h"
22
#include "tdp_mmu.h"
23
#include "x86.h"
A
Avi Kivity 已提交
24
#include "kvm_cache_regs.h"
25
#include "kvm_emulate.h"
26
#include "cpuid.h"
27
#include "spte.h"
A
Avi Kivity 已提交
28

29
#include <linux/kvm_host.h>
A
Avi Kivity 已提交
30 31 32 33
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
34 35
#include <linux/moduleparam.h>
#include <linux/export.h>
36
#include <linux/swap.h>
M
Marcelo Tosatti 已提交
37
#include <linux/hugetlb.h>
38
#include <linux/compiler.h>
39
#include <linux/srcu.h>
40
#include <linux/slab.h>
41
#include <linux/sched/signal.h>
42
#include <linux/uaccess.h>
43
#include <linux/hash.h>
44
#include <linux/kern_levels.h>
45
#include <linux/kthread.h>
A
Avi Kivity 已提交
46

A
Avi Kivity 已提交
47
#include <asm/page.h>
48
#include <asm/memtype.h>
A
Avi Kivity 已提交
49
#include <asm/cmpxchg.h>
50
#include <asm/io.h>
51
#include <asm/set_memory.h>
52
#include <asm/vmx.h>
53
#include <asm/kvm_page_track.h>
54
#include "trace.h"
A
Avi Kivity 已提交
55

56 57
#include "paging.h"

P
Paolo Bonzini 已提交
58 59
extern bool itlb_multihit_kvm_mitigation;

60
int __read_mostly nx_huge_pages = -1;
61 62 63 64
#ifdef CONFIG_PREEMPT_RT
/* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
#else
65
static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
66
#endif
P
Paolo Bonzini 已提交
67 68

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
69
static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
P
Paolo Bonzini 已提交
70

71
static const struct kernel_param_ops nx_huge_pages_ops = {
P
Paolo Bonzini 已提交
72 73 74 75
	.set = set_nx_huge_pages,
	.get = param_get_bool,
};

76
static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
77 78 79 80
	.set = set_nx_huge_pages_recovery_ratio,
	.get = param_get_uint,
};

P
Paolo Bonzini 已提交
81 82
module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
__MODULE_PARM_TYPE(nx_huge_pages, "bool");
83 84 85
module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
		&nx_huge_pages_recovery_ratio, 0644);
__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
P
Paolo Bonzini 已提交
86

87 88 89
static bool __read_mostly force_flush_and_sync_on_reuse;
module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);

90 91 92 93 94 95 96
/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
97
bool tdp_enabled = false;
98

99
static int max_huge_page_level __read_mostly;
100
static int tdp_root_level __read_mostly;
101
static int max_tdp_level __read_mostly;
102

103 104 105 106
enum {
	AUDIT_PRE_PAGE_FAULT,
	AUDIT_POST_PAGE_FAULT,
	AUDIT_PRE_PTE_WRITE,
107 108 109
	AUDIT_POST_PTE_WRITE,
	AUDIT_PRE_SYNC,
	AUDIT_POST_SYNC
110
};
111 112

#ifdef MMU_DEBUG
113
bool dbg = 0;
114
module_param(dbg, bool, 0644);
115
#endif
A
Avi Kivity 已提交
116

117 118
#define PTE_PREFETCH_NUM		8

A
Avi Kivity 已提交
119 120 121
#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
M
Mike Day 已提交
122
		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
A
Avi Kivity 已提交
123

124 125 126
#define PT32_LVL_OFFSET_MASK(level) \
	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
						* PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
127 128 129 130 131 132 133 134

#define PT32_INDEX(address, level)\
	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
135 136 137
#define PT32_LVL_ADDR_MASK(level) \
	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
					    * PT32_LEVEL_BITS))) - 1))
A
Avi Kivity 已提交
138

139 140
#include <trace/events/kvm.h>

141
/* make pte_list_desc fit well in cache lines */
142
#define PTE_LIST_EXT 14
143

144 145 146 147 148
/*
 * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 * at the start; then accessing it will only use one single cacheline for
 * either full (entries==PTE_LIST_EXT) case or entries<=6.
 */
149 150
struct pte_list_desc {
	struct pte_list_desc *more;
151 152 153 154 155 156
	/*
	 * Stores number of entries stored in the pte_list_desc.  No need to be
	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
	 */
	u64 spte_count;
	u64 *sptes[PTE_LIST_EXT];
157 158
};

159 160 161 162
struct kvm_shadow_walk_iterator {
	u64 addr;
	hpa_t shadow_addr;
	u64 *sptep;
163
	int level;
164 165 166
	unsigned index;
};

167 168 169 170 171 172 173
#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
					 (_root), (_addr));                \
	     shadow_walk_okay(&(_walker));			           \
	     shadow_walk_next(&(_walker)))

#define for_each_shadow_entry(_vcpu, _addr, _walker)            \
174 175 176 177
	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
	     shadow_walk_okay(&(_walker));			\
	     shadow_walk_next(&(_walker)))

178 179 180 181 182 183
#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
	     shadow_walk_okay(&(_walker)) &&				\
		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
	     __shadow_walk_next(&(_walker), spte))

184
static struct kmem_cache *pte_list_desc_cache;
185
struct kmem_cache *mmu_page_header_cache;
186
static struct percpu_counter kvm_total_used_mmu_pages;
187

188
static void mmu_spte_set(u64 *sptep, u64 spte);
189 190
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
191

192 193 194 195 196 197
struct kvm_mmu_role_regs {
	const unsigned long cr0;
	const unsigned long cr4;
	const u64 efer;
};

198 199 200
#define CREATE_TRACE_POINTS
#include "mmutrace.h"

201 202 203 204 205 206
/*
 * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 * the single source of truth for the MMU's state.
 */
#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
207
static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
208 209 210 211 212 213 214 215 216 217 218 219 220 221
{									\
	return !!(regs->reg & flag);					\
}
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);

222 223 224 225 226 227 228
/*
 * The MMU itself (with a valid role) is the single source of truth for the
 * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 * and the vCPU may be incorrect/irrelevant.
 */
#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
229
static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
230 231 232 233 234 235 236 237 238 239 240 241 242
{								\
	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
}
BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);

243 244 245 246 247 248 249 250 251 252
static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_role_regs regs = {
		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
		.efer = vcpu->arch.efer,
	};

	return regs;
}
253

254 255 256 257 258 259 260 261 262 263 264 265
static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
{
	if (!____is_cr0_pg(regs))
		return 0;
	else if (____is_efer_lma(regs))
		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
					       PT64_ROOT_4LEVEL;
	else if (____is_cr4_pae(regs))
		return PT32E_ROOT_LEVEL;
	else
		return PT32_ROOT_LEVEL;
}
266 267 268

static inline bool kvm_available_flush_tlb_with_range(void)
{
269
	return kvm_x86_ops.tlb_remote_flush_with_range;
270 271 272 273 274 275 276
}

static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
		struct kvm_tlb_range *range)
{
	int ret = -ENOTSUPP;

277
	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
278
		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
279 280 281 282 283

	if (ret)
		kvm_flush_remote_tlbs(kvm);
}

284
void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
285 286 287 288 289 290 291 292 293 294
		u64 start_gfn, u64 pages)
{
	struct kvm_tlb_range range;

	range.start_gfn = start_gfn;
	range.pages = pages;

	kvm_flush_remote_tlbs_with_range(kvm, &range);
}

295 296 297
static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
			   unsigned int access)
{
298
	u64 spte = make_mmio_spte(vcpu, gfn, access);
299

300 301
	trace_mark_mmio_spte(sptep, gfn, spte);
	mmu_spte_set(sptep, spte);
302 303 304 305
}

static gfn_t get_mmio_spte_gfn(u64 spte)
{
306
	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
307

308
	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
309 310 311
	       & shadow_nonpresent_or_rsvd_mask;

	return gpa >> PAGE_SHIFT;
312 313 314 315
}

static unsigned get_mmio_spte_access(u64 spte)
{
316
	return spte & shadow_mmio_access_mask;
317 318
}

319
static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
320
{
321
	u64 kvm_gen, spte_gen, gen;
322

323 324 325
	gen = kvm_vcpu_memslots(vcpu)->generation;
	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
		return false;
326

327
	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
328 329 330 331
	spte_gen = get_mmio_spte_generation(spte);

	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
	return likely(kvm_gen == spte_gen);
332 333
}

334 335 336 337 338 339
static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
                                  struct x86_exception *exception)
{
        return gpa;
}

A
Avi Kivity 已提交
340 341 342 343 344
static int is_cpuid_PSE36(void)
{
	return 1;
}

345 346 347 348 349 350 351
static gfn_t pse36_gfn_delta(u32 gpte)
{
	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

	return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

352
#ifdef CONFIG_X86_64
A
Avi Kivity 已提交
353
static void __set_spte(u64 *sptep, u64 spte)
354
{
355
	WRITE_ONCE(*sptep, spte);
356 357
}

358
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
359
{
360
	WRITE_ONCE(*sptep, spte);
361 362 363 364 365 366
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	return xchg(sptep, spte);
}
367 368 369

static u64 __get_spte_lockless(u64 *sptep)
{
370
	return READ_ONCE(*sptep);
371
}
372
#else
373 374 375 376 377 378 379
union split_spte {
	struct {
		u32 spte_low;
		u32 spte_high;
	};
	u64 spte;
};
380

381 382
static void count_spte_clear(u64 *sptep, u64 spte)
{
383
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
384 385 386 387 388 389 390 391 392

	if (is_shadow_present_pte(spte))
		return;

	/* Ensure the spte is completely set before we increase the count */
	smp_wmb();
	sp->clear_spte_count++;
}

393 394 395
static void __set_spte(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;
396

397 398 399 400 401 402 403 404 405 406 407 408
	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	ssptep->spte_high = sspte.spte_high;

	/*
	 * If we map the spte from nonpresent to present, We should store
	 * the high bits firstly, then set present bit, so cpu can not
	 * fetch this spte while we are setting the spte.
	 */
	smp_wmb();

409
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
410 411
}

412 413 414 415 416 417 418
static void __update_clear_spte_fast(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

419
	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
420 421 422 423 424 425 426 427

	/*
	 * If we map the spte from present to nonpresent, we should clear
	 * present bit firstly to avoid vcpu fetch the old high bits.
	 */
	smp_wmb();

	ssptep->spte_high = sspte.spte_high;
428
	count_spte_clear(sptep, spte);
429 430 431 432 433 434 435 436 437 438 439
}

static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
{
	union split_spte *ssptep, sspte, orig;

	ssptep = (union split_spte *)sptep;
	sspte = (union split_spte)spte;

	/* xchg acts as a barrier before the setting of the high bits */
	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
440 441
	orig.spte_high = ssptep->spte_high;
	ssptep->spte_high = sspte.spte_high;
442
	count_spte_clear(sptep, spte);
443 444 445

	return orig.spte;
}
446 447 448

/*
 * The idea using the light way get the spte on x86_32 guest is from
449
 * gup_get_pte (mm/gup.c).
450 451 452 453 454 455 456 457 458 459 460 461 462 463
 *
 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 * coalesces them and we are running out of the MMU lock.  Therefore
 * we need to protect against in-progress updates of the spte.
 *
 * Reading the spte while an update is in progress may get the old value
 * for the high part of the spte.  The race is fine for a present->non-present
 * change (because the high part of the spte is ignored for non-present spte),
 * but for a present->present change we must reread the spte.
 *
 * All such changes are done in two steps (present->non-present and
 * non-present->present), hence it is enough to count the number of
 * present->non-present updates: if it changed while reading the spte,
 * we might have hit the race.  This is done using clear_spte_count.
464 465 466
 */
static u64 __get_spte_lockless(u64 *sptep)
{
467
	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	union split_spte spte, *orig = (union split_spte *)sptep;
	int count;

retry:
	count = sp->clear_spte_count;
	smp_rmb();

	spte.spte_low = orig->spte_low;
	smp_rmb();

	spte.spte_high = orig->spte_high;
	smp_rmb();

	if (unlikely(spte.spte_low != orig->spte_low ||
	      count != sp->clear_spte_count))
		goto retry;

	return spte.spte;
}
487 488
#endif

489 490
static bool spte_has_volatile_bits(u64 spte)
{
491 492 493
	if (!is_shadow_present_pte(spte))
		return false;

494
	/*
495
	 * Always atomically update spte if it can be updated
496 497 498 499
	 * out of mmu-lock, it can ensure dirty bit is not lost,
	 * also, it can help us to get a stable is_writable_pte()
	 * to ensure tlb flush is not missed.
	 */
500 501
	if (spte_can_locklessly_be_made_writable(spte) ||
	    is_access_track_spte(spte))
502 503
		return true;

504
	if (spte_ad_enabled(spte)) {
505 506 507 508
		if ((spte & shadow_accessed_mask) == 0 ||
	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
			return true;
	}
509

510
	return false;
511 512
}

513 514 515 516 517 518 519 520 521 522 523 524
/* Rules for using mmu_spte_set:
 * Set the sptep from nonpresent to present.
 * Note: the sptep being assigned *must* be either not present
 * or in a state where the hardware will not attempt to update
 * the spte.
 */
static void mmu_spte_set(u64 *sptep, u64 new_spte)
{
	WARN_ON(is_shadow_present_pte(*sptep));
	__set_spte(sptep, new_spte);
}

525 526 527
/*
 * Update the SPTE (excluding the PFN), but do not track changes in its
 * accessed/dirty status.
528
 */
529
static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
530
{
531
	u64 old_spte = *sptep;
532

533
	WARN_ON(!is_shadow_present_pte(new_spte));
534

535 536
	if (!is_shadow_present_pte(old_spte)) {
		mmu_spte_set(sptep, new_spte);
537
		return old_spte;
538
	}
539

540
	if (!spte_has_volatile_bits(old_spte))
541
		__update_clear_spte_fast(sptep, new_spte);
542
	else
543
		old_spte = __update_clear_spte_slow(sptep, new_spte);
544

545 546
	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return old_spte;
}

/* Rules for using mmu_spte_update:
 * Update the state bits, it means the mapped pfn is not changed.
 *
 * Whenever we overwrite a writable spte with a read-only one we
 * should flush remote TLBs. Otherwise rmap_write_protect
 * will find a read-only spte, even though the writable spte
 * might be cached on a CPU's TLB, the return value indicates this
 * case.
 *
 * Returns true if the TLB needs to be flushed
 */
static bool mmu_spte_update(u64 *sptep, u64 new_spte)
{
	bool flush = false;
	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);

	if (!is_shadow_present_pte(old_spte))
		return false;

569 570
	/*
	 * For the spte updated out of mmu-lock is safe, since
571
	 * we always atomically update it, see the comments in
572 573
	 * spte_has_volatile_bits().
	 */
574
	if (spte_can_locklessly_be_made_writable(old_spte) &&
575
	      !is_writable_pte(new_spte))
576
		flush = true;
577

578
	/*
579
	 * Flush TLB when accessed/dirty states are changed in the page tables,
580 581 582
	 * to guarantee consistency between TLB and page tables.
	 */

583 584
	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
		flush = true;
585
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
586 587 588 589
	}

	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
		flush = true;
590
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
591
	}
592

593
	return flush;
594 595
}

596 597 598 599
/*
 * Rules for using mmu_spte_clear_track_bits:
 * It sets the sptep from present to nonpresent, and track the
 * state bits, it is used to clear the last level sptep.
600
 * Returns the old PTE.
601
 */
602
static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
603
{
D
Dan Williams 已提交
604
	kvm_pfn_t pfn;
605
	u64 old_spte = *sptep;
606
	int level = sptep_to_sp(sptep)->role.level;
607 608

	if (!spte_has_volatile_bits(old_spte))
609
		__update_clear_spte_fast(sptep, 0ull);
610
	else
611
		old_spte = __update_clear_spte_slow(sptep, 0ull);
612

613
	if (!is_shadow_present_pte(old_spte))
614
		return old_spte;
615

616 617
	kvm_update_page_stats(kvm, level, -1);

618
	pfn = spte_to_pfn(old_spte);
619 620 621 622 623 624

	/*
	 * KVM does not hold the refcount of the page used by
	 * kvm mmu, before reclaiming the page, we should
	 * unmap it from mmu first.
	 */
625
	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
626

627
	if (is_accessed_spte(old_spte))
628
		kvm_set_pfn_accessed(pfn);
629 630

	if (is_dirty_spte(old_spte))
631
		kvm_set_pfn_dirty(pfn);
632

633
	return old_spte;
634 635 636 637 638 639 640 641 642
}

/*
 * Rules for using mmu_spte_clear_no_track:
 * Directly clear spte without caring the state bits of sptep,
 * it is used to set the upper level spte.
 */
static void mmu_spte_clear_no_track(u64 *sptep)
{
643
	__update_clear_spte_fast(sptep, 0ull);
644 645
}

646 647 648 649 650
static u64 mmu_spte_get_lockless(u64 *sptep)
{
	return __get_spte_lockless(sptep);
}

651 652 653 654
/* Restore an acc-track PTE back to a regular PTE */
static u64 restore_acc_track_spte(u64 spte)
{
	u64 new_spte = spte;
655 656
	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
657

658
	WARN_ON_ONCE(spte_ad_enabled(spte));
659 660 661
	WARN_ON_ONCE(!is_access_track_spte(spte));

	new_spte &= ~shadow_acc_track_mask;
662 663
	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
664 665 666 667 668
	new_spte |= saved_bits;

	return new_spte;
}

669 670 671 672 673 674 675 676
/* Returns the Accessed status of the PTE and resets it at the same time. */
static bool mmu_spte_age(u64 *sptep)
{
	u64 spte = mmu_spte_get_lockless(sptep);

	if (!is_accessed_spte(spte))
		return false;

677
	if (spte_ad_enabled(spte)) {
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
		clear_bit((ffs(shadow_accessed_mask) - 1),
			  (unsigned long *)sptep);
	} else {
		/*
		 * Capture the dirty status of the page, so that it doesn't get
		 * lost when the SPTE is marked for access tracking.
		 */
		if (is_writable_pte(spte))
			kvm_set_pfn_dirty(spte_to_pfn(spte));

		spte = mark_spte_for_access_track(spte);
		mmu_spte_update_no_track(sptep, spte);
	}

	return true;
}

695 696
static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
{
697 698 699 700 701 702 703 704
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_begin();
	} else {
		/*
		 * Prevent page table teardown by making any free-er wait during
		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
		 */
		local_irq_disable();
705

706 707 708 709 710 711
		/*
		 * Make sure a following spte read is not reordered ahead of the write
		 * to vcpu->mode.
		 */
		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
	}
712 713 714 715
}

static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
{
716 717 718 719 720 721 722 723 724 725 726
	if (is_tdp_mmu(vcpu->arch.mmu)) {
		kvm_tdp_mmu_walk_lockless_end();
	} else {
		/*
		 * Make sure the write to vcpu->mode is not reordered in front of
		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
		 */
		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
		local_irq_enable();
	}
727 728
}

729
static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
730
{
731 732
	int r;

733
	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
734 735
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
736
	if (r)
737
		return r;
738 739
	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
				       PT64_ROOT_MAX_LEVEL);
740
	if (r)
741
		return r;
742
	if (maybe_indirect) {
743 744
		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
					       PT64_ROOT_MAX_LEVEL);
745 746 747
		if (r)
			return r;
	}
748 749
	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
					  PT64_ROOT_MAX_LEVEL);
750 751 752 753
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
754 755 756 757
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
758 759
}

760
static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
761
{
762
	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
763 764
}

765
static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
766
{
767
	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
768 769
}

770 771 772 773 774 775 776 777 778 779
static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
{
	if (!sp->role.direct)
		return sp->gfns[index];

	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
}

static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
{
780
	if (!sp->role.direct) {
781
		sp->gfns[index] = gfn;
782 783 784 785 786 787 788 789
		return;
	}

	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
		pr_err_ratelimited("gfn mismatch under direct page %llx "
				   "(expected %llx, got %llx)\n",
				   sp->gfn,
				   kvm_mmu_page_get_gfn(sp, index), gfn);
790 791
}

M
Marcelo Tosatti 已提交
792
/*
793 794
 * Return the pointer to the large page information for a given gfn,
 * handling slots that are not large page aligned.
M
Marcelo Tosatti 已提交
795
 */
796
static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
797
		const struct kvm_memory_slot *slot, int level)
M
Marcelo Tosatti 已提交
798 799 800
{
	unsigned long idx;

801
	idx = gfn_to_index(gfn, slot->base_gfn, level);
802
	return &slot->arch.lpage_info[level - 2][idx];
M
Marcelo Tosatti 已提交
803 804
}

805
static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
806 807 808 809 810
					    gfn_t gfn, int count)
{
	struct kvm_lpage_info *linfo;
	int i;

811
	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
812 813 814 815 816 817
		linfo = lpage_info_slot(gfn, slot, i);
		linfo->disallow_lpage += count;
		WARN_ON(linfo->disallow_lpage < 0);
	}
}

818
void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
819 820 821 822
{
	update_gfn_disallow_lpage_count(slot, gfn, 1);
}

823
void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
824 825 826 827
{
	update_gfn_disallow_lpage_count(slot, gfn, -1);
}

828
static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
829
{
830
	struct kvm_memslots *slots;
831
	struct kvm_memory_slot *slot;
832
	gfn_t gfn;
M
Marcelo Tosatti 已提交
833

834
	kvm->arch.indirect_shadow_pages++;
835
	gfn = sp->gfn;
836 837
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
838 839

	/* the non-leaf shadow pages are keeping readonly. */
840
	if (sp->role.level > PG_LEVEL_4K)
841 842 843
		return kvm_slot_page_track_add_page(kvm, slot, gfn,
						    KVM_PAGE_TRACK_WRITE);

844
	kvm_mmu_gfn_disallow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
845 846
}

847
void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
848 849 850 851 852
{
	if (sp->lpage_disallowed)
		return;

	++kvm->stat.nx_lpage_splits;
853 854
	list_add_tail(&sp->lpage_disallowed_link,
		      &kvm->arch.lpage_disallowed_mmu_pages);
P
Paolo Bonzini 已提交
855 856 857
	sp->lpage_disallowed = true;
}

858
static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
M
Marcelo Tosatti 已提交
859
{
860
	struct kvm_memslots *slots;
861
	struct kvm_memory_slot *slot;
862
	gfn_t gfn;
M
Marcelo Tosatti 已提交
863

864
	kvm->arch.indirect_shadow_pages--;
865
	gfn = sp->gfn;
866 867
	slots = kvm_memslots_for_spte_role(kvm, sp->role);
	slot = __gfn_to_memslot(slots, gfn);
868
	if (sp->role.level > PG_LEVEL_4K)
869 870 871
		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
						       KVM_PAGE_TRACK_WRITE);

872
	kvm_mmu_gfn_allow_lpage(slot, gfn);
M
Marcelo Tosatti 已提交
873 874
}

875
void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
P
Paolo Bonzini 已提交
876 877 878
{
	--kvm->stat.nx_lpage_splits;
	sp->lpage_disallowed = false;
879
	list_del(&sp->lpage_disallowed_link);
P
Paolo Bonzini 已提交
880 881
}

882 883 884
static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
			    bool no_dirty_log)
M
Marcelo Tosatti 已提交
885 886
{
	struct kvm_memory_slot *slot;
887

888
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
889 890
	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
		return NULL;
891
	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
892
		return NULL;
893 894 895 896

	return slot;
}

897
/*
898
 * About rmap_head encoding:
899
 *
900 901
 * If the bit zero of rmap_head->val is clear, then it points to the only spte
 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
902
 * pte_list_desc containing more mappings.
903 904 905 906
 */

/*
 * Returns the number of pointers in the rmap chain, not counting the new one.
907
 */
908
static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909
			struct kvm_rmap_head *rmap_head)
910
{
911
	struct pte_list_desc *desc;
912
	int count = 0;
913

914
	if (!rmap_head->val) {
915
		rmap_printk("%p %llx 0->1\n", spte, *spte);
916 917
		rmap_head->val = (unsigned long)spte;
	} else if (!(rmap_head->val & 1)) {
918
		rmap_printk("%p %llx 1->many\n", spte, *spte);
919
		desc = mmu_alloc_pte_list_desc(vcpu);
920
		desc->sptes[0] = (u64 *)rmap_head->val;
A
Avi Kivity 已提交
921
		desc->sptes[1] = spte;
922
		desc->spte_count = 2;
923
		rmap_head->val = (unsigned long)desc | 1;
924
		++count;
925
	} else {
926
		rmap_printk("%p %llx many->many\n", spte, *spte);
927
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
928
		while (desc->spte_count == PTE_LIST_EXT) {
929
			count += PTE_LIST_EXT;
930 931 932
			if (!desc->more) {
				desc->more = mmu_alloc_pte_list_desc(vcpu);
				desc = desc->more;
933
				desc->spte_count = 0;
934 935
				break;
			}
936 937
			desc = desc->more;
		}
938 939
		count += desc->spte_count;
		desc->sptes[desc->spte_count++] = spte;
940
	}
941
	return count;
942 943
}

944
static void
945 946 947
pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
			   struct pte_list_desc *desc, int i,
			   struct pte_list_desc *prev_desc)
948
{
949
	int j = desc->spte_count - 1;
950

A
Avi Kivity 已提交
951 952
	desc->sptes[i] = desc->sptes[j];
	desc->sptes[j] = NULL;
953 954
	desc->spte_count--;
	if (desc->spte_count)
955 956
		return;
	if (!prev_desc && !desc->more)
957
		rmap_head->val = 0;
958 959 960 961
	else
		if (prev_desc)
			prev_desc->more = desc->more;
		else
962
			rmap_head->val = (unsigned long)desc->more | 1;
963
	mmu_free_pte_list_desc(desc);
964 965
}

966
static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
967
{
968 969
	struct pte_list_desc *desc;
	struct pte_list_desc *prev_desc;
970 971
	int i;

972
	if (!rmap_head->val) {
973
		pr_err("%s: %p 0->BUG\n", __func__, spte);
974
		BUG();
975
	} else if (!(rmap_head->val & 1)) {
976
		rmap_printk("%p 1->0\n", spte);
977
		if ((u64 *)rmap_head->val != spte) {
978
			pr_err("%s:  %p 1->BUG\n", __func__, spte);
979 980
			BUG();
		}
981
		rmap_head->val = 0;
982
	} else {
983
		rmap_printk("%p many->many\n", spte);
984
		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
985 986
		prev_desc = NULL;
		while (desc) {
987
			for (i = 0; i < desc->spte_count; ++i) {
A
Avi Kivity 已提交
988
				if (desc->sptes[i] == spte) {
989 990
					pte_list_desc_remove_entry(rmap_head,
							desc, i, prev_desc);
991 992
					return;
				}
993
			}
994 995 996
			prev_desc = desc;
			desc = desc->more;
		}
997
		pr_err("%s: %p many->many\n", __func__, spte);
998 999 1000 1001
		BUG();
	}
}

1002 1003
static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    u64 *sptep)
1004
{
1005
	mmu_spte_clear_track_bits(kvm, sptep);
1006 1007 1008
	__pte_list_remove(sptep, rmap_head);
}

P
Peter Xu 已提交
1009
/* Return true if rmap existed, false otherwise */
1010
static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
P
Peter Xu 已提交
1011 1012 1013 1014 1015 1016 1017 1018
{
	struct pte_list_desc *desc, *next;
	int i;

	if (!rmap_head->val)
		return false;

	if (!(rmap_head->val & 1)) {
1019
		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
P
Peter Xu 已提交
1020 1021 1022 1023 1024 1025 1026
		goto out;
	}

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	for (; desc; desc = next) {
		for (i = 0; i < desc->spte_count; i++)
1027
			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
P
Peter Xu 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036
		next = desc->more;
		mmu_free_pte_list_desc(desc);
	}
out:
	/* rmap_head is meaningless now, remember to reset it */
	rmap_head->val = 0;
	return true;
}

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
{
	struct pte_list_desc *desc;
	unsigned int count = 0;

	if (!rmap_head->val)
		return 0;
	else if (!(rmap_head->val & 1))
		return 1;

	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);

	while (desc) {
		count += desc->spte_count;
		desc = desc->more;
	}

	return count;
}

1057 1058
static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
					 const struct kvm_memory_slot *slot)
1059
{
1060
	unsigned long idx;
1061

1062
	idx = gfn_to_index(gfn, slot->base_gfn, level);
1063
	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1064 1065
}

1066 1067
static bool rmap_can_add(struct kvm_vcpu *vcpu)
{
1068
	struct kvm_mmu_memory_cache *mc;
1069

1070
	mc = &vcpu->arch.mmu_pte_list_desc_cache;
1071
	return kvm_mmu_memory_cache_nr_free_objects(mc);
1072 1073
}

1074 1075
static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
{
1076
	struct kvm_memory_slot *slot;
1077
	struct kvm_mmu_page *sp;
1078
	struct kvm_rmap_head *rmap_head;
1079

1080
	sp = sptep_to_sp(spte);
1081
	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1082
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1083
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1084
	return pte_list_add(vcpu, spte, rmap_head);
1085 1086
}

1087

1088 1089
static void rmap_remove(struct kvm *kvm, u64 *spte)
{
1090 1091
	struct kvm_memslots *slots;
	struct kvm_memory_slot *slot;
1092 1093
	struct kvm_mmu_page *sp;
	gfn_t gfn;
1094
	struct kvm_rmap_head *rmap_head;
1095

1096
	sp = sptep_to_sp(spte);
1097
	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1098 1099 1100 1101 1102 1103 1104 1105 1106

	/*
	 * Unlike rmap_add and rmap_recycle, rmap_remove does not run in the
	 * context of a vCPU so have to determine which memslots to use based
	 * on context information in sp->role.
	 */
	slots = kvm_memslots_for_spte_role(kvm, sp->role);

	slot = __gfn_to_memslot(slots, gfn);
1107
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1108

1109
	__pte_list_remove(spte, rmap_head);
1110 1111
}

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
/*
 * Used by the following functions to iterate through the sptes linked by a
 * rmap.  All fields are private and not assumed to be used outside.
 */
struct rmap_iterator {
	/* private fields */
	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
	int pos;			/* index of the sptep */
};

/*
 * Iteration must be started by this function.  This should also be used after
 * removing/dropping sptes from the rmap link because in such cases the
M
Miaohe Lin 已提交
1125
 * information in the iterator may not be valid.
1126 1127 1128
 *
 * Returns sptep if found, NULL otherwise.
 */
1129 1130
static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
			   struct rmap_iterator *iter)
1131
{
1132 1133
	u64 *sptep;

1134
	if (!rmap_head->val)
1135 1136
		return NULL;

1137
	if (!(rmap_head->val & 1)) {
1138
		iter->desc = NULL;
1139 1140
		sptep = (u64 *)rmap_head->val;
		goto out;
1141 1142
	}

1143
	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1144
	iter->pos = 0;
1145 1146 1147 1148
	sptep = iter->desc->sptes[iter->pos];
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1149 1150 1151 1152 1153 1154 1155 1156 1157
}

/*
 * Must be used with a valid iterator: e.g. after rmap_get_first().
 *
 * Returns sptep if found, NULL otherwise.
 */
static u64 *rmap_get_next(struct rmap_iterator *iter)
{
1158 1159
	u64 *sptep;

1160 1161 1162 1163 1164
	if (iter->desc) {
		if (iter->pos < PTE_LIST_EXT - 1) {
			++iter->pos;
			sptep = iter->desc->sptes[iter->pos];
			if (sptep)
1165
				goto out;
1166 1167 1168 1169 1170 1171 1172
		}

		iter->desc = iter->desc->more;

		if (iter->desc) {
			iter->pos = 0;
			/* desc->sptes[0] cannot be NULL */
1173 1174
			sptep = iter->desc->sptes[iter->pos];
			goto out;
1175 1176 1177 1178
		}
	}

	return NULL;
1179 1180 1181
out:
	BUG_ON(!is_shadow_present_pte(*sptep));
	return sptep;
1182 1183
}

1184 1185
#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1186
	     _spte_; _spte_ = rmap_get_next(_iter_))
1187

1188
static void drop_spte(struct kvm *kvm, u64 *sptep)
1189
{
1190
	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1191 1192

	if (is_shadow_present_pte(old_spte))
1193
		rmap_remove(kvm, sptep);
A
Avi Kivity 已提交
1194 1195
}

1196 1197 1198 1199

static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
{
	if (is_large_pte(*sptep)) {
1200
		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1201 1202 1203 1204 1205 1206 1207 1208 1209
		drop_spte(kvm, sptep);
		return true;
	}

	return false;
}

static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
1210
	if (__drop_large_spte(vcpu->kvm, sptep)) {
1211
		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1212 1213 1214 1215

		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
	}
1216 1217 1218
}

/*
1219
 * Write-protect on the specified @sptep, @pt_protect indicates whether
1220
 * spte write-protection is caused by protecting shadow page table.
1221
 *
T
Tiejun Chen 已提交
1222
 * Note: write protection is difference between dirty logging and spte
1223 1224 1225 1226 1227
 * protection:
 * - for dirty logging, the spte can be set to writable at anytime if
 *   its dirty bitmap is properly set.
 * - for spte protection, the spte can be writable only after unsync-ing
 *   shadow page.
1228
 *
1229
 * Return true if tlb need be flushed.
1230
 */
1231
static bool spte_write_protect(u64 *sptep, bool pt_protect)
1232 1233 1234
{
	u64 spte = *sptep;

1235
	if (!is_writable_pte(spte) &&
1236
	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1237 1238
		return false;

1239
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1240

1241
	if (pt_protect)
1242
		spte &= ~shadow_mmu_writable_mask;
1243
	spte = spte & ~PT_WRITABLE_MASK;
1244

1245
	return mmu_spte_update(sptep, spte);
1246 1247
}

1248 1249
static bool __rmap_write_protect(struct kvm *kvm,
				 struct kvm_rmap_head *rmap_head,
1250
				 bool pt_protect)
1251
{
1252 1253
	u64 *sptep;
	struct rmap_iterator iter;
1254
	bool flush = false;
1255

1256
	for_each_rmap_spte(rmap_head, &iter, sptep)
1257
		flush |= spte_write_protect(sptep, pt_protect);
1258

1259
	return flush;
1260 1261
}

1262
static bool spte_clear_dirty(u64 *sptep)
1263 1264 1265
{
	u64 spte = *sptep;

1266
	rmap_printk("spte %p %llx\n", sptep, *sptep);
1267

1268
	MMU_WARN_ON(!spte_ad_enabled(spte));
1269 1270 1271 1272
	spte &= ~shadow_dirty_mask;
	return mmu_spte_update(sptep, spte);
}

1273
static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1274 1275 1276
{
	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
					       (unsigned long *)sptep);
1277
	if (was_writable && !spte_ad_enabled(*sptep))
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		kvm_set_pfn_dirty(spte_to_pfn(*sptep));

	return was_writable;
}

/*
 * Gets the GFN ready for another round of dirty logging by clearing the
 *	- D bit on ad-enabled SPTEs, and
 *	- W bit on ad-disabled SPTEs.
 * Returns true iff any D or W bits were cleared.
 */
1289
static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1290
			       const struct kvm_memory_slot *slot)
1291 1292 1293 1294 1295
{
	u64 *sptep;
	struct rmap_iterator iter;
	bool flush = false;

1296
	for_each_rmap_spte(rmap_head, &iter, sptep)
1297 1298
		if (spte_ad_need_write_protect(*sptep))
			flush |= spte_wrprot_for_clear_dirty(sptep);
1299
		else
1300
			flush |= spte_clear_dirty(sptep);
1301 1302 1303 1304

	return flush;
}

1305
/**
1306
 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1307 1308 1309 1310 1311
 * @kvm: kvm instance
 * @slot: slot to protect
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should protect
 *
1312
 * Used when we do not need to care about huge page mappings.
1313
 */
1314
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1315 1316
				     struct kvm_memory_slot *slot,
				     gfn_t gfn_offset, unsigned long mask)
1317
{
1318
	struct kvm_rmap_head *rmap_head;
1319

1320
	if (is_tdp_mmu_enabled(kvm))
1321 1322
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, true);
1323 1324 1325 1326

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1327
	while (mask) {
1328 1329
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1330
		__rmap_write_protect(kvm, rmap_head, false);
M
Marcelo Tosatti 已提交
1331

1332 1333 1334
		/* clear the first set bit */
		mask &= mask - 1;
	}
1335 1336
}

1337
/**
1338 1339
 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 * protect the page if the D-bit isn't supported.
1340 1341 1342 1343 1344 1345 1346
 * @kvm: kvm instance
 * @slot: slot to clear D-bit
 * @gfn_offset: start of the BITS_PER_LONG pages we care about
 * @mask: indicates which pages we should clear D-bit
 *
 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 */
1347 1348 1349
static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
					 struct kvm_memory_slot *slot,
					 gfn_t gfn_offset, unsigned long mask)
1350
{
1351
	struct kvm_rmap_head *rmap_head;
1352

1353
	if (is_tdp_mmu_enabled(kvm))
1354 1355
		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
				slot->base_gfn + gfn_offset, mask, false);
1356 1357 1358 1359

	if (!kvm_memslots_have_rmaps(kvm))
		return;

1360
	while (mask) {
1361 1362
		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
					PG_LEVEL_4K, slot);
1363
		__rmap_clear_dirty(kvm, rmap_head, slot);
1364 1365 1366 1367 1368 1369

		/* clear the first set bit */
		mask &= mask - 1;
	}
}

1370 1371 1372 1373 1374 1375 1376
/**
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * PT level pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 *
1377 1378
 * We need to care about huge page mappings: e.g. during dirty logging we may
 * have such mappings.
1379 1380 1381 1382 1383
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
				struct kvm_memory_slot *slot,
				gfn_t gfn_offset, unsigned long mask)
{
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * Huge pages are NOT write protected when we start dirty logging in
	 * initially-all-set mode; must write protect them here so that they
	 * are split to 4K on the first write.
	 *
	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
	 * of memslot has no such restriction, so the range can cross two large
	 * pages.
	 */
	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);

		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);

		/* Cross two large pages? */
		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
						       PG_LEVEL_2M);
	}

	/* Now handle 4K PTEs.  */
1407 1408
	if (kvm_x86_ops.cpu_dirty_log_size)
		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1409 1410
	else
		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1411 1412
}

1413 1414
int kvm_cpu_dirty_log_size(void)
{
1415
	return kvm_x86_ops.cpu_dirty_log_size;
1416 1417
}

1418
bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1419 1420
				    struct kvm_memory_slot *slot, u64 gfn,
				    int min_level)
1421
{
1422
	struct kvm_rmap_head *rmap_head;
1423
	int i;
1424
	bool write_protected = false;
1425

1426 1427
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1428
			rmap_head = gfn_to_rmap(gfn, i, slot);
1429 1430
			write_protected |= __rmap_write_protect(kvm, rmap_head, true);
		}
1431 1432
	}

1433
	if (is_tdp_mmu_enabled(kvm))
1434
		write_protected |=
1435
			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1436

1437
	return write_protected;
1438 1439
}

1440 1441 1442 1443 1444
static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
{
	struct kvm_memory_slot *slot;

	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1445
	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
1446 1447
}

1448
static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1449
			  const struct kvm_memory_slot *slot)
1450
{
1451
	return pte_list_destroy(kvm, rmap_head);
1452 1453
}

1454 1455 1456
static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
			    pte_t unused)
1457
{
1458
	return kvm_zap_rmapp(kvm, rmap_head, slot);
1459 1460
}

1461 1462 1463
static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
			      pte_t pte)
1464
{
1465 1466
	u64 *sptep;
	struct rmap_iterator iter;
1467
	int need_flush = 0;
1468
	u64 new_spte;
D
Dan Williams 已提交
1469
	kvm_pfn_t new_pfn;
1470

1471 1472
	WARN_ON(pte_huge(pte));
	new_pfn = pte_pfn(pte);
1473

1474
restart:
1475
	for_each_rmap_spte(rmap_head, &iter, sptep) {
1476
		rmap_printk("spte %p %llx gfn %llx (%d)\n",
1477
			    sptep, *sptep, gfn, level);
1478

1479
		need_flush = 1;
1480

1481
		if (pte_write(pte)) {
1482
			pte_list_remove(kvm, rmap_head, sptep);
1483
			goto restart;
1484
		} else {
1485 1486
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					*sptep, new_pfn);
1487

1488
			mmu_spte_clear_track_bits(kvm, sptep);
1489
			mmu_spte_set(sptep, new_spte);
1490 1491
		}
	}
1492

1493 1494 1495 1496 1497
	if (need_flush && kvm_available_flush_tlb_with_range()) {
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
		return 0;
	}

1498
	return need_flush;
1499 1500
}

1501 1502
struct slot_rmap_walk_iterator {
	/* input fields. */
1503
	const struct kvm_memory_slot *slot;
1504 1505 1506 1507 1508 1509 1510
	gfn_t start_gfn;
	gfn_t end_gfn;
	int start_level;
	int end_level;

	/* output fields. */
	gfn_t gfn;
1511
	struct kvm_rmap_head *rmap;
1512 1513 1514
	int level;

	/* private field. */
1515
	struct kvm_rmap_head *end_rmap;
1516 1517 1518 1519 1520 1521 1522
};

static void
rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
{
	iterator->level = level;
	iterator->gfn = iterator->start_gfn;
1523 1524
	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
1525 1526 1527 1528
}

static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1529
		    const struct kvm_memory_slot *slot, int start_level,
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
{
	iterator->slot = slot;
	iterator->start_level = start_level;
	iterator->end_level = end_level;
	iterator->start_gfn = start_gfn;
	iterator->end_gfn = end_gfn;

	rmap_walk_init_level(iterator, iterator->start_level);
}

static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
{
	return !!iterator->rmap;
}

static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
{
	if (++iterator->rmap <= iterator->end_rmap) {
		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
		return;
	}

	if (++iterator->level > iterator->end_level) {
		iterator->rmap = NULL;
		return;
	}

	rmap_walk_init_level(iterator, iterator->level);
}

#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
	   _start_gfn, _end_gfn, _iter_)				\
	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
				 _end_level_, _start_gfn, _end_gfn);	\
	     slot_rmap_walk_okay(_iter_);				\
	     slot_rmap_walk_next(_iter_))

1568 1569 1570
typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t pte);
1571

1572 1573 1574
static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
						 struct kvm_gfn_range *range,
						 rmap_handler_t handler)
1575
{
1576
	struct slot_rmap_walk_iterator iterator;
1577
	bool ret = false;
1578

1579 1580 1581 1582
	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
				 range->start, range->end - 1, &iterator)
		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
			       iterator.level, range->pte);
1583

1584
	return ret;
1585 1586
}

1587
bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1588
{
1589
	bool flush = false;
1590

1591 1592
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
1593

1594
	if (is_tdp_mmu_enabled(kvm))
1595
		flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1596

1597
	return flush;
1598 1599
}

1600
bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1601
{
1602
	bool flush = false;
1603

1604 1605
	if (kvm_memslots_have_rmaps(kvm))
		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
1606

1607
	if (is_tdp_mmu_enabled(kvm))
1608
		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1609

1610
	return flush;
1611 1612
}

1613 1614 1615
static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
			  pte_t unused)
1616
{
1617
	u64 *sptep;
1618
	struct rmap_iterator iter;
1619 1620
	int young = 0;

1621 1622
	for_each_rmap_spte(rmap_head, &iter, sptep)
		young |= mmu_spte_age(sptep);
1623

1624 1625 1626
	return young;
}

1627 1628 1629
static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
			       struct kvm_memory_slot *slot, gfn_t gfn,
			       int level, pte_t unused)
A
Andrea Arcangeli 已提交
1630
{
1631 1632
	u64 *sptep;
	struct rmap_iterator iter;
A
Andrea Arcangeli 已提交
1633

1634 1635 1636 1637
	for_each_rmap_spte(rmap_head, &iter, sptep)
		if (is_accessed_spte(*sptep))
			return 1;
	return 0;
A
Andrea Arcangeli 已提交
1638 1639
}

1640 1641
#define RMAP_RECYCLE_THRESHOLD 1000

1642
static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1643
{
1644
	struct kvm_memory_slot *slot;
1645
	struct kvm_rmap_head *rmap_head;
1646 1647
	struct kvm_mmu_page *sp;

1648
	sp = sptep_to_sp(spte);
1649
	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1650
	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
1651

1652
	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
1653 1654
	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
			KVM_PAGES_PER_HPAGE(sp->role.level));
1655 1656
}

1657
bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1658
{
1659
	bool young = false;
1660

1661 1662
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
1663

1664
	if (is_tdp_mmu_enabled(kvm))
1665
		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1666 1667

	return young;
1668 1669
}

1670
bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
A
Andrea Arcangeli 已提交
1671
{
1672
	bool young = false;
1673

1674 1675
	if (kvm_memslots_have_rmaps(kvm))
		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
1676

1677
	if (is_tdp_mmu_enabled(kvm))
1678
		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1679 1680

	return young;
A
Andrea Arcangeli 已提交
1681 1682
}

1683
#ifdef MMU_DEBUG
1684
static int is_empty_shadow_page(u64 *spt)
A
Avi Kivity 已提交
1685
{
1686 1687 1688
	u64 *pos;
	u64 *end;

1689
	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1690
		if (is_shadow_present_pte(*pos)) {
1691
			printk(KERN_ERR "%s: %p %llx\n", __func__,
1692
			       pos, *pos);
A
Avi Kivity 已提交
1693
			return 0;
1694
		}
A
Avi Kivity 已提交
1695 1696
	return 1;
}
1697
#endif
A
Avi Kivity 已提交
1698

1699 1700 1701 1702 1703 1704
/*
 * This value is the sum of all of the kvm instances's
 * kvm->arch.n_used_mmu_pages values.  We need a global,
 * aggregate version in order to make the slab shrinker
 * faster
 */
1705
static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1706 1707 1708 1709 1710
{
	kvm->arch.n_used_mmu_pages += nr;
	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
}

1711
static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1712
{
1713
	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1714
	hlist_del(&sp->hash_link);
1715 1716
	list_del(&sp->link);
	free_page((unsigned long)sp->spt);
1717 1718
	if (!sp->role.direct)
		free_page((unsigned long)sp->gfns);
1719
	kmem_cache_free(mmu_page_header_cache, sp);
1720 1721
}

1722 1723
static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
1724
	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1725 1726
}

1727
static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1728
				    struct kvm_mmu_page *sp, u64 *parent_pte)
1729 1730 1731 1732
{
	if (!parent_pte)
		return;

1733
	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1734 1735
}

1736
static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1737 1738
				       u64 *parent_pte)
{
1739
	__pte_list_remove(parent_pte, &sp->parent_ptes);
1740 1741
}

1742 1743 1744 1745
static void drop_parent_pte(struct kvm_mmu_page *sp,
			    u64 *parent_pte)
{
	mmu_page_remove_parent_pte(sp, parent_pte);
1746
	mmu_spte_clear_no_track(parent_pte);
1747 1748
}

1749
static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
M
Marcelo Tosatti 已提交
1750
{
1751
	struct kvm_mmu_page *sp;
1752

1753 1754
	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1755
	if (!direct)
1756
		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1757
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1758 1759 1760 1761 1762 1763

	/*
	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
	 * depends on valid pages being added to the head of the list.  See
	 * comments in kvm_zap_obsolete_pages().
	 */
1764
	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1765 1766 1767
	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
	return sp;
M
Marcelo Tosatti 已提交
1768 1769
}

1770
static void mark_unsync(u64 *spte);
1771
static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1772
{
1773 1774 1775 1776 1777 1778
	u64 *sptep;
	struct rmap_iterator iter;

	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
		mark_unsync(sptep);
	}
1779 1780
}

1781
static void mark_unsync(u64 *spte)
1782
{
1783
	struct kvm_mmu_page *sp;
1784
	unsigned int index;
1785

1786
	sp = sptep_to_sp(spte);
1787 1788
	index = spte - sp->spt;
	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1789
		return;
1790
	if (sp->unsync_children++)
1791
		return;
1792
	kvm_mmu_mark_parents_unsync(sp);
1793 1794
}

1795
static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1796
			       struct kvm_mmu_page *sp)
1797
{
1798
	return -1;
1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
#define KVM_PAGE_ARRAY_NR 16

struct kvm_mmu_pages {
	struct mmu_page_and_offset {
		struct kvm_mmu_page *sp;
		unsigned int idx;
	} page[KVM_PAGE_ARRAY_NR];
	unsigned int nr;
};

1811 1812
static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
			 int idx)
1813
{
1814
	int i;
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	if (sp->unsync)
		for (i=0; i < pvec->nr; i++)
			if (pvec->page[i].sp == sp)
				return 0;

	pvec->page[pvec->nr].sp = sp;
	pvec->page[pvec->nr].idx = idx;
	pvec->nr++;
	return (pvec->nr == KVM_PAGE_ARRAY_NR);
}

1827 1828 1829 1830 1831 1832 1833
static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
{
	--sp->unsync_children;
	WARN_ON((int)sp->unsync_children < 0);
	__clear_bit(idx, sp->unsync_child_bitmap);
}

1834 1835 1836 1837
static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
	int i, ret, nr_unsync_leaf = 0;
1838

1839
	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840
		struct kvm_mmu_page *child;
1841 1842
		u64 ent = sp->spt[i];

1843 1844 1845 1846
		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
			clear_unsync_child_bit(sp, i);
			continue;
		}
1847

1848
		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1849 1850 1851 1852 1853 1854

		if (child->unsync_children) {
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;

			ret = __mmu_unsync_walk(child, pvec);
1855 1856 1857 1858
			if (!ret) {
				clear_unsync_child_bit(sp, i);
				continue;
			} else if (ret > 0) {
1859
				nr_unsync_leaf += ret;
1860
			} else
1861 1862 1863 1864 1865 1866
				return ret;
		} else if (child->unsync) {
			nr_unsync_leaf++;
			if (mmu_pages_add(pvec, child, i))
				return -ENOSPC;
		} else
1867
			clear_unsync_child_bit(sp, i);
1868 1869
	}

1870 1871 1872
	return nr_unsync_leaf;
}

1873 1874
#define INVALID_INDEX (-1)

1875 1876 1877
static int mmu_unsync_walk(struct kvm_mmu_page *sp,
			   struct kvm_mmu_pages *pvec)
{
P
Paolo Bonzini 已提交
1878
	pvec->nr = 0;
1879 1880 1881
	if (!sp->unsync_children)
		return 0;

1882
	mmu_pages_add(pvec, sp, INVALID_INDEX);
1883
	return __mmu_unsync_walk(sp, pvec);
1884 1885 1886 1887 1888
}

static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	WARN_ON(!sp->unsync);
1889
	trace_kvm_mmu_sync_page(sp);
1890 1891 1892 1893
	sp->unsync = 0;
	--kvm->stat.mmu_unsync;
}

1894 1895
static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list);
1896 1897
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list);
1898

1899 1900
#define for_each_valid_sp(_kvm, _sp, _list)				\
	hlist_for_each_entry(_sp, _list, hash_link)			\
1901
		if (is_obsolete_sp((_kvm), (_sp))) {			\
1902
		} else
1903 1904

#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1905 1906
	for_each_valid_sp(_kvm, _sp,					\
	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1907
		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1908

1909 1910
static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			 struct list_head *invalid_list)
1911
{
1912 1913 1914
	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);

	if (ret < 0) {
1915
		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1916
		return false;
1917 1918
	}

1919
	return !!ret;
1920 1921
}

1922 1923 1924 1925
static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
					struct list_head *invalid_list,
					bool remote_flush)
{
1926
	if (!remote_flush && list_empty(invalid_list))
1927 1928 1929 1930 1931 1932 1933 1934 1935
		return false;

	if (!list_empty(invalid_list))
		kvm_mmu_commit_zap_page(kvm, invalid_list);
	else
		kvm_flush_remote_tlbs(kvm);
	return true;
}

1936 1937 1938 1939 1940 1941 1942
#ifdef CONFIG_KVM_MMU_AUDIT
#include "mmu_audit.c"
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
static void mmu_audit_disable(void) { }
#endif

1943 1944
static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
{
1945 1946
	return sp->role.invalid ||
	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1947 1948
}

1949
struct mmu_page_path {
1950 1951
	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1952 1953
};

1954
#define for_each_sp(pvec, sp, parents, i)			\
P
Paolo Bonzini 已提交
1955
		for (i = mmu_pages_first(&pvec, &parents);	\
1956 1957 1958
			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
			i = mmu_pages_next(&pvec, &parents, i))

1959 1960 1961
static int mmu_pages_next(struct kvm_mmu_pages *pvec,
			  struct mmu_page_path *parents,
			  int i)
1962 1963 1964 1965 1966
{
	int n;

	for (n = i+1; n < pvec->nr; n++) {
		struct kvm_mmu_page *sp = pvec->page[n].sp;
P
Paolo Bonzini 已提交
1967 1968
		unsigned idx = pvec->page[n].idx;
		int level = sp->role.level;
1969

P
Paolo Bonzini 已提交
1970
		parents->idx[level-1] = idx;
1971
		if (level == PG_LEVEL_4K)
P
Paolo Bonzini 已提交
1972
			break;
1973

P
Paolo Bonzini 已提交
1974
		parents->parent[level-2] = sp;
1975 1976 1977 1978 1979
	}

	return n;
}

P
Paolo Bonzini 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988
static int mmu_pages_first(struct kvm_mmu_pages *pvec,
			   struct mmu_page_path *parents)
{
	struct kvm_mmu_page *sp;
	int level;

	if (pvec->nr == 0)
		return 0;

1989 1990
	WARN_ON(pvec->page[0].idx != INVALID_INDEX);

P
Paolo Bonzini 已提交
1991 1992
	sp = pvec->page[0].sp;
	level = sp->role.level;
1993
	WARN_ON(level == PG_LEVEL_4K);
P
Paolo Bonzini 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	parents->parent[level-2] = sp;

	/* Also set up a sentinel.  Further entries in pvec are all
	 * children of sp, so this element is never overwritten.
	 */
	parents->parent[level-1] = NULL;
	return mmu_pages_next(pvec, parents, 0);
}

2004
static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2005
{
2006 2007 2008 2009 2010 2011 2012 2013 2014
	struct kvm_mmu_page *sp;
	unsigned int level = 0;

	do {
		unsigned int idx = parents->idx[level];
		sp = parents->parent[level];
		if (!sp)
			return;

2015
		WARN_ON(idx == INVALID_INDEX);
2016
		clear_unsync_child_bit(sp, idx);
2017
		level++;
P
Paolo Bonzini 已提交
2018
	} while (!sp->unsync_children);
2019
}
2020

2021 2022
static int mmu_sync_children(struct kvm_vcpu *vcpu,
			     struct kvm_mmu_page *parent, bool can_yield)
2023 2024 2025 2026 2027
{
	int i;
	struct kvm_mmu_page *sp;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2028
	LIST_HEAD(invalid_list);
2029
	bool flush = false;
2030 2031

	while (mmu_unsync_walk(parent, &pages)) {
2032
		bool protected = false;
2033 2034

		for_each_sp(pages, sp, parents, i)
2035
			protected |= rmap_write_protect(vcpu, sp->gfn);
2036

2037
		if (protected) {
2038
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
2039
			flush = false;
2040
		}
2041

2042
		for_each_sp(pages, sp, parents, i) {
2043
			kvm_unlink_unsync_page(vcpu->kvm, sp);
2044
			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2045 2046
			mmu_pages_clear_parents(&parents);
		}
2047
		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
2048
			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2049 2050 2051 2052 2053
			if (!can_yield) {
				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
				return -EINTR;
			}

2054
			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2055
			flush = false;
2056
		}
2057
	}
2058

2059
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
2060
	return 0;
2061 2062
}

2063 2064
static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
{
2065
	atomic_set(&sp->write_flooding_count,  0);
2066 2067 2068 2069
}

static void clear_sp_write_flooding_count(u64 *spte)
{
2070
	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2071 2072
}

2073 2074 2075 2076
static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
					     gfn_t gfn,
					     gva_t gaddr,
					     unsigned level,
2077
					     int direct,
2078
					     unsigned int access)
2079
{
2080
	bool direct_mmu = vcpu->arch.mmu->direct_map;
2081
	union kvm_mmu_page_role role;
2082
	struct hlist_head *sp_list;
2083
	unsigned quadrant;
2084
	struct kvm_mmu_page *sp;
2085
	int collisions = 0;
2086
	LIST_HEAD(invalid_list);
2087

2088
	role = vcpu->arch.mmu->mmu_role.base;
2089
	role.level = level;
2090
	role.direct = direct;
2091
	if (role.direct)
2092
		role.gpte_is_8_bytes = true;
2093
	role.access = access;
2094
	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2095 2096 2097 2098
		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
		role.quadrant = quadrant;
	}
2099 2100 2101

	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2102 2103 2104 2105 2106
		if (sp->gfn != gfn) {
			collisions++;
			continue;
		}

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		if (sp->role.word != role.word) {
			/*
			 * If the guest is creating an upper-level page, zap
			 * unsync pages for the same gfn.  While it's possible
			 * the guest is using recursive page tables, in all
			 * likelihood the guest has stopped using the unsync
			 * page and is installing a completely unrelated page.
			 * Unsync pages must not be left as is, because the new
			 * upper-level page will be write-protected.
			 */
			if (level > PG_LEVEL_4K && sp->unsync)
				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
							 &invalid_list);
2120
			continue;
2121
		}
2122

2123 2124 2125
		if (direct_mmu)
			goto trace_get_page;

2126
		if (sp->unsync) {
2127
			/*
2128
			 * The page is good, but is stale.  kvm_sync_page does
2129 2130 2131 2132 2133 2134 2135 2136 2137
			 * get the latest guest state, but (unlike mmu_unsync_children)
			 * it doesn't write-protect the page or mark it synchronized!
			 * This way the validity of the mapping is ensured, but the
			 * overhead of write protection is not incurred until the
			 * guest invalidates the TLB mapping.  This allows multiple
			 * SPs for a single gfn to be unsync.
			 *
			 * If the sync fails, the page is zapped.  If so, break
			 * in order to rebuild it.
2138
			 */
2139
			if (!kvm_sync_page(vcpu, sp, &invalid_list))
2140 2141 2142
				break;

			WARN_ON(!list_empty(&invalid_list));
2143
			kvm_flush_remote_tlbs(vcpu->kvm);
2144
		}
2145

2146
		__clear_sp_write_flooding_count(sp);
2147 2148

trace_get_page:
2149
		trace_kvm_mmu_get_page(sp, false);
2150
		goto out;
2151
	}
2152

A
Avi Kivity 已提交
2153
	++vcpu->kvm->stat.mmu_cache_miss;
2154 2155 2156

	sp = kvm_mmu_alloc_page(vcpu, direct);

2157 2158
	sp->gfn = gfn;
	sp->role = role;
2159
	hlist_add_head(&sp->hash_link, sp_list);
2160
	if (!direct) {
2161
		account_shadowed(vcpu->kvm, sp);
2162
		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2163
			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2164
	}
A
Avi Kivity 已提交
2165
	trace_kvm_mmu_get_page(sp, true);
2166
out:
2167 2168
	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);

2169 2170
	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2171
	return sp;
2172 2173
}

2174 2175 2176
static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
					struct kvm_vcpu *vcpu, hpa_t root,
					u64 addr)
2177 2178
{
	iterator->addr = addr;
2179
	iterator->shadow_addr = root;
2180
	iterator->level = vcpu->arch.mmu->shadow_root_level;
2181

2182
	if (iterator->level == PT64_ROOT_4LEVEL &&
2183 2184
	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
	    !vcpu->arch.mmu->direct_map)
2185 2186
		--iterator->level;

2187
	if (iterator->level == PT32E_ROOT_LEVEL) {
2188 2189 2190 2191
		/*
		 * prev_root is currently only used for 64-bit hosts. So only
		 * the active root_hpa is valid here.
		 */
2192
		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2193

2194
		iterator->shadow_addr
2195
			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2196 2197 2198 2199 2200 2201 2202
		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
		--iterator->level;
		if (!iterator->shadow_addr)
			iterator->level = 0;
	}
}

2203 2204 2205
static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
			     struct kvm_vcpu *vcpu, u64 addr)
{
2206
	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2207 2208 2209
				    addr);
}

2210 2211
static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
{
2212
	if (iterator->level < PG_LEVEL_4K)
2213
		return false;
2214

2215 2216 2217 2218 2219
	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
	return true;
}

2220 2221
static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
			       u64 spte)
2222
{
2223
	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
2224 2225 2226 2227
		iterator->level = 0;
		return;
	}

2228
	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2229 2230 2231
	--iterator->level;
}

2232 2233
static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
{
2234
	__shadow_walk_next(iterator, *iterator->sptep);
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245
static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
			     struct kvm_mmu_page *sp)
{
	u64 spte;

	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);

	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));

2246
	mmu_spte_set(sptep, spte);
2247 2248 2249 2250 2251

	mmu_page_add_parent_pte(vcpu, sp, sptep);

	if (sp->unsync_children || sp->unsync)
		mark_unsync(sptep);
2252 2253
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
				   unsigned direct_access)
{
	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
		struct kvm_mmu_page *child;

		/*
		 * For the direct sp, if the guest pte's dirty bit
		 * changed form clean to dirty, it will corrupt the
		 * sp's access: allow writable in the read-only sp,
		 * so we should update the spte at this point to get
		 * a new sp with the correct access.
		 */
2267
		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2268 2269 2270
		if (child->role.access == direct_access)
			return;

2271
		drop_parent_pte(child, sptep);
2272
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2273 2274 2275
	}
}

2276 2277 2278
/* Returns the number of zapped non-leaf child shadow pages. */
static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
			    u64 *spte, struct list_head *invalid_list)
2279 2280 2281 2282 2283 2284
{
	u64 pte;
	struct kvm_mmu_page *child;

	pte = *spte;
	if (is_shadow_present_pte(pte)) {
X
Xiao Guangrong 已提交
2285
		if (is_last_spte(pte, sp->role.level)) {
2286
			drop_spte(kvm, spte);
X
Xiao Guangrong 已提交
2287
		} else {
2288
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2289
			drop_parent_pte(child, spte);
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

			/*
			 * Recursively zap nested TDP SPs, parentless SPs are
			 * unlikely to be used again in the near future.  This
			 * avoids retaining a large number of stale nested SPs.
			 */
			if (tdp_enabled && invalid_list &&
			    child->role.guest_mode && !child->parent_ptes.val)
				return kvm_mmu_prepare_zap_page(kvm, child,
								invalid_list);
2300
		}
2301
	} else if (is_mmio_spte(pte)) {
2302
		mmu_spte_clear_no_track(spte);
2303
	}
2304
	return 0;
2305 2306
}

2307 2308 2309
static int kvm_mmu_page_unlink_children(struct kvm *kvm,
					struct kvm_mmu_page *sp,
					struct list_head *invalid_list)
2310
{
2311
	int zapped = 0;
2312 2313
	unsigned i;

2314
	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2315 2316 2317
		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);

	return zapped;
2318 2319
}

2320
static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2321
{
2322 2323
	u64 *sptep;
	struct rmap_iterator iter;
2324

2325
	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2326
		drop_parent_pte(sp, sptep);
2327 2328
}

2329
static int mmu_zap_unsync_children(struct kvm *kvm,
2330 2331
				   struct kvm_mmu_page *parent,
				   struct list_head *invalid_list)
2332
{
2333 2334 2335
	int i, zapped = 0;
	struct mmu_page_path parents;
	struct kvm_mmu_pages pages;
2336

2337
	if (parent->role.level == PG_LEVEL_4K)
2338
		return 0;
2339 2340 2341 2342 2343

	while (mmu_unsync_walk(parent, &pages)) {
		struct kvm_mmu_page *sp;

		for_each_sp(pages, sp, parents, i) {
2344
			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2345
			mmu_pages_clear_parents(&parents);
2346
			zapped++;
2347 2348 2349 2350
		}
	}

	return zapped;
2351 2352
}

2353 2354 2355 2356
static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
				       struct kvm_mmu_page *sp,
				       struct list_head *invalid_list,
				       int *nr_zapped)
2357
{
2358
	bool list_unstable;
A
Avi Kivity 已提交
2359

2360
	trace_kvm_mmu_prepare_zap_page(sp);
2361
	++kvm->stat.mmu_shadow_zapped;
2362
	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2363
	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2364
	kvm_mmu_unlink_parents(kvm, sp);
2365

2366 2367 2368
	/* Zapping children means active_mmu_pages has become unstable. */
	list_unstable = *nr_zapped;

2369
	if (!sp->role.invalid && !sp->role.direct)
2370
		unaccount_shadowed(kvm, sp);
2371

2372 2373
	if (sp->unsync)
		kvm_unlink_unsync_page(kvm, sp);
2374
	if (!sp->root_count) {
2375
		/* Count self */
2376
		(*nr_zapped)++;
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

		/*
		 * Already invalid pages (previously active roots) are not on
		 * the active page list.  See list_del() in the "else" case of
		 * !sp->root_count.
		 */
		if (sp->role.invalid)
			list_add(&sp->link, invalid_list);
		else
			list_move(&sp->link, invalid_list);
2387
		kvm_mod_used_mmu_pages(kvm, -1);
2388
	} else {
2389 2390 2391 2392 2393
		/*
		 * Remove the active root from the active page list, the root
		 * will be explicitly freed when the root_count hits zero.
		 */
		list_del(&sp->link);
2394

2395 2396 2397 2398 2399 2400
		/*
		 * Obsolete pages cannot be used on any vCPUs, see the comment
		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
		 * treats invalid shadow pages as being obsolete.
		 */
		if (!is_obsolete_sp(kvm, sp))
2401
			kvm_reload_remote_mmus(kvm);
2402
	}
2403

P
Paolo Bonzini 已提交
2404 2405 2406
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);

2407
	sp->role.invalid = 1;
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
	return list_unstable;
}

static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
				     struct list_head *invalid_list)
{
	int nr_zapped;

	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
	return nr_zapped;
2418 2419
}

2420 2421 2422
static void kvm_mmu_commit_zap_page(struct kvm *kvm,
				    struct list_head *invalid_list)
{
2423
	struct kvm_mmu_page *sp, *nsp;
2424 2425 2426 2427

	if (list_empty(invalid_list))
		return;

2428
	/*
2429 2430 2431 2432 2433 2434 2435
	 * We need to make sure everyone sees our modifications to
	 * the page tables and see changes to vcpu->mode here. The barrier
	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
	 *
	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
	 * guest mode and/or lockless shadow page table walks.
2436 2437
	 */
	kvm_flush_remote_tlbs(kvm);
2438

2439
	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2440
		WARN_ON(!sp->role.invalid || sp->root_count);
2441
		kvm_mmu_free_page(sp);
2442
	}
2443 2444
}

2445 2446
static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
						  unsigned long nr_to_zap)
2447
{
2448 2449
	unsigned long total_zapped = 0;
	struct kvm_mmu_page *sp, *tmp;
2450
	LIST_HEAD(invalid_list);
2451 2452
	bool unstable;
	int nr_zapped;
2453 2454

	if (list_empty(&kvm->arch.active_mmu_pages))
2455 2456
		return 0;

2457
restart:
2458
	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
		/*
		 * Don't zap active root pages, the page itself can't be freed
		 * and zapping it will just force vCPUs to realloc and reload.
		 */
		if (sp->root_count)
			continue;

		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
						      &nr_zapped);
		total_zapped += nr_zapped;
		if (total_zapped >= nr_to_zap)
2470 2471
			break;

2472 2473
		if (unstable)
			goto restart;
2474
	}
2475

2476 2477 2478 2479 2480 2481
	kvm_mmu_commit_zap_page(kvm, &invalid_list);

	kvm->stat.mmu_recycled += total_zapped;
	return total_zapped;
}

2482 2483 2484 2485 2486 2487 2488
static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
{
	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
		return kvm->arch.n_max_mmu_pages -
			kvm->arch.n_used_mmu_pages;

	return 0;
2489 2490
}

2491 2492
static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
{
2493
	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2494

2495
	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2496 2497
		return 0;

2498
	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2499

2500 2501 2502 2503 2504
	/*
	 * Note, this check is intentionally soft, it only guarantees that one
	 * page is available, while the caller may end up allocating as many as
	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
	 * exceeding the (arbitrary by default) limit will not harm the host,
I
Ingo Molnar 已提交
2505
	 * being too aggressive may unnecessarily kill the guest, and getting an
2506 2507 2508
	 * exact count is far more trouble than it's worth, especially in the
	 * page fault paths.
	 */
2509 2510 2511 2512 2513
	if (!kvm_mmu_available_pages(vcpu->kvm))
		return -ENOSPC;
	return 0;
}

2514 2515
/*
 * Changing the number of mmu pages allocated to the vm
2516
 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2517
 */
2518
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2519
{
2520
	write_lock(&kvm->mmu_lock);
2521

2522
	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2523 2524
		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
						  goal_nr_mmu_pages);
2525

2526
		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2527 2528
	}

2529
	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2530

2531
	write_unlock(&kvm->mmu_lock);
2532 2533
}

2534
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2535
{
2536
	struct kvm_mmu_page *sp;
2537
	LIST_HEAD(invalid_list);
2538 2539
	int r;

2540
	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2541
	r = 0;
2542
	write_lock(&kvm->mmu_lock);
2543
	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2544
		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2545 2546
			 sp->role.word);
		r = 1;
2547
		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2548
	}
2549
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2550
	write_unlock(&kvm->mmu_lock);
2551

2552
	return r;
2553
}
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
	gpa_t gpa;
	int r;

	if (vcpu->arch.mmu->direct_map)
		return 0;

	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);

	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);

	return r;
}
2569

2570
static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2571 2572 2573 2574 2575 2576 2577 2578
{
	trace_kvm_mmu_unsync_page(sp);
	++vcpu->kvm->stat.mmu_unsync;
	sp->unsync = 1;

	kvm_mmu_mark_parents_unsync(sp);
}

2579 2580 2581 2582 2583 2584
/*
 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 * be write-protected.
 */
2585 2586
int mmu_try_to_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, bool can_unsync,
			    bool speculative)
2587
{
2588
	struct kvm_mmu_page *sp;
2589
	bool locked = false;
2590

2591 2592 2593 2594 2595
	/*
	 * Force write-protection if the page is being tracked.  Note, the page
	 * track machinery is used to write-protect upper-level shadow pages,
	 * i.e. this guards the role.level == 4K assertion below!
	 */
2596
	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2597
		return -EPERM;
2598

2599 2600 2601 2602 2603 2604
	/*
	 * The page is not write-tracked, mark existing shadow pages unsync
	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
	 * that case, KVM must complete emulation of the guest TLB flush before
	 * allowing shadow pages to become unsync (writable by the guest).
	 */
2605
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2606
		if (!can_unsync)
2607
			return -EPERM;
2608

2609 2610
		if (sp->unsync)
			continue;
2611

2612 2613 2614
		if (speculative)
			return -EEXIST;

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
		/*
		 * TDP MMU page faults require an additional spinlock as they
		 * run with mmu_lock held for read, not write, and the unsync
		 * logic is not thread safe.  Take the spinklock regardless of
		 * the MMU type to avoid extra conditionals/parameters, there's
		 * no meaningful penalty if mmu_lock is held for write.
		 */
		if (!locked) {
			locked = true;
			spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock);

			/*
			 * Recheck after taking the spinlock, a different vCPU
			 * may have since marked the page unsync.  A false
			 * positive on the unprotected check above is not
			 * possible as clearing sp->unsync _must_ hold mmu_lock
			 * for write, i.e. unsync cannot transition from 0->1
			 * while this CPU holds mmu_lock for read (or write).
			 */
			if (READ_ONCE(sp->unsync))
				continue;
		}

2638
		WARN_ON(sp->role.level != PG_LEVEL_4K);
2639
		kvm_unsync_page(vcpu, sp);
2640
	}
2641 2642
	if (locked)
		spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock);
2643

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	/*
	 * We need to ensure that the marking of unsync pages is visible
	 * before the SPTE is updated to allow writes because
	 * kvm_mmu_sync_roots() checks the unsync flags without holding
	 * the MMU lock and so can race with this. If the SPTE was updated
	 * before the page had been marked as unsync-ed, something like the
	 * following could happen:
	 *
	 * CPU 1                    CPU 2
	 * ---------------------------------------------------------------------
	 * 1.2 Host updates SPTE
	 *     to be writable
	 *                      2.1 Guest writes a GPTE for GVA X.
	 *                          (GPTE being in the guest page table shadowed
	 *                           by the SP from CPU 1.)
	 *                          This reads SPTE during the page table walk.
	 *                          Since SPTE.W is read as 1, there is no
	 *                          fault.
	 *
	 *                      2.2 Guest issues TLB flush.
	 *                          That causes a VM Exit.
	 *
2666 2667
	 *                      2.3 Walking of unsync pages sees sp->unsync is
	 *                          false and skips the page.
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	 *
	 *                      2.4 Guest accesses GVA X.
	 *                          Since the mapping in the SP was not updated,
	 *                          so the old mapping for GVA X incorrectly
	 *                          gets used.
	 * 1.1 Host marks SP
	 *     as unsync
	 *     (sp->unsync = true)
	 *
	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
	 * pairs with this write barrier.
	 */
	smp_wmb();

2683
	return 0;
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
		    unsigned int pte_access, int level,
		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
		    bool can_unsync, bool host_writable)
{
	u64 spte;
	struct kvm_mmu_page *sp;
	int ret;

	sp = sptep_to_sp(sptep);

	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
			can_unsync, host_writable, sp_ad_disabled(sp), &spte);

	if (spte & PT_WRITABLE_MASK)
		kvm_vcpu_mark_page_dirty(vcpu, gfn);

2703 2704 2705
	if (*sptep == spte)
		ret |= SET_SPTE_SPURIOUS;
	else if (mmu_spte_update(sptep, spte))
2706
		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
M
Marcelo Tosatti 已提交
2707 2708 2709
	return ret;
}

2710
static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2711
			unsigned int pte_access, bool write_fault, int level,
2712 2713
			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
			bool host_writable)
M
Marcelo Tosatti 已提交
2714 2715
{
	int was_rmapped = 0;
2716
	int rmap_count;
2717
	int set_spte_ret;
2718
	int ret = RET_PF_FIXED;
2719
	bool flush = false;
M
Marcelo Tosatti 已提交
2720

2721 2722
	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
		 *sptep, write_fault, gfn);
M
Marcelo Tosatti 已提交
2723

2724 2725 2726 2727 2728
	if (unlikely(is_noslot_pfn(pfn))) {
		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
		return RET_PF_EMULATE;
	}

2729
	if (is_shadow_present_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2730 2731 2732 2733
		/*
		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
		 * the parent of the now unreachable PTE.
		 */
2734
		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
M
Marcelo Tosatti 已提交
2735
			struct kvm_mmu_page *child;
A
Avi Kivity 已提交
2736
			u64 pte = *sptep;
M
Marcelo Tosatti 已提交
2737

2738
			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2739
			drop_parent_pte(child, sptep);
2740
			flush = true;
A
Avi Kivity 已提交
2741
		} else if (pfn != spte_to_pfn(*sptep)) {
2742
			pgprintk("hfn old %llx new %llx\n",
A
Avi Kivity 已提交
2743
				 spte_to_pfn(*sptep), pfn);
2744
			drop_spte(vcpu->kvm, sptep);
2745
			flush = true;
2746 2747
		} else
			was_rmapped = 1;
M
Marcelo Tosatti 已提交
2748
	}
2749

2750 2751 2752
	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
				speculative, true, host_writable);
	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
M
Marcelo Tosatti 已提交
2753
		if (write_fault)
2754
			ret = RET_PF_EMULATE;
2755
	}
2756

2757
	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2758 2759
		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
				KVM_PAGES_PER_HPAGE(level));
M
Marcelo Tosatti 已提交
2760

2761 2762 2763 2764 2765 2766 2767 2768 2769
	/*
	 * The fault is fully spurious if and only if the new SPTE and old SPTE
	 * are identical, and emulation is not required.
	 */
	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
		WARN_ON_ONCE(!was_rmapped);
		return RET_PF_SPURIOUS;
	}

A
Avi Kivity 已提交
2770
	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2771
	trace_kvm_mmu_set_spte(level, gfn, sptep);
M
Marcelo Tosatti 已提交
2772

2773
	if (!was_rmapped) {
2774
		kvm_update_page_stats(vcpu->kvm, level, 1);
2775 2776 2777
		rmap_count = rmap_add(vcpu, sptep, gfn);
		if (rmap_count > RMAP_RECYCLE_THRESHOLD)
			rmap_recycle(vcpu, sptep, gfn);
2778
	}
2779

2780
	return ret;
2781 2782
}

D
Dan Williams 已提交
2783
static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2784 2785 2786 2787
				     bool no_dirty_log)
{
	struct kvm_memory_slot *slot;

2788
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2789
	if (!slot)
2790
		return KVM_PFN_ERR_FAULT;
2791

2792
	return gfn_to_pfn_memslot_atomic(slot, gfn);
2793 2794 2795 2796 2797 2798 2799
}

static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
				    struct kvm_mmu_page *sp,
				    u64 *start, u64 *end)
{
	struct page *pages[PTE_PREFETCH_NUM];
2800
	struct kvm_memory_slot *slot;
2801
	unsigned int access = sp->role.access;
2802 2803 2804 2805
	int i, ret;
	gfn_t gfn;

	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2806 2807
	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
	if (!slot)
2808 2809
		return -1;

2810
	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2811 2812 2813
	if (ret <= 0)
		return -1;

2814
	for (i = 0; i < ret; i++, gfn++, start++) {
2815
		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2816
			     page_to_pfn(pages[i]), true, true);
2817 2818
		put_page(pages[i]);
	}
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834

	return 0;
}

static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *sptep)
{
	u64 *spte, *start = NULL;
	int i;

	WARN_ON(!sp->role.direct);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2835
		if (is_shadow_present_pte(*spte) || spte == sptep) {
2836 2837 2838
			if (!start)
				continue;
			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2839
				return;
2840 2841 2842 2843
			start = NULL;
		} else if (!start)
			start = spte;
	}
2844 2845
	if (start)
		direct_pte_prefetch_many(vcpu, sp, start, spte);
2846 2847 2848 2849 2850 2851
}

static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
{
	struct kvm_mmu_page *sp;

2852
	sp = sptep_to_sp(sptep);
2853

2854
	/*
2855 2856 2857
	 * Without accessed bits, there's no way to distinguish between
	 * actually accessed translations and prefetched, so disable pte
	 * prefetch if accessed bits aren't available.
2858
	 */
2859
	if (sp_ad_disabled(sp))
2860 2861
		return;

2862
	if (sp->role.level > PG_LEVEL_4K)
2863 2864
		return;

2865 2866 2867 2868 2869 2870 2871
	/*
	 * If addresses are being invalidated, skip prefetching to avoid
	 * accidentally prefetching those addresses.
	 */
	if (unlikely(vcpu->kvm->mmu_notifier_count))
		return;

2872 2873 2874
	__direct_pte_prefetch(vcpu, sp, sptep);
}

2875
static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2876
				  const struct kvm_memory_slot *slot)
2877 2878 2879 2880 2881
{
	unsigned long hva;
	pte_t *pte;
	int level;

2882
	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2883
		return PG_LEVEL_4K;
2884

2885 2886 2887 2888 2889 2890 2891 2892
	/*
	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
	 * is not solely for performance, it's also necessary to avoid the
	 * "writable" check in __gfn_to_hva_many(), which will always fail on
	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
	 * page fault steps have already verified the guest isn't writing a
	 * read-only memslot.
	 */
2893 2894
	hva = __gfn_to_hva_memslot(slot, gfn);

2895
	pte = lookup_address_in_mm(kvm->mm, hva, &level);
2896
	if (unlikely(!pte))
2897
		return PG_LEVEL_4K;
2898 2899 2900 2901

	return level;
}

2902 2903 2904
int kvm_mmu_max_mapping_level(struct kvm *kvm,
			      const struct kvm_memory_slot *slot, gfn_t gfn,
			      kvm_pfn_t pfn, int max_level)
2905 2906
{
	struct kvm_lpage_info *linfo;
2907
	int host_level;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918

	max_level = min(max_level, max_huge_page_level);
	for ( ; max_level > PG_LEVEL_4K; max_level--) {
		linfo = lpage_info_slot(gfn, slot, max_level);
		if (!linfo->disallow_lpage)
			break;
	}

	if (max_level == PG_LEVEL_4K)
		return PG_LEVEL_4K;

2919 2920
	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
	return min(host_level, max_level);
2921 2922
}

2923
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2924
{
2925
	struct kvm_memory_slot *slot;
2926 2927
	kvm_pfn_t mask;

2928
	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
2929

2930 2931
	if (unlikely(fault->max_level == PG_LEVEL_4K))
		return;
2932

2933 2934
	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
		return;
2935

2936
	slot = gfn_to_memslot_dirty_bitmap(vcpu, fault->gfn, true);
2937
	if (!slot)
2938
		return;
2939

2940 2941 2942 2943
	/*
	 * Enforce the iTLB multihit workaround after capturing the requested
	 * level, which will be used to do precise, accurate accounting.
	 */
2944 2945 2946 2947 2948
	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
						     fault->gfn, fault->pfn,
						     fault->max_level);
	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
		return;
2949 2950

	/*
2951 2952
	 * mmu_notifier_retry() was successful and mmu_lock is held, so
	 * the pmd can't be split from under us.
2953
	 */
2954 2955 2956 2957
	fault->goal_level = fault->req_level;
	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
	fault->pfn &= ~mask;
2958 2959
}

B
Ben Gardon 已提交
2960
void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2961
				kvm_pfn_t *pfnp, u8 *goal_levelp)
P
Paolo Bonzini 已提交
2962
{
B
Ben Gardon 已提交
2963
	int level = *goal_levelp;
P
Paolo Bonzini 已提交
2964

2965
	if (cur_level == level && level > PG_LEVEL_4K &&
P
Paolo Bonzini 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974
	    is_shadow_present_pte(spte) &&
	    !is_large_pte(spte)) {
		/*
		 * A small SPTE exists for this pfn, but FNAME(fetch)
		 * and __direct_map would like to create a large PTE
		 * instead: just force them to go down another level,
		 * patching back for them into pfn the next 9 bits of
		 * the address.
		 */
2975 2976
		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
				KVM_PAGES_PER_HPAGE(level - 1);
P
Paolo Bonzini 已提交
2977
		*pfnp |= gfn & page_mask;
B
Ben Gardon 已提交
2978
		(*goal_levelp)--;
P
Paolo Bonzini 已提交
2979 2980 2981
	}
}

2982
static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
2983
{
2984
	struct kvm_shadow_walk_iterator it;
2985
	struct kvm_mmu_page *sp;
2986
	int ret;
2987
	gfn_t base_gfn = fault->gfn;
A
Avi Kivity 已提交
2988

2989
	kvm_mmu_hugepage_adjust(vcpu, fault);
2990

2991
	trace_kvm_mmu_spte_requested(fault->addr, fault->goal_level, fault->pfn);
2992
	for_each_shadow_entry(vcpu, fault->addr, it) {
P
Paolo Bonzini 已提交
2993 2994 2995 2996
		/*
		 * We cannot overwrite existing page tables with an NX
		 * large page, as the leaf could be executable.
		 */
2997
		if (fault->nx_huge_page_workaround_enabled)
2998
			disallowed_hugepage_adjust(*it.sptep, fault->gfn, it.level,
2999
						   &fault->pfn, &fault->goal_level);
P
Paolo Bonzini 已提交
3000

3001
		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3002
		if (it.level == fault->goal_level)
3003
			break;
A
Avi Kivity 已提交
3004

3005
		drop_large_spte(vcpu, it.sptep);
3006 3007 3008 3009 3010 3011 3012
		if (is_shadow_present_pte(*it.sptep))
			continue;

		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
				      it.level - 1, true, ACC_ALL);

		link_shadow_page(vcpu, it.sptep, sp);
3013 3014
		if (fault->is_tdp && fault->huge_page_disallowed &&
		    fault->req_level >= it.level)
3015
			account_huge_nx_page(vcpu->kvm, sp);
3016
	}
3017 3018

	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3019
			   fault->write, fault->goal_level, base_gfn, fault->pfn,
3020
			   fault->prefault, fault->map_writable);
3021 3022 3023
	if (ret == RET_PF_SPURIOUS)
		return ret;

3024 3025 3026
	direct_pte_prefetch(vcpu, it.sptep);
	++vcpu->stat.pf_fixed;
	return ret;
A
Avi Kivity 已提交
3027 3028
}

H
Huang Ying 已提交
3029
static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
3030
{
3031
	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
3032 3033
}

D
Dan Williams 已提交
3034
static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
3035
{
X
Xiao Guangrong 已提交
3036 3037 3038 3039 3040 3041
	/*
	 * Do not cache the mmio info caused by writing the readonly gfn
	 * into the spte otherwise read access on readonly gfn also can
	 * caused mmio page fault and treat it as mmio access.
	 */
	if (pfn == KVM_PFN_ERR_RO_FAULT)
3042
		return RET_PF_EMULATE;
X
Xiao Guangrong 已提交
3043

3044
	if (pfn == KVM_PFN_ERR_HWPOISON) {
3045
		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
3046
		return RET_PF_RETRY;
3047
	}
3048

3049
	return -EFAULT;
3050 3051
}

3052 3053
static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
				unsigned int access, int *ret_val)
3054 3055
{
	/* The pfn is invalid, report the error! */
3056 3057
	if (unlikely(is_error_pfn(fault->pfn))) {
		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
3058
		return true;
3059 3060
	}

3061 3062 3063 3064
	if (unlikely(is_noslot_pfn(fault->pfn))) {
		gva_t gva = fault->is_tdp ? 0 : fault->addr;

		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3065
				     access & shadow_mmio_access_mask);
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
		/*
		 * If MMIO caching is disabled, emulate immediately without
		 * touching the shadow page tables as attempting to install an
		 * MMIO SPTE will just be an expensive nop.
		 */
		if (unlikely(!shadow_mmio_value)) {
			*ret_val = RET_PF_EMULATE;
			return true;
		}
	}
3076

3077
	return false;
3078 3079
}

3080
static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3081
{
3082 3083 3084 3085
	/*
	 * Do not fix the mmio spte with invalid generation number which
	 * need to be updated by slow page fault path.
	 */
3086
	if (fault->rsvd)
3087 3088
		return false;

3089
	/* See if the page fault is due to an NX violation */
3090
	if (unlikely(fault->exec && fault->present))
3091 3092
		return false;

3093
	/*
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	 * #PF can be fast if:
	 * 1. The shadow page table entry is not present, which could mean that
	 *    the fault is potentially caused by access tracking (if enabled).
	 * 2. The shadow page table entry is present and the fault
	 *    is caused by write-protect, that means we just need change the W
	 *    bit of the spte which can be done out of mmu-lock.
	 *
	 * However, if access tracking is disabled we know that a non-present
	 * page must be a genuine page fault where we have to create a new SPTE.
	 * So, if access tracking is disabled, we return true only for write
	 * accesses to a present page.
3105 3106
	 */

3107
	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
3108 3109
}

3110 3111 3112 3113
/*
 * Returns true if the SPTE was fixed successfully. Otherwise,
 * someone else modified the SPTE from its original value.
 */
3114
static bool
3115
fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3116
			u64 *sptep, u64 old_spte, u64 new_spte)
3117 3118 3119 3120 3121
{
	gfn_t gfn;

	WARN_ON(!sp->role.direct);

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	/*
	 * Theoretically we could also set dirty bit (and flush TLB) here in
	 * order to eliminate unnecessary PML logging. See comments in
	 * set_spte. But fast_page_fault is very unlikely to happen with PML
	 * enabled, so we do not do this. This might result in the same GPA
	 * to be logged in PML buffer again when the write really happens, and
	 * eventually to be called by mark_page_dirty twice. But it's also no
	 * harm. This also avoids the TLB flush needed after setting dirty bit
	 * so non-PML cases won't be impacted.
	 *
	 * Compare with set_spte where instead shadow_dirty_mask is set.
	 */
3134
	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3135 3136
		return false;

3137
	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3138 3139 3140 3141 3142 3143 3144
		/*
		 * The gfn of direct spte is stable since it is
		 * calculated by sp->gfn.
		 */
		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
	}
3145 3146 3147 3148

	return true;
}

3149
static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3150
{
3151
	if (fault->exec)
3152 3153
		return is_executable_pte(spte);

3154
	if (fault->write)
3155 3156 3157 3158 3159 3160
		return is_writable_pte(spte);

	/* Fault was on Read access */
	return spte & PT_PRESENT_MASK;
}

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * Returns the last level spte pointer of the shadow page walk for the given
 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 * walk could be performed, returns NULL and *spte does not contain valid data.
 *
 * Contract:
 *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 */
static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 old_spte;
	u64 *sptep = NULL;

	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
		sptep = iterator.sptep;
		*spte = old_spte;
	}

	return sptep;
}

3184
/*
3185
 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3186
 */
3187
static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3188
{
3189
	struct kvm_mmu_page *sp;
3190
	int ret = RET_PF_INVALID;
3191
	u64 spte = 0ull;
3192
	u64 *sptep = NULL;
3193
	uint retry_count = 0;
3194

3195
	if (!page_fault_can_be_fast(fault))
3196
		return ret;
3197 3198 3199

	walk_shadow_page_lockless_begin(vcpu);

3200
	do {
3201
		u64 new_spte;
3202

3203
		if (is_tdp_mmu(vcpu->arch.mmu))
3204
			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3205
		else
3206
			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
3207

3208 3209 3210
		if (!is_shadow_present_pte(spte))
			break;

3211
		sp = sptep_to_sp(sptep);
3212 3213
		if (!is_last_spte(spte, sp->role.level))
			break;
3214

3215
		/*
3216 3217 3218 3219 3220
		 * Check whether the memory access that caused the fault would
		 * still cause it if it were to be performed right now. If not,
		 * then this is a spurious fault caused by TLB lazily flushed,
		 * or some other CPU has already fixed the PTE after the
		 * current CPU took the fault.
3221 3222 3223 3224
		 *
		 * Need not check the access of upper level table entries since
		 * they are always ACC_ALL.
		 */
3225
		if (is_access_allowed(fault, spte)) {
3226
			ret = RET_PF_SPURIOUS;
3227 3228
			break;
		}
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
		new_spte = spte;

		if (is_access_track_spte(spte))
			new_spte = restore_acc_track_spte(new_spte);

		/*
		 * Currently, to simplify the code, write-protection can
		 * be removed in the fast path only if the SPTE was
		 * write-protected for dirty-logging or access tracking.
		 */
3240
		if (fault->write &&
3241
		    spte_can_locklessly_be_made_writable(spte)) {
3242
			new_spte |= PT_WRITABLE_MASK;
3243 3244

			/*
3245 3246 3247 3248 3249 3250 3251 3252 3253
			 * Do not fix write-permission on the large spte.  Since
			 * we only dirty the first page into the dirty-bitmap in
			 * fast_pf_fix_direct_spte(), other pages are missed
			 * if its slot has dirty logging enabled.
			 *
			 * Instead, we let the slow page fault path create a
			 * normal spte to fix the access.
			 *
			 * See the comments in kvm_arch_commit_memory_region().
3254
			 */
3255
			if (sp->role.level > PG_LEVEL_4K)
3256
				break;
3257
		}
3258

3259
		/* Verify that the fault can be handled in the fast path */
3260
		if (new_spte == spte ||
3261
		    !is_access_allowed(fault, new_spte))
3262 3263 3264 3265 3266
			break;

		/*
		 * Currently, fast page fault only works for direct mapping
		 * since the gfn is not stable for indirect shadow page. See
3267
		 * Documentation/virt/kvm/locking.rst to get more detail.
3268
		 */
3269
		if (fast_pf_fix_direct_spte(vcpu, sp, sptep, spte, new_spte)) {
3270
			ret = RET_PF_FIXED;
3271
			break;
3272
		}
3273 3274 3275 3276 3277 3278 3279 3280

		if (++retry_count > 4) {
			printk_once(KERN_WARNING
				"kvm: Fast #PF retrying more than 4 times.\n");
			break;
		}

	} while (true);
3281

3282
	trace_fast_page_fault(vcpu, fault->addr, fault->error_code, sptep, spte, ret);
3283 3284
	walk_shadow_page_lockless_end(vcpu);

3285
	return ret;
3286 3287
}

3288 3289
static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
			       struct list_head *invalid_list)
3290
{
3291
	struct kvm_mmu_page *sp;
3292

3293
	if (!VALID_PAGE(*root_hpa))
A
Avi Kivity 已提交
3294
		return;
3295

3296
	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3297

3298
	if (is_tdp_mmu_page(sp))
3299
		kvm_tdp_mmu_put_root(kvm, sp, false);
3300 3301
	else if (!--sp->root_count && sp->role.invalid)
		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3302

3303 3304 3305
	*root_hpa = INVALID_PAGE;
}

3306
/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3307 3308
void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			ulong roots_to_free)
3309
{
3310
	struct kvm *kvm = vcpu->kvm;
3311 3312
	int i;
	LIST_HEAD(invalid_list);
3313
	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3314

3315
	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3316

3317
	/* Before acquiring the MMU lock, see if we need to do any real work. */
3318 3319 3320 3321 3322 3323 3324 3325 3326
	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
			    VALID_PAGE(mmu->prev_roots[i].hpa))
				break;

		if (i == KVM_MMU_NUM_PREV_ROOTS)
			return;
	}
3327

3328
	write_lock(&kvm->mmu_lock);
3329

3330 3331
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3332
			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3333
					   &invalid_list);
3334

3335 3336 3337
	if (free_active_root) {
		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3338
			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3339
		} else if (mmu->pae_root) {
3340 3341 3342 3343 3344 3345 3346 3347
			for (i = 0; i < 4; ++i) {
				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
					continue;

				mmu_free_root_page(kvm, &mmu->pae_root[i],
						   &invalid_list);
				mmu->pae_root[i] = INVALID_PAE_ROOT;
			}
3348
		}
3349
		mmu->root_hpa = INVALID_PAGE;
3350
		mmu->root_pgd = 0;
3351
	}
3352

3353
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3354
	write_unlock(&kvm->mmu_lock);
3355
}
3356
EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
{
	unsigned long roots_to_free = 0;
	hpa_t root_hpa;
	int i;

	/*
	 * This should not be called while L2 is active, L2 can't invalidate
	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
	 */
	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);

	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		root_hpa = mmu->prev_roots[i].hpa;
		if (!VALID_PAGE(root_hpa))
			continue;

		if (!to_shadow_page(root_hpa) ||
			to_shadow_page(root_hpa)->role.guest_mode)
			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
	}

	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
}
EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);


3385 3386 3387 3388
static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
{
	int ret = 0;

3389
	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3390
		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3391 3392 3393 3394 3395 3396
		ret = 1;
	}

	return ret;
}

3397 3398
static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
			    u8 level, bool direct)
3399 3400
{
	struct kvm_mmu_page *sp;
3401 3402 3403 3404 3405 3406 3407 3408 3409

	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
	++sp->root_count;

	return __pa(sp->spt);
}

static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
{
3410 3411
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	u8 shadow_root_level = mmu->shadow_root_level;
3412
	hpa_t root;
3413
	unsigned i;
3414 3415 3416 3417 3418 3419
	int r;

	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;
3420

3421
	if (is_tdp_mmu_enabled(vcpu->kvm)) {
3422
		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3423
		mmu->root_hpa = root;
3424
	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3425
		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
3426
		mmu->root_hpa = root;
3427
	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3428 3429 3430 3431
		if (WARN_ON_ONCE(!mmu->pae_root)) {
			r = -EIO;
			goto out_unlock;
		}
3432

3433
		for (i = 0; i < 4; ++i) {
3434
			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3435

3436 3437
			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
					      i << 30, PT32_ROOT_LEVEL, true);
3438 3439
			mmu->pae_root[i] = root | PT_PRESENT_MASK |
					   shadow_me_mask;
3440
		}
3441
		mmu->root_hpa = __pa(mmu->pae_root);
3442 3443
	} else {
		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3444 3445
		r = -EIO;
		goto out_unlock;
3446
	}
3447

3448
	/* root_pgd is ignored for direct MMUs. */
3449
	mmu->root_pgd = 0;
3450 3451 3452
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
	return r;
3453 3454 3455
}

static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3456
{
3457
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3458
	u64 pdptrs[4], pm_mask;
3459
	gfn_t root_gfn, root_pgd;
3460
	hpa_t root;
3461 3462
	unsigned i;
	int r;
3463

3464
	root_pgd = mmu->get_guest_pgd(vcpu);
3465
	root_gfn = root_pgd >> PAGE_SHIFT;
3466

3467 3468 3469
	if (mmu_check_root(vcpu, root_gfn))
		return 1;

3470 3471 3472 3473
	/*
	 * On SVM, reading PDPTRs might access guest memory, which might fault
	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
	 */
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	if (mmu->root_level == PT32E_ROOT_LEVEL) {
		for (i = 0; i < 4; ++i) {
			pdptrs[i] = mmu->get_pdptr(vcpu, i);
			if (!(pdptrs[i] & PT_PRESENT_MASK))
				continue;

			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
				return 1;
		}
	}

3485 3486 3487 3488
	r = alloc_all_memslots_rmaps(vcpu->kvm);
	if (r)
		return r;

3489 3490 3491 3492 3493
	write_lock(&vcpu->kvm->mmu_lock);
	r = make_mmu_pages_available(vcpu);
	if (r < 0)
		goto out_unlock;

3494 3495 3496 3497
	/*
	 * Do we shadow a long mode page table? If so we need to
	 * write-protect the guests page table root.
	 */
3498
	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
3499
		root = mmu_alloc_root(vcpu, root_gfn, 0,
3500 3501
				      mmu->shadow_root_level, false);
		mmu->root_hpa = root;
3502
		goto set_root_pgd;
3503
	}
3504

3505 3506 3507 3508
	if (WARN_ON_ONCE(!mmu->pae_root)) {
		r = -EIO;
		goto out_unlock;
	}
3509

3510 3511
	/*
	 * We shadow a 32 bit page table. This may be a legacy 2-level
3512 3513
	 * or a PAE 3-level page table. In either case we need to be aware that
	 * the shadow page table may be a PAE or a long mode page table.
3514
	 */
3515
	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
3516
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
3517 3518
		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;

3519
		if (WARN_ON_ONCE(!mmu->pml4_root)) {
3520 3521 3522
			r = -EIO;
			goto out_unlock;
		}
3523
		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3524 3525 3526 3527 3528 3529 3530 3531

		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
			if (WARN_ON_ONCE(!mmu->pml5_root)) {
				r = -EIO;
				goto out_unlock;
			}
			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
		}
3532 3533
	}

3534
	for (i = 0; i < 4; ++i) {
3535
		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3536

3537
		if (mmu->root_level == PT32E_ROOT_LEVEL) {
3538
			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3539
				mmu->pae_root[i] = INVALID_PAE_ROOT;
A
Avi Kivity 已提交
3540 3541
				continue;
			}
3542
			root_gfn = pdptrs[i] >> PAGE_SHIFT;
3543
		}
3544

3545 3546
		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
				      PT32_ROOT_LEVEL, false);
3547
		mmu->pae_root[i] = root | pm_mask;
3548
	}
3549

3550 3551 3552
	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
		mmu->root_hpa = __pa(mmu->pml5_root);
	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3553
		mmu->root_hpa = __pa(mmu->pml4_root);
3554 3555
	else
		mmu->root_hpa = __pa(mmu->pae_root);
3556

3557
set_root_pgd:
3558
	mmu->root_pgd = root_pgd;
3559 3560
out_unlock:
	write_unlock(&vcpu->kvm->mmu_lock);
3561

3562
	return 0;
3563 3564
}

3565 3566 3567
static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu *mmu = vcpu->arch.mmu;
3568
	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
3569 3570 3571
	u64 *pml5_root = NULL;
	u64 *pml4_root = NULL;
	u64 *pae_root;
3572 3573

	/*
3574 3575 3576 3577
	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
	 * tables are allocated and initialized at root creation as there is no
	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3578
	 */
3579 3580 3581
	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
		return 0;
3582

3583 3584 3585 3586 3587 3588 3589 3590
	/*
	 * NPT, the only paging mode that uses this horror, uses a fixed number
	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
	 * is allocated if the other roots are valid and pml5 is needed, as any
	 * prior MMU would also have required pml5.
	 */
	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3591
		return 0;
3592

3593 3594 3595 3596
	/*
	 * The special roots should always be allocated in concert.  Yell and
	 * bail if KVM ends up in a state where only one of the roots is valid.
	 */
3597
	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3598
			 (need_pml5 && mmu->pml5_root)))
3599
		return -EIO;
3600

3601 3602 3603 3604
	/*
	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
	 * doesn't need to be decrypted.
	 */
3605 3606 3607
	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
	if (!pae_root)
		return -ENOMEM;
3608

3609
#ifdef CONFIG_X86_64
3610
	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3611 3612 3613
	if (!pml4_root)
		goto err_pml4;

3614
	if (need_pml5) {
3615 3616 3617
		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
		if (!pml5_root)
			goto err_pml5;
3618
	}
3619
#endif
3620

3621
	mmu->pae_root = pae_root;
3622
	mmu->pml4_root = pml4_root;
3623
	mmu->pml5_root = pml5_root;
3624

3625
	return 0;
3626 3627 3628 3629 3630 3631 3632 3633

#ifdef CONFIG_X86_64
err_pml5:
	free_page((unsigned long)pml4_root);
err_pml4:
	free_page((unsigned long)pae_root);
	return -ENOMEM;
#endif
3634 3635
}

3636
void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3637 3638 3639 3640
{
	int i;
	struct kvm_mmu_page *sp;

3641
	if (vcpu->arch.mmu->direct_map)
3642 3643
		return;

3644
	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3645
		return;
3646

3647
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3648

3649 3650
	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
		hpa_t root = vcpu->arch.mmu->root_hpa;
3651
		sp = to_shadow_page(root);
3652 3653 3654 3655 3656 3657 3658 3659

		/*
		 * Even if another CPU was marking the SP as unsync-ed
		 * simultaneously, any guest page table changes are not
		 * guaranteed to be visible anyway until this VCPU issues a TLB
		 * flush strictly after those changes are made. We only need to
		 * ensure that the other CPU sets these flags before any actual
		 * changes to the page tables are made. The comments in
3660 3661
		 * mmu_try_to_unsync_pages() describe what could go wrong if
		 * this requirement isn't satisfied.
3662 3663 3664 3665 3666
		 */
		if (!smp_load_acquire(&sp->unsync) &&
		    !smp_load_acquire(&sp->unsync_children))
			return;

3667
		write_lock(&vcpu->kvm->mmu_lock);
3668 3669
		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3670
		mmu_sync_children(vcpu, sp, true);
3671

3672
		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3673
		write_unlock(&vcpu->kvm->mmu_lock);
3674 3675
		return;
	}
3676

3677
	write_lock(&vcpu->kvm->mmu_lock);
3678 3679
	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);

3680
	for (i = 0; i < 4; ++i) {
3681
		hpa_t root = vcpu->arch.mmu->pae_root[i];
3682

3683
		if (IS_VALID_PAE_ROOT(root)) {
3684
			root &= PT64_BASE_ADDR_MASK;
3685
			sp = to_shadow_page(root);
3686
			mmu_sync_children(vcpu, sp, true);
3687 3688 3689
		}
	}

3690
	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3691
	write_unlock(&vcpu->kvm->mmu_lock);
3692 3693
}

3694
static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3695
				  u32 access, struct x86_exception *exception)
A
Avi Kivity 已提交
3696
{
3697 3698
	if (exception)
		exception->error_code = 0;
A
Avi Kivity 已提交
3699 3700 3701
	return vaddr;
}

3702
static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3703 3704
					 u32 access,
					 struct x86_exception *exception)
3705
{
3706 3707
	if (exception)
		exception->error_code = 0;
3708
	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3709 3710
}

3711
static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3712
{
3713 3714 3715 3716 3717 3718 3719
	/*
	 * A nested guest cannot use the MMIO cache if it is using nested
	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
	 */
	if (mmu_is_nested(vcpu))
		return false;

3720 3721 3722 3723 3724 3725
	if (direct)
		return vcpu_match_mmio_gpa(vcpu, addr);

	return vcpu_match_mmio_gva(vcpu, addr);
}

3726 3727 3728
/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
3729 3730
 *
 * Must be called between walk_shadow_page_lockless_{begin,end}.
3731
 */
3732
static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
3733 3734
{
	struct kvm_shadow_walk_iterator iterator;
3735
	int leaf = -1;
3736
	u64 spte;
3737

3738 3739
	for (shadow_walk_init(&iterator, vcpu, addr),
	     *root_level = iterator.level;
3740 3741
	     shadow_walk_okay(&iterator);
	     __shadow_walk_next(&iterator, spte)) {
3742
		leaf = iterator.level;
3743 3744
		spte = mmu_spte_get_lockless(iterator.sptep);

3745
		sptes[leaf] = spte;
3746 3747 3748 3749 3750
	}

	return leaf;
}

3751
/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
3752 3753
static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
{
3754
	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
3755
	struct rsvd_bits_validate *rsvd_check;
3756
	int root, leaf, level;
3757 3758
	bool reserved = false;

3759 3760
	walk_shadow_page_lockless_begin(vcpu);

3761
	if (is_tdp_mmu(vcpu->arch.mmu))
3762
		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
3763
	else
3764
		leaf = get_walk(vcpu, addr, sptes, &root);
3765

3766 3767
	walk_shadow_page_lockless_end(vcpu);

3768 3769 3770 3771 3772
	if (unlikely(leaf < 0)) {
		*sptep = 0ull;
		return reserved;
	}

3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	*sptep = sptes[leaf];

	/*
	 * Skip reserved bits checks on the terminal leaf if it's not a valid
	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
	 * design, always have reserved bits set.  The purpose of the checks is
	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
	 */
	if (!is_shadow_present_pte(sptes[leaf]))
		leaf++;
3783 3784 3785

	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;

3786
	for (level = root; level >= leaf; level--)
3787
		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
3788 3789

	if (reserved) {
3790
		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
3791
		       __func__, addr);
3792
		for (level = root; level >= leaf; level--)
3793 3794
			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
			       sptes[level], level,
3795
			       get_rsvd_bits(rsvd_check, sptes[level], level));
3796
	}
3797

3798
	return reserved;
3799 3800
}

P
Paolo Bonzini 已提交
3801
static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3802 3803
{
	u64 spte;
3804
	bool reserved;
3805

3806
	if (mmio_info_in_cache(vcpu, addr, direct))
3807
		return RET_PF_EMULATE;
3808

3809
	reserved = get_mmio_spte(vcpu, addr, &spte);
3810
	if (WARN_ON(reserved))
3811
		return -EINVAL;
3812 3813 3814

	if (is_mmio_spte(spte)) {
		gfn_t gfn = get_mmio_spte_gfn(spte);
3815
		unsigned int access = get_mmio_spte_access(spte);
3816

3817
		if (!check_mmio_spte(vcpu, spte))
3818
			return RET_PF_INVALID;
3819

3820 3821
		if (direct)
			addr = 0;
X
Xiao Guangrong 已提交
3822 3823

		trace_handle_mmio_page_fault(addr, gfn, access);
3824
		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3825
		return RET_PF_EMULATE;
3826 3827 3828 3829 3830 3831
	}

	/*
	 * If the page table is zapped by other cpus, let CPU fault again on
	 * the address.
	 */
3832
	return RET_PF_RETRY;
3833 3834
}

3835
static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3836
					 struct kvm_page_fault *fault)
3837
{
3838
	if (unlikely(fault->rsvd))
3839 3840
		return false;

3841
	if (!fault->present || !fault->write)
3842 3843 3844 3845 3846 3847
		return false;

	/*
	 * guest is writing the page which is write tracked which can
	 * not be fixed by page fault handler.
	 */
3848
	if (kvm_page_track_is_active(vcpu, fault->gfn, KVM_PAGE_TRACK_WRITE))
3849 3850 3851 3852 3853
		return true;

	return false;
}

3854 3855 3856 3857 3858 3859
static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
{
	struct kvm_shadow_walk_iterator iterator;
	u64 spte;

	walk_shadow_page_lockless_begin(vcpu);
3860
	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3861 3862 3863 3864
		clear_sp_write_flooding_count(iterator.sptep);
	walk_shadow_page_lockless_end(vcpu);
}

3865 3866
static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
				    gfn_t gfn)
3867 3868
{
	struct kvm_arch_async_pf arch;
X
Xiao Guangrong 已提交
3869

3870
	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3871
	arch.gfn = gfn;
3872
	arch.direct_map = vcpu->arch.mmu->direct_map;
3873
	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3874

3875 3876
	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3877 3878
}

3879
static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
3880
{
3881
	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
3882 3883
	bool async;

3884 3885 3886 3887 3888 3889
	/*
	 * Retry the page fault if the gfn hit a memslot that is being deleted
	 * or moved.  This ensures any existing SPTEs for the old memslot will
	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
	 */
	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
3890
		goto out_retry;
3891

3892 3893 3894
	if (!kvm_is_visible_memslot(slot)) {
		/* Don't expose private memslots to L2. */
		if (is_guest_mode(vcpu)) {
3895 3896
			fault->pfn = KVM_PFN_NOSLOT;
			fault->map_writable = false;
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
			return false;
		}
		/*
		 * If the APIC access page exists but is disabled, go directly
		 * to emulation without caching the MMIO access or creating a
		 * MMIO SPTE.  That way the cache doesn't need to be purged
		 * when the AVIC is re-enabled.
		 */
		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
		    !kvm_apicv_activated(vcpu->kvm)) {
			*r = RET_PF_EMULATE;
			return true;
		}
3910 3911
	}

3912
	async = false;
3913 3914 3915
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3916 3917 3918
	if (!async)
		return false; /* *pfn has correct page already */

3919 3920 3921 3922
	if (!fault->prefault && kvm_can_do_async_pf(vcpu)) {
		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
3923
			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3924
			goto out_retry;
3925
		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
3926
			goto out_retry;
3927 3928
	}

3929 3930 3931
	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
					  fault->write, &fault->map_writable,
					  &fault->hva);
3932 3933 3934 3935

out_retry:
	*r = RET_PF_RETRY;
	return true;
3936 3937
}

3938
static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
A
Avi Kivity 已提交
3939
{
3940
	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
A
Avi Kivity 已提交
3941

3942
	unsigned long mmu_seq;
3943
	int r;
3944

3945
	fault->gfn = fault->addr >> PAGE_SHIFT;
3946
	if (page_fault_handle_page_track(vcpu, fault))
3947
		return RET_PF_EMULATE;
3948

3949
	r = fast_page_fault(vcpu, fault);
3950 3951
	if (r != RET_PF_INVALID)
		return r;
3952

3953
	r = mmu_topup_memory_caches(vcpu, false);
3954 3955
	if (r)
		return r;
3956

3957 3958 3959
	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

3960
	if (kvm_faultin_pfn(vcpu, fault, &r))
3961
		return r;
3962

3963
	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
3964
		return r;
A
Avi Kivity 已提交
3965

3966
	r = RET_PF_RETRY;
3967

3968
	if (is_tdp_mmu_fault)
3969 3970 3971 3972
		read_lock(&vcpu->kvm->mmu_lock);
	else
		write_lock(&vcpu->kvm->mmu_lock);

3973
	if (!is_noslot_pfn(fault->pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva))
3974
		goto out_unlock;
3975 3976
	r = make_mmu_pages_available(vcpu);
	if (r)
3977
		goto out_unlock;
B
Ben Gardon 已提交
3978

3979
	if (is_tdp_mmu_fault)
3980
		r = kvm_tdp_mmu_map(vcpu, fault);
B
Ben Gardon 已提交
3981
	else
3982
		r = __direct_map(vcpu, fault);
3983

3984
out_unlock:
3985
	if (is_tdp_mmu_fault)
3986 3987 3988
		read_unlock(&vcpu->kvm->mmu_lock);
	else
		write_unlock(&vcpu->kvm->mmu_lock);
3989
	kvm_release_pfn_clean(fault->pfn);
3990
	return r;
A
Avi Kivity 已提交
3991 3992
}

3993 3994
static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
				struct kvm_page_fault *fault)
3995
{
3996
	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
3997 3998

	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3999 4000
	fault->max_level = PG_LEVEL_2M;
	return direct_page_fault(vcpu, fault);
4001 4002
}

4003
int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4004
				u64 fault_address, char *insn, int insn_len)
4005 4006
{
	int r = 1;
4007
	u32 flags = vcpu->arch.apf.host_apf_flags;
4008

4009 4010 4011 4012 4013 4014
#ifndef CONFIG_X86_64
	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
	if (WARN_ON_ONCE(fault_address >> 32))
		return -EFAULT;
#endif

P
Paolo Bonzini 已提交
4015
	vcpu->arch.l1tf_flush_l1d = true;
4016
	if (!flags) {
4017 4018
		trace_kvm_page_fault(fault_address, error_code);

4019
		if (kvm_event_needs_reinjection(vcpu))
4020 4021 4022
			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
				insn_len);
4023
	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4024
		vcpu->arch.apf.host_apf_flags = 0;
4025
		local_irq_disable();
4026
		kvm_async_pf_task_wait_schedule(fault_address);
4027
		local_irq_enable();
4028 4029
	} else {
		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4030
	}
4031

4032 4033 4034 4035
	return r;
}
EXPORT_SYMBOL_GPL(kvm_handle_page_fault);

4036
int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4037
{
4038 4039 4040
	while (fault->max_level > PG_LEVEL_4K) {
		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
4041

4042 4043
		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
			break;
4044 4045

		--fault->max_level;
4046
	}
4047

4048
	return direct_page_fault(vcpu, fault);
4049 4050
}

4051
static void nonpaging_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4052 4053 4054
{
	context->page_fault = nonpaging_page_fault;
	context->gva_to_gpa = nonpaging_gva_to_gpa;
4055
	context->sync_page = nonpaging_sync_page;
4056
	context->invlpg = NULL;
4057
	context->direct_map = true;
A
Avi Kivity 已提交
4058 4059
}

4060
static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4061 4062
				  union kvm_mmu_page_role role)
{
4063
	return (role.direct || pgd == root->pgd) &&
4064 4065
	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
	       role.word == to_shadow_page(root->hpa)->role.word;
4066 4067
}

4068
/*
4069
 * Find out if a previously cached root matching the new pgd/role is available.
4070 4071 4072 4073 4074 4075
 * The current root is also inserted into the cache.
 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
 * returned.
 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
 * false is returned. This root should now be freed by the caller.
 */
4076
static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4077 4078 4079 4080
				  union kvm_mmu_page_role new_role)
{
	uint i;
	struct kvm_mmu_root_info root;
4081
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4082

4083
	root.pgd = mmu->root_pgd;
4084 4085
	root.hpa = mmu->root_hpa;

4086
	if (is_root_usable(&root, new_pgd, new_role))
4087 4088
		return true;

4089 4090 4091
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		swap(root, mmu->prev_roots[i]);

4092
		if (is_root_usable(&root, new_pgd, new_role))
4093 4094 4095 4096
			break;
	}

	mmu->root_hpa = root.hpa;
4097
	mmu->root_pgd = root.pgd;
4098 4099 4100 4101

	return i < KVM_MMU_NUM_PREV_ROOTS;
}

4102
static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4103
			    union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4104
{
4105
	struct kvm_mmu *mmu = vcpu->arch.mmu;
4106 4107 4108 4109 4110 4111 4112

	/*
	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
	 * later if necessary.
	 */
	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4113
	    mmu->root_level >= PT64_ROOT_4LEVEL)
4114
		return cached_root_available(vcpu, new_pgd, new_role);
4115 4116

	return false;
A
Avi Kivity 已提交
4117 4118
}

4119
static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
4120
			      union kvm_mmu_page_role new_role)
A
Avi Kivity 已提交
4121
{
4122
	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
		return;
	}

	/*
	 * It's possible that the cached previous root page is obsolete because
	 * of a change in the MMU generation number. However, changing the
	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
	 * free the root set here and allocate a new one.
	 */
	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);

4135
	if (force_flush_and_sync_on_reuse) {
4136 4137
		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4138
	}
4139 4140 4141 4142 4143 4144 4145 4146 4147

	/*
	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
	 * switching to a new CR3, that GVA->GPA mapping may no longer be
	 * valid. So clear any cached MMIO info even when we don't need to sync
	 * the shadow page tables.
	 */
	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);

4148 4149 4150 4151 4152 4153 4154
	/*
	 * If this is a direct root page, it doesn't have a write flooding
	 * count. Otherwise, clear the write flooding count.
	 */
	if (!new_role.direct)
		__clear_sp_write_flooding_count(
				to_shadow_page(vcpu->arch.mmu->root_hpa));
A
Avi Kivity 已提交
4155 4156
}

4157
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4158
{
4159
	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu));
4160
}
4161
EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4162

4163 4164
static unsigned long get_cr3(struct kvm_vcpu *vcpu)
{
4165
	return kvm_read_cr3(vcpu);
4166 4167
}

4168
static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4169
			   unsigned int access)
4170 4171 4172 4173 4174 4175 4176
{
	if (unlikely(is_mmio_spte(*sptep))) {
		if (gfn != get_mmio_spte_gfn(*sptep)) {
			mmu_spte_clear_no_track(sptep);
			return true;
		}

4177
		mark_mmio_spte(vcpu, sptep, gfn, access);
4178 4179 4180 4181 4182 4183
		return true;
	}

	return false;
}

4184 4185 4186 4187 4188
#define PTTYPE_EPT 18 /* arbitrary */
#define PTTYPE PTTYPE_EPT
#include "paging_tmpl.h"
#undef PTTYPE

A
Avi Kivity 已提交
4189 4190 4191 4192 4193 4194 4195 4196
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

4197
static void
4198
__reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4199
			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
4200
			bool pse, bool amd)
4201
{
4202
	u64 gbpages_bit_rsvd = 0;
4203
	u64 nonleaf_bit8_rsvd = 0;
4204
	u64 high_bits_rsvd;
4205

4206
	rsvd_check->bad_mt_xwr = 0;
4207

4208
	if (!gbpages)
4209
		gbpages_bit_rsvd = rsvd_bits(7, 7);
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (level == PT32E_ROOT_LEVEL)
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
	else
		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);

	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
	if (!nx)
		high_bits_rsvd |= rsvd_bits(63, 63);

4220 4221 4222 4223
	/*
	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
	 * leaf entries) on AMD CPUs only.
	 */
4224
	if (amd)
4225 4226
		nonleaf_bit8_rsvd = rsvd_bits(8, 8);

4227
	switch (level) {
4228 4229
	case PT32_ROOT_LEVEL:
		/* no rsvd bits for 2 level 4K page table entries */
4230 4231 4232 4233
		rsvd_check->rsvd_bits_mask[0][1] = 0;
		rsvd_check->rsvd_bits_mask[0][0] = 0;
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4234

4235
		if (!pse) {
4236
			rsvd_check->rsvd_bits_mask[1][1] = 0;
4237 4238 4239
			break;
		}

4240 4241
		if (is_cpuid_PSE36())
			/* 36bits PSE 4MB page */
4242
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4243 4244
		else
			/* 32 bits PSE 4MB page */
4245
			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4246 4247
		break;
	case PT32E_ROOT_LEVEL:
4248 4249 4250 4251 4252 4253 4254 4255
		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
						   high_bits_rsvd |
						   rsvd_bits(5, 8) |
						   rsvd_bits(1, 2);	/* PDPTE */
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20);	/* large page */
4256 4257
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4258
		break;
4259
	case PT64_ROOT_5LEVEL:
4260 4261 4262
		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
4263 4264
		rsvd_check->rsvd_bits_mask[1][4] =
			rsvd_check->rsvd_bits_mask[0][4];
4265
		fallthrough;
4266
	case PT64_ROOT_4LEVEL:
4267 4268 4269 4270 4271 4272 4273
		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
						   nonleaf_bit8_rsvd |
						   rsvd_bits(7, 7);
		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
						   gbpages_bit_rsvd;
		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4274 4275
		rsvd_check->rsvd_bits_mask[1][3] =
			rsvd_check->rsvd_bits_mask[0][3];
4276 4277 4278 4279 4280
		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
						   gbpages_bit_rsvd |
						   rsvd_bits(13, 29);
		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
						   rsvd_bits(13, 20); /* large page */
4281 4282
		rsvd_check->rsvd_bits_mask[1][0] =
			rsvd_check->rsvd_bits_mask[0][0];
4283 4284 4285 4286
		break;
	}
}

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
{
	/*
	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
	 * walk for performance and complexity reasons.  Not to mention KVM
	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
	 */
	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
}

4302 4303 4304
static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
				  struct kvm_mmu *context)
{
4305
	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
4306
				vcpu->arch.reserved_gpa_bits,
4307
				context->root_level, is_efer_nx(context),
4308
				guest_can_use_gbpages(vcpu),
4309
				is_cr4_pse(context),
4310
				guest_cpuid_is_amd_or_hygon(vcpu));
4311 4312
}

4313 4314
static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4315
			    u64 pa_bits_rsvd, bool execonly)
4316
{
4317
	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4318
	u64 bad_mt_xwr;
4319

4320 4321 4322 4323 4324
	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6);
	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4325 4326

	/* large page */
4327
	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4328
	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4329 4330
	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29);
	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20);
4331
	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4332

4333 4334 4335 4336 4337 4338 4339 4340
	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
	if (!execonly) {
		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4341
	}
4342
	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4343 4344
}

4345 4346 4347 4348
static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
		struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4349
				    vcpu->arch.reserved_gpa_bits, execonly);
4350 4351
}

4352 4353 4354 4355 4356
static inline u64 reserved_hpa_bits(void)
{
	return rsvd_bits(shadow_phys_bits, 63);
}

4357 4358 4359 4360 4361
/*
 * the page table on host is the shadow page table for the page
 * table in guest or amd nested guest, its mmu features completely
 * follow the features in guest.
 */
4362 4363
static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
					struct kvm_mmu *context)
4364
{
4365 4366 4367 4368 4369 4370 4371 4372
	/*
	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
	 * The iTLB multi-hit workaround can be toggled at any time, so assume
	 * NX can be used by any non-nested shadow MMU to avoid having to reset
	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
	 */
4373
	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
4374 4375 4376 4377 4378

	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
	bool is_amd = true;
	/* KVM doesn't use 2-level page tables for the shadow MMU. */
	bool is_pse = false;
4379 4380
	struct rsvd_bits_validate *shadow_zero_check;
	int i;
4381

4382 4383
	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);

4384
	shadow_zero_check = &context->shadow_zero_check;
4385
	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4386
				context->shadow_root_level, uses_nx,
4387
				guest_can_use_gbpages(vcpu), is_pse, is_amd);
4388 4389 4390 4391 4392 4393 4394 4395 4396

	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}

4397 4398
}

4399 4400 4401 4402 4403 4404
static inline bool boot_cpu_is_amd(void)
{
	WARN_ON_ONCE(!tdp_enabled);
	return shadow_x_mask == 0;
}

4405 4406 4407 4408 4409 4410 4411 4412
/*
 * the direct page table on host, use as much mmu features as
 * possible, however, kvm currently does not do execution-protection.
 */
static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context)
{
4413 4414 4415 4416 4417
	struct rsvd_bits_validate *shadow_zero_check;
	int i;

	shadow_zero_check = &context->shadow_zero_check;

4418
	if (boot_cpu_is_amd())
4419
		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
4420
					context->shadow_root_level, false,
4421
					boot_cpu_has(X86_FEATURE_GBPAGES),
4422
					false, true);
4423
	else
4424
		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4425
					    reserved_hpa_bits(), false);
4426

4427 4428 4429 4430 4431 4432 4433
	if (!shadow_me_mask)
		return;

	for (i = context->shadow_root_level; --i >= 0;) {
		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
	}
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
}

/*
 * as the comments in reset_shadow_zero_bits_mask() except it
 * is the shadow page table for intel nested guest.
 */
static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
				struct kvm_mmu *context, bool execonly)
{
	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4445
				    reserved_hpa_bits(), execonly);
4446 4447
}

4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
#define BYTE_MASK(access) \
	((1 & (access) ? 2 : 0) | \
	 (2 & (access) ? 4 : 0) | \
	 (3 & (access) ? 8 : 0) | \
	 (4 & (access) ? 16 : 0) | \
	 (5 & (access) ? 32 : 0) | \
	 (6 & (access) ? 64 : 0) | \
	 (7 & (access) ? 128 : 0))


4458
static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
4459
{
4460 4461 4462 4463 4464 4465
	unsigned byte;

	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
	const u8 u = BYTE_MASK(ACC_USER_MASK);

4466 4467 4468
	bool cr4_smep = is_cr4_smep(mmu);
	bool cr4_smap = is_cr4_smap(mmu);
	bool cr0_wp = is_cr0_wp(mmu);
4469
	bool efer_nx = is_efer_nx(mmu);
4470 4471

	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4472 4473
		unsigned pfec = byte << 1;

F
Feng Wu 已提交
4474
		/*
4475 4476
		 * Each "*f" variable has a 1 bit for each UWX value
		 * that causes a fault with the given PFEC.
F
Feng Wu 已提交
4477
		 */
4478

4479
		/* Faults from writes to non-writable pages */
4480
		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4481
		/* Faults from user mode accesses to supervisor pages */
4482
		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4483
		/* Faults from fetches of non-executable pages*/
4484
		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
		/* Faults from kernel mode fetches of user pages */
		u8 smepf = 0;
		/* Faults from kernel mode accesses of user pages */
		u8 smapf = 0;

		if (!ept) {
			/* Faults from kernel mode accesses to user pages */
			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;

			/* Not really needed: !nx will cause pte.nx to fault */
4495
			if (!efer_nx)
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
				ff = 0;

			/* Allow supervisor writes if !cr0.wp */
			if (!cr0_wp)
				wf = (pfec & PFERR_USER_MASK) ? wf : 0;

			/* Disallow supervisor fetches of user code if cr4.smep */
			if (cr4_smep)
				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;

			/*
			 * SMAP:kernel-mode data accesses from user-mode
			 * mappings should fault. A fault is considered
			 * as a SMAP violation if all of the following
P
Peng Hao 已提交
4510
			 * conditions are true:
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
			 *   - X86_CR4_SMAP is set in CR4
			 *   - A user page is accessed
			 *   - The access is not a fetch
			 *   - Page fault in kernel mode
			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
			 *
			 * Here, we cover the first three conditions.
			 * The fourth is computed dynamically in permission_fault();
			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
			 * *not* subject to SMAP restrictions.
			 */
			if (cr4_smap)
				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4524
		}
4525 4526

		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4527 4528 4529
	}
}

4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
/*
* PKU is an additional mechanism by which the paging controls access to
* user-mode addresses based on the value in the PKRU register.  Protection
* key violations are reported through a bit in the page fault error code.
* Unlike other bits of the error code, the PK bit is not known at the
* call site of e.g. gva_to_gpa; it must be computed directly in
* permission_fault based on two bits of PKRU, on some machine state (CR4,
* CR0, EFER, CPL), and on other bits of the error code and the page tables.
*
* In particular the following conditions come from the error code, the
* page tables and the machine state:
* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
* - PK is always zero if U=0 in the page tables
* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
*
* The PKRU bitmask caches the result of these four conditions.  The error
* code (minus the P bit) and the page table's U bit form an index into the
* PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
* with the two bits of the PKRU register corresponding to the protection key.
* For the first three conditions above the bits will be 00, thus masking
* away both AD and WD.  For all reads or if the last condition holds, WD
* only will be masked away.
*/
4554
static void update_pkru_bitmask(struct kvm_mmu *mmu)
4555 4556 4557 4558
{
	unsigned bit;
	bool wp;

4559
	if (!is_cr4_pke(mmu)) {
4560 4561 4562 4563
		mmu->pkru_mask = 0;
		return;
	}

4564
	wp = is_cr0_wp(mmu);
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
		unsigned pfec, pkey_bits;
		bool check_pkey, check_write, ff, uf, wf, pte_user;

		pfec = bit << 1;
		ff = pfec & PFERR_FETCH_MASK;
		uf = pfec & PFERR_USER_MASK;
		wf = pfec & PFERR_WRITE_MASK;

		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
		pte_user = pfec & PFERR_RSVD_MASK;

		/*
		 * Only need to check the access which is not an
		 * instruction fetch and is to a user page.
		 */
		check_pkey = (!ff && pte_user);
		/*
		 * write access is controlled by PKRU if it is a
		 * user access or CR0.WP = 1.
		 */
		check_write = check_pkey && wf && (uf || wp);

		/* PKRU.AD stops both read and write access. */
		pkey_bits = !!check_pkey;
		/* PKRU.WD stops write access. */
		pkey_bits |= (!!check_write) << 1;

		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
	}
}

4598 4599
static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
					struct kvm_mmu *mmu)
A
Avi Kivity 已提交
4600
{
4601 4602
	if (!is_cr0_pg(mmu))
		return;
4603

4604 4605 4606
	reset_rsvds_bits_mask(vcpu, mmu);
	update_permission_bitmask(mmu, false);
	update_pkru_bitmask(mmu);
A
Avi Kivity 已提交
4607 4608
}

4609
static void paging64_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4610 4611 4612
{
	context->page_fault = paging64_page_fault;
	context->gva_to_gpa = paging64_gva_to_gpa;
4613
	context->sync_page = paging64_sync_page;
M
Marcelo Tosatti 已提交
4614
	context->invlpg = paging64_invlpg;
4615
	context->direct_map = false;
A
Avi Kivity 已提交
4616 4617
}

4618
static void paging32_init_context(struct kvm_mmu *context)
A
Avi Kivity 已提交
4619 4620 4621
{
	context->page_fault = paging32_page_fault;
	context->gva_to_gpa = paging32_gva_to_gpa;
4622
	context->sync_page = paging32_sync_page;
M
Marcelo Tosatti 已提交
4623
	context->invlpg = paging32_invlpg;
4624
	context->direct_map = false;
A
Avi Kivity 已提交
4625 4626
}

4627 4628
static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
							 struct kvm_mmu_role_regs *regs)
4629 4630 4631
{
	union kvm_mmu_extended_role ext = {0};

4632 4633 4634 4635 4636 4637
	if (____is_cr0_pg(regs)) {
		ext.cr0_pg = 1;
		ext.cr4_pae = ____is_cr4_pae(regs);
		ext.cr4_smep = ____is_cr4_smep(regs);
		ext.cr4_smap = ____is_cr4_smap(regs);
		ext.cr4_pse = ____is_cr4_pse(regs);
4638 4639 4640 4641

		/* PKEY and LA57 are active iff long mode is active. */
		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
4642
	}
4643 4644 4645 4646 4647 4648

	ext.valid = 1;

	return ext;
}

4649
static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4650
						   struct kvm_mmu_role_regs *regs,
4651 4652 4653 4654 4655
						   bool base_only)
{
	union kvm_mmu_role role = {0};

	role.base.access = ACC_ALL;
4656 4657 4658 4659
	if (____is_cr0_pg(regs)) {
		role.base.efer_nx = ____is_efer_nx(regs);
		role.base.cr0_wp = ____is_cr0_wp(regs);
	}
4660 4661 4662 4663 4664 4665
	role.base.smm = is_smm(vcpu);
	role.base.guest_mode = is_guest_mode(vcpu);

	if (base_only)
		return role;

4666
	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
4667 4668 4669 4670

	return role;
}

4671 4672
static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
{
4673 4674 4675 4676
	/* tdp_root_level is architecture forced level, use it if nonzero */
	if (tdp_root_level)
		return tdp_root_level;

4677
	/* Use 5-level TDP if and only if it's useful/necessary. */
4678
	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4679 4680
		return 4;

4681
	return max_tdp_level;
4682 4683
}

4684
static union kvm_mmu_role
4685 4686
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs, bool base_only)
4687
{
4688
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4689

4690
	role.base.ad_disabled = (shadow_accessed_mask == 0);
4691
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4692
	role.base.direct = true;
4693
	role.base.gpte_is_8_bytes = true;
4694 4695 4696 4697

	return role;
}

4698
static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4699
{
4700
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4701
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4702
	union kvm_mmu_role new_role =
4703
		kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, false);
4704

4705 4706 4707 4708
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;

	context->mmu_role.as_u64 = new_role.as_u64;
4709
	context->page_fault = kvm_tdp_page_fault;
4710
	context->sync_page = nonpaging_sync_page;
4711
	context->invlpg = NULL;
4712
	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4713
	context->direct_map = true;
4714
	context->get_guest_pgd = get_cr3;
4715
	context->get_pdptr = kvm_pdptr_read;
4716
	context->inject_page_fault = kvm_inject_page_fault;
4717
	context->root_level = role_regs_to_root_level(&regs);
4718

4719
	if (!is_cr0_pg(context))
4720
		context->gva_to_gpa = nonpaging_gva_to_gpa;
4721
	else if (is_cr4_pae(context))
4722
		context->gva_to_gpa = paging64_gva_to_gpa;
4723
	else
4724
		context->gva_to_gpa = paging32_gva_to_gpa;
4725

4726
	reset_guest_paging_metadata(vcpu, context);
4727
	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4728 4729
}

4730
static union kvm_mmu_role
4731 4732
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
				      struct kvm_mmu_role_regs *regs, bool base_only)
4733
{
4734
	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
4735

4736 4737
	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
4738
	role.base.gpte_is_8_bytes = ____is_cr0_pg(regs) && ____is_cr4_pae(regs);
4739

4740 4741 4742 4743
	return role;
}

static union kvm_mmu_role
4744 4745
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs, bool base_only)
4746 4747
{
	union kvm_mmu_role role =
4748
		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
4749

4750
	role.base.direct = !____is_cr0_pg(regs);
4751

4752
	if (!____is_efer_lma(regs))
4753
		role.base.level = PT32E_ROOT_LEVEL;
4754
	else if (____is_cr4_la57(regs))
4755
		role.base.level = PT64_ROOT_5LEVEL;
4756
	else
4757
		role.base.level = PT64_ROOT_4LEVEL;
4758 4759 4760 4761

	return role;
}

4762
static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4763
				    struct kvm_mmu_role_regs *regs,
4764
				    union kvm_mmu_role new_role)
4765
{
4766 4767
	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4768

4769
	context->mmu_role.as_u64 = new_role.as_u64;
4770

4771
	if (!is_cr0_pg(context))
4772
		nonpaging_init_context(context);
4773
	else if (is_cr4_pae(context))
4774
		paging64_init_context(context);
A
Avi Kivity 已提交
4775
	else
4776
		paging32_init_context(context);
4777
	context->root_level = role_regs_to_root_level(regs);
4778

4779
	reset_guest_paging_metadata(vcpu, context);
4780 4781
	context->shadow_root_level = new_role.base.level;

4782
	reset_shadow_zero_bits_mask(vcpu, context);
4783
}
4784

4785 4786
static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
				struct kvm_mmu_role_regs *regs)
4787
{
4788
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4789
	union kvm_mmu_role new_role =
4790
		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
4791

4792
	shadow_mmu_init_context(vcpu, context, regs, new_role);
4793 4794
}

4795
static union kvm_mmu_role
4796 4797
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
				   struct kvm_mmu_role_regs *regs)
4798 4799
{
	union kvm_mmu_role role =
4800
		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4801 4802

	role.base.direct = false;
4803
	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4804 4805 4806 4807

	return role;
}

4808 4809
void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
4810
{
4811
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4812 4813 4814 4815 4816
	struct kvm_mmu_role_regs regs = {
		.cr0 = cr0,
		.cr4 = cr4,
		.efer = efer,
	};
4817
	union kvm_mmu_role new_role;
4818

4819
	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, &regs);
4820

4821
	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base);
4822

4823
	shadow_mmu_init_context(vcpu, context, &regs, new_role);
4824 4825
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4826

4827 4828
static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4829
				   bool execonly, u8 level)
4830
{
4831
	union kvm_mmu_role role = {0};
4832

4833 4834
	/* SMM flag is inherited from root_mmu */
	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4835

4836
	role.base.level = level;
4837
	role.base.gpte_is_8_bytes = true;
4838 4839 4840 4841
	role.base.direct = false;
	role.base.ad_disabled = !accessed_dirty;
	role.base.guest_mode = true;
	role.base.access = ACC_ALL;
4842

4843 4844
	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
	role.ext.word = 0;
4845
	role.ext.execonly = execonly;
4846
	role.ext.valid = 1;
4847 4848 4849 4850

	return role;
}

4851
void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4852
			     bool accessed_dirty, gpa_t new_eptp)
N
Nadav Har'El 已提交
4853
{
4854
	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4855
	u8 level = vmx_eptp_page_walk_level(new_eptp);
4856 4857
	union kvm_mmu_role new_role =
		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4858
						   execonly, level);
4859

4860
	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base);
4861 4862 4863

	if (new_role.as_u64 == context->mmu_role.as_u64)
		return;
4864

4865 4866
	context->mmu_role.as_u64 = new_role.as_u64;

4867
	context->shadow_root_level = level;
N
Nadav Har'El 已提交
4868

4869
	context->ept_ad = accessed_dirty;
N
Nadav Har'El 已提交
4870 4871 4872 4873
	context->page_fault = ept_page_fault;
	context->gva_to_gpa = ept_gva_to_gpa;
	context->sync_page = ept_sync_page;
	context->invlpg = ept_invlpg;
4874
	context->root_level = level;
N
Nadav Har'El 已提交
4875
	context->direct_map = false;
4876

4877
	update_permission_bitmask(context, true);
4878
	update_pkru_bitmask(context);
N
Nadav Har'El 已提交
4879
	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4880
	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
N
Nadav Har'El 已提交
4881 4882 4883
}
EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);

4884
static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4885
{
4886
	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4887
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4888

4889
	kvm_init_shadow_mmu(vcpu, &regs);
4890

4891
	context->get_guest_pgd     = get_cr3;
4892 4893
	context->get_pdptr         = kvm_pdptr_read;
	context->inject_page_fault = kvm_inject_page_fault;
A
Avi Kivity 已提交
4894 4895
}

4896 4897
static union kvm_mmu_role
kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
4898
{
4899 4900 4901
	union kvm_mmu_role role;

	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
4902 4903 4904 4905 4906 4907 4908

	/*
	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
	 * shadow pages of their own and so "direct" has no meaning.   Set it
	 * to "true" to try to detect bogus usage of the nested MMU.
	 */
	role.base.direct = true;
4909
	role.base.level = role_regs_to_root_level(regs);
4910 4911 4912
	return role;
}

4913
static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4914
{
4915 4916
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, &regs);
4917 4918
	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;

4919 4920 4921 4922
	if (new_role.as_u64 == g_context->mmu_role.as_u64)
		return;

	g_context->mmu_role.as_u64 = new_role.as_u64;
4923
	g_context->get_guest_pgd     = get_cr3;
4924
	g_context->get_pdptr         = kvm_pdptr_read;
4925
	g_context->inject_page_fault = kvm_inject_page_fault;
4926
	g_context->root_level        = new_role.base.level;
4927

4928 4929 4930 4931 4932 4933
	/*
	 * L2 page tables are never shadowed, so there is no need to sync
	 * SPTEs.
	 */
	g_context->invlpg            = NULL;

4934
	/*
4935
	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4936 4937 4938 4939 4940
	 * L1's nested page tables (e.g. EPT12). The nested translation
	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
	 * L2's page tables as the first level of translation and L1's
	 * nested page tables as the second level of translation. Basically
	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4941
	 */
4942
	if (!is_paging(vcpu))
4943
		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4944
	else if (is_long_mode(vcpu))
4945
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4946
	else if (is_pae(vcpu))
4947
		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4948
	else
4949 4950
		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;

4951
	reset_guest_paging_metadata(vcpu, g_context);
4952 4953
}

4954
void kvm_init_mmu(struct kvm_vcpu *vcpu)
4955
{
4956
	if (mmu_is_nested(vcpu))
4957
		init_kvm_nested_mmu(vcpu);
4958
	else if (tdp_enabled)
4959
		init_kvm_tdp_mmu(vcpu);
4960
	else
4961
		init_kvm_softmmu(vcpu);
4962
}
4963
EXPORT_SYMBOL_GPL(kvm_init_mmu);
4964

4965 4966 4967
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
{
4968
	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
4969 4970
	union kvm_mmu_role role;

4971
	if (tdp_enabled)
4972
		role = kvm_calc_tdp_mmu_root_page_role(vcpu, &regs, true);
4973
	else
4974
		role = kvm_calc_shadow_mmu_root_page_role(vcpu, &regs, true);
4975 4976

	return role.base;
4977
}
4978

4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
{
	/*
	 * Invalidate all MMU roles to force them to reinitialize as CPUID
	 * information is factored into reserved bit calculations.
	 */
	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
	kvm_mmu_reset_context(vcpu);
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008

	/*
	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
	 * faults due to reusing SPs/SPTEs.  Alert userspace, but otherwise
	 * sweep the problem under the rug.
	 *
	 * KVM's horrific CPUID ABI makes the problem all but impossible to
	 * solve, as correctly handling multiple vCPU models (with respect to
	 * paging and physical address properties) in a single VM would require
	 * tracking all relevant CPUID information in kvm_mmu_page_role.  That
	 * is very undesirable as it would double the memory requirements for
	 * gfn_track (see struct kvm_mmu_page_role comments), and in practice
	 * no sane VMM mucks with the core vCPU model on the fly.
	 */
	if (vcpu->arch.last_vmentry_cpu != -1) {
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} after KVM_RUN may cause guest instability\n");
		pr_warn_ratelimited("KVM: KVM_SET_CPUID{,2} will fail after KVM_RUN starting with Linux 5.16\n");
	}
5009 5010
}

5011
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5012
{
5013
	kvm_mmu_unload(vcpu);
5014
	kvm_init_mmu(vcpu);
A
Avi Kivity 已提交
5015
}
5016
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
A
Avi Kivity 已提交
5017 5018

int kvm_mmu_load(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5019
{
5020 5021
	int r;

5022
	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
A
Avi Kivity 已提交
5023 5024
	if (r)
		goto out;
5025
	r = mmu_alloc_special_roots(vcpu);
A
Avi Kivity 已提交
5026 5027
	if (r)
		goto out;
5028
	if (vcpu->arch.mmu->direct_map)
5029 5030 5031
		r = mmu_alloc_direct_roots(vcpu);
	else
		r = mmu_alloc_shadow_roots(vcpu);
5032 5033
	if (r)
		goto out;
5034 5035 5036

	kvm_mmu_sync_roots(vcpu);

5037
	kvm_mmu_load_pgd(vcpu);
5038
	static_call(kvm_x86_tlb_flush_current)(vcpu);
5039 5040
out:
	return r;
A
Avi Kivity 已提交
5041
}
A
Avi Kivity 已提交
5042 5043 5044

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
5045 5046 5047 5048
	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
A
Avi Kivity 已提交
5049
}
A
Avi Kivity 已提交
5050

5051 5052 5053 5054 5055 5056 5057 5058
static bool need_remote_flush(u64 old, u64 new)
{
	if (!is_shadow_present_pte(old))
		return false;
	if (!is_shadow_present_pte(new))
		return true;
	if ((old ^ new) & PT64_BASE_ADDR_MASK)
		return true;
5059 5060
	old ^= shadow_nx_mask;
	new ^= shadow_nx_mask;
5061 5062 5063
	return (old & ~new & PT64_PERM_MASK) != 0;
}

5064
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5065
				    int *bytes)
5066
{
5067
	u64 gentry = 0;
5068
	int r;
5069 5070 5071

	/*
	 * Assume that the pte write on a page table of the same type
5072 5073
	 * as the current vcpu paging mode since we update the sptes only
	 * when they have the same mode.
5074
	 */
5075
	if (is_pae(vcpu) && *bytes == 4) {
5076
		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5077 5078
		*gpa &= ~(gpa_t)7;
		*bytes = 8;
5079 5080
	}

5081 5082 5083 5084
	if (*bytes == 4 || *bytes == 8) {
		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
		if (r)
			gentry = 0;
5085 5086
	}

5087 5088 5089 5090 5091 5092 5093
	return gentry;
}

/*
 * If we're seeing too many writes to a page, it may no longer be a page table,
 * or we may be forking, in which case it is better to unmap the page.
 */
5094
static bool detect_write_flooding(struct kvm_mmu_page *sp)
5095
{
5096 5097 5098 5099
	/*
	 * Skip write-flooding detected for the sp whose level is 1, because
	 * it can become unsync, then the guest page is not write-protected.
	 */
5100
	if (sp->role.level == PG_LEVEL_4K)
5101
		return false;
5102

5103 5104
	atomic_inc(&sp->write_flooding_count);
	return atomic_read(&sp->write_flooding_count) >= 3;
5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
}

/*
 * Misaligned accesses are too much trouble to fix up; also, they usually
 * indicate a page is not used as a page table.
 */
static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
				    int bytes)
{
	unsigned offset, pte_size, misaligned;

	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
		 gpa, bytes, sp->role.word);

	offset = offset_in_page(gpa);
5120
	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5121 5122 5123 5124 5125 5126 5127 5128

	/*
	 * Sometimes, the OS only writes the last one bytes to update status
	 * bits, for example, in linux, andb instruction is used in clear_bit().
	 */
	if (!(offset & (pte_size - 1)) && bytes == 1)
		return false;

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
	misaligned |= bytes < 4;

	return misaligned;
}

static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
{
	unsigned page_offset, quadrant;
	u64 *spte;
	int level;

	page_offset = offset_in_page(gpa);
	level = sp->role.level;
	*nspte = 1;
5144
	if (!sp->role.gpte_is_8_bytes) {
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
		page_offset <<= 1;	/* 32->64 */
		/*
		 * A 32-bit pde maps 4MB while the shadow pdes map
		 * only 2MB.  So we need to double the offset again
		 * and zap two pdes instead of one.
		 */
		if (level == PT32_ROOT_LEVEL) {
			page_offset &= ~7; /* kill rounding error */
			page_offset <<= 1;
			*nspte = 2;
		}
		quadrant = page_offset >> PAGE_SHIFT;
		page_offset &= ~PAGE_MASK;
		if (quadrant != sp->role.quadrant)
			return NULL;
	}

	spte = &sp->spt[page_offset / sizeof(*spte)];
	return spte;
}

5166
static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
5167 5168
			      const u8 *new, int bytes,
			      struct kvm_page_track_notifier_node *node)
5169 5170 5171 5172 5173 5174
{
	gfn_t gfn = gpa >> PAGE_SHIFT;
	struct kvm_mmu_page *sp;
	LIST_HEAD(invalid_list);
	u64 entry, gentry, *spte;
	int npte;
5175
	bool flush = false;
5176 5177 5178 5179 5180

	/*
	 * If we don't have indirect shadow pages, it means no page is
	 * write-protected, so we can exit simply.
	 */
5181
	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5182 5183 5184 5185 5186 5187
		return;

	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);

	/*
	 * No need to care whether allocation memory is successful
I
Ingo Molnar 已提交
5188
	 * or not since pte prefetch is skipped if it does not have
5189 5190
	 * enough objects in the cache.
	 */
5191
	mmu_topup_memory_caches(vcpu, true);
5192

5193
	write_lock(&vcpu->kvm->mmu_lock);
5194 5195 5196

	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);

5197
	++vcpu->kvm->stat.mmu_pte_write;
5198
	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
5199

5200
	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
5201
		if (detect_write_misaligned(sp, gpa, bytes) ||
5202
		      detect_write_flooding(sp)) {
5203
			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
A
Avi Kivity 已提交
5204
			++vcpu->kvm->stat.mmu_flooded;
5205 5206
			continue;
		}
5207 5208 5209 5210 5211

		spte = get_written_sptes(sp, gpa, &npte);
		if (!spte)
			continue;

5212
		while (npte--) {
5213
			entry = *spte;
5214
			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5215 5216
			if (gentry && sp->role.level != PG_LEVEL_4K)
				++vcpu->kvm->stat.mmu_pde_zapped;
G
Gleb Natapov 已提交
5217
			if (need_remote_flush(entry, *spte))
5218
				flush = true;
5219
			++spte;
5220 5221
		}
	}
5222
	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
5223
	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5224
	write_unlock(&vcpu->kvm->mmu_lock);
5225 5226
}

5227
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5228
		       void *insn, int insn_len)
5229
{
5230
	int r, emulation_type = EMULTYPE_PF;
5231
	bool direct = vcpu->arch.mmu->direct_map;
5232

5233
	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5234 5235
		return RET_PF_RETRY;

5236
	r = RET_PF_INVALID;
5237
	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5238
		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5239
		if (r == RET_PF_EMULATE)
5240 5241
			goto emulate;
	}
5242

5243
	if (r == RET_PF_INVALID) {
5244 5245
		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
					  lower_32_bits(error_code), false);
5246
		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5247
			return -EIO;
5248 5249
	}

5250
	if (r < 0)
5251
		return r;
5252 5253
	if (r != RET_PF_EMULATE)
		return 1;
5254

5255 5256 5257 5258 5259 5260 5261
	/*
	 * Before emulating the instruction, check if the error code
	 * was due to a RO violation while translating the guest page.
	 * This can occur when using nested virtualization with nested
	 * paging in both guests. If true, we simply unprotect the page
	 * and resume the guest.
	 */
5262
	if (vcpu->arch.mmu->direct_map &&
5263
	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5264
		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5265 5266 5267
		return 1;
	}

5268 5269 5270 5271 5272 5273
	/*
	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
	 * optimistically try to just unprotect the page and let the processor
	 * re-execute the instruction that caused the page fault.  Do not allow
	 * retrying MMIO emulation, as it's not only pointless but could also
	 * cause us to enter an infinite loop because the processor will keep
5274 5275 5276 5277
	 * faulting on the non-existent MMIO address.  Retrying an instruction
	 * from a nested guest is also pointless and dangerous as we are only
	 * explicitly shadowing L1's page tables, i.e. unprotecting something
	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5278
	 */
5279
	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5280
		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5281
emulate:
5282
	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5283
				       insn_len);
5284 5285 5286
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

5287 5288
void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			    gva_t gva, hpa_t root_hpa)
M
Marcelo Tosatti 已提交
5289
{
5290
	int i;
5291

5292 5293 5294 5295 5296 5297
	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
	if (mmu != &vcpu->arch.guest_mmu) {
		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
		if (is_noncanonical_address(gva, vcpu))
			return;

5298
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5299 5300 5301
	}

	if (!mmu->invlpg)
5302 5303
		return;

5304 5305
	if (root_hpa == INVALID_PAGE) {
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5306

5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
		/*
		 * INVLPG is required to invalidate any global mappings for the VA,
		 * irrespective of PCID. Since it would take us roughly similar amount
		 * of work to determine whether any of the prev_root mappings of the VA
		 * is marked global, or to just sync it blindly, so we might as well
		 * just always sync it.
		 *
		 * Mappings not reachable via the current cr3 or the prev_roots will be
		 * synced when switching to that cr3, so nothing needs to be done here
		 * for them.
		 */
		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
			if (VALID_PAGE(mmu->prev_roots[i].hpa))
				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
	} else {
		mmu->invlpg(vcpu, gva, root_hpa);
	}
}
5325

5326 5327 5328
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
M
Marcelo Tosatti 已提交
5329 5330 5331 5332
	++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);

5333

5334 5335
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
{
5336
	struct kvm_mmu *mmu = vcpu->arch.mmu;
5337
	bool tlb_flush = false;
5338
	uint i;
5339 5340

	if (pcid == kvm_get_active_pcid(vcpu)) {
5341
		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5342
		tlb_flush = true;
5343 5344
	}

5345 5346
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5347
		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5348 5349 5350
			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
			tlb_flush = true;
		}
5351
	}
5352

5353
	if (tlb_flush)
5354
		static_call(kvm_x86_tlb_flush_gva)(vcpu, gva);
5355

5356 5357 5358
	++vcpu->stat.invlpg;

	/*
5359 5360 5361
	 * Mappings not reachable via the current cr3 or the prev_roots will be
	 * synced when switching to that cr3, so nothing needs to be done here
	 * for them.
5362 5363 5364
	 */
}

5365 5366
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
		       int tdp_max_root_level, int tdp_huge_page_level)
5367
{
5368
	tdp_enabled = enable_tdp;
5369
	tdp_root_level = tdp_forced_root_level;
5370
	max_tdp_level = tdp_max_root_level;
5371 5372

	/*
5373
	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5374 5375 5376 5377 5378 5379
	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
	 * the kernel is not.  But, KVM never creates a page size greater than
	 * what is used by the kernel for any given HVA, i.e. the kernel's
	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
	 */
	if (tdp_enabled)
5380
		max_huge_page_level = tdp_huge_page_level;
5381
	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5382
		max_huge_page_level = PG_LEVEL_1G;
5383
	else
5384
		max_huge_page_level = PG_LEVEL_2M;
5385
}
5386
EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5387 5388

/* The return value indicates if tlb flush on all vcpus is needed. */
5389 5390 5391
typedef bool (*slot_level_handler) (struct kvm *kvm,
				    struct kvm_rmap_head *rmap_head,
				    const struct kvm_memory_slot *slot);
5392 5393 5394

/* The caller should hold mmu-lock before calling this function. */
static __always_inline bool
5395
slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5396
			slot_level_handler fn, int start_level, int end_level,
5397 5398
			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
			bool flush)
5399 5400 5401 5402 5403 5404
{
	struct slot_rmap_walk_iterator iterator;

	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
			end_gfn, &iterator) {
		if (iterator.rmap)
5405
			flush |= fn(kvm, iterator.rmap, memslot);
5406

5407
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
5408
			if (flush && flush_on_yield) {
5409 5410 5411
				kvm_flush_remote_tlbs_with_address(kvm,
						start_gfn,
						iterator.gfn - start_gfn + 1);
5412 5413
				flush = false;
			}
5414
			cond_resched_rwlock_write(&kvm->mmu_lock);
5415 5416 5417 5418 5419 5420 5421
		}
	}

	return flush;
}

static __always_inline bool
5422
slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5423
		  slot_level_handler fn, int start_level, int end_level,
5424
		  bool flush_on_yield)
5425 5426 5427 5428
{
	return slot_handle_level_range(kvm, memslot, fn, start_level,
			end_level, memslot->base_gfn,
			memslot->base_gfn + memslot->npages - 1,
5429
			flush_on_yield, false);
5430 5431 5432
}

static __always_inline bool
5433
slot_handle_leaf(struct kvm *kvm, const struct kvm_memory_slot *memslot,
5434
		 slot_level_handler fn, bool flush_on_yield)
5435
{
5436
	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5437
				 PG_LEVEL_4K, flush_on_yield);
5438 5439
}

5440
static void free_mmu_pages(struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5441
{
5442 5443
	if (!tdp_enabled && mmu->pae_root)
		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
5444
	free_page((unsigned long)mmu->pae_root);
5445
	free_page((unsigned long)mmu->pml4_root);
5446
	free_page((unsigned long)mmu->pml5_root);
A
Avi Kivity 已提交
5447 5448
}

5449
static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
A
Avi Kivity 已提交
5450
{
5451
	struct page *page;
A
Avi Kivity 已提交
5452 5453
	int i;

5454 5455 5456 5457 5458 5459
	mmu->root_hpa = INVALID_PAGE;
	mmu->root_pgd = 0;
	mmu->translate_gpa = translate_gpa;
	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;

5460
	/*
5461 5462 5463 5464
	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
	 * while the PDP table is a per-vCPU construct that's allocated at MMU
	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
	 * x86_64.  Therefore we need to allocate the PDP table in the first
5465 5466 5467 5468 5469
	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
	 * generally doesn't use PAE paging and can skip allocating the PDP
	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
	 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots().
5470
	 */
5471
	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5472 5473
		return 0;

5474
	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5475
	if (!page)
5476 5477
		return -ENOMEM;

5478
	mmu->pae_root = page_address(page);
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492

	/*
	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
	 * that KVM's writes and the CPU's reads get along.  Note, this is
	 * only necessary when using shadow paging, as 64-bit NPT can get at
	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
	 */
	if (!tdp_enabled)
		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
	else
		WARN_ON_ONCE(shadow_me_mask);

5493
	for (i = 0; i < 4; ++i)
5494
		mmu->pae_root[i] = INVALID_PAE_ROOT;
5495

A
Avi Kivity 已提交
5496 5497 5498
	return 0;
}

5499
int kvm_mmu_create(struct kvm_vcpu *vcpu)
A
Avi Kivity 已提交
5500
{
5501
	int ret;
5502

5503
	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5504 5505
	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;

5506
	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5507
	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5508

5509 5510
	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;

5511 5512
	vcpu->arch.mmu = &vcpu->arch.root_mmu;
	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
A
Avi Kivity 已提交
5513

5514
	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5515

5516
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5517 5518 5519
	if (ret)
		return ret;

5520
	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5521 5522 5523 5524 5525 5526 5527
	if (ret)
		goto fail_allocate_root;

	return ret;
 fail_allocate_root:
	free_mmu_pages(&vcpu->arch.guest_mmu);
	return ret;
A
Avi Kivity 已提交
5528 5529
}

5530
#define BATCH_ZAP_PAGES	10
5531 5532 5533
static void kvm_zap_obsolete_pages(struct kvm *kvm)
{
	struct kvm_mmu_page *sp, *node;
5534
	int nr_zapped, batch = 0;
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546

restart:
	list_for_each_entry_safe_reverse(sp, node,
	      &kvm->arch.active_mmu_pages, link) {
		/*
		 * No obsolete valid page exists before a newly created page
		 * since active_mmu_pages is a FIFO list.
		 */
		if (!is_obsolete_sp(kvm, sp))
			break;

		/*
5547 5548 5549
		 * Invalid pages should never land back on the list of active
		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
		 * infinite loop if the page gets put back on the list (again).
5550
		 */
5551
		if (WARN_ON(sp->role.invalid))
5552 5553
			continue;

5554 5555 5556 5557 5558 5559
		/*
		 * No need to flush the TLB since we're only zapping shadow
		 * pages with an obsolete generation number and all vCPUS have
		 * loaded a new root, i.e. the shadow pages being zapped cannot
		 * be in active use by the guest.
		 */
5560
		if (batch >= BATCH_ZAP_PAGES &&
5561
		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
5562
			batch = 0;
5563 5564 5565
			goto restart;
		}

5566 5567
		if (__kvm_mmu_prepare_zap_page(kvm, sp,
				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5568
			batch += nr_zapped;
5569
			goto restart;
5570
		}
5571 5572
	}

5573 5574 5575 5576 5577
	/*
	 * Trigger a remote TLB flush before freeing the page tables to ensure
	 * KVM is not in the middle of a lockless shadow page table walk, which
	 * may reference the pages.
	 */
5578
	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
}

/*
 * Fast invalidate all shadow pages and use lock-break technique
 * to zap obsolete pages.
 *
 * It's required when memslot is being deleted or VM is being
 * destroyed, in these cases, we should ensure that KVM MMU does
 * not use any resource of the being-deleted slot or all slots
 * after calling the function.
 */
static void kvm_mmu_zap_all_fast(struct kvm *kvm)
{
5592 5593
	lockdep_assert_held(&kvm->slots_lock);

5594
	write_lock(&kvm->mmu_lock);
5595
	trace_kvm_mmu_zap_all_fast(kvm);
5596 5597 5598 5599 5600 5601 5602 5603 5604

	/*
	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
	 * held for the entire duration of zapping obsolete pages, it's
	 * impossible for there to be multiple invalid generations associated
	 * with *valid* shadow pages at any given time, i.e. there is exactly
	 * one valid generation and (at most) one invalid generation.
	 */
	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5605

5606 5607 5608 5609 5610 5611 5612 5613 5614
	/* In order to ensure all threads see this change when
	 * handling the MMU reload signal, this must happen in the
	 * same critical section as kvm_reload_remote_mmus, and
	 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages
	 * could drop the MMU lock and yield.
	 */
	if (is_tdp_mmu_enabled(kvm))
		kvm_tdp_mmu_invalidate_all_roots(kvm);

5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
	/*
	 * Notify all vcpus to reload its shadow page table and flush TLB.
	 * Then all vcpus will switch to new shadow page table with the new
	 * mmu_valid_gen.
	 *
	 * Note: we need to do this under the protection of mmu_lock,
	 * otherwise, vcpu would purge shadow page but miss tlb flush.
	 */
	kvm_reload_remote_mmus(kvm);

5625
	kvm_zap_obsolete_pages(kvm);
5626

5627
	write_unlock(&kvm->mmu_lock);
5628 5629 5630 5631 5632 5633

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		kvm_tdp_mmu_zap_invalidated_roots(kvm);
		read_unlock(&kvm->mmu_lock);
	}
5634 5635
}

5636 5637 5638 5639 5640
static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
{
	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
}

5641
static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5642 5643
			struct kvm_memory_slot *slot,
			struct kvm_page_track_notifier_node *node)
5644
{
5645
	kvm_mmu_zap_all_fast(kvm);
5646 5647
}

5648
void kvm_mmu_init_vm(struct kvm *kvm)
5649
{
5650
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5651

5652 5653
	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);

5654 5655 5656 5657 5658 5659 5660
	if (!kvm_mmu_init_tdp_mmu(kvm))
		/*
		 * No smp_load/store wrappers needed here as we are in
		 * VM init and there cannot be any memslots / other threads
		 * accessing this struct kvm yet.
		 */
		kvm->arch.memslots_have_rmaps = true;
5661

5662
	node->track_write = kvm_mmu_pte_write;
5663
	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5664
	kvm_page_track_register_notifier(kvm, node);
5665 5666
}

5667
void kvm_mmu_uninit_vm(struct kvm *kvm)
5668
{
5669
	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5670

5671
	kvm_page_track_unregister_notifier(kvm, node);
5672 5673

	kvm_mmu_uninit_tdp_mmu(kvm);
5674 5675
}

5676 5677 5678 5679
/*
 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 * (not including it)
 */
X
Xiao Guangrong 已提交
5680 5681 5682 5683
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
5684
	int i;
5685
	bool flush = false;
X
Xiao Guangrong 已提交
5686

5687 5688
	write_lock(&kvm->mmu_lock);

5689 5690
	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);

5691 5692 5693 5694 5695 5696 5697 5698 5699 5700
	if (kvm_memslots_have_rmaps(kvm)) {
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
			slots = __kvm_memslots(kvm, i);
			kvm_for_each_memslot(memslot, slots) {
				gfn_t start, end;

				start = max(gfn_start, memslot->base_gfn);
				end = min(gfn_end, memslot->base_gfn + memslot->npages);
				if (start >= end)
					continue;
X
Xiao Guangrong 已提交
5701

5702 5703
				flush = slot_handle_level_range(kvm,
						(const struct kvm_memory_slot *) memslot,
5704 5705 5706 5707
						kvm_zap_rmapp, PG_LEVEL_4K,
						KVM_MAX_HUGEPAGE_LEVEL, start,
						end - 1, true, flush);
			}
5708
		}
5709
		if (flush)
5710 5711
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end - gfn_start);
X
Xiao Guangrong 已提交
5712 5713
	}

5714
	if (is_tdp_mmu_enabled(kvm)) {
5715 5716
		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
			flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start,
5717
							  gfn_end, flush);
5718 5719 5720
		if (flush)
			kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
							   gfn_end - gfn_start);
5721
	}
5722 5723 5724 5725

	if (flush)
		kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end);

5726 5727
	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);

5728
	write_unlock(&kvm->mmu_lock);
X
Xiao Guangrong 已提交
5729 5730
}

5731
static bool slot_rmap_write_protect(struct kvm *kvm,
5732
				    struct kvm_rmap_head *rmap_head,
5733
				    const struct kvm_memory_slot *slot)
5734
{
5735
	return __rmap_write_protect(kvm, rmap_head, false);
5736 5737
}

5738
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5739
				      const struct kvm_memory_slot *memslot,
5740
				      int start_level)
A
Avi Kivity 已提交
5741
{
5742
	bool flush = false;
A
Avi Kivity 已提交
5743

5744 5745 5746 5747 5748 5749 5750
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
					  false);
		write_unlock(&kvm->mmu_lock);
	}
5751

5752 5753 5754 5755 5756 5757
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
		read_unlock(&kvm->mmu_lock);
	}

5758 5759 5760 5761 5762 5763 5764
	/*
	 * We can flush all the TLBs out of the mmu lock without TLB
	 * corruption since we just change the spte from writable to
	 * readonly so that we only need to care the case of changing
	 * spte from present to present (changing the spte from present
	 * to nonpresent will flush all the TLBs immediately), in other
	 * words, the only case we care is mmu_spte_update() where we
5765 5766 5767
	 * have checked Host-writable | MMU-writable instead of
	 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK
	 * anymore.
5768
	 */
5769
	if (flush)
5770
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
A
Avi Kivity 已提交
5771
}
5772

5773
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5774
					 struct kvm_rmap_head *rmap_head,
5775
					 const struct kvm_memory_slot *slot)
5776 5777 5778 5779
{
	u64 *sptep;
	struct rmap_iterator iter;
	int need_tlb_flush = 0;
D
Dan Williams 已提交
5780
	kvm_pfn_t pfn;
5781 5782
	struct kvm_mmu_page *sp;

5783
restart:
5784
	for_each_rmap_spte(rmap_head, &iter, sptep) {
5785
		sp = sptep_to_sp(sptep);
5786 5787 5788
		pfn = spte_to_pfn(*sptep);

		/*
5789 5790 5791 5792 5793
		 * We cannot do huge page mapping for indirect shadow pages,
		 * which are found on the last rmap (level = 1) when not using
		 * tdp; such shadow pages are synced with the page table in
		 * the guest, and the guest page table is using 4K page size
		 * mapping if the indirect sp has level = 1.
5794
		 */
5795
		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5796 5797
		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
							       pfn, PG_LEVEL_NUM)) {
5798
			pte_list_remove(kvm, rmap_head, sptep);
5799 5800 5801 5802 5803 5804 5805

			if (kvm_available_flush_tlb_with_range())
				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
					KVM_PAGES_PER_HPAGE(sp->role.level));
			else
				need_tlb_flush = 1;

5806 5807
			goto restart;
		}
5808 5809 5810 5811 5812 5813
	}

	return need_tlb_flush;
}

void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5814
				   const struct kvm_memory_slot *slot)
5815
{
5816
	bool flush = false;
5817

5818 5819 5820 5821 5822 5823 5824
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, slot, kvm_mmu_zap_collapsible_spte, true);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		write_unlock(&kvm->mmu_lock);
	}
5825 5826 5827 5828 5829 5830 5831 5832

	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush = kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot, flush);
		if (flush)
			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
		read_unlock(&kvm->mmu_lock);
	}
5833 5834
}

5835
void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5836
					const struct kvm_memory_slot *memslot)
5837 5838
{
	/*
5839
	 * All current use cases for flushing the TLBs for a specific memslot
5840
	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
5841 5842 5843
	 * The interaction between the various operations on memslot must be
	 * serialized by slots_locks to ensure the TLB flush from one operation
	 * is observed by any other operation on the same memslot.
5844 5845
	 */
	lockdep_assert_held(&kvm->slots_lock);
5846 5847
	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
					   memslot->npages);
5848 5849
}

5850
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5851
				   const struct kvm_memory_slot *memslot)
5852
{
5853
	bool flush = false;
5854

5855 5856 5857 5858 5859 5860
	if (kvm_memslots_have_rmaps(kvm)) {
		write_lock(&kvm->mmu_lock);
		flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty,
					 false);
		write_unlock(&kvm->mmu_lock);
	}
5861

5862 5863 5864 5865 5866 5867
	if (is_tdp_mmu_enabled(kvm)) {
		read_lock(&kvm->mmu_lock);
		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
		read_unlock(&kvm->mmu_lock);
	}

5868 5869 5870 5871 5872 5873 5874
	/*
	 * It's also safe to flush TLBs out of mmu lock here as currently this
	 * function is only used for dirty logging, in which case flushing TLB
	 * out of mmu lock also guarantees no dirty pages will be lost in
	 * dirty_bitmap.
	 */
	if (flush)
5875
		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5876 5877
}

5878
void kvm_mmu_zap_all(struct kvm *kvm)
5879 5880
{
	struct kvm_mmu_page *sp, *node;
5881
	LIST_HEAD(invalid_list);
5882
	int ign;
5883

5884
	write_lock(&kvm->mmu_lock);
5885
restart:
5886
	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5887
		if (WARN_ON(sp->role.invalid))
5888
			continue;
5889
		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5890
			goto restart;
5891
		if (cond_resched_rwlock_write(&kvm->mmu_lock))
5892 5893 5894
			goto restart;
	}

5895
	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5896

5897
	if (is_tdp_mmu_enabled(kvm))
5898 5899
		kvm_tdp_mmu_zap_all(kvm);

5900
	write_unlock(&kvm->mmu_lock);
5901 5902
}

5903
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5904
{
5905
	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5906

5907
	gen &= MMIO_SPTE_GEN_MASK;
5908

5909
	/*
5910 5911 5912 5913 5914 5915 5916 5917
	 * Generation numbers are incremented in multiples of the number of
	 * address spaces in order to provide unique generations across all
	 * address spaces.  Strip what is effectively the address space
	 * modifier prior to checking for a wrap of the MMIO generation so
	 * that a wrap in any address space is detected.
	 */
	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);

5918
	/*
5919
	 * The very rare case: if the MMIO generation number has wrapped,
5920 5921
	 * zap all shadow pages.
	 */
5922
	if (unlikely(gen == 0)) {
5923
		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5924
		kvm_mmu_zap_all_fast(kvm);
5925
	}
5926 5927
}

5928 5929
static unsigned long
mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5930 5931
{
	struct kvm *kvm;
5932
	int nr_to_scan = sc->nr_to_scan;
5933
	unsigned long freed = 0;
5934

J
Junaid Shahid 已提交
5935
	mutex_lock(&kvm_lock);
5936 5937

	list_for_each_entry(kvm, &vm_list, vm_list) {
5938
		int idx;
5939
		LIST_HEAD(invalid_list);
5940

5941 5942 5943 5944 5945 5946 5947 5948
		/*
		 * Never scan more than sc->nr_to_scan VM instances.
		 * Will not hit this condition practically since we do not try
		 * to shrink more than one VM and it is very unlikely to see
		 * !n_used_mmu_pages so many times.
		 */
		if (!nr_to_scan--)
			break;
5949 5950 5951 5952 5953 5954
		/*
		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
		 * here. We may skip a VM instance errorneosly, but we do not
		 * want to shrink a VM that only started to populate its MMU
		 * anyway.
		 */
5955 5956
		if (!kvm->arch.n_used_mmu_pages &&
		    !kvm_has_zapped_obsolete_pages(kvm))
5957 5958
			continue;

5959
		idx = srcu_read_lock(&kvm->srcu);
5960
		write_lock(&kvm->mmu_lock);
5961

5962 5963 5964 5965 5966 5967
		if (kvm_has_zapped_obsolete_pages(kvm)) {
			kvm_mmu_commit_zap_page(kvm,
			      &kvm->arch.zapped_obsolete_pages);
			goto unlock;
		}

5968
		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5969

5970
unlock:
5971
		write_unlock(&kvm->mmu_lock);
5972
		srcu_read_unlock(&kvm->srcu, idx);
5973

5974 5975 5976 5977 5978
		/*
		 * unfair on small ones
		 * per-vm shrinkers cry out
		 * sadness comes quickly
		 */
5979 5980
		list_move_tail(&kvm->vm_list, &vm_list);
		break;
5981 5982
	}

J
Junaid Shahid 已提交
5983
	mutex_unlock(&kvm_lock);
5984 5985 5986 5987 5988 5989
	return freed;
}

static unsigned long
mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
5990
	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5991 5992 5993
}

static struct shrinker mmu_shrinker = {
5994 5995
	.count_objects = mmu_shrink_count,
	.scan_objects = mmu_shrink_scan,
5996 5997 5998
	.seeks = DEFAULT_SEEKS * 10,
};

I
Ingo Molnar 已提交
5999
static void mmu_destroy_caches(void)
6000
{
6001 6002
	kmem_cache_destroy(pte_list_desc_cache);
	kmem_cache_destroy(mmu_page_header_cache);
6003 6004
}

P
Paolo Bonzini 已提交
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
static bool get_nx_auto_mode(void)
{
	/* Return true when CPU has the bug, and mitigations are ON */
	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
}

static void __set_nx_huge_pages(bool val)
{
	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
}

static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
{
	bool old_val = nx_huge_pages;
	bool new_val;

	/* In "auto" mode deploy workaround only if CPU has the bug. */
	if (sysfs_streq(val, "off"))
		new_val = 0;
	else if (sysfs_streq(val, "force"))
		new_val = 1;
	else if (sysfs_streq(val, "auto"))
		new_val = get_nx_auto_mode();
	else if (strtobool(val, &new_val) < 0)
		return -EINVAL;

	__set_nx_huge_pages(new_val);

	if (new_val != old_val) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list) {
6039
			mutex_lock(&kvm->slots_lock);
P
Paolo Bonzini 已提交
6040
			kvm_mmu_zap_all_fast(kvm);
6041
			mutex_unlock(&kvm->slots_lock);
6042 6043

			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
P
Paolo Bonzini 已提交
6044 6045 6046 6047 6048 6049 6050
		}
		mutex_unlock(&kvm_lock);
	}

	return 0;
}

6051 6052
int kvm_mmu_module_init(void)
{
6053 6054
	int ret = -ENOMEM;

P
Paolo Bonzini 已提交
6055 6056 6057
	if (nx_huge_pages == -1)
		__set_nx_huge_pages(get_nx_auto_mode());

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067
	/*
	 * MMU roles use union aliasing which is, generally speaking, an
	 * undefined behavior. However, we supposedly know how compilers behave
	 * and the current status quo is unlikely to change. Guardians below are
	 * supposed to let us know if the assumption becomes false.
	 */
	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));

6068
	kvm_mmu_reset_all_pte_masks();
6069

6070 6071
	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
					    sizeof(struct pte_list_desc),
6072
					    0, SLAB_ACCOUNT, NULL);
6073
	if (!pte_list_desc_cache)
6074
		goto out;
6075

6076 6077
	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
						  sizeof(struct kvm_mmu_page),
6078
						  0, SLAB_ACCOUNT, NULL);
6079
	if (!mmu_page_header_cache)
6080
		goto out;
6081

6082
	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
6083
		goto out;
6084

6085 6086 6087
	ret = register_shrinker(&mmu_shrinker);
	if (ret)
		goto out;
6088

6089 6090
	return 0;

6091
out:
6092
	mmu_destroy_caches();
6093
	return ret;
6094 6095
}

6096
/*
P
Peng Hao 已提交
6097
 * Calculate mmu pages needed for kvm.
6098
 */
6099
unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
6100
{
6101 6102
	unsigned long nr_mmu_pages;
	unsigned long nr_pages = 0;
6103
	struct kvm_memslots *slots;
6104
	struct kvm_memory_slot *memslot;
6105
	int i;
6106

6107 6108
	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
		slots = __kvm_memslots(kvm, i);
6109

6110 6111 6112
		kvm_for_each_memslot(memslot, slots)
			nr_pages += memslot->npages;
	}
6113 6114

	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6115
	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
6116 6117 6118 6119

	return nr_mmu_pages;
}

6120 6121
void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
6122
	kvm_mmu_unload(vcpu);
6123 6124
	free_mmu_pages(&vcpu->arch.root_mmu);
	free_mmu_pages(&vcpu->arch.guest_mmu);
6125
	mmu_free_memory_caches(vcpu);
6126 6127 6128 6129 6130 6131 6132
}

void kvm_mmu_module_exit(void)
{
	mmu_destroy_caches();
	percpu_counter_destroy(&kvm_total_used_mmu_pages);
	unregister_shrinker(&mmu_shrinker);
6133 6134
	mmu_audit_disable();
}
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162

static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
{
	unsigned int old_val;
	int err;

	old_val = nx_huge_pages_recovery_ratio;
	err = param_set_uint(val, kp);
	if (err)
		return err;

	if (READ_ONCE(nx_huge_pages) &&
	    !old_val && nx_huge_pages_recovery_ratio) {
		struct kvm *kvm;

		mutex_lock(&kvm_lock);

		list_for_each_entry(kvm, &vm_list, vm_list)
			wake_up_process(kvm->arch.nx_lpage_recovery_thread);

		mutex_unlock(&kvm_lock);
	}

	return err;
}

static void kvm_recover_nx_lpages(struct kvm *kvm)
{
6163
	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
6164 6165 6166 6167
	int rcu_idx;
	struct kvm_mmu_page *sp;
	unsigned int ratio;
	LIST_HEAD(invalid_list);
6168
	bool flush = false;
6169 6170 6171
	ulong to_zap;

	rcu_idx = srcu_read_lock(&kvm->srcu);
6172
	write_lock(&kvm->mmu_lock);
6173 6174

	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6175
	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
6176 6177 6178 6179
	for ( ; to_zap; --to_zap) {
		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
			break;

6180 6181 6182 6183 6184 6185 6186 6187 6188
		/*
		 * We use a separate list instead of just using active_mmu_pages
		 * because the number of lpage_disallowed pages is expected to
		 * be relatively small compared to the total.
		 */
		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
				      struct kvm_mmu_page,
				      lpage_disallowed_link);
		WARN_ON_ONCE(!sp->lpage_disallowed);
6189
		if (is_tdp_mmu_page(sp)) {
6190
			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
6191
		} else {
6192 6193 6194
			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
			WARN_ON_ONCE(sp->lpage_disallowed);
		}
6195

6196
		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
6197
			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6198
			cond_resched_rwlock_write(&kvm->mmu_lock);
6199
			flush = false;
6200 6201
		}
	}
6202
	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
6203

6204
	write_unlock(&kvm->mmu_lock);
6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
	srcu_read_unlock(&kvm->srcu, rcu_idx);
}

static long get_nx_lpage_recovery_timeout(u64 start_time)
{
	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
		? start_time + 60 * HZ - get_jiffies_64()
		: MAX_SCHEDULE_TIMEOUT;
}

static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
{
	u64 start_time;
	long remaining_time;

	while (true) {
		start_time = get_jiffies_64();
		remaining_time = get_nx_lpage_recovery_timeout(start_time);

		set_current_state(TASK_INTERRUPTIBLE);
		while (!kthread_should_stop() && remaining_time > 0) {
			schedule_timeout(remaining_time);
			remaining_time = get_nx_lpage_recovery_timeout(start_time);
			set_current_state(TASK_INTERRUPTIBLE);
		}

		set_current_state(TASK_RUNNING);

		if (kthread_should_stop())
			return 0;

		kvm_recover_nx_lpages(kvm);
	}
}

int kvm_mmu_post_init_vm(struct kvm *kvm)
{
	int err;

	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
					  "kvm-nx-lpage-recovery",
					  &kvm->arch.nx_lpage_recovery_thread);
	if (!err)
		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);

	return err;
}

void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
{
	if (kvm->arch.nx_lpage_recovery_thread)
		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
}