fair.c 265.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

355 356 357
/* Iterate through all leaf cfs_rq's on a runqueue: */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
358 359

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
360
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
361 362 363
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
364
		return se->cfs_rq;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	return NULL;
P
Peter Zijlstra 已提交
367 368 369 370 371 372 373
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

374 375 376 377 378 379 380 381 382 383 384 385 386
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
387 388
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

406 407 408 409 410 411
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
412

413 414 415
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
416 417 418
}


P
Peter Zijlstra 已提交
419 420
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
421

P
Peter Zijlstra 已提交
422
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
423
{
P
Peter Zijlstra 已提交
424
	return &task_rq(p)->cfs;
425 426
}

P
Peter Zijlstra 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

441 442 443 444 445 446 447 448
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

449 450
#define for_each_leaf_cfs_rq(rq, cfs_rq)	\
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
P
Peter Zijlstra 已提交
451 452 453 454 455 456

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

457 458 459 460 461
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
462 463
#endif	/* CONFIG_FAIR_GROUP_SCHED */

464
static __always_inline
465
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
466 467 468 469 470

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

471
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
472
{
473
	s64 delta = (s64)(vruntime - max_vruntime);
474
	if (delta > 0)
475
		max_vruntime = vruntime;
476

477
	return max_vruntime;
478 479
}

480
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
481 482 483 484 485 486 487 488
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

489 490 491 492 493 494
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

495 496
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
497
	struct sched_entity *curr = cfs_rq->curr;
498
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
499

500 501
	u64 vruntime = cfs_rq->min_vruntime;

502 503 504 505 506 507
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
508

509 510 511
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
512

513
		if (!curr)
514 515 516 517 518
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

519
	/* ensure we never gain time by being placed backwards. */
520
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
521 522 523 524
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
525 526
}

527 528 529
/*
 * Enqueue an entity into the rb-tree:
 */
530
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
531
{
532
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
533 534
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
535
	bool leftmost = true;
536 537 538 539 540 541 542 543 544 545 546

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
547
		if (entity_before(se, entry)) {
548 549 550
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
551
			leftmost = false;
552 553 554 555
		}
	}

	rb_link_node(&se->run_node, parent, link);
556 557
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
558 559
}

560
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
561
{
562
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
563 564
}

565
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
566
{
567
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
568 569 570 571 572

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
573 574
}

575 576 577 578 579 580 581 582 583 584 585
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
586
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
587
{
588
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
589

590 591
	if (!last)
		return NULL;
592 593

	return rb_entry(last, struct sched_entity, run_node);
594 595
}

596 597 598 599
/**************************************************************
 * Scheduling class statistics methods:
 */

600
int sched_proc_update_handler(struct ctl_table *table, int write,
601
		void __user *buffer, size_t *lenp,
602 603
		loff_t *ppos)
{
604
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
605
	unsigned int factor = get_update_sysctl_factor();
606 607 608 609 610 611 612

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

613 614 615 616 617 618 619
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

620 621 622
	return 0;
}
#endif
623

624
/*
625
 * delta /= w
626
 */
627
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
628
{
629
	if (unlikely(se->load.weight != NICE_0_LOAD))
630
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
631 632 633 634

	return delta;
}

635 636 637
/*
 * The idea is to set a period in which each task runs once.
 *
638
 * When there are too many tasks (sched_nr_latency) we have to stretch
639 640 641 642
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
643 644
static u64 __sched_period(unsigned long nr_running)
{
645 646 647 648
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
649 650
}

651 652 653 654
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
655
 * s = p*P[w/rw]
656
 */
P
Peter Zijlstra 已提交
657
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
658
{
M
Mike Galbraith 已提交
659
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
660

M
Mike Galbraith 已提交
661
	for_each_sched_entity(se) {
L
Lin Ming 已提交
662
		struct load_weight *load;
663
		struct load_weight lw;
L
Lin Ming 已提交
664 665 666

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
667

M
Mike Galbraith 已提交
668
		if (unlikely(!se->on_rq)) {
669
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
670 671 672 673

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
674
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
675 676
	}
	return slice;
677 678
}

679
/*
A
Andrei Epure 已提交
680
 * We calculate the vruntime slice of a to-be-inserted task.
681
 *
682
 * vs = s/w
683
 */
684
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
685
{
686
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
687 688
}

689
#ifdef CONFIG_SMP
690
#include "pelt.h"
691 692
#include "sched-pelt.h"

693
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
694
static unsigned long task_h_load(struct task_struct *p);
695
static unsigned long task_h_load_static(struct task_struct *p);
696

697 698
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
699
{
700
	struct sched_avg *sa = &se->avg;
701

702 703
	memset(sa, 0, sizeof(*sa));

704 705 706 707 708 709 710
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
711 712
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

713 714
	se->runnable_weight = se->load.weight;

715
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716
}
717

718
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719
static void attach_entity_cfs_rq(struct sched_entity *se);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
734
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735
 *
736
 * where n denotes the nth task and cpu_scale the CPU capacity.
737
 *
738 739
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
740 741 742 743 744 745 746 747 748 749 750
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
751 752
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 754 755 756 757 758 759 760 761 762 763 764

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
765 766 767 768 769 770 771

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
772
			update_cfs_rq_load_avg(now, cfs_rq);
773
			attach_entity_load_avg(cfs_rq, se, 0);
774 775 776 777 778
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
779
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 781 782 783
			return;
		}
	}

784
	attach_entity_cfs_rq(se);
785 786
}

787
#else /* !CONFIG_SMP */
788
void init_entity_runnable_average(struct sched_entity *se)
789 790
{
}
791 792 793
void post_init_entity_util_avg(struct sched_entity *se)
{
}
794 795 796
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
797
#endif /* CONFIG_SMP */
798

799 800 801 802 803 804 805 806 807
static inline void
update_exec_raw(struct cfs_rq *cfs_rq, struct sched_entity *curr)
{
	u64 now = rq_clock(rq_of(cfs_rq));

	curr->sum_exec_raw += now - curr->exec_start_raw;
	curr->exec_start_raw = now;
}

808
/*
809
 * Update the current task's runtime statistics.
810
 */
811
static void update_curr(struct cfs_rq *cfs_rq)
812
{
813
	struct sched_entity *curr = cfs_rq->curr;
814
	u64 now = rq_clock_task(rq_of(cfs_rq));
815
	u64 delta_exec;
816 817 818 819

	if (unlikely(!curr))
		return;

820 821
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
822
		return;
823

I
Ingo Molnar 已提交
824
	curr->exec_start = now;
825

826 827 828 829
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
830
	schedstat_add(cfs_rq->exec_clock, delta_exec);
831 832 833 834

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

835 836 837
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

838
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
839
		cgroup_account_cputime(curtask, delta_exec);
840
		account_group_exec_runtime(curtask, delta_exec);
841
	}
842 843

	account_cfs_rq_runtime(cfs_rq, delta_exec);
844
	update_exec_raw(cfs_rq, curr);
845 846
}

847 848 849 850 851
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

852
static inline void
853
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
854
{
855 856 857 858 859 860 861
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
862 863

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
864 865
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
866

867
	__schedstat_set(se->statistics.wait_start, wait_start);
868 869
}

870
static inline void
871 872 873
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
874 875
	u64 delta;

876 877 878 879
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
880 881 882 883 884 885 886 887 888

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
889
			__schedstat_set(se->statistics.wait_start, delta);
890 891 892 893
			return;
		}
		trace_sched_stat_wait(p, delta);
	}
894
	cpuacct_update_latency(se, delta);
895

896
	__schedstat_set(se->statistics.wait_max,
897
		      max(schedstat_val(se->statistics.wait_max), delta));
898 899 900
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
901 902
}

903
static inline void
904 905 906
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
907 908 909 910 911 912 913
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
914 915 916 917

	if (entity_is_task(se))
		tsk = task_of(se);

918 919
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
920 921 922 923

		if ((s64)delta < 0)
			delta = 0;

924
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
925
			__schedstat_set(se->statistics.sleep_max, delta);
926

927 928
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
929 930 931 932 933 934

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
935 936
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
937 938 939 940

		if ((s64)delta < 0)
			delta = 0;

941
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
942
			__schedstat_set(se->statistics.block_max, delta);
943

944 945
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
946 947

		if (tsk) {
948
			task_ca_update_block(tsk, delta);
949
			if (tsk->in_iowait) {
950 951
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
970 971
}

972 973 974
/*
 * Task is being enqueued - update stats:
 */
975
static inline void
976
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
977
{
978 979 980
	if (!schedstat_enabled())
		return;

981 982 983 984
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
985
	if (se != cfs_rq->curr)
986
		update_stats_wait_start(cfs_rq, se);
987 988 989

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
990 991 992
}

static inline void
993
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
994
{
995 996 997 998

	if (!schedstat_enabled())
		return;

999 1000 1001 1002
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1003
	if (se != cfs_rq->curr)
1004
		update_stats_wait_end(cfs_rq, se);
1005

1006 1007
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1008

1009
		if (tsk->state & TASK_INTERRUPTIBLE)
1010
			__schedstat_set(se->statistics.sleep_start,
1011 1012
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1013
			__schedstat_set(se->statistics.block_start,
1014
				      rq_clock(rq_of(cfs_rq)));
1015 1016 1017
	}
}

1018 1019 1020 1021
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1022
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1023 1024 1025 1026
{
	/*
	 * We are starting a new run period:
	 */
1027
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1028
	se->exec_start_raw = rq_clock(rq_of(cfs_rq));
1029 1030 1031 1032 1033 1034
}

/**************************************************
 * Scheduling class queueing methods:
 */

1035 1036
#ifdef CONFIG_NUMA_BALANCING
/*
1037 1038 1039
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1040
 */
1041 1042
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1043 1044 1045

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1046

1047 1048 1049
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
/*
 * For functions that can be called in multiple contexts that permit reading
 * ->numa_group (see struct task_struct for locking rules).
 */
static struct numa_group *deref_task_numa_group(struct task_struct *p)
{
	return rcu_dereference_check(p->numa_group, p == current ||
		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
}

static struct numa_group *deref_curr_numa_group(struct task_struct *p)
{
	return rcu_dereference_protected(p->numa_group, p == current);
}

1085 1086 1087
static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1112
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1113 1114 1115
	unsigned int scan, floor;
	unsigned int windows = 1;

1116 1117
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1118 1119 1120 1121 1122 1123
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1124 1125 1126 1127
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;
1128
	struct numa_group *ng;
1129 1130

	/* Scale the maximum scan period with the amount of shared memory. */
1131 1132 1133
	rcu_read_lock();
	ng = rcu_dereference(p->numa_group);
	if (ng) {
1134 1135 1136 1137 1138 1139 1140
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}
1141
	rcu_read_unlock();
1142 1143 1144 1145

	return max(smin, period);
}

1146 1147
static unsigned int task_scan_max(struct task_struct *p)
{
1148 1149
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1150
	struct numa_group *ng;
1151 1152 1153

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1154 1155

	/* Scale the maximum scan period with the amount of shared memory. */
1156 1157
	ng = deref_curr_numa_group(p);
	if (ng) {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1169 1170 1171
	return max(smin, smax);
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
1189
	RCU_INIT_POINTER(p->numa_group, NULL);
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1225 1226 1227 1228 1229 1230 1231 1232 1233
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1234 1235
pid_t task_numa_group_id(struct task_struct *p)
{
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	struct numa_group *ng;
	pid_t gid = 0;

	rcu_read_lock();
	ng = rcu_dereference(p->numa_group);
	if (ng)
		gid = ng->gid;
	rcu_read_unlock();

	return gid;
1246 1247
}

1248
/*
1249
 * The averaged statistics, shared & private, memory & CPU,
1250 1251 1252 1253 1254
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1255
{
1256
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1257 1258 1259 1260
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1261
	if (!p->numa_faults)
1262 1263
		return 0;

1264 1265
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1266 1267
}

1268 1269
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
1270 1271 1272
	struct numa_group *ng = deref_task_numa_group(p);

	if (!ng)
1273 1274
		return 0;

1275 1276
	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1277 1278
}

1279 1280
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1281 1282
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1358
					dist >= maxdist)
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1386 1387 1388 1389 1390 1391
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1392 1393
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1394
{
1395
	unsigned long faults, total_faults;
1396

1397
	if (!p->numa_faults)
1398 1399 1400 1401 1402 1403 1404
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1405
	faults = task_faults(p, nid);
1406 1407
	faults += score_nearby_nodes(p, nid, dist, true);

1408
	return 1000 * faults / total_faults;
1409 1410
}

1411 1412
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1413
{
1414
	struct numa_group *ng = deref_task_numa_group(p);
1415 1416
	unsigned long faults, total_faults;

1417
	if (!ng)
1418 1419
		return 0;

1420
	total_faults = ng->total_faults;
1421 1422

	if (!total_faults)
1423 1424
		return 0;

1425
	faults = group_faults(p, nid);
1426 1427
	faults += score_nearby_nodes(p, nid, dist, false);

1428
	return 1000 * faults / total_faults;
1429 1430
}

1431 1432 1433
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
1434
	struct numa_group *ng = deref_curr_numa_group(p);
1435 1436 1437 1438
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);

	/*
	 * Allow first faults or private faults to migrate immediately early in
	 * the lifetime of a task. The magic number 4 is based on waiting for
	 * two full passes of the "multi-stage node selection" test that is
	 * executed below.
	 */
	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
		return true;
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1481 1482
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1483
	 */
1484 1485
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1486 1487 1488
		return true;

	/*
1489 1490 1491 1492 1493 1494
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1495
	 */
1496 1497
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1498 1499
}

1500
static unsigned long weighted_cpuload(struct rq *rq);
1501
static unsigned long capacity_of(int cpu);
1502

1503
/* Cached statistics for all CPUs within a node */
1504 1505
struct numa_stats {
	unsigned long load;
1506 1507

	/* Total compute capacity of CPUs on a node */
1508
	unsigned long compute_capacity;
1509

1510
	unsigned int nr_running;
1511
};
1512

1513 1514 1515 1516 1517
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1518 1519
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1520 1521 1522 1523 1524 1525

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1526
		ns->load += weighted_cpuload(rq);
1527
		ns->compute_capacity += capacity_of(cpu);
1528 1529

		cpus++;
1530 1531
	}

1532 1533 1534 1535 1536
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1537
	 * We'll detect a huge imbalance and bail there.
1538 1539 1540 1541
	 */
	if (!cpus)
		return;

1542 1543 1544 1545
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

1546
	capacity = min_t(unsigned, capacity,
1547
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1548 1549
}

1550 1551
struct task_numa_env {
	struct task_struct *p;
1552

1553 1554
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1555

1556
	struct numa_stats src_stats, dst_stats;
1557

1558
	int imbalance_pct;
1559
	int dist;
1560 1561 1562

	struct task_struct *best_task;
	long best_imp;
1563 1564 1565
	int best_cpu;
};

1566 1567 1568
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	struct rq *rq = cpu_rq(env->dst_cpu);

	/* Bail out if run-queue part of active NUMA balance. */
	if (xchg(&rq->numa_migrate_on, 1))
		return;

	/*
	 * Clear previous best_cpu/rq numa-migrate flag, since task now
	 * found a better CPU to move/swap.
	 */
	if (env->best_cpu != -1) {
		rq = cpu_rq(env->best_cpu);
		WRITE_ONCE(rq->numa_migrate_on, 0);
	}

1584 1585
	if (env->best_task)
		put_task_struct(env->best_task);
1586 1587
	if (p)
		get_task_struct(p);
1588 1589 1590 1591 1592 1593

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1594
static bool load_too_imbalanced(long src_load, long dst_load,
1595 1596
				struct task_numa_env *env)
{
1597 1598
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1610

1611
	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1612

1613
	orig_src_load = env->src_stats.load;
1614
	orig_dst_load = env->dst_stats.load;
1615

1616
	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1617 1618 1619

	/* Would this change make things worse? */
	return (imb > old_imb);
1620 1621
}

1622 1623 1624 1625 1626 1627 1628
/*
 * Maximum NUMA importance can be 1998 (2*999);
 * SMALLIMP @ 30 would be close to 1998/64.
 * Used to deter task migration.
 */
#define SMALLIMP	30

1629 1630 1631 1632 1633 1634
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1635
static void task_numa_compare(struct task_numa_env *env,
1636
			      long taskimp, long groupimp, bool maymove)
1637
{
1638
	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1639
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1640
	long imp = p_ng ? groupimp : taskimp;
1641
	struct task_struct *cur;
1642
	long src_load, dst_load;
1643
	int dist = env->dist;
1644 1645
	long moveimp = imp;
	long load;
1646

1647 1648 1649
	if (READ_ONCE(dst_rq->numa_migrate_on))
		return;

1650
	rcu_read_lock();
1651 1652
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1653 1654
		cur = NULL;

1655 1656 1657 1658 1659 1660 1661
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1662
	if (!cur) {
1663
		if (maymove && moveimp >= env->best_imp)
1664 1665 1666 1667 1668
			goto assign;
		else
			goto unlock;
	}

1669 1670 1671 1672
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1673
	 * the value is, the more remote accesses that would be expected to
1674 1675
	 * be incurred if the tasks were swapped.
	 */
1676 1677 1678
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1679

1680 1681 1682 1683
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
1684 1685
	cur_ng = rcu_dereference(cur->numa_group);
	if (cur_ng == p_ng) {
1686 1687
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1688
		/*
1689 1690
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1691
		 */
1692
		if (cur_ng)
1693 1694 1695 1696 1697 1698
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
1699
		if (cur_ng && p_ng)
1700 1701 1702 1703 1704
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1705 1706
	}

1707
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1708
		imp = moveimp;
1709
		cur = NULL;
1710
		goto assign;
1711
	}
1712

1713 1714 1715 1716 1717 1718 1719 1720 1721
	/*
	 * If the NUMA importance is less than SMALLIMP,
	 * task migration might only result in ping pong
	 * of tasks and also hurt performance due to cache
	 * misses.
	 */
	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
		goto unlock;

1722 1723 1724
	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1725 1726 1727 1728
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1729 1730
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1731

1732
	if (load_too_imbalanced(src_load, dst_load, env))
1733 1734
		goto unlock;

1735
assign:
1736 1737 1738 1739
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1740 1741
	if (!cur) {
		/*
1742
		 * select_idle_siblings() uses an per-CPU cpumask that
1743 1744 1745
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1746 1747
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1748 1749
		local_irq_enable();
	}
1750

1751 1752 1753 1754 1755
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1756 1757
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1758
{
1759 1760
	long src_load, dst_load, load;
	bool maymove = false;
1761 1762
	int cpu;

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1773 1774
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1775
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1776 1777 1778
			continue;

		env->dst_cpu = cpu;
1779
		task_numa_compare(env, taskimp, groupimp, maymove);
1780 1781 1782
	}
}

1783 1784 1785 1786
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1787

1788
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1789
		.src_nid = task_node(p),
1790 1791 1792 1793 1794

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1795
		.best_cpu = -1,
1796
	};
1797
	unsigned long taskweight, groupweight;
1798
	struct sched_domain *sd;
1799 1800
	long taskimp, groupimp;
	struct numa_group *ng;
1801
	struct rq *best_rq;
1802
	int nid, ret, dist;
1803

1804
	/*
1805 1806 1807 1808 1809 1810
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1811 1812
	 */
	rcu_read_lock();
1813
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1814 1815
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1816 1817
	rcu_read_unlock();

1818 1819 1820 1821 1822 1823 1824
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1825
		sched_setnuma(p, task_node(p));
1826 1827 1828
		return -EINVAL;
	}

1829
	env.dst_nid = p->numa_preferred_nid;
1830 1831 1832 1833 1834 1835
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1836
	update_numa_stats(&env.dst_stats, env.dst_nid);
1837

1838
	/* Try to find a spot on the preferred nid. */
1839
	task_numa_find_cpu(&env, taskimp, groupimp);
1840

1841 1842 1843 1844 1845 1846 1847
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1848 1849
	ng = deref_curr_numa_group(p);
	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1850 1851 1852
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1853

1854
			dist = node_distance(env.src_nid, env.dst_nid);
1855 1856 1857 1858 1859
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1860

1861
			/* Only consider nodes where both task and groups benefit */
1862 1863
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1864
			if (taskimp < 0 && groupimp < 0)
1865 1866
				continue;

1867
			env.dist = dist;
1868 1869
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1870
			task_numa_find_cpu(&env, taskimp, groupimp);
1871 1872 1873
		}
	}

1874 1875 1876 1877 1878 1879 1880 1881
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1882
	if (ng) {
1883 1884 1885
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
1886
			nid = cpu_to_node(env.best_cpu);
1887

1888 1889
		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
1890 1891 1892 1893 1894
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1895

1896
	best_rq = cpu_rq(env.best_cpu);
1897
	if (env.best_task == NULL) {
1898
		ret = migrate_task_to(p, env.best_cpu);
1899
		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1900 1901
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1902 1903 1904
		return ret;
	}

1905
	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1906
	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1907

1908 1909
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1910 1911
	put_task_struct(env.best_task);
	return ret;
1912 1913
}

1914 1915 1916
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1917 1918
	unsigned long interval = HZ;

1919
	/* This task has no NUMA fault statistics yet */
1920
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1921 1922
		return;

1923
	/* Periodically retry migrating the task to the preferred node */
1924
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1925
	p->numa_migrate_retry = jiffies + interval;
1926 1927

	/* Success if task is already running on preferred CPU */
1928
	if (task_node(p) == p->numa_preferred_nid)
1929 1930 1931
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1932
	task_numa_migrate(p);
1933 1934
}

1935
/*
1936
 * Find out how many nodes on the workload is actively running on. Do this by
1937 1938 1939 1940
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1941
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1942 1943
{
	unsigned long faults, max_faults = 0;
1944
	int nid, active_nodes = 0;
1945 1946 1947 1948 1949 1950 1951 1952 1953

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1954 1955
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1956
	}
1957 1958 1959

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1960 1961
}

1962 1963 1964
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1965 1966 1967
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1968 1969
 */
#define NUMA_PERIOD_SLOTS 10
1970
#define NUMA_PERIOD_THRESHOLD 7
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1982
	int lr_ratio, ps_ratio;
1983 1984 1985 1986 1987 1988 1989 1990
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1991 1992 1993
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1994
	 */
1995
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2031 2032 2033 2034 2035
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2036 2037 2038
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2039
		 */
2040 2041
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2042 2043 2044 2045 2046 2047 2048
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
2066 2067 2068 2069

		/* Avoid time going backwards, prevent potential divide error: */
		if (unlikely((s64)*period < 0))
			*period = 0;
2070
	} else {
2071
		delta = p->se.avg.load_sum;
2072
		*period = LOAD_AVG_MAX;
2073 2074 2075 2076 2077 2078 2079 2080
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2128
		nodemask_t max_group = NODE_MASK_NONE;
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2162 2163
		if (!max_faults)
			break;
2164 2165 2166 2167 2168
		nodes = max_group;
	}
	return nid;
}

2169 2170
static void task_numa_placement(struct task_struct *p)
{
2171 2172
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
2173
	unsigned long fault_types[2] = { 0, 0 };
2174 2175
	unsigned long total_faults;
	u64 runtime, period;
2176
	spinlock_t *group_lock = NULL;
2177
	struct numa_group *ng;
2178

2179 2180 2181 2182 2183
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2184
	seq = READ_ONCE(p->mm->numa_scan_seq);
2185 2186 2187
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2188
	p->numa_scan_period_max = task_scan_max(p);
2189

2190 2191 2192 2193
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2194
	/* If the task is part of a group prevent parallel updates to group stats */
2195 2196 2197
	ng = deref_curr_numa_group(p);
	if (ng) {
		group_lock = &ng->lock;
2198
		spin_lock_irq(group_lock);
2199 2200
	}

2201 2202
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2203 2204
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2205
		unsigned long faults = 0, group_faults = 0;
2206
		int priv;
2207

2208
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2209
			long diff, f_diff, f_weight;
2210

2211 2212 2213 2214
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2215

2216
			/* Decay existing window, copy faults since last scan */
2217 2218 2219
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2220

2221 2222 2223 2224 2225 2226 2227 2228
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2229
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2230
				   (total_faults + 1);
2231 2232
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2233

2234 2235 2236
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2237
			p->total_numa_faults += diff;
2238
			if (ng) {
2239 2240 2241 2242 2243 2244 2245
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
2246 2247 2248 2249
				ng->faults[mem_idx] += diff;
				ng->faults_cpu[mem_idx] += f_diff;
				ng->total_faults += diff;
				group_faults += ng->faults[mem_idx];
2250
			}
2251 2252
		}

2253
		if (!ng) {
2254 2255 2256 2257 2258 2259
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
2260 2261
			max_nid = nid;
		}
2262 2263
	}

2264 2265
	if (ng) {
		numa_group_count_active_nodes(ng);
2266
		spin_unlock_irq(group_lock);
2267
		max_nid = preferred_group_nid(p, max_nid);
2268 2269
	}

2270 2271 2272 2273
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);
2274
	}
2275 2276

	update_task_scan_period(p, fault_types[0], fault_types[1]);
2277 2278
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2290 2291
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2292 2293 2294 2295 2296 2297 2298
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

2299
	if (unlikely(!deref_curr_numa_group(p))) {
2300
		unsigned int size = sizeof(struct numa_group) +
2301
				    4*nr_node_ids*sizeof(unsigned long);
2302 2303 2304 2305 2306 2307

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2308 2309
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2310
		spin_lock_init(&grp->lock);
2311
		grp->gid = p->pid;
2312
		/* Second half of the array tracks nids where faults happen */
2313 2314
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2315

2316
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2317
			grp->faults[i] = p->numa_faults[i];
2318

2319
		grp->total_faults = p->total_numa_faults;
2320

2321 2322 2323 2324 2325
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2326
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2327 2328

	if (!cpupid_match_pid(tsk, cpupid))
2329
		goto no_join;
2330 2331 2332

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2333
		goto no_join;
2334

2335
	my_grp = deref_curr_numa_group(p);
2336
	if (grp == my_grp)
2337
		goto no_join;
2338 2339 2340 2341 2342 2343

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2344
		goto no_join;
2345 2346 2347 2348 2349

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2350
		goto no_join;
2351

2352 2353 2354 2355 2356 2357 2358
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2359

2360 2361 2362
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2363
	if (join && !get_numa_group(grp))
2364
		goto no_join;
2365 2366 2367 2368 2369 2370

	rcu_read_unlock();

	if (!join)
		return;

2371 2372
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2373

2374
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2375 2376
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2377
	}
2378 2379
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2380 2381 2382 2383 2384

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2385
	spin_unlock_irq(&grp->lock);
2386 2387 2388 2389

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2390 2391 2392 2393 2394
	return;

no_join:
	rcu_read_unlock();
	return;
2395 2396
}

2397 2398 2399 2400 2401 2402 2403 2404
/*
 * Get rid of NUMA staticstics associated with a task (either current or dead).
 * If @final is set, the task is dead and has reached refcount zero, so we can
 * safely free all relevant data structures. Otherwise, there might be
 * concurrent reads from places like load balancing and procfs, and we should
 * reset the data back to default state without freeing ->numa_faults.
 */
void task_numa_free(struct task_struct *p, bool final)
2405
{
2406 2407
	/* safe: p either is current or is being freed by current */
	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2408
	unsigned long *numa_faults = p->numa_faults;
2409 2410
	unsigned long flags;
	int i;
2411

2412 2413 2414
	if (!numa_faults)
		return;

2415
	if (grp) {
2416
		spin_lock_irqsave(&grp->lock, flags);
2417
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2418
			grp->faults[i] -= p->numa_faults[i];
2419
		grp->total_faults -= p->total_numa_faults;
2420

2421
		grp->nr_tasks--;
2422
		spin_unlock_irqrestore(&grp->lock, flags);
2423
		RCU_INIT_POINTER(p->numa_group, NULL);
2424 2425 2426
		put_numa_group(grp);
	}

2427 2428 2429 2430 2431 2432 2433 2434
	if (final) {
		p->numa_faults = NULL;
		kfree(numa_faults);
	} else {
		p->total_numa_faults = 0;
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
			numa_faults[i] = 0;
	}
2435 2436
}

2437 2438 2439
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2440
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2441 2442
{
	struct task_struct *p = current;
2443
	bool migrated = flags & TNF_MIGRATED;
2444
	int cpu_node = task_node(current);
2445
	int local = !!(flags & TNF_FAULT_LOCAL);
2446
	struct numa_group *ng;
2447
	int priv;
2448

2449
	if (!static_branch_likely(&sched_numa_balancing))
2450 2451
		return;

2452 2453 2454 2455
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2456
	/* Allocate buffer to track faults on a per-node basis */
2457 2458
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2459
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2460

2461 2462
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2463
			return;
2464

2465
		p->total_numa_faults = 0;
2466
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2467
	}
2468

2469 2470 2471 2472 2473 2474 2475 2476
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2477
		if (!priv && !(flags & TNF_NO_GROUP))
2478
			task_numa_group(p, last_cpupid, flags, &priv);
2479 2480
	}

2481 2482 2483 2484 2485 2486
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2487
	ng = deref_curr_numa_group(p);
2488 2489 2490
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2491 2492
		local = 1;

2493 2494 2495 2496
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
2497 2498
	if (time_after(jiffies, p->numa_migrate_retry)) {
		task_numa_placement(p);
2499
		numa_migrate_preferred(p);
2500
	}
2501

I
Ingo Molnar 已提交
2502 2503
	if (migrated)
		p->numa_pages_migrated += pages;
2504 2505
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2506

2507 2508
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2509
	p->numa_faults_locality[local] += pages;
2510 2511
}

2512 2513
static void reset_ptenuma_scan(struct task_struct *p)
{
2514 2515 2516 2517 2518 2519 2520 2521
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2522
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2523 2524 2525
	p->mm->numa_scan_offset = 0;
}

2526 2527 2528 2529 2530 2531 2532 2533 2534
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2535
	u64 runtime = p->se.sum_exec_runtime;
2536
	struct vm_area_struct *vma;
2537
	unsigned long start, end;
2538
	unsigned long nr_pte_updates = 0;
2539
	long pages, virtpages;
2540

2541
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2555
	if (!mm->numa_next_scan) {
2556 2557
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2558 2559
	}

2560 2561 2562 2563 2564 2565 2566
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2567 2568
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2569
		p->numa_scan_period = task_scan_start(p);
2570
	}
2571

2572
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2573 2574 2575
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2576 2577 2578 2579 2580 2581
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2582 2583 2584
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2585
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2586 2587
	if (!pages)
		return;
2588

2589

2590 2591
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2592
	vma = find_vma(mm, start);
2593 2594
	if (!vma) {
		reset_ptenuma_scan(p);
2595
		start = 0;
2596 2597
		vma = mm->mmap;
	}
2598
	for (; vma; vma = vma->vm_next) {
2599
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2600
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2601
			continue;
2602
		}
2603

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2614 2615 2616 2617 2618 2619
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2620

2621 2622 2623 2624
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2625
			nr_pte_updates = change_prot_numa(vma, start, end);
2626 2627

			/*
2628 2629 2630 2631 2632 2633
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2634 2635 2636
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2637
			virtpages -= (end - start) >> PAGE_SHIFT;
2638

2639
			start = end;
2640
			if (pages <= 0 || virtpages <= 0)
2641
				goto out;
2642 2643

			cond_resched();
2644
		} while (end != vma->vm_end);
2645
	}
2646

2647
out:
2648
	/*
P
Peter Zijlstra 已提交
2649 2650 2651 2652
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2653 2654
	 */
	if (vma)
2655
		mm->numa_scan_offset = start;
2656 2657 2658
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
2683
	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2695
	if (now > curr->node_stamp + period) {
2696
		if (!curr->node_stamp)
2697
			curr->numa_scan_period = task_scan_start(curr);
2698
		curr->node_stamp += period;
2699 2700 2701 2702 2703 2704 2705

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2706

2707 2708 2709 2710 2711
static void update_scan_period(struct task_struct *p, int new_cpu)
{
	int src_nid = cpu_to_node(task_cpu(p));
	int dst_nid = cpu_to_node(new_cpu);

2712 2713 2714
	if (!static_branch_likely(&sched_numa_balancing))
		return;

2715 2716 2717
	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
		return;

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	if (src_nid == dst_nid)
		return;

	/*
	 * Allow resets if faults have been trapped before one scan
	 * has completed. This is most likely due to a new task that
	 * is pulled cross-node due to wakeups or load balancing.
	 */
	if (p->numa_scan_seq) {
		/*
		 * Avoid scan adjustments if moving to the preferred
		 * node or if the task was not previously running on
		 * the preferred node.
		 */
		if (dst_nid == p->numa_preferred_nid ||
		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
			return;
	}

	p->numa_scan_period = task_scan_start(p);
2738 2739
}

2740 2741 2742 2743
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2744 2745 2746 2747 2748 2749 2750 2751

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2752

2753 2754 2755 2756
static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}

2757 2758
#endif /* CONFIG_NUMA_BALANCING */

2759 2760 2761 2762
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2763
#ifdef CONFIG_SMP
2764 2765 2766 2767 2768 2769
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2770
#endif
2771 2772 2773 2774 2775 2776 2777
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2778
#ifdef CONFIG_SMP
2779 2780
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2781
		list_del_init(&se->group_node);
2782
	}
2783
#endif
2784 2785 2786
	cfs_rq->nr_running--;
}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2828 2829 2830 2831
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2832 2833 2834 2835 2836
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2837 2838 2839 2840 2841
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2868
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2869
			    unsigned long weight, unsigned long runnable)
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2880
	se->runnable_weight = runnable;
2881 2882 2883
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2884 2885 2886 2887 2888 2889 2890
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2907
	reweight_entity(cfs_rq, se, weight, weight);
2908 2909 2910
	load->inv_weight = sched_prio_to_wmult[prio];
}

2911
#ifdef CONFIG_FAIR_GROUP_SCHED
2912
#ifdef CONFIG_SMP
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2951
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2977 2978 2979 2980 2981 2982 2983 2984 2985
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2986
static long calc_group_shares(struct cfs_rq *cfs_rq)
2987
{
2988 2989 2990 2991
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2992

2993
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2994

2995
	tg_weight = atomic_long_read(&tg->load_avg);
2996

2997 2998 2999
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
3000

3001
	shares = (tg_shares * load);
3002 3003
	if (tg_weight)
		shares /= tg_weight;
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
3017
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3018
}
3019 3020

/*
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
3046 3047 3048
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
3049 3050 3051 3052 3053 3054 3055
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
3056 3057 3058 3059

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
3060

3061 3062
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
3063
#endif /* CONFIG_SMP */
3064

3065 3066
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

3067 3068 3069 3070 3071
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3072
{
3073 3074
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
3075

3076
	if (!gcfs_rq)
3077 3078
		return;

3079
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
3080
		return;
3081

3082
#ifndef CONFIG_SMP
3083
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3084 3085

	if (likely(se->load.weight == shares))
3086
		return;
3087
#else
3088 3089
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3090
#endif
P
Peter Zijlstra 已提交
3091

3092
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3093
}
3094

P
Peter Zijlstra 已提交
3095
#else /* CONFIG_FAIR_GROUP_SCHED */
3096
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3097 3098 3099 3100
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3101
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3102
{
3103 3104
	struct rq *rq = rq_of(cfs_rq);

3105
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3106 3107 3108
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3109
		 * a real problem.
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3120
		cpufreq_update_util(rq, flags);
3121 3122 3123
	}
}

3124
#ifdef CONFIG_SMP
3125
#ifdef CONFIG_FAIR_GROUP_SCHED
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3139
 * Updating tg's load_avg is necessary before update_cfs_share().
3140
 */
3141
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3142
{
3143
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3144

3145 3146 3147 3148 3149 3150
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3151 3152 3153
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3154
	}
3155
}
3156

3157
/*
3158
 * Called within set_task_rq() right before setting a task's CPU. The
3159 3160 3161 3162 3163 3164
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3165 3166 3167
	u64 p_last_update_time;
	u64 n_last_update_time;

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3178 3179
	if (!(se->avg.last_update_time && prev))
		return;
3180 3181

#ifndef CONFIG_64BIT
3182
	{
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3197
	}
3198
#else
3199 3200
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3201
#endif
3202 3203
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3204
}
3205

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3217 3218 3219
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3220 3221 3222 3223 3224 3225 3226 3227
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3228
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3229 3230 3231
 *
 * And per (1) we have:
 *
3232
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3251 3252 3253 3254 3255 3256
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3257
 *
3258
 * So we'll have to approximate.. :/
3259
 *
3260
 * Given the constraint:
3261
 *
3262
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3263
 *
3264 3265
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3266
 *
3267
 * On removal, we'll assume each task is equally runnable; which yields:
3268
 *
3269
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3270
 *
3271
 * XXX: only do this for the part of runnable > running ?
3272 3273 3274
 *
 */

3275
static inline void
3276
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3277 3278 3279 3280 3281 3282 3283
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3284 3285 3286 3287 3288 3289 3290 3291
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3302
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3303
{
3304 3305 3306 3307
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3308

3309 3310
	if (!runnable_sum)
		return;
3311

3312
	gcfs_rq->prop_runnable_sum = 0;
3313

3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3337
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3338 3339 3340 3341 3342 3343
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3344 3345
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3346

3347 3348
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3349

3350 3351 3352 3353
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3354

3355 3356
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3357 3358
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3359

3360 3361
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3362

3363
	if (se->on_rq) {
3364 3365
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3366 3367 3368
	}
}

3369
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3370
{
3371 3372
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3373 3374 3375 3376 3377
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3378
	struct cfs_rq *cfs_rq, *gcfs_rq;
3379 3380 3381 3382

	if (entity_is_task(se))
		return 0;

3383 3384
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3385 3386
		return 0;

3387 3388
	gcfs_rq->propagate = 0;

3389 3390
	cfs_rq = cfs_rq_of(se);

3391
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3392

3393 3394
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3395 3396 3397 3398

	return 1;
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3418
	if (gcfs_rq->propagate)
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3429
#else /* CONFIG_FAIR_GROUP_SCHED */
3430

3431
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3432 3433 3434 3435 3436 3437

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3438
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3439

3440
#endif /* CONFIG_FAIR_GROUP_SCHED */
3441

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3453 3454 3455 3456
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3457
 */
3458
static inline int
3459
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3460
{
3461
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3462
	struct sched_avg *sa = &cfs_rq->avg;
3463
	int decayed = 0;
3464

3465 3466
	if (cfs_rq->removed.nr) {
		unsigned long r;
3467
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3468 3469 3470 3471

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3472
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3473 3474 3475 3476
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3477
		sub_positive(&sa->load_avg, r);
3478
		sub_positive(&sa->load_sum, r * divider);
3479

3480
		r = removed_util;
3481
		sub_positive(&sa->util_avg, r);
3482
		sub_positive(&sa->util_sum, r * divider);
3483

3484
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3485 3486

		decayed = 1;
3487
	}
3488

3489
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3490

3491 3492 3493 3494
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3495

3496
	if (decayed)
3497
		cfs_rq_util_change(cfs_rq, 0);
3498

3499
	return decayed;
3500 3501
}

3502 3503 3504 3505
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
3506
 * @flags: migration hints
3507 3508 3509 3510
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3511
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3512
{
3513 3514 3515 3516 3517 3518 3519 3520 3521
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3522
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3541
	enqueue_load_avg(cfs_rq, se);
3542 3543
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3544 3545

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3546

3547
	cfs_rq_util_change(cfs_rq, flags);
3548 3549
}

3550 3551 3552 3553 3554 3555 3556 3557
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3558 3559
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3560
	dequeue_load_avg(cfs_rq, se);
3561 3562
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3563 3564

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3565

3566
	cfs_rq_util_change(cfs_rq, 0);
3567 3568
}

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3596 3597 3598 3599 3600 3601 3602 3603
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3604 3605 3606 3607 3608 3609
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3610
#ifndef CONFIG_64BIT
3611 3612
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3613
	u64 last_update_time_copy;
3614
	u64 last_update_time;
3615

3616 3617 3618 3619 3620
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3621 3622 3623

	return last_update_time;
}
3624
#else
3625 3626 3627 3628
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3629 3630
#endif

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3641
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3642 3643
}

3644 3645 3646 3647 3648 3649 3650
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3651
	unsigned long flags;
3652 3653

	/*
3654 3655 3656 3657 3658 3659 3660
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3661 3662
	 */

3663
	sync_entity_load_avg(se);
3664 3665 3666 3667 3668

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3669
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3670
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3671
}
3672

3673 3674
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3675
	return cfs_rq->avg.runnable_load_avg;
3676 3677 3678 3679 3680 3681 3682
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3683
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3684

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3712
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3738 3739 3740 3741
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3742 3743 3744 3745 3746 3747 3748 3749 3750
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3751 3752 3753 3754 3755 3756 3757 3758
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3759 3760 3761 3762
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3763
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3791 3792
#else /* CONFIG_SMP */

3793 3794
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3795
#define DO_ATTACH	0x0
3796

3797
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3798
{
3799
	cfs_rq_util_change(cfs_rq, 0);
3800 3801
}

3802
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3803

3804
static inline void
3805
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3806 3807 3808
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3809
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3810 3811 3812 3813
{
	return 0;
}

3814 3815 3816 3817 3818 3819 3820
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3821
#endif /* CONFIG_SMP */
3822

P
Peter Zijlstra 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3832
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3833 3834 3835
#endif
}

3836 3837 3838
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3839
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3840

3841 3842 3843 3844 3845 3846
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3847
	if (initial && sched_feat(START_DEBIT))
3848
		vruntime += sched_vslice(cfs_rq, se);
3849

3850
	/* sleeps up to a single latency don't count. */
3851
	if (!initial) {
3852
		unsigned long thresh = sysctl_sched_latency;
3853

3854 3855 3856 3857 3858 3859
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3860

3861
		vruntime -= thresh;
3862 3863
	}

3864
	/* ensure we never gain time by being placed backwards. */
3865
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3866 3867
}

3868 3869
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3882
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3883
			     "stat_blocked and stat_runtime require the "
3884
			     "kernel parameter schedstats=enable or "
3885 3886 3887 3888 3889
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3909
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3921
static void
3922
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3923
{
3924 3925 3926
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3927
	/*
3928 3929
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3930
	 */
3931
	if (renorm && curr)
3932 3933
		se->vruntime += cfs_rq->min_vruntime;

3934 3935
	update_curr(cfs_rq);

3936
	/*
3937 3938 3939 3940
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3941
	 */
3942 3943 3944
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3945 3946 3947 3948 3949 3950 3951 3952
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3953
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3954
	update_cfs_group(se);
3955
	enqueue_runnable_load_avg(cfs_rq, se);
3956
	account_entity_enqueue(cfs_rq, se);
3957

3958
	if (flags & ENQUEUE_WAKEUP)
3959
		place_entity(cfs_rq, se, 0);
3960

3961
	check_schedstat_required();
3962 3963
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3964
	if (!curr)
3965
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3966
	se->on_rq = 1;
3967

3968
	if (cfs_rq->nr_running == 1) {
3969
		list_add_leaf_cfs_rq(cfs_rq);
3970 3971
		check_enqueue_throttle(cfs_rq);
	}
3972 3973
}

3974
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3975
{
3976 3977
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3978
		if (cfs_rq->last != se)
3979
			break;
3980 3981

		cfs_rq->last = NULL;
3982 3983
	}
}
P
Peter Zijlstra 已提交
3984

3985 3986 3987 3988
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3989
		if (cfs_rq->next != se)
3990
			break;
3991 3992

		cfs_rq->next = NULL;
3993
	}
P
Peter Zijlstra 已提交
3994 3995
}

3996 3997 3998 3999
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4000
		if (cfs_rq->skip != se)
4001
			break;
4002 4003

		cfs_rq->skip = NULL;
4004 4005 4006
	}
}

P
Peter Zijlstra 已提交
4007 4008
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
4009 4010 4011 4012 4013
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
4014 4015 4016

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
4017 4018
}

4019
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4020

4021
static void
4022
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4023
{
4024 4025 4026 4027
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
4028 4029 4030 4031 4032 4033 4034 4035 4036

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
4037
	update_load_avg(cfs_rq, se, UPDATE_TG);
4038
	dequeue_runnable_load_avg(cfs_rq, se);
4039

4040
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
4041

P
Peter Zijlstra 已提交
4042
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4043

4044
	if (se != cfs_rq->curr)
4045
		__dequeue_entity(cfs_rq, se);
4046
	se->on_rq = 0;
4047
	account_entity_dequeue(cfs_rq, se);
4048 4049

	/*
4050 4051 4052 4053
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
4054
	 */
4055
	if (!(flags & DEQUEUE_SLEEP))
4056
		se->vruntime -= cfs_rq->min_vruntime;
4057

4058 4059 4060
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

4061
	update_cfs_group(se);
4062 4063 4064 4065 4066 4067 4068

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
4069
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4070
		update_min_vruntime(cfs_rq);
4071 4072 4073 4074 4075
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4076
static void
I
Ingo Molnar 已提交
4077
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4078
{
4079
	unsigned long ideal_runtime, delta_exec;
4080 4081
	struct sched_entity *se;
	s64 delta;
4082

P
Peter Zijlstra 已提交
4083
	ideal_runtime = sched_slice(cfs_rq, curr);
4084
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4085
	if (delta_exec > ideal_runtime) {
4086
		resched_curr(rq_of(cfs_rq));
4087 4088 4089 4090 4091
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4103 4104
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4105

4106 4107
	if (delta < 0)
		return;
4108

4109
	if (delta > ideal_runtime)
4110
		resched_curr(rq_of(cfs_rq));
4111 4112
}

4113
static void
4114
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4115
{
4116 4117 4118 4119 4120 4121 4122
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4123
		update_stats_wait_end(cfs_rq, se);
4124
		__dequeue_entity(cfs_rq, se);
4125
		update_load_avg(cfs_rq, se, UPDATE_TG);
4126 4127
	}

4128
	update_stats_curr_start(cfs_rq, se);
4129
	cfs_rq->curr = se;
4130

I
Ingo Molnar 已提交
4131 4132 4133 4134 4135
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
D
Dietmar Eggemann 已提交
4136 4137
	if (schedstat_enabled() &&
	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4138 4139 4140
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4141
	}
4142

4143
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4144 4145
}

4146 4147 4148
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4149 4150 4151 4152 4153 4154 4155
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4156 4157
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4158
{
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4170

4171 4172 4173 4174 4175
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4186 4187 4188
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4189

4190 4191 4192 4193 4194 4195
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4196 4197 4198 4199 4200 4201
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4202
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4203 4204

	return se;
4205 4206
}

4207
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4208

4209
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4210 4211 4212 4213 4214 4215
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4216
		update_curr(cfs_rq);
4217

4218 4219 4220
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4221
	check_spread(cfs_rq, prev);
4222

4223
	if (prev->on_rq) {
4224
		update_stats_wait_start(cfs_rq, prev);
4225 4226
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4227
		/* in !on_rq case, update occurred at dequeue */
4228
		update_load_avg(cfs_rq, prev, 0);
4229
	}
4230
	cfs_rq->curr = NULL;
4231 4232
}

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
DEFINE_STATIC_KEY_TRUE(sched_tick_update_load);

static void set_tick_update_load(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_tick_update_load);
	else
		static_branch_disable(&sched_tick_update_load);
}

int sysctl_tick_update_load(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_tick_update_load);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_tick_update_load(state);
	return err;
}

P
Peter Zijlstra 已提交
4263 4264
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4265 4266
{
	/*
4267
	 * Update run-time statistics of the 'current'.
4268
	 */
4269
	update_curr(cfs_rq);
4270

4271 4272 4273 4274 4275 4276 4277
	if (static_branch_likely(&sched_tick_update_load)) {
		/*
		 * Ensure that runnable average is periodically updated.
		 */
		update_load_avg(cfs_rq, curr, UPDATE_TG);
		update_cfs_group(curr);
	}
4278

P
Peter Zijlstra 已提交
4279 4280 4281 4282 4283
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4284
	if (queued) {
4285
		resched_curr(rq_of(cfs_rq));
4286 4287
		return;
	}
P
Peter Zijlstra 已提交
4288 4289 4290 4291 4292 4293 4294 4295
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4296
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4297
		check_preempt_tick(cfs_rq, curr);
4298 4299
}

4300 4301 4302 4303 4304 4305

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4306

4307
#ifdef CONFIG_JUMP_LABEL
4308
static struct static_key __cfs_bandwidth_used;
4309 4310 4311

static inline bool cfs_bandwidth_used(void)
{
4312
	return static_key_false(&__cfs_bandwidth_used);
4313 4314
}

4315
void cfs_bandwidth_usage_inc(void)
4316
{
4317
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4318 4319 4320 4321
}

void cfs_bandwidth_usage_dec(void)
{
4322
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4323
}
4324
#else /* CONFIG_JUMP_LABEL */
4325 4326 4327 4328 4329
static bool cfs_bandwidth_used(void)
{
	return true;
}

4330 4331
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4332
#endif /* CONFIG_JUMP_LABEL */
4333

4334 4335 4336 4337 4338 4339 4340 4341
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4342 4343 4344 4345 4346 4347

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4348
/*
4349 4350 4351
 * Replenish runtime according to assigned quota. We use sched_clock_cpu
 * directly instead of rq->clock to avoid adding additional synchronization
 * around rq->lock.
P
Paul Turner 已提交
4352 4353 4354
 *
 * requires cfs_b->lock
 */
4355
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4356
{
4357 4358
	if (cfs_b->quota != RUNTIME_INF)
		cfs_b->runtime = cfs_b->quota;
P
Paul Turner 已提交
4359 4360
}

4361 4362 4363 4364 4365
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4366 4367 4368 4369
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4370
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4371

4372
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4373 4374
}

4375 4376
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4377 4378 4379
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4380
	u64 amount = 0, min_amount;
4381 4382 4383 4384 4385 4386 4387

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4388
	else {
P
Peter Zijlstra 已提交
4389
		start_cfs_bandwidth(cfs_b);
4390 4391 4392 4393 4394 4395

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4396 4397 4398 4399
	}
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
4400 4401

	return cfs_rq->runtime_remaining > 0;
4402 4403
}

4404
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4405 4406
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4407
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4408 4409

	if (likely(cfs_rq->runtime_remaining > 0))
4410 4411
		return;

4412 4413
	if (cfs_rq->throttled)
		return;
4414 4415 4416 4417 4418
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4419
		resched_curr(rq_of(cfs_rq));
4420 4421
}

4422
static __always_inline
4423
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4424
{
4425
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4426 4427 4428 4429 4430
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4431 4432
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4433
	return cfs_bandwidth_used() && cfs_rq->throttled;
4434 4435
}

4436 4437 4438
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4439
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4466
		/* adjust cfs_rq_clock_task() */
4467
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4468
					     cfs_rq->throttled_clock_task;
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4479 4480
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4481
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4482 4483 4484 4485 4486
	cfs_rq->throttle_count++;

	return 0;
}

4487
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4488 4489 4490 4491 4492
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4493
	bool empty;
4494 4495 4496

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4497
	/* freeze hierarchy runnable averages while throttled */
4498 4499 4500
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4501 4502 4503 4504 4505 4506 4507

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;
4508 4509 4510
		if (dequeue) {
			if (se->my_q != cfs_rq)
				cgroup_idle_start(se);
4511
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4512
		}
4513 4514 4515 4516 4517 4518 4519
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4520
		sub_nr_running(rq, task_delta);
4521 4522

	cfs_rq->throttled = 1;
4523
	cfs_rq->throttled_clock = rq_clock(rq);
4524
	raw_spin_lock(&cfs_b->lock);
4525
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4526

4527 4528
	/*
	 * Add to the _head_ of the list, so that an already-started
4529 4530
	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
	 * not running add to the tail so that later runqueues don't get starved.
4531
	 */
4532 4533 4534 4535
	if (cfs_b->distribute_running)
		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	else
		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4536 4537 4538 4539 4540 4541 4542 4543

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4544 4545 4546
	raw_spin_unlock(&cfs_b->lock);
}

4547
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4548
{
4549
	struct cfs_rq *bottom_cfs_rq = cfs_rq;
4550 4551 4552 4553 4554 4555
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4556
	se = cfs_rq->tg->se[cpu_of(rq)];
4557 4558

	cfs_rq->throttled = 0;
4559 4560 4561

	update_rq_clock(rq);

4562
	raw_spin_lock(&cfs_b->lock);
4563
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4564 4565 4566
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4567 4568 4569
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4570 4571 4572 4573 4574 4575 4576 4577 4578
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
4579 4580 4581
		if (enqueue) {
			if (se->my_q != bottom_cfs_rq)
				cgroup_idle_end(se);
4582
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4583
		}
4584 4585 4586 4587 4588 4589 4590
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4591
		add_nr_running(rq, task_delta);
4592

4593
	/* Determine whether we need to wake up potentially idle CPU: */
4594
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4595
		resched_curr(rq);
4596 4597
}

4598
static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4599 4600
{
	struct cfs_rq *cfs_rq;
4601
	u64 runtime, remaining = 1;
4602 4603 4604 4605 4606

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4607
		struct rq_flags rf;
4608

4609
		rq_lock(rq, &rf);
4610 4611 4612
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

4613 4614 4615
		/* By the above check, this should never be true */
		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);

4616
		raw_spin_lock(&cfs_b->lock);
4617
		runtime = -cfs_rq->runtime_remaining + 1;
4618 4619 4620 4621 4622
		if (runtime > cfs_b->runtime)
			runtime = cfs_b->runtime;
		cfs_b->runtime -= runtime;
		remaining = cfs_b->runtime;
		raw_spin_unlock(&cfs_b->lock);
4623 4624 4625 4626 4627 4628 4629 4630

		cfs_rq->runtime_remaining += runtime;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4631
		rq_unlock(rq, &rf);
4632 4633 4634 4635 4636 4637 4638

		if (!remaining)
			break;
	}
	rcu_read_unlock();
}

4639 4640 4641 4642 4643 4644 4645 4646
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4647
	int throttled;
4648 4649 4650

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4651
		goto out_deactivate;
4652

4653
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4654
	cfs_b->nr_periods += overrun;
4655

4656 4657 4658 4659 4660 4661
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4662 4663 4664

	__refill_cfs_bandwidth_runtime(cfs_b);

4665 4666 4667
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4668
		return 0;
4669 4670
	}

4671 4672 4673
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4674
	/*
4675
	 * This check is repeated as we release cfs_b->lock while we unthrottle.
4676
	 */
4677 4678
	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
		cfs_b->distribute_running = 1;
4679 4680
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
4681
		distribute_cfs_runtime(cfs_b);
4682 4683
		raw_spin_lock(&cfs_b->lock);

4684
		cfs_b->distribute_running = 0;
4685 4686
		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
	}
4687

4688 4689 4690 4691 4692 4693 4694
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4695

4696 4697 4698 4699
	return 0;

out_deactivate:
	return 1;
4700
}
4701

4702 4703 4704 4705 4706 4707 4708
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4709 4710 4711 4712
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4713
 * hrtimer base being cleared by hrtimer_start. In the case of
4714 4715
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

4741 4742 4743 4744 4745
	/* don't push forwards an existing deferred unthrottle */
	if (cfs_b->slack_started)
		return;
	cfs_b->slack_started = true;

P
Peter Zijlstra 已提交
4746 4747 4748
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
4761
	if (cfs_b->quota != RUNTIME_INF) {
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4777 4778 4779
	if (!cfs_bandwidth_used())
		return;

4780
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();

	/* confirm we're still not at a refresh boundary */
4795
	raw_spin_lock(&cfs_b->lock);
4796
	cfs_b->slack_started = false;
4797 4798 4799 4800 4801
	if (cfs_b->distribute_running) {
		raw_spin_unlock(&cfs_b->lock);
		return;
	}

4802 4803
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4804
		return;
4805
	}
4806

4807
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4808
		runtime = cfs_b->runtime;
4809

4810 4811 4812
	if (runtime)
		cfs_b->distribute_running = 1;

4813 4814 4815 4816 4817
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

4818
	distribute_cfs_runtime(cfs_b);
4819 4820

	raw_spin_lock(&cfs_b->lock);
4821
	cfs_b->distribute_running = 0;
4822 4823 4824
	raw_spin_unlock(&cfs_b->lock);
}

4825 4826 4827 4828 4829 4830 4831
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4832 4833 4834
	if (!cfs_bandwidth_used())
		return;

4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4863
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4864 4865
}

4866
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4867
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4868
{
4869
	if (!cfs_bandwidth_used())
4870
		return false;
4871

4872
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4873
		return false;
4874 4875 4876 4877 4878 4879

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4880
		return true;
4881 4882

	throttle_cfs_rq(cfs_rq);
4883
	return true;
4884
}
4885 4886 4887 4888 4889

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4890

4891 4892 4893 4894 4895
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

4896 4897
extern const u64 max_cfs_quota_period;

4898 4899 4900 4901 4902 4903
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;
4904
	int count = 0;
4905

4906
	raw_spin_lock(&cfs_b->lock);
4907
	for (;;) {
P
Peter Zijlstra 已提交
4908
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4909 4910 4911
		if (!overrun)
			break;

4912 4913 4914
		if (++count > 3) {
			u64 new, old = ktime_to_ns(cfs_b->period);

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
			/*
			 * Grow period by a factor of 2 to avoid losing precision.
			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
			 * to fail.
			 */
			new = old * 2;
			if (new < max_cfs_quota_period) {
				cfs_b->period = ns_to_ktime(new);
				cfs_b->quota *= 2;

				pr_warn_ratelimited(
	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
					smp_processor_id(),
					div_u64(new, NSEC_PER_USEC),
					div_u64(cfs_b->quota, NSEC_PER_USEC));
			} else {
				pr_warn_ratelimited(
	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
					smp_processor_id(),
					div_u64(old, NSEC_PER_USEC),
					div_u64(cfs_b->quota, NSEC_PER_USEC));
			}
4937 4938 4939 4940 4941

			/* reset count so we don't come right back in here */
			count = 0;
		}

4942 4943
		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4944 4945
	if (idle)
		cfs_b->period_active = 0;
4946
	raw_spin_unlock(&cfs_b->lock);
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4959
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4960 4961 4962
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4963
	cfs_b->distribute_running = 0;
4964
	cfs_b->slack_started = false;
4965 4966 4967 4968 4969 4970 4971 4972
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4973
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4974
{
P
Peter Zijlstra 已提交
4975
	lockdep_assert_held(&cfs_b->lock);
4976

4977 4978 4979 4980
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
4981
	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4982
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4983 4984 4985 4986
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4987 4988 4989 4990
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4991 4992 4993 4994
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4995
/*
4996
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4997 4998 4999 5000 5001 5002
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
5003 5004
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
5005
	struct task_group *tg;
5006

5007 5008 5009 5010 5011 5012
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5013 5014 5015 5016 5017

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
5018
	rcu_read_unlock();
5019 5020
}

5021
/* cpu offline callback */
5022
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5023
{
5024 5025 5026 5027 5028 5029 5030
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5031 5032 5033 5034 5035 5036 5037 5038

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
5039
		cfs_rq->runtime_remaining = 1;
5040
		/*
5041
		 * Offline rq is schedulable till CPU is completely disabled
5042 5043 5044 5045
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

5046 5047 5048
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
5049
	rcu_read_unlock();
5050 5051 5052
}

#else /* CONFIG_CFS_BANDWIDTH */
5053 5054
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
5055
	return rq_clock_task(rq_of(cfs_rq));
5056 5057
}

5058
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5059
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5060
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5061
static inline void sync_throttle(struct task_group *tg, int cpu) {}
5062
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5063 5064 5065 5066 5067

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5079 5080 5081 5082 5083

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5084 5085
#endif

5086 5087 5088 5089 5090
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5091
static inline void update_runtime_enabled(struct rq *rq) {}
5092
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5093 5094 5095

#endif /* CONFIG_CFS_BANDWIDTH */

5096 5097 5098 5099
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5100 5101 5102 5103 5104 5105
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5106
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5107

5108
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5109 5110 5111 5112 5113 5114
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5115
				resched_curr(rq);
P
Peter Zijlstra 已提交
5116 5117
			return;
		}
5118
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5119 5120
	}
}
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5131
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5132 5133 5134 5135 5136
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5137
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5138 5139 5140 5141
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5142 5143 5144 5145

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5146 5147
#endif

5148 5149 5150 5151 5152
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5153
static void
5154
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5155 5156
{
	struct cfs_rq *cfs_rq;
5157
	struct sched_entity *se = &p->se;
5158

5159 5160 5161 5162 5163 5164 5165 5166
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5167 5168 5169 5170 5171 5172
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5173
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5174

5175
	for_each_sched_entity(se) {
5176
		if (se->on_rq)
5177 5178
			break;
		cfs_rq = cfs_rq_of(se);
5179
		enqueue_entity(cfs_rq, se, flags);
5180

5181 5182 5183
		if (!entity_is_task(se))
			cgroup_idle_end(se);

5184 5185 5186 5187 5188
		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5189
		 */
5190 5191 5192 5193 5194
		if (cfs_rq_throttled(cfs_rq)) {
#ifdef CONFIG_FAIR_GROUP_SCHED
			if (cfs_rq->nr_running == 1)
				cgroup_idle_end(se->parent);
#endif
5195
			break;
5196
		}
5197
		cfs_rq->h_nr_running++;
5198

5199
		flags = ENQUEUE_WAKEUP;
5200
	}
P
Peter Zijlstra 已提交
5201

P
Peter Zijlstra 已提交
5202
	for_each_sched_entity(se) {
5203
		cfs_rq = cfs_rq_of(se);
5204
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5205

5206 5207 5208
		if (cfs_rq_throttled(cfs_rq))
			break;

5209
		update_load_avg(cfs_rq, se, UPDATE_TG);
5210
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5211 5212
	}

Y
Yuyang Du 已提交
5213
	if (!se)
5214
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5215

5216
	hrtick_update(rq);
5217 5218
}

5219 5220
static void set_next_buddy(struct sched_entity *se);

5221 5222 5223 5224 5225
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5226
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5227 5228
{
	struct cfs_rq *cfs_rq;
5229
	struct sched_entity *se = &p->se;
5230
	int task_sleep = flags & DEQUEUE_SLEEP;
5231 5232 5233

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5234
		dequeue_entity(cfs_rq, se, flags);
5235

5236 5237 5238
		if (!entity_is_task(se))
			cgroup_idle_start(se);

5239 5240 5241 5242 5243 5244
		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
5245 5246 5247 5248 5249
		if (cfs_rq_throttled(cfs_rq)) {
#ifdef CONFIG_FAIR_GROUP_SCHED
			if (!cfs_rq->nr_running)
				cgroup_idle_start(se->parent);
#endif
5250
			break;
5251
		}
5252
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5253

5254
		/* Don't dequeue parent if it has other entities besides us */
5255
		if (cfs_rq->load.weight) {
5256 5257
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5258 5259 5260 5261
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5262 5263
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5264
			break;
5265
		}
5266
		flags |= DEQUEUE_SLEEP;
5267
	}
P
Peter Zijlstra 已提交
5268

P
Peter Zijlstra 已提交
5269
	for_each_sched_entity(se) {
5270
		cfs_rq = cfs_rq_of(se);
5271
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5272

5273 5274 5275
		if (cfs_rq_throttled(cfs_rq))
			break;

5276
		update_load_avg(cfs_rq, se, UPDATE_TG);
5277
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5278 5279
	}

Y
Yuyang Du 已提交
5280
	if (!se)
5281
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5282

5283
	util_est_dequeue(&rq->cfs, p, task_sleep);
5284
	hrtick_update(rq);
5285 5286
}

5287
#ifdef CONFIG_SMP
5288 5289 5290 5291 5292

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5293
#ifdef CONFIG_NO_HZ_COMMON
5294 5295 5296 5297

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5298
	int has_blocked;		/* Idle CPUS has blocked load */
5299
	unsigned long next_balance;     /* in jiffy units */
5300
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5301 5302
} nohz ____cacheline_aligned;

5303
#endif /* CONFIG_NO_HZ_COMMON */
5304

5305
static unsigned long weighted_cpuload(struct rq *rq)
5306
{
5307
	return cfs_rq_runnable_load_avg(&rq->cfs);
5308 5309
}

5310
static unsigned long capacity_of(int cpu)
5311
{
5312
	return cpu_rq(cpu)->cpu_capacity;
5313 5314
}

5315 5316 5317 5318 5319
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5320 5321 5322
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5323
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5324
	unsigned long load_avg = weighted_cpuload(rq);
5325 5326

	if (nr_running)
5327
		return load_avg / nr_running;
5328 5329 5330 5331

	return 0;
}

P
Peter Zijlstra 已提交
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5349 5350
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5351
 *
M
Mike Galbraith 已提交
5352
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5365
 */
5366 5367
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5368 5369
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5370
	int factor = this_cpu_read(sd_llc_size);
5371

M
Mike Galbraith 已提交
5372 5373 5374 5375 5376
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5377 5378
}

5379
/*
5380 5381 5382
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5383
 *
5384 5385
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5386 5387 5388 5389
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5390
 */
5391
static int
5392
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5393
{
5394 5395 5396 5397 5398
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5399 5400 5401 5402 5403 5404
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5405
	 */
5406 5407
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5408

5409
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5410
		return this_cpu;
5411

5412
	return nr_cpumask_bits;
5413 5414
}

5415
static int
5416 5417
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5418 5419 5420 5421
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5422 5423 5424 5425
	if (sched_feat(WA_STATIC_WEIGHT))
		this_eff_load =
			scale_load_down(cpu_rq(this_cpu)->cfs.load.weight);
	else
5426
		this_eff_load = weighted_cpuload(cpu_rq(this_cpu));
5427 5428

	if (sync) {
5429 5430 5431 5432 5433 5434
		unsigned long current_load;

		if (sched_feat(WA_STATIC_WEIGHT))
			current_load = task_h_load_static(current);
		else
			current_load = task_h_load(current);
5435

5436
		if (current_load > this_eff_load)
5437
			return this_cpu;
5438

5439
		this_eff_load -= current_load;
5440 5441
	}

5442 5443 5444 5445
	if (sched_feat(WA_STATIC_WEIGHT))
		task_load = task_h_load_static(p);
	else
		task_load = task_h_load(p);
5446

5447 5448 5449 5450
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5451

5452 5453 5454 5455
	if (sched_feat(WA_STATIC_WEIGHT))
		prev_eff_load =
			scale_load_down(cpu_rq(prev_cpu)->cfs.load.weight);
	else
5456
		prev_eff_load = weighted_cpuload(cpu_rq(prev_cpu));
5457 5458 5459 5460
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5461

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5472 5473
}

5474
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5475
		       int this_cpu, int prev_cpu, int sync)
5476
{
5477
	int target = nr_cpumask_bits;
5478

5479
	if (sched_feat(WA_IDLE))
5480
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5481

5482 5483
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5484

5485
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5486 5487
	if (target == nr_cpumask_bits)
		return prev_cpu;
5488

5489 5490 5491
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5492 5493
}

5494
static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5495

5496
static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5497
{
5498
	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5499 5500
}

5501 5502 5503
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5504 5505
 *
 * Assumes p is allowed on at least one CPU in sd.
5506 5507
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5508
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5509
		  int this_cpu, int sd_flag)
5510
{
5511
	struct sched_group *idlest = NULL, *group = sd->groups;
5512
	struct sched_group *most_spare_sg = NULL;
5513 5514 5515
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5516
	unsigned long most_spare = 0, this_spare = 0;
5517 5518 5519
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5520

5521
	do {
5522 5523
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5524 5525
		int local_group;
		int i;
5526

5527
		/* Skip over this group if it has no CPUs allowed */
5528
		if (!cpumask_intersects(sched_group_span(group),
5529
					&p->cpus_allowed))
5530 5531 5532
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5533
					       sched_group_span(group));
5534

5535 5536 5537 5538
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5539
		avg_load = 0;
5540
		runnable_load = 0;
5541
		max_spare_cap = 0;
5542

5543
		for_each_cpu(i, sched_group_span(group)) {
5544
			load = weighted_cpuload(cpu_rq(i));
5545 5546 5547
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5548

5549
			spare_cap = capacity_spare_without(i, p);
5550 5551 5552

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5553 5554
		}

5555
		/* Adjust by relative CPU capacity of the group */
5556 5557 5558 5559
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5560 5561

		if (local_group) {
5562 5563
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5564 5565
			this_spare = max_spare_cap;
		} else {
5566 5567 5568
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5569
				 * so we can pick this new CPU:
5570 5571 5572 5573 5574 5575 5576 5577
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5578
				 * blocked load into account through avg_load:
5579 5580
				 */
				min_avg_load = avg_load;
5581 5582 5583 5584 5585 5586 5587
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5588 5589 5590
		}
	} while (group = group->next, group != sd->groups);

5591 5592 5593 5594 5595 5596
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5597 5598 5599 5600
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5601
	 */
5602 5603 5604
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5605
	if (this_spare > task_util(p) / 2 &&
5606
	    imbalance_scale*this_spare > 100*most_spare)
5607
		return NULL;
5608 5609

	if (most_spare > task_util(p) / 2)
5610 5611
		return most_spare_sg;

5612
skip_spare:
5613 5614 5615
	if (!idlest)
		return NULL;

5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5628
	if (min_runnable_load > (this_runnable_load + imbalance))
5629
		return NULL;
5630 5631 5632 5633 5634

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5635 5636 5637 5638
	return idlest;
}

/*
5639
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5640 5641
 */
static int
5642
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5643 5644
{
	unsigned long load, min_load = ULONG_MAX;
5645 5646 5647 5648
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5649 5650
	int i;

5651 5652
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5653
		return cpumask_first(sched_group_span(group));
5654

5655
	/* Traverse only the allowed CPUs */
5656
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5657
		if (available_idle_cpu(i)) {
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5679
		} else if (shallowest_idle_cpu == -1) {
5680
			load = weighted_cpuload(cpu_rq(i));
5681
			if (load < min_load) {
5682 5683 5684
				min_load = load;
				least_loaded_cpu = i;
			}
5685 5686 5687
		}
	}

5688
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5689
}
5690

5691 5692 5693
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5694
	int new_cpu = cpu;
5695

5696 5697 5698
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5699
	/*
5700 5701
	 * We need task's util for capacity_spare_without, sync it up to
	 * prev_cpu's last_update_time.
5702 5703 5704 5705
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5723
		if (new_cpu == cpu) {
5724
			/* Now try balancing at a lower domain level of 'cpu': */
5725 5726 5727 5728
			sd = sd->child;
			continue;
		}

5729
		/* Now try balancing at a lower domain level of 'new_cpu': */
5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5744
#ifdef CONFIG_SCHED_SMT
5745
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5746
EXPORT_SYMBOL_GPL(sched_smt_present);
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5775
void __update_idle_core(struct rq *rq)
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5788
		if (!available_idle_cpu(cpu))
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5805
	int core, cpu;
5806

P
Peter Zijlstra 已提交
5807 5808 5809
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5810 5811 5812
	if (!test_idle_cores(target, false))
		return -1;

5813
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5814

5815
	for_each_cpu_wrap(core, cpus, target) {
5816 5817 5818 5819
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
5820
			if (!available_idle_cpu(cpu))
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5843 5844 5845
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5846
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5847
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5848
			continue;
5849
		if (available_idle_cpu(cpu))
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5874
 */
5875 5876
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5877
	struct sched_domain *this_sd;
5878
	u64 avg_cost, avg_idle;
5879 5880
	u64 time, cost;
	s64 delta;
5881
	int cpu, nr = INT_MAX;
5882

5883 5884 5885 5886
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

5887 5888 5889 5890
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5891 5892 5893 5894
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5895 5896
		return -1;

5897 5898 5899 5900 5901 5902 5903 5904
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

5905 5906
	time = local_clock();

5907
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5908 5909
		if (!--nr)
			return -1;
5910
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5911
			continue;
5912
		if (available_idle_cpu(cpu))
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5926
 */
5927
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5928
{
5929
	struct sched_domain *sd;
5930
	int i, recent_used_cpu;
5931

5932
	if (available_idle_cpu(target))
5933
		return target;
5934 5935

	/*
5936
	 * If the previous CPU is cache affine and idle, don't be stupid:
5937
	 */
5938
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
5939
		return prev;
5940

5941
	/* Check a recently used CPU as a potential idle candidate: */
5942 5943 5944 5945
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
5946
	    available_idle_cpu(recent_used_cpu) &&
5947 5948 5949
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
5950
		 * candidate for the next wake:
5951 5952 5953 5954 5955
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

5956
	sd = rcu_dereference(per_cpu(sd_llc, target));
5957 5958
	if (!sd)
		return target;
5959

5960 5961 5962
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5963

5964 5965 5966 5967 5968 5969 5970
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5971

5972 5973
	return target;
}
5974

5975 5976 5977 5978 5979 5980 5981
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
5992 5993 5994 5995 5996 5997 5998 5999
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6010 6011
 *
 * Return: the (estimated) utilization for the specified CPU
6012
 */
6013
static inline unsigned long cpu_util(int cpu)
6014
{
6015 6016 6017 6018 6019 6020 6021 6022
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6023

6024
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6025
}
6026

6027
/*
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
 * cpu_util_without: compute cpu utilization without any contributions from *p
 * @cpu: the CPU which utilization is requested
 * @p: the task which utilization should be discounted
 *
 * The utilization of a CPU is defined by the utilization of tasks currently
 * enqueued on that CPU as well as tasks which are currently sleeping after an
 * execution on that CPU.
 *
 * This method returns the utilization of the specified CPU by discounting the
 * utilization of the specified task, whenever the task is currently
 * contributing to the CPU utilization.
6039
 */
6040
static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6041
{
6042 6043
	struct cfs_rq *cfs_rq;
	unsigned int util;
6044 6045

	/* Task has no contribution or is new */
6046
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6047 6048
		return cpu_util(cpu);

6049 6050 6051
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

6052
	/* Discount task's util from CPU's util */
6053
	util -= min_t(unsigned int, util, task_util(p));
6054

6055 6056 6057 6058 6059 6060
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
6061
	 *      cpu_util_without = (cpu_util - task_util) = 0
6062 6063 6064 6065 6066 6067
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
6068
	 *      cpu_util_without = (cpu_util - task_util) >= 0
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
	if (sched_feat(UTIL_EST)) {
		unsigned int estimated =
			READ_ONCE(cfs_rq->avg.util_est.enqueued);

		/*
		 * Despite the following checks we still have a small window
		 * for a possible race, when an execl's select_task_rq_fair()
		 * races with LB's detach_task():
		 *
		 *   detach_task()
		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
		 *     ---------------------------------- A
		 *     deactivate_task()                   \
		 *       dequeue_task()                     + RaceTime
		 *         util_est_dequeue()              /
		 *     ---------------------------------- B
		 *
		 * The additional check on "current == p" it's required to
		 * properly fix the execl regression and it helps in further
		 * reducing the chances for the above race.
		 */
		if (unlikely(task_on_rq_queued(p) || current == p)) {
			estimated -= min_t(unsigned int, estimated,
					   (_task_util_est(p) | UTIL_AVG_UNCHANGED));
		}
		util = max(util, estimated);
	}
6108 6109 6110 6111 6112 6113 6114

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6115 6116
}

6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6135 6136 6137
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6138 6139 6140
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6141
/*
6142 6143 6144
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6145
 *
6146 6147
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6148
 *
6149
 * Returns the target CPU number.
6150 6151 6152
 *
 * preempt must be disabled.
 */
6153
static int
6154
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6155
{
6156
	struct sched_domain *tmp, *sd = NULL;
6157
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6158
	int new_cpu = prev_cpu;
6159
	int want_affine = 0;
6160
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6161

P
Peter Zijlstra 已提交
6162 6163
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6164
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6165
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6166
	}
6167

6168
	rcu_read_lock();
6169
	for_each_domain(cpu, tmp) {
6170
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6171
			break;
6172

6173
		/*
6174
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6175
		 * cpu is a valid SD_WAKE_AFFINE target.
6176
		 */
6177 6178
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6179 6180 6181 6182
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6183
			break;
6184
		}
6185

6186
		if (tmp->flags & sd_flag)
6187
			sd = tmp;
M
Mike Galbraith 已提交
6188 6189
		else if (!want_affine)
			break;
6190 6191
	}

6192 6193
	if (unlikely(sd)) {
		/* Slow path */
6194
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6195 6196 6197 6198 6199 6200 6201
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6202
	}
6203
	rcu_read_unlock();
6204

6205
	return new_cpu;
6206
}
6207

6208 6209
static void detach_entity_cfs_rq(struct sched_entity *se);

6210
/*
6211
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6212
 * cfs_rq_of(p) references at time of call are still valid and identify the
6213
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6214
 */
6215
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6216
{
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6262 6263 6264

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6265 6266

	/* We have migrated, no longer consider this task hot */
6267
	p->se.exec_start = 0;
6268 6269

	update_scan_period(p, new_cpu);
6270
}
6271 6272 6273 6274 6275

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6276 6277
#endif /* CONFIG_SMP */

6278
static unsigned long wakeup_gran(struct sched_entity *se)
6279 6280 6281 6282
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6283 6284
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6285 6286 6287 6288 6289 6290 6291 6292 6293
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6294
	 */
6295
	return calc_delta_fair(gran, se);
6296 6297
}

6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6320
	gran = wakeup_gran(se);
6321 6322 6323 6324 6325 6326
	if (vdiff > gran)
		return 1;

	return 0;
}

6327 6328
static void set_last_buddy(struct sched_entity *se)
{
6329 6330 6331
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6332 6333 6334
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6335
		cfs_rq_of(se)->last = se;
6336
	}
6337 6338 6339 6340
}

static void set_next_buddy(struct sched_entity *se)
{
6341 6342 6343
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6344 6345 6346
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6347
		cfs_rq_of(se)->next = se;
6348
	}
6349 6350
}

6351 6352
static void set_skip_buddy(struct sched_entity *se)
{
6353 6354
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6355 6356
}

6357 6358 6359
/*
 * Preempt the current task with a newly woken task if needed:
 */
6360
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6361 6362
{
	struct task_struct *curr = rq->curr;
6363
	struct sched_entity *se = &curr->se, *pse = &p->se;
6364
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6365
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6366
	int next_buddy_marked = 0;
6367

I
Ingo Molnar 已提交
6368 6369 6370
	if (unlikely(se == pse))
		return;

6371
	/*
6372
	 * This is possible from callers such as attach_tasks(), in which we
6373 6374 6375 6376 6377 6378 6379
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6380
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6381
		set_next_buddy(pse);
6382 6383
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6384

6385 6386 6387
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6388 6389 6390 6391 6392 6393
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6394 6395 6396 6397
	 */
	if (test_tsk_need_resched(curr))
		return;

6398 6399 6400 6401 6402
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6403
	/*
6404 6405
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6406
	 */
6407
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6408
		return;
6409

6410
	find_matching_se(&se, &pse);
6411
	update_curr(cfs_rq_of(se));
6412
	BUG_ON(!pse);
6413 6414 6415 6416 6417 6418 6419
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6420
		goto preempt;
6421
	}
6422

6423
	return;
6424

6425
preempt:
6426
	resched_curr(rq);
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6441 6442
}

6443
static struct task_struct *
6444
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6445 6446 6447
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6448
	struct task_struct *p;
6449
	int new_tasks;
6450

6451
again:
6452
	if (!cfs_rq->nr_running)
6453
		goto idle;
6454

6455
#ifdef CONFIG_FAIR_GROUP_SCHED
6456
	if (prev->sched_class != &fair_sched_class)
6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6476 6477 6478 6479 6480
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6481

6482 6483 6484
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6485
			 * Therefore the nr_running test will indeed
6486 6487
			 * be correct.
			 */
6488 6489 6490 6491 6492 6493
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6494
				goto simple;
6495
			}
6496
		}
6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6530
	goto done;
6531 6532
simple:
#endif
6533

6534
	put_prev_task(rq, prev);
6535

6536
	do {
6537
		se = pick_next_entity(cfs_rq, NULL);
6538
		set_next_entity(cfs_rq, se);
6539 6540 6541
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6542
	p = task_of(se);
6543

6544
done: __maybe_unused;
6545 6546 6547 6548 6549 6550 6551 6552 6553
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6554 6555
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6556 6557

	return p;
6558 6559

idle:
6560 6561
	new_tasks = idle_balance(rq, rf);

6562 6563 6564 6565 6566
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6567
	if (new_tasks < 0)
6568 6569
		return RETRY_TASK;

6570
	if (new_tasks > 0)
6571 6572 6573
		goto again;

	return NULL;
6574 6575 6576 6577 6578
}

/*
 * Account for a descheduled task:
 */
6579
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6580 6581 6582 6583 6584 6585
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6586
		put_prev_entity(cfs_rq, se);
6587 6588 6589
	}
}

6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6615 6616 6617 6618 6619
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6620
		rq_clock_skip_update(rq);
6621 6622 6623 6624 6625
	}

	set_skip_buddy(se);
}

6626 6627 6628 6629
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6630 6631
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6642
#ifdef CONFIG_SMP
6643
/**************************************************
P
Peter Zijlstra 已提交
6644 6645 6646 6647 6648
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6649
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6650 6651 6652 6653
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6654
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6655 6656 6657 6658
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6659
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6660
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6661 6662 6663 6664 6665 6666
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6667
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6668 6669 6670 6671 6672 6673
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6674
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6688
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6689
 * topology where each level pairs two lower groups (or better). This results
6690
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6691
 * tree to only the first of the previous level and we decrease the frequency
6692
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6693 6694 6695 6696 6697 6698 6699 6700
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6701
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6702 6703 6704 6705 6706 6707 6708
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6709
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6710 6711 6712
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6713
 *             log_2 n
P
Peter Zijlstra 已提交
6714 6715 6716 6717 6718 6719 6720
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6721
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6722 6723 6724 6725 6726 6727 6728 6729 6730
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6731
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6752
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6753 6754 6755 6756 6757 6758
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6759
 */
6760

6761 6762
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6763 6764
enum fbq_type { regular, remote, all };

6765
#define LBF_ALL_PINNED	0x01
6766
#define LBF_NEED_BREAK	0x02
6767 6768
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6769
#define LBF_NOHZ_STATS	0x10
6770
#define LBF_NOHZ_AGAIN	0x20
6771 6772 6773 6774 6775

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6776
	int			src_cpu;
6777 6778 6779 6780

	int			dst_cpu;
	struct rq		*dst_rq;

6781 6782
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6783
	enum cpu_idle_type	idle;
6784
	long			imbalance;
6785 6786 6787
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6788
	unsigned int		flags;
6789 6790 6791 6792

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6793 6794

	enum fbq_type		fbq_type;
6795
	struct list_head	tasks;
6796 6797
};

6798 6799 6800
/*
 * Is this task likely cache-hot:
 */
6801
static int task_hot(struct task_struct *p, struct lb_env *env)
6802 6803 6804
{
	s64 delta;

6805 6806
	lockdep_assert_held(&env->src_rq->lock);

6807 6808 6809 6810 6811 6812 6813 6814 6815
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6816
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6817 6818 6819 6820 6821 6822 6823 6824 6825
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6826
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6827 6828 6829 6830

	return delta < (s64)sysctl_sched_migration_cost;
}

6831
#ifdef CONFIG_NUMA_BALANCING
6832
/*
6833 6834 6835
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6836
 */
6837
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6838
{
6839
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6840 6841
	unsigned long src_weight, dst_weight;
	int src_nid, dst_nid, dist;
6842

6843
	if (!static_branch_likely(&sched_numa_balancing))
6844 6845
		return -1;

6846
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6847
		return -1;
6848 6849 6850 6851

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6852
	if (src_nid == dst_nid)
6853
		return -1;
6854

6855 6856 6857 6858 6859 6860 6861
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6862

6863 6864
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6865
		return 0;
6866

6867
	/* Leaving a core idle is often worse than degrading locality. */
6868
	if (env->idle == CPU_IDLE)
6869 6870
		return -1;

6871
	dist = node_distance(src_nid, dst_nid);
6872
	if (numa_group) {
6873 6874
		src_weight = group_weight(p, src_nid, dist);
		dst_weight = group_weight(p, dst_nid, dist);
6875
	} else {
6876 6877
		src_weight = task_weight(p, src_nid, dist);
		dst_weight = task_weight(p, dst_nid, dist);
6878 6879
	}

6880
	return dst_weight < src_weight;
6881 6882
}

6883
#else
6884
static inline int migrate_degrades_locality(struct task_struct *p,
6885 6886
					     struct lb_env *env)
{
6887
	return -1;
6888
}
6889 6890
#endif

6891 6892 6893 6894
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6895
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6896
{
6897
	int tsk_cache_hot;
6898 6899 6900

	lockdep_assert_held(&env->src_rq->lock);

6901 6902
	/*
	 * We do not migrate tasks that are:
6903
	 * 1) throttled_lb_pair, or
6904
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6905 6906
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6907
	 */
6908 6909 6910
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6911
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6912
		int cpu;
6913

6914
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6915

6916 6917
		env->flags |= LBF_SOME_PINNED;

6918
		/*
6919
		 * Remember if this task can be migrated to any other CPU in
6920 6921 6922
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
6923 6924
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
6925
		 */
6926
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6927 6928
			return 0;

6929
		/* Prevent to re-select dst_cpu via env's CPUs: */
6930
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6931
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6932
				env->flags |= LBF_DST_PINNED;
6933 6934 6935
				env->new_dst_cpu = cpu;
				break;
			}
6936
		}
6937

6938 6939
		return 0;
	}
6940 6941

	/* Record that we found atleast one task that could run on dst_cpu */
6942
	env->flags &= ~LBF_ALL_PINNED;
6943

6944
	if (task_running(env->src_rq, p)) {
6945
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6946 6947 6948 6949 6950
		return 0;
	}

	/*
	 * Aggressive migration if:
6951 6952 6953
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6954
	 */
6955 6956 6957
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6958

6959
	if (tsk_cache_hot <= 0 ||
6960
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6961
		if (tsk_cache_hot == 1) {
6962 6963
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6964
		}
6965 6966 6967
		return 1;
	}

6968
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6969
	return 0;
6970 6971
}

6972
/*
6973 6974 6975 6976 6977 6978 6979
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6980
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6981 6982 6983
	set_task_cpu(p, env->dst_cpu);
}

6984
/*
6985
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6986 6987
 * part of active balancing operations within "domain".
 *
6988
 * Returns a task if successful and NULL otherwise.
6989
 */
6990
static struct task_struct *detach_one_task(struct lb_env *env)
6991
{
6992
	struct task_struct *p;
6993

6994 6995
	lockdep_assert_held(&env->src_rq->lock);

6996 6997
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
6998 6999
		if (!can_migrate_task(p, env))
			continue;
7000

7001
		detach_task(p, env);
7002

7003
		/*
7004
		 * Right now, this is only the second place where
7005
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7006
		 * so we can safely collect stats here rather than
7007
		 * inside detach_tasks().
7008
		 */
7009
		schedstat_inc(env->sd->lb_gained[env->idle]);
7010
		return p;
7011
	}
7012
	return NULL;
7013 7014
}

7015 7016
static const unsigned int sched_nr_migrate_break = 32;

7017
/*
7018 7019
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7020
 *
7021
 * Returns number of detached tasks if successful and 0 otherwise.
7022
 */
7023
static int detach_tasks(struct lb_env *env)
7024
{
7025 7026
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7027
	unsigned long load;
7028 7029 7030
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7031

7032
	if (env->imbalance <= 0)
7033
		return 0;
7034

7035
	while (!list_empty(tasks)) {
7036 7037 7038 7039 7040 7041 7042
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7043
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7044

7045 7046
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7047
		if (env->loop > env->loop_max)
7048
			break;
7049 7050

		/* take a breather every nr_migrate tasks */
7051
		if (env->loop > env->loop_break) {
7052
			env->loop_break += sched_nr_migrate_break;
7053
			env->flags |= LBF_NEED_BREAK;
7054
			break;
7055
		}
7056

7057
		if (!can_migrate_task(p, env))
7058 7059 7060
			goto next;

		load = task_h_load(p);
7061

7062
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7063 7064
			goto next;

7065
		if ((load / 2) > env->imbalance)
7066
			goto next;
7067

7068 7069 7070 7071
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7072
		env->imbalance -= load;
7073 7074

#ifdef CONFIG_PREEMPT
7075 7076
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7077
		 * kernels will stop after the first task is detached to minimize
7078 7079
		 * the critical section.
		 */
7080
		if (env->idle == CPU_NEWLY_IDLE)
7081
			break;
7082 7083
#endif

7084 7085 7086 7087
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7088
		if (env->imbalance <= 0)
7089
			break;
7090 7091 7092

		continue;
next:
7093
		list_move(&p->se.group_node, tasks);
7094
	}
7095

7096
	/*
7097 7098 7099
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7100
	 */
7101
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7102

7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7114
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7115
	p->on_rq = TASK_ON_RQ_QUEUED;
7116 7117 7118 7119 7120 7121 7122 7123 7124
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7125 7126 7127
	struct rq_flags rf;

	rq_lock(rq, &rf);
7128
	update_rq_clock(rq);
7129
	attach_task(rq, p);
7130
	rq_unlock(rq, &rf);
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7141
	struct rq_flags rf;
7142

7143
	rq_lock(env->dst_rq, &rf);
7144
	update_rq_clock(env->dst_rq);
7145 7146 7147 7148

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7149

7150 7151 7152
		attach_task(env->dst_rq, p);
	}

7153
	rq_unlock(env->dst_rq, &rf);
7154 7155
}

7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7167
static inline bool others_have_blocked(struct rq *rq)
7168 7169 7170 7171
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7172 7173 7174
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7175
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7176 7177 7178 7179
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7180 7181 7182
	return false;
}

7183
#ifdef CONFIG_FAIR_GROUP_SCHED
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
DEFINE_STATIC_KEY_TRUE(sched_blocked_averages);

static void set_blocked_averages(bool enabled)
{
	if (enabled)
		static_branch_enable(&sched_blocked_averages);
	else
		static_branch_disable(&sched_blocked_averages);
}

int sysctl_blocked_averages(struct ctl_table *table, int write,
				void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = static_branch_likely(&sched_blocked_averages);

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_blocked_averages(state);
	return err;
}
7213

7214
static void update_blocked_averages(int cpu)
7215 7216
{
	struct rq *rq = cpu_rq(cpu);
7217
	struct cfs_rq *cfs_rq;
7218
	const struct sched_class *curr_class;
7219
	struct rq_flags rf;
7220
	bool done = true;
7221

7222 7223 7224
	if (!static_branch_unlikely(&sched_blocked_averages))
		return;

7225
	rq_lock_irqsave(rq, &rf);
7226
	update_rq_clock(rq);
7227

7228 7229 7230 7231
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7232
	for_each_leaf_cfs_rq(rq, cfs_rq) {
7233 7234
		struct sched_entity *se;

7235 7236 7237
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7238

7239
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7240
			update_tg_load_avg(cfs_rq, 0);
7241

7242 7243 7244
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7245
			update_load_avg(cfs_rq_of(se), se, 0);
7246

7247 7248
		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7249
			done = false;
7250
	}
7251 7252 7253 7254

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7255
	update_irq_load_avg(rq, 0);
7256
	/* Don't need periodic decay once load/util_avg are null */
7257
	if (others_have_blocked(rq))
7258
		done = false;
7259 7260 7261

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7262 7263
	if (done)
		rq->has_blocked_load = 0;
7264
#endif
7265
	rq_unlock_irqrestore(rq, &rf);
7266 7267
}

7268
/*
7269
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7270 7271 7272
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7273
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7274
{
7275 7276
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7277
	unsigned long now = jiffies;
7278
	unsigned long load;
7279

7280
	if (cfs_rq->last_h_load_update == now)
7281 7282
		return;

7283
	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7284 7285
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
7286
		WRITE_ONCE(cfs_rq->h_load_next, se);
7287 7288 7289
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7290

7291
	if (!se) {
7292
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7293 7294 7295
		cfs_rq->last_h_load_update = now;
	}

7296
	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7297
		load = cfs_rq->h_load;
7298 7299
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7300 7301 7302 7303
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7304 7305
}

7306
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7307
{
7308
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7309

7310
	update_cfs_rq_h_load(cfs_rq);
7311
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7312
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7313
}
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355

static void update_cfs_rq_h_load_static(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
	unsigned long now = jiffies;
	unsigned long load;

	if (cfs_rq->last_h_load_update == now)
		return;

	WRITE_ONCE(cfs_rq->h_load_next, NULL);
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		WRITE_ONCE(cfs_rq->h_load_next, se);
		if (cfs_rq->last_h_load_update == now)
			break;
	}

	if (!se) {
		cfs_rq->h_load = scale_load_down(cfs_rq->load.weight);
		cfs_rq->last_h_load_update = now;
	}

	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->load.weight,
			cfs_rq->load.weight + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
}

static unsigned long task_h_load_static(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_cfs_rq_h_load_static(cfs_rq);
	return div64_ul(p->se.load.weight * cfs_rq->h_load,
			cfs_rq->load.weight + 1);
}
P
Peter Zijlstra 已提交
7356
#else
7357
static inline void update_blocked_averages(int cpu)
7358
{
7359 7360 7361
	if (!static_key_true(&sched_blocked_averages))
		return;

7362 7363
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7364
	const struct sched_class *curr_class;
7365
	struct rq_flags rf;
7366

7367
	rq_lock_irqsave(rq, &rf);
7368
	update_rq_clock(rq);
7369
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7370 7371 7372 7373

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7374
	update_irq_load_avg(rq, 0);
7375 7376
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7377
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7378
		rq->has_blocked_load = 0;
7379
#endif
7380
	rq_unlock_irqrestore(rq, &rf);
7381 7382
}

7383
static unsigned long task_h_load(struct task_struct *p)
7384
{
7385
	return p->se.avg.load_avg;
7386
}
7387 7388 7389 7390 7391

static unsigned long task_h_load_static(struct task_struct *p)
{
	return scale_load_down(p->se.load.weight);
}
P
Peter Zijlstra 已提交
7392
#endif
7393 7394

/********** Helpers for find_busiest_group ************************/
7395 7396 7397 7398 7399 7400 7401

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7402 7403 7404 7405 7406 7407
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
J
Joonsoo Kim 已提交
7408
	unsigned long load_per_task;
7409
	unsigned long group_capacity;
7410
	unsigned long group_util; /* Total utilization of the group */
7411 7412 7413
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7414
	enum group_type group_type;
7415
	int group_no_capacity;
7416 7417 7418 7419
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7420 7421
};

J
Joonsoo Kim 已提交
7422 7423 7424 7425 7426 7427 7428
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7429
	unsigned long total_running;
J
Joonsoo Kim 已提交
7430
	unsigned long total_load;	/* Total load of all groups in sd */
7431
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7432 7433 7434
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7435
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7436 7437
};

7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7449
		.total_running = 0UL,
7450
		.total_load = 0UL,
7451
		.total_capacity = 0UL,
7452 7453
		.busiest_stat = {
			.avg_load = 0UL,
7454 7455
			.sum_nr_running = 0,
			.group_type = group_other,
7456 7457 7458 7459
		},
	};
}

7460
static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7461 7462
{
	struct rq *rq = cpu_rq(cpu);
7463
	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7464 7465
	unsigned long used, free;
	unsigned long irq;
7466

7467
	irq = cpu_util_irq(rq);
7468

7469 7470
	if (unlikely(irq >= max))
		return 1;
7471

7472 7473
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7474

7475 7476
	if (unlikely(used >= max))
		return 1;
7477

7478
	free = max - used;
7479 7480

	return scale_irq_capacity(free, irq, max);
7481 7482
}

7483
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7484
{
7485
	unsigned long capacity = scale_rt_capacity(sd, cpu);
7486 7487
	struct sched_group *sdg = sd->groups;

7488
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7489

7490 7491
	if (!capacity)
		capacity = 1;
7492

7493 7494
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7495
	sdg->sgc->min_capacity = capacity;
7496 7497
}

7498
void update_group_capacity(struct sched_domain *sd, int cpu)
7499 7500 7501
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7502
	unsigned long capacity, min_capacity;
7503 7504 7505 7506
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7507
	sdg->sgc->next_update = jiffies + interval;
7508 7509

	if (!child) {
7510
		update_cpu_capacity(sd, cpu);
7511 7512 7513
		return;
	}

7514
	capacity = 0;
7515
	min_capacity = ULONG_MAX;
7516

P
Peter Zijlstra 已提交
7517 7518 7519 7520 7521 7522
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7523
		for_each_cpu(cpu, sched_group_span(sdg)) {
7524
			struct sched_group_capacity *sgc;
7525
			struct rq *rq = cpu_rq(cpu);
7526

7527
			/*
7528
			 * build_sched_domains() -> init_sched_groups_capacity()
7529 7530 7531
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7532 7533
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7534
			 *
7535
			 * This avoids capacity from being 0 and
7536 7537 7538
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7539
				capacity += capacity_of(cpu);
7540 7541 7542
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7543
			}
7544

7545
			min_capacity = min(capacity, min_capacity);
7546
		}
P
Peter Zijlstra 已提交
7547 7548 7549 7550
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7551
		 */
P
Peter Zijlstra 已提交
7552 7553 7554

		group = child->groups;
		do {
7555 7556 7557 7558
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7559 7560 7561
			group = group->next;
		} while (group != child->groups);
	}
7562

7563
	sdg->sgc->capacity = capacity;
7564
	sdg->sgc->min_capacity = min_capacity;
7565 7566
}

7567
/*
7568 7569 7570
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7571 7572
 */
static inline int
7573
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7574
{
7575 7576
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7577 7578
}

7579 7580
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7581
 * groups is inadequate due to ->cpus_allowed constraints.
7582
 *
7583 7584
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7585 7586
 * Something like:
 *
7587 7588
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7589 7590 7591
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7592
 * cpu 3 and leave one of the CPUs in the second group unused.
7593 7594
 *
 * The current solution to this issue is detecting the skew in the first group
7595 7596
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7597 7598
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7599
 * update_sd_pick_busiest(). And calculate_imbalance() and
7600
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7601 7602 7603 7604 7605 7606 7607
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7608
static inline int sg_imbalanced(struct sched_group *group)
7609
{
7610
	return group->sgc->imbalance;
7611 7612
}

7613
/*
7614 7615 7616
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7617 7618
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7619 7620 7621 7622 7623
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7624
 */
7625 7626
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7627
{
7628 7629
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7630

7631
	if ((sgs->group_capacity * 100) >
7632
			(sgs->group_util * env->sd->imbalance_pct))
7633
		return true;
7634

7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7651

7652
	if ((sgs->group_capacity * 100) <
7653
			(sgs->group_util * env->sd->imbalance_pct))
7654
		return true;
7655

7656
	return false;
7657 7658
}

7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7670 7671 7672
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7673
{
7674
	if (sgs->group_no_capacity)
7675 7676 7677 7678 7679 7680 7681 7682
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7683
static bool update_nohz_stats(struct rq *rq, bool force)
7684 7685 7686 7687
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7688 7689 7690
	if (!rq->has_blocked_load)
		return false;

7691
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7692
		return false;
7693

7694
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7695
		return true;
7696 7697

	update_blocked_averages(cpu);
7698 7699 7700 7701

	return rq->has_blocked_load;
#else
	return false;
7702 7703 7704
#endif
}

7705 7706
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7707
 * @env: The load balancing environment.
7708 7709 7710 7711
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7712
 * @overload: Indicate more than one runnable task for any CPU.
7713
 */
7714
static inline void update_sg_lb_stats(struct lb_env *env,
7715 7716
			struct sched_group *group,
			struct sg_lb_stats *sgs, bool *overload)
7717
{
7718
	int i, nr_running;
7719

7720 7721
	memset(sgs, 0, sizeof(*sgs));

7722
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7723 7724
		struct rq *rq = cpu_rq(i);

7725
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7726
			env->flags |= LBF_NOHZ_AGAIN;
7727

7728
		sgs->group_load += weighted_cpuload(rq);
7729
		sgs->group_util += cpu_util(i);
7730
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7731

7732 7733
		nr_running = rq->nr_running;
		if (nr_running > 1)
7734 7735
			*overload = true;

7736 7737 7738 7739
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7740 7741 7742 7743
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7744
			sgs->idle_cpus++;
7745 7746
	}

7747 7748
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7749
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7750

7751
	if (sgs->sum_nr_running)
7752
		sgs->load_per_task = sgs->group_load / sgs->sum_nr_running;
7753

7754
	sgs->group_weight = group->group_weight;
7755

7756
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7757
	sgs->group_type = group_classify(group, sgs);
7758 7759
}

7760 7761
/**
 * update_sd_pick_busiest - return 1 on busiest group
7762
 * @env: The load balancing environment.
7763 7764
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7765
 * @sgs: sched_group statistics
7766 7767 7768
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7769 7770 7771
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7772
 */
7773
static bool update_sd_pick_busiest(struct lb_env *env,
7774 7775
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7776
				   struct sg_lb_stats *sgs)
7777
{
7778
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7779

7780
	if (sgs->group_type > busiest->group_type)
7781 7782
		return true;

7783 7784 7785 7786 7787 7788
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7803 7804
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7805 7806
		return true;

7807
	/* No ASYM_PACKING if target CPU is already busy */
7808 7809
	if (env->idle == CPU_NOT_IDLE)
		return true;
7810
	/*
T
Tim Chen 已提交
7811 7812 7813
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7814
	 */
T
Tim Chen 已提交
7815 7816
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7817 7818 7819
		if (!sds->busiest)
			return true;

7820
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7821 7822
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7823 7824 7825 7826 7827 7828
			return true;
	}

	return false;
}

7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7859
/**
7860
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7861
 * @env: The load balancing environment.
7862 7863
 * @sds: variable to hold the statistics for this sched_domain.
 */
7864
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7865
{
7866 7867
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7868
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7869
	struct sg_lb_stats tmp_sgs;
7870
	int prefer_sibling = 0;
7871
	bool overload = false;
7872 7873 7874 7875

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7876
#ifdef CONFIG_NO_HZ_COMMON
7877
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7878 7879 7880
		env->flags |= LBF_NOHZ_STATS;
#endif

7881
	do {
J
Joonsoo Kim 已提交
7882
		struct sg_lb_stats *sgs = &tmp_sgs;
7883 7884
		int local_group;

7885
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7886 7887
		if (local_group) {
			sds->local = sg;
7888
			sgs = local;
7889 7890

			if (env->idle != CPU_NEWLY_IDLE ||
7891 7892
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7893
		}
7894

7895
		update_sg_lb_stats(env, sg, sgs, &overload);
7896

7897 7898 7899
		if (local_group)
			goto next_group;

7900 7901
		/*
		 * In case the child domain prefers tasks go to siblings
7902
		 * first, lower the sg capacity so that we'll try
7903 7904
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7905 7906 7907 7908
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7909
		 */
7910
		if (prefer_sibling && sds->local &&
7911 7912
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7913
			sgs->group_no_capacity = 1;
7914
			sgs->group_type = group_classify(sg, sgs);
7915
		}
7916

7917
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7918
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7919
			sds->busiest_stat = *sgs;
7920 7921
		}

7922 7923
next_group:
		/* Now, start updating sd_lb_stats */
7924
		sds->total_running += sgs->sum_nr_running;
7925
		sds->total_load += sgs->group_load;
7926
		sds->total_capacity += sgs->group_capacity;
7927

7928
		sg = sg->next;
7929
	} while (sg != env->sd->groups);
7930

7931 7932 7933 7934 7935 7936 7937 7938 7939
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

7940 7941
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7942 7943 7944 7945 7946 7947

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
7948 7949 7950 7951
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7952
 *			sched domain.
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7967
 * Return: 1 when packing is required and a task should be moved to
7968
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
7969
 *
7970
 * @env: The load balancing environment.
7971 7972
 * @sds: Statistics of the sched_domain which is to be packed
 */
7973
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7974 7975 7976
{
	int busiest_cpu;

7977
	if (!(env->sd->flags & SD_ASYM_PACKING))
7978 7979
		return 0;

7980 7981 7982
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7983 7984 7985
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7986 7987
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7988 7989
		return 0;

7990
	env->imbalance = DIV_ROUND_CLOSEST(
7991
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7992
		SCHED_CAPACITY_SCALE);
7993

7994
	return 1;
7995 7996 7997 7998 7999 8000
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8001
 * @env: The load balancing environment.
8002 8003
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8004 8005
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8006
{
8007
	unsigned long tmp, capa_now = 0, capa_move = 0;
8008
	unsigned int imbn = 2;
8009
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8010
	struct sg_lb_stats *local, *busiest;
8011

J
Joonsoo Kim 已提交
8012 8013
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8014

J
Joonsoo Kim 已提交
8015 8016 8017 8018
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8019

J
Joonsoo Kim 已提交
8020
	scaled_busy_load_per_task =
8021
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8022
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8023

8024 8025
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8026
		env->imbalance = busiest->load_per_task;
8027 8028 8029 8030 8031
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8032
	 * however we may be able to increase total CPU capacity used by
8033 8034 8035
	 * moving them.
	 */

8036
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8037
			min(busiest->load_per_task, busiest->avg_load);
8038
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8039
			min(local->load_per_task, local->avg_load);
8040
	capa_now /= SCHED_CAPACITY_SCALE;
8041 8042

	/* Amount of load we'd subtract */
8043
	if (busiest->avg_load > scaled_busy_load_per_task) {
8044
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8045
			    min(busiest->load_per_task,
8046
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8047
	}
8048 8049

	/* Amount of load we'd add */
8050
	if (busiest->avg_load * busiest->group_capacity <
8051
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8052 8053
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8054
	} else {
8055
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8056
		      local->group_capacity;
J
Joonsoo Kim 已提交
8057
	}
8058
	capa_move += local->group_capacity *
8059
		    min(local->load_per_task, local->avg_load + tmp);
8060
	capa_move /= SCHED_CAPACITY_SCALE;
8061 8062

	/* Move if we gain throughput */
8063
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8064
		env->imbalance = busiest->load_per_task;
8065 8066 8067 8068 8069
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8070
 * @env: load balance environment
8071 8072
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8073
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8074
{
8075
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8076 8077 8078 8079
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8080

8081
	if (busiest->group_type == group_imbalanced) {
8082 8083
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8084
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8085
		 */
J
Joonsoo Kim 已提交
8086 8087
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8088 8089
	}

8090
	/*
8091 8092 8093 8094
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8095
	 */
8096 8097
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8098 8099
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8100 8101
	}

8102
	/*
8103
	 * If there aren't any idle CPUs, avoid creating some.
8104 8105 8106
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8107
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8108
		if (load_above_capacity > busiest->group_capacity) {
8109
			load_above_capacity -= busiest->group_capacity;
8110
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8111 8112
			load_above_capacity /= busiest->group_capacity;
		} else
8113
			load_above_capacity = ~0UL;
8114 8115 8116
	}

	/*
8117
	 * We're trying to get all the CPUs to the average_load, so we don't
8118
	 * want to push ourselves above the average load, nor do we wish to
8119
	 * reduce the max loaded CPU below the average load. At the same time,
8120 8121
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8122
	 */
8123
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8124 8125

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8126
	env->imbalance = min(
8127 8128
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8129
	) / SCHED_CAPACITY_SCALE;
8130 8131 8132

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8133
	 * there is no guarantee that any tasks will be moved so we'll have
8134 8135 8136
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8137
	if (env->imbalance < busiest->load_per_task)
8138
		return fix_small_imbalance(env, sds);
8139
}
8140

8141 8142 8143 8144
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8145
 * if there is an imbalance.
8146 8147 8148 8149
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8150
 * @env: The load balancing environment.
8151
 *
8152
 * Return:	- The busiest group if imbalance exists.
8153
 */
J
Joonsoo Kim 已提交
8154
static struct sched_group *find_busiest_group(struct lb_env *env)
8155
{
J
Joonsoo Kim 已提交
8156
	struct sg_lb_stats *local, *busiest;
8157 8158
	struct sd_lb_stats sds;

8159
	init_sd_lb_stats(&sds);
8160 8161 8162 8163 8164

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8165
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8166 8167
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8168

8169
	/* ASYM feature bypasses nice load balance check */
8170
	if (check_asym_packing(env, &sds))
8171 8172
		return sds.busiest;

8173
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8174
	if (!sds.busiest || busiest->sum_nr_running == 0)
8175 8176
		goto out_balanced;

8177
	/* XXX broken for overlapping NUMA groups */
8178 8179
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8180

P
Peter Zijlstra 已提交
8181 8182
	/*
	 * If the busiest group is imbalanced the below checks don't
8183
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8184 8185
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8186
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8187 8188
		goto force_balance;

8189 8190 8191 8192 8193
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8194
	    busiest->group_no_capacity)
8195 8196
		goto force_balance;

8197
	/*
8198
	 * If the local group is busier than the selected busiest group
8199 8200
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8201
	if (local->avg_load >= busiest->avg_load)
8202 8203
		goto out_balanced;

8204 8205 8206 8207
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8208
	if (local->avg_load >= sds.avg_load)
8209 8210
		goto out_balanced;

8211
	if (env->idle == CPU_IDLE) {
8212
		/*
8213
		 * This CPU is idle. If the busiest group is not overloaded
8214
		 * and there is no imbalance between this and busiest group
8215
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8216 8217
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8218
		 */
8219 8220
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8221
			goto out_balanced;
8222 8223 8224 8225 8226
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8227 8228
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8229
			goto out_balanced;
8230
	}
8231

8232
force_balance:
8233
	/* Looks like there is an imbalance. Compute it */
8234
	calculate_imbalance(env, &sds);
8235
	return env->imbalance ? sds.busiest : NULL;
8236 8237

out_balanced:
8238
	env->imbalance = 0;
8239 8240 8241 8242
	return NULL;
}

/*
8243
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8244
 */
8245
static struct rq *find_busiest_queue(struct lb_env *env,
8246
				     struct sched_group *group)
8247 8248
{
	struct rq *busiest = NULL, *rq;
8249
	unsigned long busiest_load = 0, busiest_capacity = 1;
8250 8251
	int i;

8252
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8253
		unsigned long capacity, wl;
8254 8255 8256 8257
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8258

8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8281
		capacity = capacity_of(i);
8282

8283
		wl = weighted_cpuload(rq);
8284

8285 8286
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8287
		 * which is not scaled with the CPU capacity.
8288
		 */
8289 8290 8291

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8292 8293
			continue;

8294
		/*
8295 8296 8297
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8298
		 * potentially running at a lower capacity.
8299
		 *
8300
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8301
		 * multiplication to rid ourselves of the division works out
8302 8303
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8304
		 */
8305
		if (wl * busiest_capacity > busiest_load * capacity) {
8306
			busiest_load = wl;
8307
			busiest_capacity = capacity;
8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8321
static int need_active_balance(struct lb_env *env)
8322
{
8323 8324 8325
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8326 8327 8328

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8329 8330
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8331
		 */
T
Tim Chen 已提交
8332 8333
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8334
			return 1;
8335 8336
	}

8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8350 8351 8352
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8353 8354
static int active_load_balance_cpu_stop(void *data);

8355 8356 8357 8358 8359
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8360 8361 8362 8363 8364 8365 8366
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8367
	/*
8368
	 * In the newly idle case, we will allow all the CPUs
8369 8370 8371 8372 8373
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8374
	/* Try to find first idle CPU */
8375
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8376
		if (!idle_cpu(cpu))
8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8387
	 * First idle CPU or the first CPU(busiest) in this sched group
8388 8389
	 * is eligible for doing load balancing at this and above domains.
	 */
8390
	return balance_cpu == env->dst_cpu;
8391 8392
}

8393 8394 8395 8396 8397 8398
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8399
			int *continue_balancing)
8400
{
8401
	int ld_moved, cur_ld_moved, active_balance = 0;
8402
	struct sched_domain *sd_parent = sd->parent;
8403 8404
	struct sched_group *group;
	struct rq *busiest;
8405
	struct rq_flags rf;
8406
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8407

8408 8409
	struct lb_env env = {
		.sd		= sd,
8410 8411
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8412
		.dst_grpmask    = sched_group_span(sd->groups),
8413
		.idle		= idle,
8414
		.loop_break	= sched_nr_migrate_break,
8415
		.cpus		= cpus,
8416
		.fbq_type	= all,
8417
		.tasks		= LIST_HEAD_INIT(env.tasks),
8418 8419
	};

8420
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8421

8422
	schedstat_inc(sd->lb_count[idle]);
8423 8424

redo:
8425 8426
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8427
		goto out_balanced;
8428
	}
8429

8430
	group = find_busiest_group(&env);
8431
	if (!group) {
8432
		schedstat_inc(sd->lb_nobusyg[idle]);
8433 8434 8435
		goto out_balanced;
	}

8436
	busiest = find_busiest_queue(&env, group);
8437
	if (!busiest) {
8438
		schedstat_inc(sd->lb_nobusyq[idle]);
8439 8440 8441
		goto out_balanced;
	}

8442
	BUG_ON(busiest == env.dst_rq);
8443

8444
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8445

8446 8447 8448
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8449 8450 8451 8452 8453 8454 8455 8456
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8457
		env.flags |= LBF_ALL_PINNED;
8458
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8459

8460
more_balance:
8461
		rq_lock_irqsave(busiest, &rf);
8462
		update_rq_clock(busiest);
8463 8464 8465 8466 8467

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8468
		cur_ld_moved = detach_tasks(&env);
8469 8470

		/*
8471 8472 8473 8474 8475
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8476
		 */
8477

8478
		rq_unlock(busiest, &rf);
8479 8480 8481 8482 8483 8484

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8485
		local_irq_restore(rf.flags);
8486

8487 8488 8489 8490 8491
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8492 8493 8494 8495
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8496
		 * iterate on same src_cpu is dependent on number of CPUs in our
8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8511
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8512

8513
			/* Prevent to re-select dst_cpu via env's CPUs */
8514 8515
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8516
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8517
			env.dst_cpu	 = env.new_dst_cpu;
8518
			env.flags	&= ~LBF_DST_PINNED;
8519 8520
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8521

8522 8523 8524 8525 8526 8527
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8528

8529 8530 8531 8532
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8533
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8534

8535
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8536 8537 8538
				*group_imbalance = 1;
		}

8539
		/* All tasks on this runqueue were pinned by CPU affinity */
8540
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8541
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8542 8543 8544 8545 8546 8547 8548 8549 8550
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8551 8552
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8553
				goto redo;
8554
			}
8555
			goto out_all_pinned;
8556 8557 8558 8559
		}
	}

	if (!ld_moved) {
8560
		schedstat_inc(sd->lb_failed[idle]);
8561 8562 8563 8564 8565 8566 8567 8568
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8569

8570
		if (need_active_balance(&env)) {
8571 8572
			unsigned long flags;

8573 8574
			raw_spin_lock_irqsave(&busiest->lock, flags);

8575 8576 8577 8578
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8579
			 */
8580
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8581 8582
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8583
				env.flags |= LBF_ALL_PINNED;
8584 8585 8586
				goto out_one_pinned;
			}

8587 8588 8589 8590 8591
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8592 8593 8594 8595 8596 8597
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8598

8599
			if (active_balance) {
8600 8601 8602
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8603
			}
8604

8605
			/* We've kicked active balancing, force task migration. */
8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8619
		 * detach_tasks).
8620 8621 8622 8623 8624 8625 8626 8627
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8628 8629
	/*
	 * We reach balance although we may have faced some affinity
8630 8631
	 * constraints. Clear the imbalance flag only if other tasks got
	 * a chance to move and fix the imbalance.
8632
	 */
8633
	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8646
	schedstat_inc(sd->lb_balanced[idle]);
8647 8648 8649 8650

	sd->nr_balance_failed = 0;

out_one_pinned:
8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661
	ld_moved = 0;

	/*
	 * idle_balance() disregards balance intervals, so we could repeatedly
	 * reach this code, which would lead to balance_interval skyrocketting
	 * in a short amount of time. Skip the balance_interval increase logic
	 * to avoid that.
	 */
	if (env.idle == CPU_NEWLY_IDLE)
		goto out;

8662
	/* tune up the balancing interval */
8663
	if (((env.flags & LBF_ALL_PINNED) &&
8664
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8665 8666 8667 8668 8669 8670
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;
out:
	return ld_moved;
}

8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8687
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8688 8689 8690
{
	unsigned long interval, next;

8691 8692
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8693 8694 8695 8696 8697 8698
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8699
/*
8700
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8701 8702 8703
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8704
 */
8705
static int active_load_balance_cpu_stop(void *data)
8706
{
8707 8708
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8709
	int target_cpu = busiest_rq->push_cpu;
8710
	struct rq *target_rq = cpu_rq(target_cpu);
8711
	struct sched_domain *sd;
8712
	struct task_struct *p = NULL;
8713
	struct rq_flags rf;
8714

8715
	rq_lock_irq(busiest_rq, &rf);
8716 8717 8718 8719 8720 8721 8722
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8723

8724
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8725 8726 8727
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8728 8729 8730

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8731
		goto out_unlock;
8732 8733 8734 8735

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8736
	 * Bjorn Helgaas on a 128-CPU setup.
8737 8738 8739 8740
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8741
	rcu_read_lock();
8742 8743 8744 8745 8746 8747 8748
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8749 8750
		struct lb_env env = {
			.sd		= sd,
8751 8752 8753 8754
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8755
			.idle		= CPU_IDLE,
8756 8757 8758 8759 8760 8761 8762
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8763 8764
		};

8765
		schedstat_inc(sd->alb_count);
8766
		update_rq_clock(busiest_rq);
8767

8768
		p = detach_one_task(&env);
8769
		if (p) {
8770
			schedstat_inc(sd->alb_pushed);
8771 8772 8773
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8774
			schedstat_inc(sd->alb_failed);
8775
		}
8776
	}
8777
	rcu_read_unlock();
8778 8779
out_unlock:
	busiest_rq->active_balance = 0;
8780
	rq_unlock(busiest_rq, &rf);
8781 8782 8783 8784 8785 8786

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8787
	return 0;
8788 8789
}

8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

8908 8909 8910 8911 8912
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8913
#ifdef CONFIG_NO_HZ_COMMON
8914 8915 8916 8917 8918
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
8919 8920
 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
 *   anywhere yet.
8921
 */
8922

8923
static inline int find_new_ilb(void)
8924
{
8925
	int ilb;
8926

8927 8928 8929 8930 8931
	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
			      housekeeping_cpumask(HK_FLAG_MISC)) {
		if (idle_cpu(ilb))
			return ilb;
	}
8932 8933

	return nr_cpu_ids;
8934 8935
}

8936
/*
8937 8938
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
8939
 */
8940
static void kick_ilb(unsigned int flags)
8941 8942 8943 8944 8945
{
	int ilb_cpu;

	nohz.next_balance++;

8946
	ilb_cpu = find_new_ilb();
8947

8948 8949
	if (ilb_cpu >= nr_cpu_ids)
		return;
8950

8951
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
8952
	if (flags & NOHZ_KICK_MASK)
8953
		return;
8954

8955 8956
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
8957
	 * This way we generate a sched IPI on the target CPU which
8958 8959 8960 8961
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
8981
	unsigned int flags = 0;
8982 8983 8984 8985 8986 8987 8988 8989

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
8990
	nohz_balance_exit_idle(rq);
8991 8992 8993 8994 8995 8996 8997 8998

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

8999 9000
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9001 9002
		flags = NOHZ_STATS_KICK;

9003
	if (time_before(now, nohz.next_balance))
9004
		goto out;
9005 9006

	if (rq->nr_running >= 2) {
9007
		flags = NOHZ_KICK_MASK;
9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9020
			flags = NOHZ_KICK_MASK;
9021 9022 9023 9024 9025 9026 9027 9028 9029
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9030
			flags = NOHZ_KICK_MASK;
9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9043
				flags = NOHZ_KICK_MASK;
9044 9045 9046 9047 9048 9049 9050
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9051 9052
	if (flags)
		kick_ilb(flags);
9053 9054
}

9055
static void set_cpu_sd_state_busy(int cpu)
9056
{
9057
	struct sched_domain *sd;
9058

9059 9060
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9061

9062 9063 9064 9065 9066 9067 9068
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9069 9070
}

9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9086 9087 9088 9089
{
	struct sched_domain *sd;

	rcu_read_lock();
9090
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9091 9092 9093 9094 9095

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9096
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9097
unlock:
9098 9099 9100
	rcu_read_unlock();
}

9101
/*
9102
 * This routine will record that the CPU is going idle with tick stopped.
9103
 * This info will be used in performing idle load balancing in the future.
9104
 */
9105
void nohz_balance_enter_idle(int cpu)
9106
{
9107 9108 9109 9110
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9111
	/* If this CPU is going down, then nothing needs to be done: */
9112 9113 9114
	if (!cpu_active(cpu))
		return;

9115
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9116
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9117 9118
		return;

9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9132
	if (rq->nohz_tick_stopped)
9133
		goto out;
9134

9135
	/* If we're a completely isolated CPU, we don't play: */
9136
	if (on_null_domain(rq))
9137 9138
		return;

9139 9140
	rq->nohz_tick_stopped = 1;

9141 9142
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9143

9144 9145 9146 9147 9148 9149 9150
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9151
	set_cpu_sd_state_idle(cpu);
9152 9153 9154 9155 9156 9157 9158

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9159 9160 9161
}

/*
9162 9163 9164 9165 9166
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9167
 */
9168 9169
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9170
{
9171
	/* Earliest time when we have to do rebalance again */
9172 9173
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9174
	bool has_blocked_load = false;
9175
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9176 9177
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9178
	int ret = false;
P
Peter Zijlstra 已提交
9179
	struct rq *rq;
9180

P
Peter Zijlstra 已提交
9181
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9182

9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9199
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9200
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9201 9202 9203
			continue;

		/*
9204 9205
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9206 9207
		 * balancing owner will pick it up.
		 */
9208 9209 9210 9211
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9212

V
Vincent Guittot 已提交
9213 9214
		rq = cpu_rq(balance_cpu);

9215
		has_blocked_load |= update_nohz_stats(rq, true);
9216

9217 9218 9219 9220 9221
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9222 9223
			struct rq_flags rf;

9224
			rq_lock_irqsave(rq, &rf);
9225
			update_rq_clock(rq);
9226
			rq_unlock_irqrestore(rq, &rf);
9227

P
Peter Zijlstra 已提交
9228 9229
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9230
		}
9231

9232 9233 9234 9235
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9236
	}
9237

9238 9239 9240 9241 9242 9243
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9244 9245 9246
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9247 9248 9249
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9250 9251 9252
	/* The full idle balance loop has been done */
	ret = true;

9253 9254 9255 9256
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9257

9258 9259 9260 9261 9262 9263 9264
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9265

9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9295
	return true;
9296
}
9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9330 9331 9332
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9333
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9334 9335 9336
{
	return false;
}
9337 9338

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9339
#endif /* CONFIG_NO_HZ_COMMON */
9340

P
Peter Zijlstra 已提交
9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9375

P
Peter Zijlstra 已提交
9376 9377 9378 9379 9380 9381
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9382 9383
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9433
out:
P
Peter Zijlstra 已提交
9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9458 9459 9460 9461
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9462
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9463
{
9464
	struct rq *this_rq = this_rq();
9465
	enum cpu_idle_type idle = this_rq->idle_balance ?
9466 9467 9468
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9469 9470
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9471
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9472
	 * give the idle CPUs a chance to load balance. Else we may
9473 9474
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9475
	 */
P
Peter Zijlstra 已提交
9476 9477 9478 9479 9480
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9481
	rebalance_domains(this_rq, idle);
9482 9483 9484 9485 9486
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9487
void trigger_load_balance(struct rq *rq)
9488 9489
{
	/* Don't need to rebalance while attached to NULL domain */
9490 9491 9492 9493
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9494
		raise_softirq(SCHED_SOFTIRQ);
9495 9496

	nohz_balancer_kick(rq);
9497 9498
}

9499 9500 9501
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9502 9503

	update_runtime_enabled(rq);
9504 9505 9506 9507 9508
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9509 9510 9511

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9512 9513
}

9514
#endif /* CONFIG_SMP */
9515

9516
/*
9517 9518 9519 9520 9521 9522
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9523
 */
P
Peter Zijlstra 已提交
9524
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9525 9526 9527 9528 9529 9530
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9531
		entity_tick(cfs_rq, se, queued);
9532
	}
9533

9534
	if (static_branch_unlikely(&sched_numa_balancing))
9535
		task_tick_numa(rq, curr);
9536 9537 9538
}

/*
P
Peter Zijlstra 已提交
9539 9540 9541
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9542
 */
P
Peter Zijlstra 已提交
9543
static void task_fork_fair(struct task_struct *p)
9544
{
9545 9546
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9547
	struct rq *rq = this_rq();
9548
	struct rq_flags rf;
9549

9550
	rq_lock(rq, &rf);
9551 9552
	update_rq_clock(rq);

9553 9554
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9555 9556
	if (curr) {
		update_curr(cfs_rq);
9557
		se->vruntime = curr->vruntime;
9558
	}
9559
	place_entity(cfs_rq, se, 1);
9560

P
Peter Zijlstra 已提交
9561
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9562
		/*
9563 9564 9565
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9566
		swap(curr->vruntime, se->vruntime);
9567
		resched_curr(rq);
9568
	}
9569

9570
	se->vruntime -= cfs_rq->min_vruntime;
9571
	rq_unlock(rq, &rf);
9572 9573
}

9574 9575 9576 9577
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9578 9579
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9580
{
9581
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9582 9583
		return;

9584 9585 9586 9587 9588
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9589
	if (rq->curr == p) {
9590
		if (p->prio > oldprio)
9591
			resched_curr(rq);
9592
	} else
9593
		check_preempt_curr(rq, p, 0);
9594 9595
}

9596
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9597 9598 9599 9600
{
	struct sched_entity *se = &p->se;

	/*
9601 9602 9603 9604 9605 9606 9607 9608 9609 9610
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9611
	 *
9612 9613 9614 9615
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9616
	 */
9617 9618
	if (!se->sum_exec_runtime ||
	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9619 9620 9621 9622 9623
		return true;

	return false;
}

9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9642
		update_load_avg(cfs_rq, se, UPDATE_TG);
9643 9644 9645 9646 9647 9648
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9649
static void detach_entity_cfs_rq(struct sched_entity *se)
9650 9651 9652
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9653
	/* Catch up with the cfs_rq and remove our load when we leave */
9654
	update_load_avg(cfs_rq, se, 0);
9655
	detach_entity_load_avg(cfs_rq, se);
9656
	update_tg_load_avg(cfs_rq, false);
9657
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9658 9659
}

9660
static void attach_entity_cfs_rq(struct sched_entity *se)
9661
{
9662
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9663 9664

#ifdef CONFIG_FAIR_GROUP_SCHED
9665 9666 9667 9668 9669 9670
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9671

9672
	/* Synchronize entity with its cfs_rq */
9673
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9674
	attach_entity_load_avg(cfs_rq, se, 0);
9675
	update_tg_load_avg(cfs_rq, false);
9676
	propagate_entity_cfs_rq(se);
9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9702 9703 9704 9705

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9706

9707 9708 9709 9710 9711 9712 9713 9714
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9715

9716
	if (task_on_rq_queued(p)) {
9717
		/*
9718 9719 9720
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9721
		 */
9722 9723 9724 9725
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9726
	}
9727 9728
}

9729 9730 9731 9732 9733 9734 9735 9736 9737
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9738 9739 9740 9741 9742 9743 9744
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9745 9746
}

9747 9748
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9749
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9750 9751 9752 9753
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9754
#ifdef CONFIG_SMP
9755
	raw_spin_lock_init(&cfs_rq->removed.lock);
9756
#endif
9757 9758
}

P
Peter Zijlstra 已提交
9759
#ifdef CONFIG_FAIR_GROUP_SCHED
9760 9761 9762 9763 9764 9765 9766 9767 9768 9769
#ifdef CONFIG_SCHED_SLI
static void update_nr_iowait_fair(struct task_struct *p, long inc)
{
	unsigned long flags;
	struct sched_entity *se = p->se.parent;
	u64 clock;

	if (!schedstat_enabled())
		return;

9770
	clock = __rq_clock_broken(cpu_rq(task_cpu(p)));
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797

	for_each_sched_entity(se) {
		/*
		 * Avoid locking rq->lock from try_to_wakeup hot path, in
		 * the price of poor consistency among cgroup hierarchy,
		 * which we can tolerate.
		 * While accessing se->on_rq does need to hold rq->lock. We
		 * already do, because when inc==1, the caller is __schedule
		 * and task_move_group_fair
		 */
		spin_lock_irqsave(&se->iowait_lock, flags);
		if (!se->on_rq && !schedstat_val(se->cg_nr_iowait) && inc > 0)
			__schedstat_set(se->cg_iowait_start, clock);
		if (schedstat_val(se->cg_iowait_start) > 0 &&
			schedstat_val(se->cg_nr_iowait) + inc == 0) {
			__schedstat_add(se->cg_iowait_sum, clock -
				schedstat_val(se->cg_iowait_start));
			__schedstat_set(se->cg_iowait_start, 0);
		}
		__schedstat_add(se->cg_nr_iowait, inc);
		spin_unlock_irqrestore(&se->iowait_lock, flags);
	}
}
#else
static void update_nr_iowait_fair(struct task_struct *p, long inc) {}
#endif

9798 9799 9800 9801 9802 9803 9804 9805
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9806
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9807
{
9808 9809
	if (p->in_iowait)
		update_nr_iowait_fair(p, -1);
9810
	detach_task_cfs_rq(p);
9811
	set_task_rq(p, task_cpu(p));
9812 9813 9814 9815 9816

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9817
	attach_task_cfs_rq(p);
9818 9819
	if (p->in_iowait)
		update_nr_iowait_fair(p, 1);
P
Peter Zijlstra 已提交
9820
}
9821

9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9835 9836 9837 9838 9839 9840 9841 9842 9843
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9844
		if (tg->se)
9845 9846 9847 9848 9849 9850 9851 9852 9853 9854
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9855
	struct cfs_rq *cfs_rq;
9856 9857
	int i;

K
Kees Cook 已提交
9858
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9859 9860
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9861
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9882
		init_entity_runnable_average(se);
9883 9884 9885 9886 9887 9888 9889 9890 9891 9892
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9893 9894 9895
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
9896
	struct rq_flags rf;
9897 9898 9899 9900 9901 9902
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];
9903
		rq_lock_irq(rq, &rf);
9904
		update_rq_clock(rq);
9905
		attach_entity_cfs_rq(se);
9906
		sync_throttle(tg, i);
9907
		rq_unlock_irq(rq, &rf);
9908 9909 9910
	}
}

9911
void unregister_fair_sched_group(struct task_group *tg)
9912 9913
{
	unsigned long flags;
9914 9915
	struct rq *rq;
	int cpu;
9916

9917 9918 9919
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9920

9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9953
	if (!parent) {
9954
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9955 9956
		se->depth = 0;
	} else {
9957
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9958 9959
		se->depth = parent->depth + 1;
	}
9960 9961

	se->my_q = cfs_rq;
9962 9963
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9964
	se->parent = parent;
9965
	seqcount_init(&se->idle_seqcount);
9966
	spin_lock_init(&se->iowait_lock);
9967
	se->cg_idle_start = se->cg_init_time = cpu_clock(cpu);
9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9991 9992
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9993 9994

		/* Propagate contribution to hierarchy */
9995
		rq_lock_irqsave(rq, &rf);
9996
		update_rq_clock(rq);
9997
		for_each_sched_entity(se) {
9998
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9999
			update_cfs_group(se);
10000
		}
10001
		rq_unlock_irqrestore(rq, &rf);
10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10017 10018
void online_fair_sched_group(struct task_group *tg) { }

10019
void unregister_fair_sched_group(struct task_group *tg) { }
10020 10021 10022

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10023

10024
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10025 10026 10027 10028 10029 10030 10031 10032 10033
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10034
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10035 10036 10037 10038

	return rr_interval;
}

10039 10040 10041
/*
 * All the scheduling class methods:
 */
10042
const struct sched_class fair_sched_class = {
10043
	.next			= &idle_sched_class,
10044 10045 10046
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10047
	.yield_to_task		= yield_to_task_fair,
10048

I
Ingo Molnar 已提交
10049
	.check_preempt_curr	= check_preempt_wakeup,
10050 10051 10052 10053

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10054
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10055
	.select_task_rq		= select_task_rq_fair,
10056
	.migrate_task_rq	= migrate_task_rq_fair,
10057

10058 10059
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10060

10061
	.task_dead		= task_dead_fair,
10062
	.set_cpus_allowed	= set_cpus_allowed_common,
10063
#endif
10064

10065
	.set_curr_task          = set_curr_task_fair,
10066
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10067
	.task_fork		= task_fork_fair,
10068 10069

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10070
	.switched_from		= switched_from_fair,
10071
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10072

10073 10074
	.get_rr_interval	= get_rr_interval_fair,

10075 10076
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10077
#ifdef CONFIG_FAIR_GROUP_SCHED
10078
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10079
#endif
10080 10081

#ifdef CONFIG_SCHED_SLI
10082
	.update_nr_iowait	= update_nr_iowait_fair,
10083
#endif
10084 10085 10086
};

#ifdef CONFIG_SCHED_DEBUG
10087
void print_cfs_stats(struct seq_file *m, int cpu)
10088
{
10089
	struct cfs_rq *cfs_rq;
10090

10091
	rcu_read_lock();
10092
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
10093
		print_cfs_rq(m, cpu, cfs_rq);
10094
	rcu_read_unlock();
10095
}
10096 10097 10098 10099 10100 10101

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10102
	struct numa_group *ng;
10103

10104 10105
	rcu_read_lock();
	ng = rcu_dereference(p->numa_group);
10106 10107 10108 10109 10110
	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
10111 10112 10113
		if (ng) {
			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10114 10115 10116
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
10117
	rcu_read_unlock();
10118 10119 10120
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10121 10122 10123 10124 10125 10126

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10127
#ifdef CONFIG_NO_HZ_COMMON
10128
	nohz.next_balance = jiffies;
10129
	nohz.next_blocked = jiffies;
10130 10131 10132 10133 10134
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}