fair.c 246.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371
/* Iterate thr' all leaf cfs_rq's on a runqueue */
372 373 374
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
375 376

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
377
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
378 379 380
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
381
		return se->cfs_rq;
P
Peter Zijlstra 已提交
382

P
Peter Zijlstra 已提交
383
	return NULL;
P
Peter Zijlstra 已提交
384 385 386 387 388 389 390
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

391 392 393 394 395 396 397 398 399 400 401 402 403
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
404 405
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

423 424 425 426 427 428
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
429

430 431 432
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
433 434 435 436
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
437 438
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
439

P
Peter Zijlstra 已提交
440
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441
{
P
Peter Zijlstra 已提交
442
	return &task_rq(p)->cfs;
443 444
}

P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

459 460 461 462 463 464 465 466
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

467 468
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
469 470 471 472 473 474

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

475 476 477 478 479
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
480 481
#endif	/* CONFIG_FAIR_GROUP_SCHED */

482
static __always_inline
483
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 485 486 487 488

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

489
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490
{
491
	s64 delta = (s64)(vruntime - max_vruntime);
492
	if (delta > 0)
493
		max_vruntime = vruntime;
494

495
	return max_vruntime;
496 497
}

498
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
499 500 501 502 503 504 505 506
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

507 508 509 510 511 512
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

513 514
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
515 516
	struct sched_entity *curr = cfs_rq->curr;

517 518
	u64 vruntime = cfs_rq->min_vruntime;

519 520 521 522 523 524
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
525 526 527 528 529 530

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

531
		if (!curr)
532 533 534 535 536
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

537
	/* ensure we never gain time by being placed backwards. */
538
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 540 541 542
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
543 544
}

545 546 547
/*
 * Enqueue an entity into the rb-tree:
 */
548
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
565
		if (entity_before(se, entry)) {
566 567 568 569 570 571 572 573 574 575 576
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
577
	if (leftmost)
I
Ingo Molnar 已提交
578
		cfs_rq->rb_leftmost = &se->run_node;
579 580 581 582 583

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

584
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585
{
P
Peter Zijlstra 已提交
586 587 588 589 590 591
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
592

593 594 595
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

596
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597
{
598 599 600 601 602 603
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
604 605
}

606 607 608 609 610 611 612 613 614 615 616
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
617
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618
{
619
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
620

621 622
	if (!last)
		return NULL;
623 624

	return rb_entry(last, struct sched_entity, run_node);
625 626
}

627 628 629 630
/**************************************************************
 * Scheduling class statistics methods:
 */

631
int sched_proc_update_handler(struct ctl_table *table, int write,
632
		void __user *buffer, size_t *lenp,
633 634
		loff_t *ppos)
{
635
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636
	unsigned int factor = get_update_sysctl_factor();
637 638 639 640 641 642 643

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

644 645 646 647 648 649 650
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

651 652 653
	return 0;
}
#endif
654

655
/*
656
 * delta /= w
657
 */
658
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659
{
660
	if (unlikely(se->load.weight != NICE_0_LOAD))
661
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662 663 664 665

	return delta;
}

666 667 668
/*
 * The idea is to set a period in which each task runs once.
 *
669
 * When there are too many tasks (sched_nr_latency) we have to stretch
670 671 672 673
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
674 675
static u64 __sched_period(unsigned long nr_running)
{
676 677 678 679
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
680 681
}

682 683 684 685
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
686
 * s = p*P[w/rw]
687
 */
P
Peter Zijlstra 已提交
688
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689
{
M
Mike Galbraith 已提交
690
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
691

M
Mike Galbraith 已提交
692
	for_each_sched_entity(se) {
L
Lin Ming 已提交
693
		struct load_weight *load;
694
		struct load_weight lw;
L
Lin Ming 已提交
695 696 697

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
698

M
Mike Galbraith 已提交
699
		if (unlikely(!se->on_rq)) {
700
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
701 702 703 704

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
705
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
706 707
	}
	return slice;
708 709
}

710
/*
A
Andrei Epure 已提交
711
 * We calculate the vruntime slice of a to-be-inserted task.
712
 *
713
 * vs = s/w
714
 */
715
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
716
{
717
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
718 719
}

720
#ifdef CONFIG_SMP
721 722 723

#include "sched-pelt.h"

724
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
725 726
static unsigned long task_h_load(struct task_struct *p);

727 728
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
729
{
730
	struct sched_avg *sa = &se->avg;
731

732 733 734 735 736 737 738
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
739 740 741 742 743 744 745 746
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
747
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
748 749 750 751 752
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
753
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754
}
755

756
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
757
static void attach_entity_cfs_rq(struct sched_entity *se);
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
788
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
789 790 791 792 793 794 795 796 797 798 799 800 801

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
802 803 804 805 806 807 808 809 810 811 812 813 814 815

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
816
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
817 818 819 820
			return;
		}
	}

821
	attach_entity_cfs_rq(se);
822 823
}

824
#else /* !CONFIG_SMP */
825
void init_entity_runnable_average(struct sched_entity *se)
826 827
{
}
828 829 830
void post_init_entity_util_avg(struct sched_entity *se)
{
}
831 832 833
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
834
#endif /* CONFIG_SMP */
835

836
/*
837
 * Update the current task's runtime statistics.
838
 */
839
static void update_curr(struct cfs_rq *cfs_rq)
840
{
841
	struct sched_entity *curr = cfs_rq->curr;
842
	u64 now = rq_clock_task(rq_of(cfs_rq));
843
	u64 delta_exec;
844 845 846 847

	if (unlikely(!curr))
		return;

848 849
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
850
		return;
851

I
Ingo Molnar 已提交
852
	curr->exec_start = now;
853

854 855 856 857
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
858
	schedstat_add(cfs_rq->exec_clock, delta_exec);
859 860 861 862

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

863 864 865
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

866
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867
		cpuacct_charge(curtask, delta_exec);
868
		account_group_exec_runtime(curtask, delta_exec);
869
	}
870 871

	account_cfs_rq_runtime(cfs_rq, delta_exec);
872 873
}

874 875 876 877 878
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

879
static inline void
880
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881
{
882 883 884 885 886 887 888
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
889 890

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 892
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
893

894
	schedstat_set(se->statistics.wait_start, wait_start);
895 896
}

897
static inline void
898 899 900
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
901 902
	u64 delta;

903 904 905 906
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
907 908 909 910 911 912 913 914 915

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
916
			schedstat_set(se->statistics.wait_start, delta);
917 918 919 920 921
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

922 923 924 925 926
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
927 928
}

929
static inline void
930 931 932
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
933 934 935 936 937 938 939
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
940 941 942 943

	if (entity_is_task(se))
		tsk = task_of(se);

944 945
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
946 947 948 949

		if ((s64)delta < 0)
			delta = 0;

950 951
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
952

953 954
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
955 956 957 958 959 960

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
961 962
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
963 964 965 966

		if ((s64)delta < 0)
			delta = 0;

967 968
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
969

970 971
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
972 973 974

		if (tsk) {
			if (tsk->in_iowait) {
975 976
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
995 996
}

997 998 999
/*
 * Task is being enqueued - update stats:
 */
1000
static inline void
1001
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1002
{
1003 1004 1005
	if (!schedstat_enabled())
		return;

1006 1007 1008 1009
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1010
	if (se != cfs_rq->curr)
1011
		update_stats_wait_start(cfs_rq, se);
1012 1013 1014

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1015 1016 1017
}

static inline void
1018
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1019
{
1020 1021 1022 1023

	if (!schedstat_enabled())
		return;

1024 1025 1026 1027
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1028
	if (se != cfs_rq->curr)
1029
		update_stats_wait_end(cfs_rq, se);
1030

1031 1032
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1033

1034 1035 1036 1037 1038 1039
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1040 1041 1042
	}
}

1043 1044 1045 1046
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1047
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1048 1049 1050 1051
{
	/*
	 * We are starting a new run period:
	 */
1052
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1053 1054 1055 1056 1057 1058
}

/**************************************************
 * Scheduling class queueing methods:
 */

1059 1060
#ifdef CONFIG_NUMA_BALANCING
/*
1061 1062 1063
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1064
 */
1065 1066
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1067 1068 1069

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1070

1071 1072 1073
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1098
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1099 1100 1101
	unsigned int scan, floor;
	unsigned int windows = 1;

1102 1103
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1132 1133 1134 1135 1136
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1137
	pid_t gid;
1138
	int active_nodes;
1139 1140

	struct rcu_head rcu;
1141
	unsigned long total_faults;
1142
	unsigned long max_faults_cpu;
1143 1144 1145 1146 1147
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1148
	unsigned long *faults_cpu;
1149
	unsigned long faults[0];
1150 1151
};

1152 1153 1154 1155 1156 1157 1158 1159 1160
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1161 1162 1163 1164 1165
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1166 1167 1168 1169 1170 1171 1172
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1173
{
1174
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1175 1176 1177 1178
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1179
	if (!p->numa_faults)
1180 1181
		return 0;

1182 1183
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1184 1185
}

1186 1187 1188 1189 1190
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1191 1192
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1193 1194
}

1195 1196
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1197 1198
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1278 1279 1280 1281 1282 1283
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1284 1285
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1286
{
1287
	unsigned long faults, total_faults;
1288

1289
	if (!p->numa_faults)
1290 1291 1292 1293 1294 1295 1296
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1297
	faults = task_faults(p, nid);
1298 1299
	faults += score_nearby_nodes(p, nid, dist, true);

1300
	return 1000 * faults / total_faults;
1301 1302
}

1303 1304
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1305
{
1306 1307 1308 1309 1310 1311 1312 1313
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1314 1315
		return 0;

1316
	faults = group_faults(p, nid);
1317 1318
	faults += score_nearby_nodes(p, nid, dist, false);

1319
	return 1000 * faults / total_faults;
1320 1321
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1362 1363
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1364
	 */
1365 1366
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1367 1368 1369
		return true;

	/*
1370 1371 1372 1373 1374 1375
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1376
	 */
1377 1378
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1379 1380
}

1381
static unsigned long weighted_cpuload(const int cpu);
1382 1383
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1384
static unsigned long capacity_of(int cpu);
1385

1386
/* Cached statistics for all CPUs within a node */
1387
struct numa_stats {
1388
	unsigned long nr_running;
1389
	unsigned long load;
1390 1391

	/* Total compute capacity of CPUs on a node */
1392
	unsigned long compute_capacity;
1393 1394

	/* Approximate capacity in terms of runnable tasks on a node */
1395
	unsigned long task_capacity;
1396
	int has_free_capacity;
1397
};
1398

1399 1400 1401 1402 1403
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1404 1405
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1406 1407 1408 1409 1410 1411 1412

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1413
		ns->compute_capacity += capacity_of(cpu);
1414 1415

		cpus++;
1416 1417
	}

1418 1419 1420 1421 1422
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1423 1424
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1425 1426 1427 1428
	 */
	if (!cpus)
		return;

1429 1430 1431 1432 1433 1434
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1435
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1436 1437
}

1438 1439
struct task_numa_env {
	struct task_struct *p;
1440

1441 1442
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1443

1444
	struct numa_stats src_stats, dst_stats;
1445

1446
	int imbalance_pct;
1447
	int dist;
1448 1449 1450

	struct task_struct *best_task;
	long best_imp;
1451 1452 1453
	int best_cpu;
};

1454 1455 1456 1457 1458
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1459 1460
	if (p)
		get_task_struct(p);
1461 1462 1463 1464 1465 1466

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1467
static bool load_too_imbalanced(long src_load, long dst_load,
1468 1469
				struct task_numa_env *env)
{
1470 1471
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1483 1484

	/* We care about the slope of the imbalance, not the direction. */
1485 1486
	if (dst_load < src_load)
		swap(dst_load, src_load);
1487 1488

	/* Is the difference below the threshold? */
1489 1490
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1491 1492 1493 1494 1495
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1496
	 * Compare it with the old imbalance.
1497
	 */
1498
	orig_src_load = env->src_stats.load;
1499
	orig_dst_load = env->dst_stats.load;
1500

1501 1502
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1503

1504 1505 1506 1507 1508
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1509 1510
}

1511 1512 1513 1514 1515 1516
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1517 1518
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1519 1520 1521 1522
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1523
	long src_load, dst_load;
1524
	long load;
1525
	long imp = env->p->numa_group ? groupimp : taskimp;
1526
	long moveimp = imp;
1527
	int dist = env->dist;
1528 1529

	rcu_read_lock();
1530 1531
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1532 1533
		cur = NULL;

1534 1535 1536 1537 1538 1539 1540
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1550
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1551 1552
			goto unlock;

1553 1554
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1555
		 * in any group then look only at task weights.
1556
		 */
1557
		if (cur->numa_group == env->p->numa_group) {
1558 1559
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1560 1561 1562 1563 1564 1565
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1566
		} else {
1567 1568 1569 1570 1571 1572
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1573 1574
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1575
			else
1576 1577
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1578
		}
1579 1580
	}

1581
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1582 1583 1584 1585
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1586
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1587
		    !env->dst_stats.has_free_capacity)
1588 1589 1590 1591 1592 1593
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1594 1595
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1596 1597 1598 1599 1600 1601
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1602 1603 1604
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1605

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1623
	if (cur) {
1624 1625 1626
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1627 1628
	}

1629
	if (load_too_imbalanced(src_load, dst_load, env))
1630 1631
		goto unlock;

1632 1633 1634 1635
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1636 1637 1638 1639 1640 1641
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1642 1643
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1644 1645
		local_irq_enable();
	}
1646

1647 1648 1649 1650 1651 1652
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1653 1654
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1655 1656 1657 1658 1659
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1660
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1661 1662 1663
			continue;

		env->dst_cpu = cpu;
1664
		task_numa_compare(env, taskimp, groupimp);
1665 1666 1667
	}
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1685 1686 1687
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1688 1689 1690 1691 1692
		return true;

	return false;
}

1693 1694 1695 1696
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1697

1698
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1699
		.src_nid = task_node(p),
1700 1701 1702 1703 1704

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1705
		.best_cpu = -1,
1706 1707
	};
	struct sched_domain *sd;
1708
	unsigned long taskweight, groupweight;
1709
	int nid, ret, dist;
1710
	long taskimp, groupimp;
1711

1712
	/*
1713 1714 1715 1716 1717 1718
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1719 1720
	 */
	rcu_read_lock();
1721
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1722 1723
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1724 1725
	rcu_read_unlock();

1726 1727 1728 1729 1730 1731 1732
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1733
		p->numa_preferred_nid = task_node(p);
1734 1735 1736
		return -EINVAL;
	}

1737
	env.dst_nid = p->numa_preferred_nid;
1738 1739 1740 1741 1742 1743
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1744
	update_numa_stats(&env.dst_stats, env.dst_nid);
1745

1746
	/* Try to find a spot on the preferred nid. */
1747 1748
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1749

1750 1751 1752 1753 1754 1755 1756
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1757
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1758 1759 1760
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1761

1762
			dist = node_distance(env.src_nid, env.dst_nid);
1763 1764 1765 1766 1767
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1768

1769
			/* Only consider nodes where both task and groups benefit */
1770 1771
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1772
			if (taskimp < 0 && groupimp < 0)
1773 1774
				continue;

1775
			env.dist = dist;
1776 1777
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1778 1779
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1780 1781 1782
		}
	}

1783 1784 1785 1786 1787 1788 1789 1790
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1791
	if (p->numa_group) {
1792 1793
		struct numa_group *ng = p->numa_group;

1794 1795 1796 1797 1798
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1799
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1800 1801 1802 1803 1804 1805
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1806

1807 1808 1809 1810 1811 1812
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1813
	if (env.best_task == NULL) {
1814 1815 1816
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1817 1818 1819 1820
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1821 1822
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1823 1824
	put_task_struct(env.best_task);
	return ret;
1825 1826
}

1827 1828 1829
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1830 1831
	unsigned long interval = HZ;

1832
	/* This task has no NUMA fault statistics yet */
1833
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1834 1835
		return;

1836
	/* Periodically retry migrating the task to the preferred node */
1837 1838
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1839 1840

	/* Success if task is already running on preferred CPU */
1841
	if (task_node(p) == p->numa_preferred_nid)
1842 1843 1844
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1845
	task_numa_migrate(p);
1846 1847
}

1848
/*
1849
 * Find out how many nodes on the workload is actively running on. Do this by
1850 1851 1852 1853
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1854
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1855 1856
{
	unsigned long faults, max_faults = 0;
1857
	int nid, active_nodes = 0;
1858 1859 1860 1861 1862 1863 1864 1865 1866

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1867 1868
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1869
	}
1870 1871 1872

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1873 1874
}

1875 1876 1877
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1878 1879 1880
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1881 1882
 */
#define NUMA_PERIOD_SLOTS 10
1883
#define NUMA_PERIOD_THRESHOLD 7
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1904 1905 1906
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1907
	 */
1908
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1942
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1943 1944 1945 1946 1947 1948 1949 1950
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1969 1970
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1971 1972 1973 1974 1975 1976 1977 1978
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2026
		nodemask_t max_group = NODE_MASK_NONE;
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2060 2061
		if (!max_faults)
			break;
2062 2063 2064 2065 2066
		nodes = max_group;
	}
	return nid;
}

2067 2068
static void task_numa_placement(struct task_struct *p)
{
2069 2070
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2071
	unsigned long fault_types[2] = { 0, 0 };
2072 2073
	unsigned long total_faults;
	u64 runtime, period;
2074
	spinlock_t *group_lock = NULL;
2075

2076 2077 2078 2079 2080
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2081
	seq = READ_ONCE(p->mm->numa_scan_seq);
2082 2083 2084
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2085
	p->numa_scan_period_max = task_scan_max(p);
2086

2087 2088 2089 2090
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2091 2092 2093
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2094
		spin_lock_irq(group_lock);
2095 2096
	}

2097 2098
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2099 2100
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2101
		unsigned long faults = 0, group_faults = 0;
2102
		int priv;
2103

2104
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2105
			long diff, f_diff, f_weight;
2106

2107 2108 2109 2110
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2111

2112
			/* Decay existing window, copy faults since last scan */
2113 2114 2115
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2116

2117 2118 2119 2120 2121 2122 2123 2124
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2125
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2126
				   (total_faults + 1);
2127 2128
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2129

2130 2131 2132
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2133
			p->total_numa_faults += diff;
2134
			if (p->numa_group) {
2135 2136 2137 2138 2139 2140 2141 2142 2143
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2144
				p->numa_group->total_faults += diff;
2145
				group_faults += p->numa_group->faults[mem_idx];
2146
			}
2147 2148
		}

2149 2150 2151 2152
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2153 2154 2155 2156 2157 2158 2159

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2160 2161
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2162
	if (p->numa_group) {
2163
		numa_group_count_active_nodes(p->numa_group);
2164
		spin_unlock_irq(group_lock);
2165
		max_nid = preferred_group_nid(p, max_group_nid);
2166 2167
	}

2168 2169 2170 2171 2172 2173 2174
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2175
	}
2176 2177
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2189 2190
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2191 2192 2193 2194 2195 2196 2197 2198 2199
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2200
				    4*nr_node_ids*sizeof(unsigned long);
2201 2202 2203 2204 2205 2206

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2207 2208
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2209
		spin_lock_init(&grp->lock);
2210
		grp->gid = p->pid;
2211
		/* Second half of the array tracks nids where faults happen */
2212 2213
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2214

2215
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2216
			grp->faults[i] = p->numa_faults[i];
2217

2218
		grp->total_faults = p->total_numa_faults;
2219

2220 2221 2222 2223 2224
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2225
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2226 2227

	if (!cpupid_match_pid(tsk, cpupid))
2228
		goto no_join;
2229 2230 2231

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2232
		goto no_join;
2233 2234 2235

	my_grp = p->numa_group;
	if (grp == my_grp)
2236
		goto no_join;
2237 2238 2239 2240 2241 2242

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2243
		goto no_join;
2244 2245 2246 2247 2248

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2249
		goto no_join;
2250

2251 2252 2253 2254 2255 2256 2257
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2258

2259 2260 2261
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2262
	if (join && !get_numa_group(grp))
2263
		goto no_join;
2264 2265 2266 2267 2268 2269

	rcu_read_unlock();

	if (!join)
		return;

2270 2271
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2272

2273
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2274 2275
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2276
	}
2277 2278
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2279 2280 2281 2282 2283

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2284
	spin_unlock_irq(&grp->lock);
2285 2286 2287 2288

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2289 2290 2291 2292 2293
	return;

no_join:
	rcu_read_unlock();
	return;
2294 2295 2296 2297 2298
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2299
	void *numa_faults = p->numa_faults;
2300 2301
	unsigned long flags;
	int i;
2302 2303

	if (grp) {
2304
		spin_lock_irqsave(&grp->lock, flags);
2305
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2306
			grp->faults[i] -= p->numa_faults[i];
2307
		grp->total_faults -= p->total_numa_faults;
2308

2309
		grp->nr_tasks--;
2310
		spin_unlock_irqrestore(&grp->lock, flags);
2311
		RCU_INIT_POINTER(p->numa_group, NULL);
2312 2313 2314
		put_numa_group(grp);
	}

2315
	p->numa_faults = NULL;
2316
	kfree(numa_faults);
2317 2318
}

2319 2320 2321
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2322
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2323 2324
{
	struct task_struct *p = current;
2325
	bool migrated = flags & TNF_MIGRATED;
2326
	int cpu_node = task_node(current);
2327
	int local = !!(flags & TNF_FAULT_LOCAL);
2328
	struct numa_group *ng;
2329
	int priv;
2330

2331
	if (!static_branch_likely(&sched_numa_balancing))
2332 2333
		return;

2334 2335 2336 2337
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2338
	/* Allocate buffer to track faults on a per-node basis */
2339 2340
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2341
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2342

2343 2344
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2345
			return;
2346

2347
		p->total_numa_faults = 0;
2348
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2349
	}
2350

2351 2352 2353 2354 2355 2356 2357 2358
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2359
		if (!priv && !(flags & TNF_NO_GROUP))
2360
			task_numa_group(p, last_cpupid, flags, &priv);
2361 2362
	}

2363 2364 2365 2366 2367 2368
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2369 2370 2371 2372
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2373 2374
		local = 1;

2375
	task_numa_placement(p);
2376

2377 2378 2379 2380 2381
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2382 2383
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2384 2385
	if (migrated)
		p->numa_pages_migrated += pages;
2386 2387
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2388

2389 2390
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2391
	p->numa_faults_locality[local] += pages;
2392 2393
}

2394 2395
static void reset_ptenuma_scan(struct task_struct *p)
{
2396 2397 2398 2399 2400 2401 2402 2403
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2404
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2405 2406 2407
	p->mm->numa_scan_offset = 0;
}

2408 2409 2410 2411 2412 2413 2414 2415 2416
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2417
	u64 runtime = p->se.sum_exec_runtime;
2418
	struct vm_area_struct *vma;
2419
	unsigned long start, end;
2420
	unsigned long nr_pte_updates = 0;
2421
	long pages, virtpages;
2422

2423
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2437
	if (!mm->numa_next_scan) {
2438 2439
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2440 2441
	}

2442 2443 2444 2445 2446 2447 2448
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2449 2450 2451 2452
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2453

2454
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2455 2456 2457
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2458 2459 2460 2461 2462 2463
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2464 2465 2466
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2467
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2468 2469
	if (!pages)
		return;
2470

2471

2472 2473
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2474
	vma = find_vma(mm, start);
2475 2476
	if (!vma) {
		reset_ptenuma_scan(p);
2477
		start = 0;
2478 2479
		vma = mm->mmap;
	}
2480
	for (; vma; vma = vma->vm_next) {
2481
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2482
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2483
			continue;
2484
		}
2485

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2496 2497 2498 2499 2500 2501
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2502

2503 2504 2505 2506
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2507
			nr_pte_updates = change_prot_numa(vma, start, end);
2508 2509

			/*
2510 2511 2512 2513 2514 2515
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2516 2517 2518
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2519
			virtpages -= (end - start) >> PAGE_SHIFT;
2520

2521
			start = end;
2522
			if (pages <= 0 || virtpages <= 0)
2523
				goto out;
2524 2525

			cond_resched();
2526
		} while (end != vma->vm_end);
2527
	}
2528

2529
out:
2530
	/*
P
Peter Zijlstra 已提交
2531 2532 2533 2534
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2535 2536
	 */
	if (vma)
2537
		mm->numa_scan_offset = start;
2538 2539 2540
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2577
	if (now > curr->node_stamp + period) {
2578
		if (!curr->node_stamp)
2579
			curr->numa_scan_period = task_scan_min(curr);
2580
		curr->node_stamp += period;
2581 2582 2583 2584 2585 2586 2587

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641

/*
 * Can a task be moved from prev_cpu to this_cpu without causing a load
 * imbalance that would trigger the load balancer?
 */
static inline bool numa_wake_affine(struct sched_domain *sd,
				    struct task_struct *p, int this_cpu,
				    int prev_cpu, int sync)
{
	struct numa_stats prev_load, this_load;
	s64 this_eff_load, prev_eff_load;

	update_numa_stats(&prev_load, cpu_to_node(prev_cpu));
	update_numa_stats(&this_load, cpu_to_node(this_cpu));

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
	if (sync) {
		unsigned long current_load = task_h_load(current);

		if (this_load.load > current_load)
			this_load.load -= current_load;
		else
			this_load.load = 0;
	}

	/*
	 * In low-load situations, where this_cpu's node is idle due to the
	 * sync cause above having dropped this_load.load to 0, move the task.
	 * Moving to an idle socket will not create a bad imbalance.
	 *
	 * Otherwise check if the nodes are near enough in load to allow this
	 * task to be woken on this_cpu's node.
	 */
	if (this_load.load > 0) {
		unsigned long task_load = task_h_load(p);

		this_eff_load = 100;
		this_eff_load *= prev_load.compute_capacity;

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
		prev_eff_load *= this_load.compute_capacity;

		this_eff_load *= this_load.load + task_load;
		prev_eff_load *= prev_load.load - task_load;

		return this_eff_load <= prev_eff_load;
	}

	return true;
}
2642 2643 2644 2645
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2646 2647 2648 2649 2650 2651 2652 2653

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2654

2655
#ifdef CONFIG_SMP
2656 2657 2658 2659 2660 2661
static inline bool numa_wake_affine(struct sched_domain *sd,
				    struct task_struct *p, int this_cpu,
				    int prev_cpu, int sync)
{
	return true;
}
2662
#endif /* !SMP */
2663 2664
#endif /* CONFIG_NUMA_BALANCING */

2665 2666 2667 2668
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2669
	if (!parent_entity(se))
2670
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2671
#ifdef CONFIG_SMP
2672 2673 2674 2675 2676 2677
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2678
#endif
2679 2680 2681 2682 2683 2684 2685
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2686
	if (!parent_entity(se))
2687
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2688
#ifdef CONFIG_SMP
2689 2690
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2691
		list_del_init(&se->group_node);
2692
	}
2693
#endif
2694 2695 2696
	cfs_rq->nr_running--;
}

2697 2698
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2699
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2700
{
2701
	long tg_weight, load, shares;
2702 2703

	/*
2704 2705 2706
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2707
	 */
2708
	load = scale_load_down(cfs_rq->load.weight);
2709

2710
	tg_weight = atomic_long_read(&tg->load_avg);
2711

2712 2713 2714
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2715 2716

	shares = (tg->shares * load);
2717 2718
	if (tg_weight)
		shares /= tg_weight;
2719

2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2732 2733 2734 2735 2736 2737 2738 2739
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2740
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2741 2742 2743 2744
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2745

P
Peter Zijlstra 已提交
2746 2747 2748
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2749 2750 2751 2752
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2753
		account_entity_dequeue(cfs_rq, se);
2754
	}
P
Peter Zijlstra 已提交
2755 2756 2757 2758 2759 2760 2761

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2762 2763
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2764
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2765
{
2766
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2767
	struct task_group *tg;
2768
	long shares;
P
Peter Zijlstra 已提交
2769

2770 2771 2772 2773
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2774
		return;
2775 2776 2777

	tg = cfs_rq->tg;

2778 2779 2780 2781
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2782
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2783 2784 2785

	reweight_entity(cfs_rq_of(se), se, shares);
}
2786

P
Peter Zijlstra 已提交
2787
#else /* CONFIG_FAIR_GROUP_SCHED */
2788
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2789 2790 2791 2792
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	if (&this_rq()->cfs == cfs_rq) {
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_of(cfs_rq), 0);
	}
}

2816
#ifdef CONFIG_SMP
2817 2818 2819 2820
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2821
static u64 decay_load(u64 val, u64 n)
2822
{
2823 2824
	unsigned int local_n;

2825
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2826 2827 2828 2829 2830 2831 2832
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2833 2834
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2835 2836 2837 2838 2839 2840
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2841 2842
	}

2843 2844
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2845 2846
}

2847
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2848
{
2849
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2850

2851
	/*
P
Peter Zijlstra 已提交
2852
	 * c1 = d1 y^p
2853
	 */
2854
	c1 = decay_load((u64)d1, periods);
2855 2856

	/*
P
Peter Zijlstra 已提交
2857
	 *            p-1
2858 2859
	 * c2 = 1024 \Sum y^n
	 *            n=1
2860
	 *
2861 2862
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
2863
	 *              n=0        n=p
2864
	 */
2865
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2866 2867

	return c1 + c2 + c3;
2868 2869
}

2870
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
2883 2884 2885
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
2886
 *
P
Peter Zijlstra 已提交
2887
 *    = u y^p +					(Step 1)
2888
 *
P
Peter Zijlstra 已提交
2889 2890 2891
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
2892 2893 2894 2895 2896 2897
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
2898
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

2918 2919 2920 2921 2922 2923 2924
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2967
static __always_inline int
2968
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2969
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2970
{
2971
	u64 delta;
2972

2973
	delta = now - sa->last_update_time;
2974 2975 2976 2977 2978
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2979
		sa->last_update_time = now;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2990 2991

	sa->last_update_time += delta << 10;
2992

2993 2994 2995 2996 2997 2998 2999 3000 3001
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
3002

3003 3004 3005
	/*
	 * Step 2: update *_avg.
	 */
3006
	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3007 3008
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
3009
			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3010
	}
3011
	sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3012

3013
	return 1;
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg,
				  se->on_rq * scale_load_down(se->load.weight),
				  cfs_rq->curr == se, NULL);
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	return ___update_load_avg(now, cpu, &cfs_rq->avg,
			scale_load_down(cfs_rq->load.weight),
			cfs_rq->curr != NULL, cfs_rq);
}

3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

3058
#ifdef CONFIG_FAIR_GROUP_SCHED
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3072
 * Updating tg's load_avg is necessary before update_cfs_share().
3073
 */
3074
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3075
{
3076
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3077

3078 3079 3080 3081 3082 3083
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3084 3085 3086
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3087
	}
3088
}
3089

3090 3091 3092 3093 3094 3095 3096 3097
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3098 3099 3100
	u64 p_last_update_time;
	u64 n_last_update_time;

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3111 3112
	if (!(se->avg.last_update_time && prev))
		return;
3113 3114

#ifndef CONFIG_64BIT
3115
	{
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3130
	}
3131
#else
3132 3133
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3134
#endif
3135 3136
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3137
}
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3289
#else /* CONFIG_FAIR_GROUP_SCHED */
3290

3291
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3292 3293 3294 3295 3296 3297 3298 3299

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3300
#endif /* CONFIG_FAIR_GROUP_SCHED */
3301

3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3331 3332 3333 3334
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3335
 */
3336 3337
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3338
{
3339
	struct sched_avg *sa = &cfs_rq->avg;
3340
	int decayed, removed_load = 0, removed_util = 0;
3341

3342
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3343
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3344 3345
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3346
		removed_load = 1;
3347
		set_tg_cfs_propagate(cfs_rq);
3348
	}
3349

3350 3351
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3352 3353
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3354
		removed_util = 1;
3355
		set_tg_cfs_propagate(cfs_rq);
3356
	}
3357

3358
	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3359

3360 3361 3362 3363
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3364

3365 3366
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3367

3368
	return decayed || removed_load;
3369 3370
}

3371 3372 3373 3374 3375 3376
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3377
/* Update task and its cfs_rq load average */
3378
static inline void update_load_avg(struct sched_entity *se, int flags)
3379 3380 3381 3382 3383
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3384
	int decayed;
3385 3386 3387 3388 3389

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3390 3391
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);
3392

3393 3394 3395 3396
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3397
		update_tg_load_avg(cfs_rq, 0);
3398 3399
}

3400 3401 3402 3403 3404 3405 3406 3407
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3408 3409 3410 3411 3412 3413 3414
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3415
	set_tg_cfs_propagate(cfs_rq);
3416 3417

	cfs_rq_util_change(cfs_rq);
3418 3419
}

3420 3421 3422 3423 3424 3425 3426 3427
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3428 3429 3430
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3431 3432 3433 3434
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3435
	set_tg_cfs_propagate(cfs_rq);
3436 3437

	cfs_rq_util_change(cfs_rq);
3438 3439
}

3440 3441 3442
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3443
{
3444
	struct sched_avg *sa = &se->avg;
3445

3446 3447 3448
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3449
	if (!sa->last_update_time) {
3450
		attach_entity_load_avg(cfs_rq, se);
3451
		update_tg_load_avg(cfs_rq, 0);
3452
	}
3453 3454
}

3455 3456 3457 3458 3459 3460 3461
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3462
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3463 3464
}

3465
#ifndef CONFIG_64BIT
3466 3467
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3468
	u64 last_update_time_copy;
3469
	u64 last_update_time;
3470

3471 3472 3473 3474 3475
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3476 3477 3478

	return last_update_time;
}
3479
#else
3480 3481 3482 3483
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3484 3485
#endif

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3496
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3497 3498
}

3499 3500 3501 3502 3503 3504 3505 3506 3507
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3508 3509 3510 3511 3512 3513 3514
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3515 3516
	 */

3517
	sync_entity_load_avg(se);
3518 3519
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3520
}
3521

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3532
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3533

3534 3535
#else /* CONFIG_SMP */

3536 3537 3538 3539 3540 3541
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3542 3543 3544 3545
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3546
{
3547
	cfs_rq_util_change(cfs_rq_of(se));
3548 3549
}

3550 3551
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3552 3553
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3554
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3555

3556 3557 3558 3559 3560
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3561
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3562 3563 3564 3565
{
	return 0;
}

3566
#endif /* CONFIG_SMP */
3567

P
Peter Zijlstra 已提交
3568 3569 3570 3571 3572 3573 3574 3575 3576
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3577
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3578 3579 3580
#endif
}

3581 3582 3583
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3584
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3585

3586 3587 3588 3589 3590 3591
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3592
	if (initial && sched_feat(START_DEBIT))
3593
		vruntime += sched_vslice(cfs_rq, se);
3594

3595
	/* sleeps up to a single latency don't count. */
3596
	if (!initial) {
3597
		unsigned long thresh = sysctl_sched_latency;
3598

3599 3600 3601 3602 3603 3604
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3605

3606
		vruntime -= thresh;
3607 3608
	}

3609
	/* ensure we never gain time by being placed backwards. */
3610
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3611 3612
}

3613 3614
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3627
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3628
			     "stat_blocked and stat_runtime require the "
3629
			     "kernel parameter schedstats=enable or "
3630 3631 3632 3633 3634
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3654
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3666
static void
3667
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3668
{
3669 3670 3671
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3672
	/*
3673 3674
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3675
	 */
3676
	if (renorm && curr)
3677 3678
		se->vruntime += cfs_rq->min_vruntime;

3679 3680
	update_curr(cfs_rq);

3681
	/*
3682 3683 3684 3685
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3686
	 */
3687 3688 3689
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3690 3691 3692 3693 3694 3695 3696 3697
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3698
	update_load_avg(se, UPDATE_TG);
3699
	enqueue_entity_load_avg(cfs_rq, se);
3700
	update_cfs_shares(se);
3701
	account_entity_enqueue(cfs_rq, se);
3702

3703
	if (flags & ENQUEUE_WAKEUP)
3704
		place_entity(cfs_rq, se, 0);
3705

3706
	check_schedstat_required();
3707 3708
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3709
	if (!curr)
3710
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3711
	se->on_rq = 1;
3712

3713
	if (cfs_rq->nr_running == 1) {
3714
		list_add_leaf_cfs_rq(cfs_rq);
3715 3716
		check_enqueue_throttle(cfs_rq);
	}
3717 3718
}

3719
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3720
{
3721 3722
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3723
		if (cfs_rq->last != se)
3724
			break;
3725 3726

		cfs_rq->last = NULL;
3727 3728
	}
}
P
Peter Zijlstra 已提交
3729

3730 3731 3732 3733
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3734
		if (cfs_rq->next != se)
3735
			break;
3736 3737

		cfs_rq->next = NULL;
3738
	}
P
Peter Zijlstra 已提交
3739 3740
}

3741 3742 3743 3744
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3745
		if (cfs_rq->skip != se)
3746
			break;
3747 3748

		cfs_rq->skip = NULL;
3749 3750 3751
	}
}

P
Peter Zijlstra 已提交
3752 3753
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3754 3755 3756 3757 3758
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3759 3760 3761

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3762 3763
}

3764
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3765

3766
static void
3767
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3768
{
3769 3770 3771 3772
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3773 3774 3775 3776 3777 3778 3779 3780 3781

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3782
	update_load_avg(se, UPDATE_TG);
3783
	dequeue_entity_load_avg(cfs_rq, se);
3784

3785
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3786

P
Peter Zijlstra 已提交
3787
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3788

3789
	if (se != cfs_rq->curr)
3790
		__dequeue_entity(cfs_rq, se);
3791
	se->on_rq = 0;
3792
	account_entity_dequeue(cfs_rq, se);
3793 3794

	/*
3795 3796 3797 3798
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3799
	 */
3800
	if (!(flags & DEQUEUE_SLEEP))
3801
		se->vruntime -= cfs_rq->min_vruntime;
3802

3803 3804 3805
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3806
	update_cfs_shares(se);
3807 3808 3809 3810 3811 3812 3813 3814 3815

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3816 3817 3818 3819 3820
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3821
static void
I
Ingo Molnar 已提交
3822
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3823
{
3824
	unsigned long ideal_runtime, delta_exec;
3825 3826
	struct sched_entity *se;
	s64 delta;
3827

P
Peter Zijlstra 已提交
3828
	ideal_runtime = sched_slice(cfs_rq, curr);
3829
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3830
	if (delta_exec > ideal_runtime) {
3831
		resched_curr(rq_of(cfs_rq));
3832 3833 3834 3835 3836
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3848 3849
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3850

3851 3852
	if (delta < 0)
		return;
3853

3854
	if (delta > ideal_runtime)
3855
		resched_curr(rq_of(cfs_rq));
3856 3857
}

3858
static void
3859
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3860
{
3861 3862 3863 3864 3865 3866 3867
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3868
		update_stats_wait_end(cfs_rq, se);
3869
		__dequeue_entity(cfs_rq, se);
3870
		update_load_avg(se, UPDATE_TG);
3871 3872
	}

3873
	update_stats_curr_start(cfs_rq, se);
3874
	cfs_rq->curr = se;
3875

I
Ingo Molnar 已提交
3876 3877 3878 3879 3880
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3881
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3882 3883 3884
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3885
	}
3886

3887
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3888 3889
}

3890 3891 3892
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3893 3894 3895 3896 3897 3898 3899
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3900 3901
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3902
{
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3914

3915 3916 3917 3918 3919
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3930 3931 3932
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3933

3934 3935 3936 3937 3938 3939
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3940 3941 3942 3943 3944 3945
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3946
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3947 3948

	return se;
3949 3950
}

3951
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3952

3953
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3954 3955 3956 3957 3958 3959
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3960
		update_curr(cfs_rq);
3961

3962 3963 3964
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3965
	check_spread(cfs_rq, prev);
3966

3967
	if (prev->on_rq) {
3968
		update_stats_wait_start(cfs_rq, prev);
3969 3970
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3971
		/* in !on_rq case, update occurred at dequeue */
3972
		update_load_avg(prev, 0);
3973
	}
3974
	cfs_rq->curr = NULL;
3975 3976
}

P
Peter Zijlstra 已提交
3977 3978
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3979 3980
{
	/*
3981
	 * Update run-time statistics of the 'current'.
3982
	 */
3983
	update_curr(cfs_rq);
3984

3985 3986 3987
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3988
	update_load_avg(curr, UPDATE_TG);
3989
	update_cfs_shares(curr);
3990

P
Peter Zijlstra 已提交
3991 3992 3993 3994 3995
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3996
	if (queued) {
3997
		resched_curr(rq_of(cfs_rq));
3998 3999
		return;
	}
P
Peter Zijlstra 已提交
4000 4001 4002 4003 4004 4005 4006 4007
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4008
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4009
		check_preempt_tick(cfs_rq, curr);
4010 4011
}

4012 4013 4014 4015 4016 4017

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4018 4019

#ifdef HAVE_JUMP_LABEL
4020
static struct static_key __cfs_bandwidth_used;
4021 4022 4023

static inline bool cfs_bandwidth_used(void)
{
4024
	return static_key_false(&__cfs_bandwidth_used);
4025 4026
}

4027
void cfs_bandwidth_usage_inc(void)
4028
{
4029 4030 4031 4032 4033 4034
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
4035 4036 4037 4038 4039 4040 4041
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4042 4043
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4044 4045
#endif /* HAVE_JUMP_LABEL */

4046 4047 4048 4049 4050 4051 4052 4053
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4054 4055 4056 4057 4058 4059

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4060 4061 4062 4063 4064 4065 4066
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4067
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4079 4080 4081 4082 4083
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4084 4085 4086 4087
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4088
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4089

4090
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4091 4092
}

4093 4094
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4095 4096 4097
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4098
	u64 amount = 0, min_amount, expires;
4099 4100 4101 4102 4103 4104 4105

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4106
	else {
P
Peter Zijlstra 已提交
4107
		start_cfs_bandwidth(cfs_b);
4108 4109 4110 4111 4112 4113

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4114
	}
P
Paul Turner 已提交
4115
	expires = cfs_b->runtime_expires;
4116 4117 4118
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4119 4120 4121 4122 4123 4124 4125
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4126 4127

	return cfs_rq->runtime_remaining > 0;
4128 4129
}

P
Paul Turner 已提交
4130 4131 4132 4133 4134
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4135
{
P
Paul Turner 已提交
4136 4137 4138
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4139
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4140 4141
		return;

P
Paul Turner 已提交
4142 4143 4144 4145 4146 4147 4148 4149 4150
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4151 4152 4153
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4154 4155
	 */

4156
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4157 4158 4159 4160 4161 4162 4163 4164
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4165
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4166 4167
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4168
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4169 4170 4171
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4172 4173
		return;

4174 4175 4176 4177 4178
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4179
		resched_curr(rq_of(cfs_rq));
4180 4181
}

4182
static __always_inline
4183
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4184
{
4185
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4186 4187 4188 4189 4190
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4191 4192
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4193
	return cfs_bandwidth_used() && cfs_rq->throttled;
4194 4195
}

4196 4197 4198
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4199
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4227
		/* adjust cfs_rq_clock_task() */
4228
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4229
					     cfs_rq->throttled_clock_task;
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4240 4241
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4242
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4243 4244 4245 4246 4247
	cfs_rq->throttle_count++;

	return 0;
}

4248
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4249 4250 4251 4252 4253
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4254
	bool empty;
4255 4256 4257

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4258
	/* freeze hierarchy runnable averages while throttled */
4259 4260 4261
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4279
		sub_nr_running(rq, task_delta);
4280 4281

	cfs_rq->throttled = 1;
4282
	cfs_rq->throttled_clock = rq_clock(rq);
4283
	raw_spin_lock(&cfs_b->lock);
4284
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4285

4286 4287 4288 4289 4290
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4291 4292 4293 4294 4295 4296 4297 4298

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4299 4300 4301
	raw_spin_unlock(&cfs_b->lock);
}

4302
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4303 4304 4305 4306 4307 4308 4309
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4310
	se = cfs_rq->tg->se[cpu_of(rq)];
4311 4312

	cfs_rq->throttled = 0;
4313 4314 4315

	update_rq_clock(rq);

4316
	raw_spin_lock(&cfs_b->lock);
4317
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4318 4319 4320
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4321 4322 4323
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4342
		add_nr_running(rq, task_delta);
4343 4344 4345

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4346
		resched_curr(rq);
4347 4348 4349 4350 4351 4352
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4353 4354
	u64 runtime;
	u64 starting_runtime = remaining;
4355 4356 4357 4358 4359

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4360
		struct rq_flags rf;
4361

4362
		rq_lock(rq, &rf);
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4379
		rq_unlock(rq, &rf);
4380 4381 4382 4383 4384 4385

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4386
	return starting_runtime - remaining;
4387 4388
}

4389 4390 4391 4392 4393 4394 4395 4396
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4397
	u64 runtime, runtime_expires;
4398
	int throttled;
4399 4400 4401

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4402
		goto out_deactivate;
4403

4404
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4405
	cfs_b->nr_periods += overrun;
4406

4407 4408 4409 4410 4411 4412
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4413 4414 4415

	__refill_cfs_bandwidth_runtime(cfs_b);

4416 4417 4418
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4419
		return 0;
4420 4421
	}

4422 4423 4424
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4425 4426 4427
	runtime_expires = cfs_b->runtime_expires;

	/*
4428 4429 4430 4431 4432
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4433
	 */
4434 4435
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4436 4437 4438 4439 4440 4441 4442
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4443 4444

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4445
	}
4446

4447 4448 4449 4450 4451 4452 4453
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4454

4455 4456 4457 4458
	return 0;

out_deactivate:
	return 1;
4459
}
4460

4461 4462 4463 4464 4465 4466 4467
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4468 4469 4470 4471
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4472
 * hrtimer base being cleared by hrtimer_start. In the case of
4473 4474
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4500 4501 4502
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4532 4533 4534
	if (!cfs_bandwidth_used())
		return;

4535
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4551 4552 4553
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4554
		return;
4555
	}
4556

4557
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4558
		runtime = cfs_b->runtime;
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4570
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4571 4572 4573
	raw_spin_unlock(&cfs_b->lock);
}

4574 4575 4576 4577 4578 4579 4580
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4581 4582 4583
	if (!cfs_bandwidth_used())
		return;

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4612
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4613 4614
}

4615
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4616
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4617
{
4618
	if (!cfs_bandwidth_used())
4619
		return false;
4620

4621
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4622
		return false;
4623 4624 4625 4626 4627 4628

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4629
		return true;
4630 4631

	throttle_cfs_rq(cfs_rq);
4632
	return true;
4633
}
4634 4635 4636 4637 4638

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4639

4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4652
	raw_spin_lock(&cfs_b->lock);
4653
	for (;;) {
P
Peter Zijlstra 已提交
4654
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4655 4656 4657 4658 4659
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4660 4661
	if (idle)
		cfs_b->period_active = 0;
4662
	raw_spin_unlock(&cfs_b->lock);
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4675
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4687
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4688
{
P
Peter Zijlstra 已提交
4689
	lockdep_assert_held(&cfs_b->lock);
4690

P
Peter Zijlstra 已提交
4691 4692 4693 4694 4695
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4696 4697 4698 4699
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4700 4701 4702 4703
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4704 4705 4706 4707
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4708 4709 4710 4711 4712 4713 4714 4715
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4716 4717
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4718
	struct task_group *tg;
4719

4720 4721 4722 4723 4724 4725
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4726 4727 4728 4729 4730

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4731
	rcu_read_unlock();
4732 4733
}

4734
/* cpu offline callback */
4735
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4736
{
4737 4738 4739 4740 4741 4742 4743
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4744 4745 4746 4747 4748 4749 4750 4751

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4752
		cfs_rq->runtime_remaining = 1;
4753 4754 4755 4756 4757 4758
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4759 4760 4761
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4762
	rcu_read_unlock();
4763 4764 4765
}

#else /* CONFIG_CFS_BANDWIDTH */
4766 4767
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4768
	return rq_clock_task(rq_of(cfs_rq));
4769 4770
}

4771
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4772
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4773
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4774
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4775
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4776 4777 4778 4779 4780

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4792 4793 4794 4795 4796

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4797 4798
#endif

4799 4800 4801 4802 4803
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4804
static inline void update_runtime_enabled(struct rq *rq) {}
4805
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4806 4807 4808

#endif /* CONFIG_CFS_BANDWIDTH */

4809 4810 4811 4812
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4813 4814 4815 4816 4817 4818
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4819
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4820

4821
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4822 4823 4824 4825 4826 4827
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4828
				resched_curr(rq);
P
Peter Zijlstra 已提交
4829 4830
			return;
		}
4831
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4832 4833
	}
}
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4844
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4845 4846 4847 4848 4849
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4850
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4851 4852 4853 4854
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4855 4856 4857 4858

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4859 4860
#endif

4861 4862 4863 4864 4865
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4866
static void
4867
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4868 4869
{
	struct cfs_rq *cfs_rq;
4870
	struct sched_entity *se = &p->se;
4871

4872 4873 4874 4875 4876 4877 4878 4879
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4880
	for_each_sched_entity(se) {
4881
		if (se->on_rq)
4882 4883
			break;
		cfs_rq = cfs_rq_of(se);
4884
		enqueue_entity(cfs_rq, se, flags);
4885 4886 4887 4888 4889 4890

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4891
		 */
4892 4893
		if (cfs_rq_throttled(cfs_rq))
			break;
4894
		cfs_rq->h_nr_running++;
4895

4896
		flags = ENQUEUE_WAKEUP;
4897
	}
P
Peter Zijlstra 已提交
4898

P
Peter Zijlstra 已提交
4899
	for_each_sched_entity(se) {
4900
		cfs_rq = cfs_rq_of(se);
4901
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4902

4903 4904 4905
		if (cfs_rq_throttled(cfs_rq))
			break;

4906
		update_load_avg(se, UPDATE_TG);
4907
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4908 4909
	}

Y
Yuyang Du 已提交
4910
	if (!se)
4911
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4912

4913
	hrtick_update(rq);
4914 4915
}

4916 4917
static void set_next_buddy(struct sched_entity *se);

4918 4919 4920 4921 4922
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4923
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4924 4925
{
	struct cfs_rq *cfs_rq;
4926
	struct sched_entity *se = &p->se;
4927
	int task_sleep = flags & DEQUEUE_SLEEP;
4928 4929 4930

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4931
		dequeue_entity(cfs_rq, se, flags);
4932 4933 4934 4935 4936 4937 4938 4939 4940

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4941
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4942

4943
		/* Don't dequeue parent if it has other entities besides us */
4944
		if (cfs_rq->load.weight) {
4945 4946
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4947 4948 4949 4950
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4951 4952
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4953
			break;
4954
		}
4955
		flags |= DEQUEUE_SLEEP;
4956
	}
P
Peter Zijlstra 已提交
4957

P
Peter Zijlstra 已提交
4958
	for_each_sched_entity(se) {
4959
		cfs_rq = cfs_rq_of(se);
4960
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4961

4962 4963 4964
		if (cfs_rq_throttled(cfs_rq))
			break;

4965
		update_load_avg(se, UPDATE_TG);
4966
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4967 4968
	}

Y
Yuyang Du 已提交
4969
	if (!se)
4970
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4971

4972
	hrtick_update(rq);
4973 4974
}

4975
#ifdef CONFIG_SMP
4976 4977 4978 4979 4980

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4981
#ifdef CONFIG_NO_HZ_COMMON
4982 4983 4984 4985 4986
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4987
 * The exact cpuload calculated at every tick would be:
4988
 *
4989 4990 4991 4992 4993 4994 4995
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4996 4997 4998
 *
 * decay_load_missed() below does efficient calculation of
 *
4999 5000 5001 5002 5003 5004
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5005
 *
5006
 * The calculation is approximated on a 128 point scale.
5007 5008
 */
#define DEGRADE_SHIFT		7
5009 5010 5011 5012 5013 5014 5015 5016 5017

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5047
#endif /* CONFIG_NO_HZ_COMMON */
5048

5049
/**
5050
 * __cpu_load_update - update the rq->cpu_load[] statistics
5051 5052 5053 5054
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5055
 * Update rq->cpu_load[] statistics. This function is usually called every
5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5082
 * term.
5083
 */
5084 5085
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5086
{
5087
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5099
		old_load = this_rq->cpu_load[i];
5100
#ifdef CONFIG_NO_HZ_COMMON
5101
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5102 5103 5104 5105 5106 5107 5108 5109 5110
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5111
#endif
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5127 5128 5129 5130 5131 5132
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5133
#ifdef CONFIG_NO_HZ_COMMON
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5162
		cpu_load_update(this_rq, load, pending_updates);
5163 5164 5165
	}
}

5166 5167 5168 5169
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5170
static void cpu_load_update_idle(struct rq *this_rq)
5171 5172 5173 5174
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5175
	if (weighted_cpuload(cpu_of(this_rq)))
5176 5177
		return;

5178
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5179 5180 5181
}

/*
5182 5183 5184 5185
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5186
 */
5187
void cpu_load_update_nohz_start(void)
5188 5189
{
	struct rq *this_rq = this_rq();
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5204
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5205 5206
	struct rq *this_rq = this_rq();
	unsigned long load;
5207
	struct rq_flags rf;
5208 5209 5210 5211

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5212
	load = weighted_cpuload(cpu_of(this_rq));
5213
	rq_lock(this_rq, &rf);
5214
	update_rq_clock(this_rq);
5215
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5216
	rq_unlock(this_rq, &rf);
5217
}
5218 5219 5220 5221 5222 5223 5224 5225
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5226
#ifdef CONFIG_NO_HZ_COMMON
5227 5228
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5229
#endif
5230 5231
	cpu_load_update(this_rq, load, 1);
}
5232 5233 5234 5235

/*
 * Called from scheduler_tick()
 */
5236
void cpu_load_update_active(struct rq *this_rq)
5237
{
5238
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5239 5240 5241 5242 5243

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5244 5245
}

5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5279
static unsigned long capacity_of(int cpu)
5280
{
5281
	return cpu_rq(cpu)->cpu_capacity;
5282 5283
}

5284 5285 5286 5287 5288
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5289 5290 5291
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5292
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5293
	unsigned long load_avg = weighted_cpuload(cpu);
5294 5295

	if (nr_running)
5296
		return load_avg / nr_running;
5297 5298 5299 5300

	return 0;
}

P
Peter Zijlstra 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5318 5319
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5320
 *
M
Mike Galbraith 已提交
5321
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5334
 */
5335 5336
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5337 5338
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5339
	int factor = this_cpu_read(sd_llc_size);
5340

M
Mike Galbraith 已提交
5341 5342 5343 5344 5345
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5346 5347
}

5348 5349
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5350
{
5351 5352
	int this_cpu = smp_processor_id();
	bool affine = false;
5353

5354 5355 5356 5357 5358
	/*
	 * Common case: CPUs are in the same socket, and select_idle_sibling()
	 * will do its thing regardless of what we return:
	 */
	if (cpus_share_cache(prev_cpu, this_cpu))
5359 5360 5361
		affine = true;
	else
		affine = numa_wake_affine(sd, p, this_cpu, prev_cpu, sync);
5362

5363
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5364 5365 5366 5367
	if (affine) {
		schedstat_inc(sd->ttwu_move_affine);
		schedstat_inc(p->se.statistics.nr_wakeups_affine);
	}
5368

5369
	return affine;
5370 5371
}

5372 5373 5374 5375 5376 5377 5378 5379
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5380 5381 5382 5383 5384
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5385
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5386
		  int this_cpu, int sd_flag)
5387
{
5388
	struct sched_group *idlest = NULL, *group = sd->groups;
5389
	struct sched_group *most_spare_sg = NULL;
5390 5391
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5392
	unsigned long most_spare = 0, this_spare = 0;
5393
	int load_idx = sd->forkexec_idx;
5394 5395 5396
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5397

5398 5399 5400
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5401
	do {
5402 5403
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5404 5405
		int local_group;
		int i;
5406

5407
		/* Skip over this group if it has no CPUs allowed */
5408
		if (!cpumask_intersects(sched_group_span(group),
5409
					&p->cpus_allowed))
5410 5411 5412
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5413
					       sched_group_span(group));
5414

5415 5416 5417 5418
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5419
		avg_load = 0;
5420
		runnable_load = 0;
5421
		max_spare_cap = 0;
5422

5423
		for_each_cpu(i, sched_group_span(group)) {
5424 5425 5426 5427 5428 5429
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5430 5431 5432
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5433 5434 5435 5436 5437

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5438 5439
		}

5440
		/* Adjust by relative CPU capacity of the group */
5441 5442 5443 5444
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5445 5446

		if (local_group) {
5447 5448
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5449 5450
			this_spare = max_spare_cap;
		} else {
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5466 5467 5468 5469 5470 5471 5472
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5473 5474 5475
		}
	} while (group = group->next, group != sd->groups);

5476 5477 5478 5479 5480 5481
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5482 5483 5484 5485
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5486
	 */
5487 5488 5489
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5490
	if (this_spare > task_util(p) / 2 &&
5491
	    imbalance_scale*this_spare > 100*most_spare)
5492
		return NULL;
5493 5494

	if (most_spare > task_util(p) / 2)
5495 5496
		return most_spare_sg;

5497
skip_spare:
5498 5499 5500 5501
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5502
		return NULL;
5503 5504 5505 5506 5507

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5518 5519 5520 5521
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5522 5523
	int i;

5524 5525
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5526
		return cpumask_first(sched_group_span(group));
5527

5528
	/* Traverse only the allowed CPUs */
5529
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5552
		} else if (shallowest_idle_cpu == -1) {
5553 5554 5555 5556 5557
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5558 5559 5560
		}
	}

5561
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5562
}
5563

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5593
void __update_idle_core(struct rq *rq)
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5623
	int core, cpu;
5624

P
Peter Zijlstra 已提交
5625 5626 5627
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5628 5629 5630
	if (!test_idle_cores(target, false))
		return -1;

5631
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5632

5633
	for_each_cpu_wrap(core, cpus, target) {
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5661 5662 5663
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5664
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5665
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5692
 */
5693 5694
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5695
	struct sched_domain *this_sd;
5696
	u64 avg_cost, avg_idle;
5697 5698
	u64 time, cost;
	s64 delta;
5699
	int cpu, nr = INT_MAX;
5700

5701 5702 5703 5704
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

5705 5706 5707 5708
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5709 5710 5711 5712
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5713 5714
		return -1;

5715 5716 5717 5718 5719 5720 5721 5722
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

5723 5724
	time = local_clock();

5725
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5726 5727
		if (!--nr)
			return -1;
5728
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5744
 */
5745
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5746
{
5747
	struct sched_domain *sd;
5748
	int i;
5749

5750 5751
	if (idle_cpu(target))
		return target;
5752 5753

	/*
5754
	 * If the previous cpu is cache affine and idle, don't be stupid.
5755
	 */
5756 5757
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5758

5759
	sd = rcu_dereference(per_cpu(sd_llc, target));
5760 5761
	if (!sd)
		return target;
5762

5763 5764 5765
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5766

5767 5768 5769 5770 5771 5772 5773
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5774

5775 5776
	return target;
}
5777

5778
/*
5779
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5780
 * tasks. The unit of the return value must be the one of capacity so we can
5781 5782
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5803
 */
5804
static int cpu_util(int cpu)
5805
{
5806
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5807 5808
	unsigned long capacity = capacity_orig_of(cpu);

5809
	return (util >= capacity) ? capacity : util;
5810
}
5811

5812 5813 5814 5815 5816
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5853 5854 5855
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5856 5857 5858
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5859
/*
5860 5861 5862
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5863
 *
5864 5865
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5866
 *
5867
 * Returns the target cpu number.
5868 5869 5870
 *
 * preempt must be disabled.
 */
5871
static int
5872
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5873
{
5874
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5875
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5876
	int new_cpu = prev_cpu;
5877
	int want_affine = 0;
5878
	int sync = wake_flags & WF_SYNC;
5879

P
Peter Zijlstra 已提交
5880 5881
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5882
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5883
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
5884
	}
5885

5886
	rcu_read_lock();
5887
	for_each_domain(cpu, tmp) {
5888
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5889
			break;
5890

5891
		/*
5892 5893
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5894
		 */
5895 5896 5897
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5898
			break;
5899
		}
5900

5901
		if (tmp->flags & sd_flag)
5902
			sd = tmp;
M
Mike Galbraith 已提交
5903 5904
		else if (!want_affine)
			break;
5905 5906
	}

M
Mike Galbraith 已提交
5907 5908
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5909 5910 5911 5912
		if (cpu == prev_cpu)
			goto pick_cpu;

		if (wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5913
			new_cpu = cpu;
5914
	}
5915

M
Mike Galbraith 已提交
5916
	if (!sd) {
5917
 pick_cpu:
M
Mike Galbraith 已提交
5918
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5919
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5920 5921

	} else while (sd) {
5922
		struct sched_group *group;
5923
		int weight;
5924

5925
		if (!(sd->flags & sd_flag)) {
5926 5927 5928
			sd = sd->child;
			continue;
		}
5929

5930
		group = find_idlest_group(sd, p, cpu, sd_flag);
5931 5932 5933 5934
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5935

5936
		new_cpu = find_idlest_cpu(group, p, cpu);
5937 5938 5939 5940
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5941
		}
5942 5943 5944

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5945
		weight = sd->span_weight;
5946 5947
		sd = NULL;
		for_each_domain(cpu, tmp) {
5948
			if (weight <= tmp->span_weight)
5949
				break;
5950
			if (tmp->flags & sd_flag)
5951 5952 5953
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5954
	}
5955
	rcu_read_unlock();
5956

5957
	return new_cpu;
5958
}
5959 5960 5961 5962

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5963
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5964
 */
5965
static void migrate_task_rq_fair(struct task_struct *p)
5966
{
5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5993
	/*
5994 5995 5996 5997 5998
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5999
	 */
6000 6001 6002 6003
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6004 6005

	/* We have migrated, no longer consider this task hot */
6006
	p->se.exec_start = 0;
6007
}
6008 6009 6010 6011 6012

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6013 6014
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6015 6016
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6017 6018 6019 6020
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6021 6022
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6032
	 */
6033
	return calc_delta_fair(gran, se);
6034 6035
}

6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6058
	gran = wakeup_gran(curr, se);
6059 6060 6061 6062 6063 6064
	if (vdiff > gran)
		return 1;

	return 0;
}

6065 6066
static void set_last_buddy(struct sched_entity *se)
{
6067 6068 6069
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6070 6071 6072
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6073
		cfs_rq_of(se)->last = se;
6074
	}
6075 6076 6077 6078
}

static void set_next_buddy(struct sched_entity *se)
{
6079 6080 6081
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6082 6083 6084
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6085
		cfs_rq_of(se)->next = se;
6086
	}
6087 6088
}

6089 6090
static void set_skip_buddy(struct sched_entity *se)
{
6091 6092
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6093 6094
}

6095 6096 6097
/*
 * Preempt the current task with a newly woken task if needed:
 */
6098
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6099 6100
{
	struct task_struct *curr = rq->curr;
6101
	struct sched_entity *se = &curr->se, *pse = &p->se;
6102
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6103
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6104
	int next_buddy_marked = 0;
6105

I
Ingo Molnar 已提交
6106 6107 6108
	if (unlikely(se == pse))
		return;

6109
	/*
6110
	 * This is possible from callers such as attach_tasks(), in which we
6111 6112 6113 6114 6115 6116 6117
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6118
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6119
		set_next_buddy(pse);
6120 6121
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6122

6123 6124 6125
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6126 6127 6128 6129 6130 6131
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6132 6133 6134 6135
	 */
	if (test_tsk_need_resched(curr))
		return;

6136 6137 6138 6139 6140
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6141
	/*
6142 6143
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6144
	 */
6145
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6146
		return;
6147

6148
	find_matching_se(&se, &pse);
6149
	update_curr(cfs_rq_of(se));
6150
	BUG_ON(!pse);
6151 6152 6153 6154 6155 6156 6157
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6158
		goto preempt;
6159
	}
6160

6161
	return;
6162

6163
preempt:
6164
	resched_curr(rq);
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6179 6180
}

6181
static struct task_struct *
6182
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6183 6184 6185
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6186
	struct task_struct *p;
6187
	int new_tasks;
6188

6189
again:
6190 6191
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6192
		goto idle;
6193

6194
	if (prev->sched_class != &fair_sched_class)
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6214 6215 6216 6217 6218
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6219

6220 6221 6222 6223 6224 6225 6226 6227 6228
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6269

6270
	if (!cfs_rq->nr_running)
6271
		goto idle;
6272

6273
	put_prev_task(rq, prev);
6274

6275
	do {
6276
		se = pick_next_entity(cfs_rq, NULL);
6277
		set_next_entity(cfs_rq, se);
6278 6279 6280
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6281
	p = task_of(se);
6282

6283 6284
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6285 6286

	return p;
6287 6288

idle:
6289 6290
	new_tasks = idle_balance(rq, rf);

6291 6292 6293 6294 6295
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6296
	if (new_tasks < 0)
6297 6298
		return RETRY_TASK;

6299
	if (new_tasks > 0)
6300 6301 6302
		goto again;

	return NULL;
6303 6304 6305 6306 6307
}

/*
 * Account for a descheduled task:
 */
6308
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6309 6310 6311 6312 6313 6314
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6315
		put_prev_entity(cfs_rq, se);
6316 6317 6318
	}
}

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6344 6345 6346 6347 6348
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6349
		rq_clock_skip_update(rq, true);
6350 6351 6352 6353 6354
	}

	set_skip_buddy(se);
}

6355 6356 6357 6358
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6359 6360
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6371
#ifdef CONFIG_SMP
6372
/**************************************************
P
Peter Zijlstra 已提交
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6389
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6390 6391 6392 6393 6394 6395
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6396
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6397 6398 6399 6400 6401 6402
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6403
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6442
 *             log_2 n
P
Peter Zijlstra 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6488
 */
6489

6490 6491
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6492 6493
enum fbq_type { regular, remote, all };

6494
#define LBF_ALL_PINNED	0x01
6495
#define LBF_NEED_BREAK	0x02
6496 6497
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6498 6499 6500 6501 6502

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6503
	int			src_cpu;
6504 6505 6506 6507

	int			dst_cpu;
	struct rq		*dst_rq;

6508 6509
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6510
	enum cpu_idle_type	idle;
6511
	long			imbalance;
6512 6513 6514
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6515
	unsigned int		flags;
6516 6517 6518 6519

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6520 6521

	enum fbq_type		fbq_type;
6522
	struct list_head	tasks;
6523 6524
};

6525 6526 6527
/*
 * Is this task likely cache-hot:
 */
6528
static int task_hot(struct task_struct *p, struct lb_env *env)
6529 6530 6531
{
	s64 delta;

6532 6533
	lockdep_assert_held(&env->src_rq->lock);

6534 6535 6536 6537 6538 6539 6540 6541 6542
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6543
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6544 6545 6546 6547 6548 6549 6550 6551 6552
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6553
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6554 6555 6556 6557

	return delta < (s64)sysctl_sched_migration_cost;
}

6558
#ifdef CONFIG_NUMA_BALANCING
6559
/*
6560 6561 6562
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6563
 */
6564
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6565
{
6566
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6567
	unsigned long src_faults, dst_faults;
6568 6569
	int src_nid, dst_nid;

6570
	if (!static_branch_likely(&sched_numa_balancing))
6571 6572
		return -1;

6573
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6574
		return -1;
6575 6576 6577 6578

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6579
	if (src_nid == dst_nid)
6580
		return -1;
6581

6582 6583 6584 6585 6586 6587 6588
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6589

6590 6591
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6592
		return 0;
6593

6594 6595 6596 6597
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6598 6599 6600 6601 6602 6603
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6604 6605
	}

6606
	return dst_faults < src_faults;
6607 6608
}

6609
#else
6610
static inline int migrate_degrades_locality(struct task_struct *p,
6611 6612
					     struct lb_env *env)
{
6613
	return -1;
6614
}
6615 6616
#endif

6617 6618 6619 6620
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6621
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6622
{
6623
	int tsk_cache_hot;
6624 6625 6626

	lockdep_assert_held(&env->src_rq->lock);

6627 6628
	/*
	 * We do not migrate tasks that are:
6629
	 * 1) throttled_lb_pair, or
6630
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6631 6632
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6633
	 */
6634 6635 6636
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6637
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6638
		int cpu;
6639

6640
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6641

6642 6643
		env->flags |= LBF_SOME_PINNED;

6644 6645 6646 6647 6648
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
6649 6650
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
6651
		 */
6652
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6653 6654
			return 0;

6655 6656
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6657
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6658
				env->flags |= LBF_DST_PINNED;
6659 6660 6661
				env->new_dst_cpu = cpu;
				break;
			}
6662
		}
6663

6664 6665
		return 0;
	}
6666 6667

	/* Record that we found atleast one task that could run on dst_cpu */
6668
	env->flags &= ~LBF_ALL_PINNED;
6669

6670
	if (task_running(env->src_rq, p)) {
6671
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6672 6673 6674 6675 6676
		return 0;
	}

	/*
	 * Aggressive migration if:
6677 6678 6679
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6680
	 */
6681 6682 6683
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6684

6685
	if (tsk_cache_hot <= 0 ||
6686
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6687
		if (tsk_cache_hot == 1) {
6688 6689
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6690
		}
6691 6692 6693
		return 1;
	}

6694
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6695
	return 0;
6696 6697
}

6698
/*
6699 6700 6701 6702 6703 6704 6705
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6706
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6707 6708 6709
	set_task_cpu(p, env->dst_cpu);
}

6710
/*
6711
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6712 6713
 * part of active balancing operations within "domain".
 *
6714
 * Returns a task if successful and NULL otherwise.
6715
 */
6716
static struct task_struct *detach_one_task(struct lb_env *env)
6717 6718 6719
{
	struct task_struct *p, *n;

6720 6721
	lockdep_assert_held(&env->src_rq->lock);

6722 6723 6724
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6725

6726
		detach_task(p, env);
6727

6728
		/*
6729
		 * Right now, this is only the second place where
6730
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6731
		 * so we can safely collect stats here rather than
6732
		 * inside detach_tasks().
6733
		 */
6734
		schedstat_inc(env->sd->lb_gained[env->idle]);
6735
		return p;
6736
	}
6737
	return NULL;
6738 6739
}

6740 6741
static const unsigned int sched_nr_migrate_break = 32;

6742
/*
6743 6744
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6745
 *
6746
 * Returns number of detached tasks if successful and 0 otherwise.
6747
 */
6748
static int detach_tasks(struct lb_env *env)
6749
{
6750 6751
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6752
	unsigned long load;
6753 6754 6755
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6756

6757
	if (env->imbalance <= 0)
6758
		return 0;
6759

6760
	while (!list_empty(tasks)) {
6761 6762 6763 6764 6765 6766 6767
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6768
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6769

6770 6771
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6772
		if (env->loop > env->loop_max)
6773
			break;
6774 6775

		/* take a breather every nr_migrate tasks */
6776
		if (env->loop > env->loop_break) {
6777
			env->loop_break += sched_nr_migrate_break;
6778
			env->flags |= LBF_NEED_BREAK;
6779
			break;
6780
		}
6781

6782
		if (!can_migrate_task(p, env))
6783 6784 6785
			goto next;

		load = task_h_load(p);
6786

6787
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6788 6789
			goto next;

6790
		if ((load / 2) > env->imbalance)
6791
			goto next;
6792

6793 6794 6795 6796
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6797
		env->imbalance -= load;
6798 6799

#ifdef CONFIG_PREEMPT
6800 6801
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6802
		 * kernels will stop after the first task is detached to minimize
6803 6804
		 * the critical section.
		 */
6805
		if (env->idle == CPU_NEWLY_IDLE)
6806
			break;
6807 6808
#endif

6809 6810 6811 6812
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6813
		if (env->imbalance <= 0)
6814
			break;
6815 6816 6817

		continue;
next:
6818
		list_move_tail(&p->se.group_node, tasks);
6819
	}
6820

6821
	/*
6822 6823 6824
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6825
	 */
6826
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6827

6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6839
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6840
	p->on_rq = TASK_ON_RQ_QUEUED;
6841 6842 6843 6844 6845 6846 6847 6848 6849
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6850 6851 6852
	struct rq_flags rf;

	rq_lock(rq, &rf);
6853
	update_rq_clock(rq);
6854
	attach_task(rq, p);
6855
	rq_unlock(rq, &rf);
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6866
	struct rq_flags rf;
6867

6868
	rq_lock(env->dst_rq, &rf);
6869
	update_rq_clock(env->dst_rq);
6870 6871 6872 6873

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6874

6875 6876 6877
		attach_task(env->dst_rq, p);
	}

6878
	rq_unlock(env->dst_rq, &rf);
6879 6880
}

P
Peter Zijlstra 已提交
6881
#ifdef CONFIG_FAIR_GROUP_SCHED
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

	if (cfs_rq->runnable_load_sum)
		return false;

	return true;
}

6900
static void update_blocked_averages(int cpu)
6901 6902
{
	struct rq *rq = cpu_rq(cpu);
6903
	struct cfs_rq *cfs_rq, *pos;
6904
	struct rq_flags rf;
6905

6906
	rq_lock_irqsave(rq, &rf);
6907
	update_rq_clock(rq);
6908

6909 6910 6911 6912
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6913
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
6914 6915
		struct sched_entity *se;

6916 6917 6918
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6919

6920
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6921
			update_tg_load_avg(cfs_rq, 0);
6922

6923 6924 6925 6926
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
6927 6928 6929 6930 6931 6932 6933

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
6934
	}
6935
	rq_unlock_irqrestore(rq, &rf);
6936 6937
}

6938
/*
6939
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6940 6941 6942
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6943
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6944
{
6945 6946
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6947
	unsigned long now = jiffies;
6948
	unsigned long load;
6949

6950
	if (cfs_rq->last_h_load_update == now)
6951 6952
		return;

6953 6954 6955 6956 6957 6958 6959
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6960

6961
	if (!se) {
6962
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6963 6964 6965 6966 6967
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6968 6969
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6970 6971 6972 6973
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6974 6975
}

6976
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6977
{
6978
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6979

6980
	update_cfs_rq_h_load(cfs_rq);
6981
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6982
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6983 6984
}
#else
6985
static inline void update_blocked_averages(int cpu)
6986
{
6987 6988
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
6989
	struct rq_flags rf;
6990

6991
	rq_lock_irqsave(rq, &rf);
6992
	update_rq_clock(rq);
6993
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6994
	rq_unlock_irqrestore(rq, &rf);
6995 6996
}

6997
static unsigned long task_h_load(struct task_struct *p)
6998
{
6999
	return p->se.avg.load_avg;
7000
}
P
Peter Zijlstra 已提交
7001
#endif
7002 7003

/********** Helpers for find_busiest_group ************************/
7004 7005 7006 7007 7008 7009 7010

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7011 7012 7013 7014 7015 7016 7017
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7018
	unsigned long load_per_task;
7019
	unsigned long group_capacity;
7020
	unsigned long group_util; /* Total utilization of the group */
7021 7022 7023
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7024
	enum group_type group_type;
7025
	int group_no_capacity;
7026 7027 7028 7029
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7030 7031
};

J
Joonsoo Kim 已提交
7032 7033 7034 7035 7036 7037 7038 7039
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7040
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7041 7042 7043
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7044
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7045 7046
};

7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7059
		.total_capacity = 0UL,
7060 7061
		.busiest_stat = {
			.avg_load = 0UL,
7062 7063
			.sum_nr_running = 0,
			.group_type = group_other,
7064 7065 7066 7067
		},
	};
}

7068 7069 7070
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7071
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7072 7073
 *
 * Return: The load index.
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7096
static unsigned long scale_rt_capacity(int cpu)
7097 7098
{
	struct rq *rq = cpu_rq(cpu);
7099
	u64 total, used, age_stamp, avg;
7100
	s64 delta;
7101

7102 7103 7104 7105
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7106 7107
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7108
	delta = __rq_clock_broken(rq) - age_stamp;
7109

7110 7111 7112 7113
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7114

7115
	used = div_u64(avg, total);
7116

7117 7118
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7119

7120
	return 1;
7121 7122
}

7123
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7124
{
7125
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7126 7127
	struct sched_group *sdg = sd->groups;

7128
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7129

7130
	capacity *= scale_rt_capacity(cpu);
7131
	capacity >>= SCHED_CAPACITY_SHIFT;
7132

7133 7134
	if (!capacity)
		capacity = 1;
7135

7136 7137
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7138
	sdg->sgc->min_capacity = capacity;
7139 7140
}

7141
void update_group_capacity(struct sched_domain *sd, int cpu)
7142 7143 7144
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7145
	unsigned long capacity, min_capacity;
7146 7147 7148 7149
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7150
	sdg->sgc->next_update = jiffies + interval;
7151 7152

	if (!child) {
7153
		update_cpu_capacity(sd, cpu);
7154 7155 7156
		return;
	}

7157
	capacity = 0;
7158
	min_capacity = ULONG_MAX;
7159

P
Peter Zijlstra 已提交
7160 7161 7162 7163 7164 7165
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7166
		for_each_cpu(cpu, sched_group_span(sdg)) {
7167
			struct sched_group_capacity *sgc;
7168
			struct rq *rq = cpu_rq(cpu);
7169

7170
			/*
7171
			 * build_sched_domains() -> init_sched_groups_capacity()
7172 7173 7174
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7175 7176
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7177
			 *
7178
			 * This avoids capacity from being 0 and
7179 7180 7181
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7182
				capacity += capacity_of(cpu);
7183 7184 7185
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7186
			}
7187

7188
			min_capacity = min(capacity, min_capacity);
7189
		}
P
Peter Zijlstra 已提交
7190 7191 7192 7193
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7194
		 */
P
Peter Zijlstra 已提交
7195 7196 7197

		group = child->groups;
		do {
7198 7199 7200 7201
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7202 7203 7204
			group = group->next;
		} while (group != child->groups);
	}
7205

7206
	sdg->sgc->capacity = capacity;
7207
	sdg->sgc->min_capacity = min_capacity;
7208 7209
}

7210
/*
7211 7212 7213
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7214 7215
 */
static inline int
7216
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7217
{
7218 7219
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7220 7221
}

7222 7223
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7224
 * groups is inadequate due to ->cpus_allowed constraints.
7225 7226 7227 7228 7229
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7230 7231
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7232 7233 7234 7235 7236 7237
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7238 7239
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7240 7241
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7242
 * update_sd_pick_busiest(). And calculate_imbalance() and
7243
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7244 7245 7246 7247 7248 7249 7250
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7251
static inline int sg_imbalanced(struct sched_group *group)
7252
{
7253
	return group->sgc->imbalance;
7254 7255
}

7256
/*
7257 7258 7259
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7260 7261
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7262 7263 7264 7265 7266
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7267
 */
7268 7269
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7270
{
7271 7272
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7273

7274
	if ((sgs->group_capacity * 100) >
7275
			(sgs->group_util * env->sd->imbalance_pct))
7276
		return true;
7277

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7294

7295
	if ((sgs->group_capacity * 100) <
7296
			(sgs->group_util * env->sd->imbalance_pct))
7297
		return true;
7298

7299
	return false;
7300 7301
}

7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7313 7314 7315
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7316
{
7317
	if (sgs->group_no_capacity)
7318 7319 7320 7321 7322 7323 7324 7325
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7326 7327
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7328
 * @env: The load balancing environment.
7329 7330 7331 7332
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7333
 * @overload: Indicate more than one runnable task for any CPU.
7334
 */
7335 7336
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7337 7338
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7339
{
7340
	unsigned long load;
7341
	int i, nr_running;
7342

7343 7344
	memset(sgs, 0, sizeof(*sgs));

7345
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7346 7347 7348
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7349
		if (local_group)
7350
			load = target_load(i, load_idx);
7351
		else
7352 7353 7354
			load = source_load(i, load_idx);

		sgs->group_load += load;
7355
		sgs->group_util += cpu_util(i);
7356
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7357

7358 7359
		nr_running = rq->nr_running;
		if (nr_running > 1)
7360 7361
			*overload = true;

7362 7363 7364 7365
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7366
		sgs->sum_weighted_load += weighted_cpuload(i);
7367 7368 7369 7370
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7371
			sgs->idle_cpus++;
7372 7373
	}

7374 7375
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7376
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7377

7378
	if (sgs->sum_nr_running)
7379
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7380

7381
	sgs->group_weight = group->group_weight;
7382

7383
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7384
	sgs->group_type = group_classify(group, sgs);
7385 7386
}

7387 7388
/**
 * update_sd_pick_busiest - return 1 on busiest group
7389
 * @env: The load balancing environment.
7390 7391
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7392
 * @sgs: sched_group statistics
7393 7394 7395
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7396 7397 7398
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7399
 */
7400
static bool update_sd_pick_busiest(struct lb_env *env,
7401 7402
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7403
				   struct sg_lb_stats *sgs)
7404
{
7405
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7406

7407
	if (sgs->group_type > busiest->group_type)
7408 7409
		return true;

7410 7411 7412 7413 7414 7415
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7430 7431
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7432 7433
		return true;

7434 7435 7436
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7437
	/*
T
Tim Chen 已提交
7438 7439 7440
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7441
	 */
T
Tim Chen 已提交
7442 7443
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7444 7445 7446
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7447 7448 7449
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7450 7451 7452 7453 7454 7455
			return true;
	}

	return false;
}

7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7486
/**
7487
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7488
 * @env: The load balancing environment.
7489 7490
 * @sds: variable to hold the statistics for this sched_domain.
 */
7491
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7492
{
7493 7494
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7495
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7496
	struct sg_lb_stats tmp_sgs;
7497
	int load_idx, prefer_sibling = 0;
7498
	bool overload = false;
7499 7500 7501 7502

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7503
	load_idx = get_sd_load_idx(env->sd, env->idle);
7504 7505

	do {
J
Joonsoo Kim 已提交
7506
		struct sg_lb_stats *sgs = &tmp_sgs;
7507 7508
		int local_group;

7509
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7510 7511
		if (local_group) {
			sds->local = sg;
7512
			sgs = local;
7513 7514

			if (env->idle != CPU_NEWLY_IDLE ||
7515 7516
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7517
		}
7518

7519 7520
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7521

7522 7523 7524
		if (local_group)
			goto next_group;

7525 7526
		/*
		 * In case the child domain prefers tasks go to siblings
7527
		 * first, lower the sg capacity so that we'll try
7528 7529
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7530 7531 7532 7533
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7534
		 */
7535
		if (prefer_sibling && sds->local &&
7536 7537
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7538
			sgs->group_no_capacity = 1;
7539
			sgs->group_type = group_classify(sg, sgs);
7540
		}
7541

7542
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7543
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7544
			sds->busiest_stat = *sgs;
7545 7546
		}

7547 7548 7549
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7550
		sds->total_capacity += sgs->group_capacity;
7551

7552
		sg = sg->next;
7553
	} while (sg != env->sd->groups);
7554 7555 7556

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7557 7558 7559 7560 7561 7562 7563

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7564 7565 7566 7567
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7568
 *			sched domain.
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7583
 * Return: 1 when packing is required and a task should be moved to
7584 7585
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7586
 * @env: The load balancing environment.
7587 7588
 * @sds: Statistics of the sched_domain which is to be packed
 */
7589
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7590 7591 7592
{
	int busiest_cpu;

7593
	if (!(env->sd->flags & SD_ASYM_PACKING))
7594 7595
		return 0;

7596 7597 7598
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7599 7600 7601
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7602 7603
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7604 7605
		return 0;

7606
	env->imbalance = DIV_ROUND_CLOSEST(
7607
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7608
		SCHED_CAPACITY_SCALE);
7609

7610
	return 1;
7611 7612 7613 7614 7615 7616
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7617
 * @env: The load balancing environment.
7618 7619
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7620 7621
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7622
{
7623
	unsigned long tmp, capa_now = 0, capa_move = 0;
7624
	unsigned int imbn = 2;
7625
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7626
	struct sg_lb_stats *local, *busiest;
7627

J
Joonsoo Kim 已提交
7628 7629
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7630

J
Joonsoo Kim 已提交
7631 7632 7633 7634
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7635

J
Joonsoo Kim 已提交
7636
	scaled_busy_load_per_task =
7637
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7638
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7639

7640 7641
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7642
		env->imbalance = busiest->load_per_task;
7643 7644 7645 7646 7647
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7648
	 * however we may be able to increase total CPU capacity used by
7649 7650 7651
	 * moving them.
	 */

7652
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7653
			min(busiest->load_per_task, busiest->avg_load);
7654
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7655
			min(local->load_per_task, local->avg_load);
7656
	capa_now /= SCHED_CAPACITY_SCALE;
7657 7658

	/* Amount of load we'd subtract */
7659
	if (busiest->avg_load > scaled_busy_load_per_task) {
7660
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7661
			    min(busiest->load_per_task,
7662
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7663
	}
7664 7665

	/* Amount of load we'd add */
7666
	if (busiest->avg_load * busiest->group_capacity <
7667
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7668 7669
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7670
	} else {
7671
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7672
		      local->group_capacity;
J
Joonsoo Kim 已提交
7673
	}
7674
	capa_move += local->group_capacity *
7675
		    min(local->load_per_task, local->avg_load + tmp);
7676
	capa_move /= SCHED_CAPACITY_SCALE;
7677 7678

	/* Move if we gain throughput */
7679
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7680
		env->imbalance = busiest->load_per_task;
7681 7682 7683 7684 7685
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7686
 * @env: load balance environment
7687 7688
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7689
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7690
{
7691
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7692 7693 7694 7695
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7696

7697
	if (busiest->group_type == group_imbalanced) {
7698 7699 7700 7701
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7702 7703
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7704 7705
	}

7706
	/*
7707 7708 7709 7710
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7711
	 */
7712 7713
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7714 7715
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7716 7717
	}

7718 7719 7720 7721 7722
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7723
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7724
		if (load_above_capacity > busiest->group_capacity) {
7725
			load_above_capacity -= busiest->group_capacity;
7726
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7727 7728
			load_above_capacity /= busiest->group_capacity;
		} else
7729
			load_above_capacity = ~0UL;
7730 7731 7732 7733 7734 7735
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7736 7737
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7738
	 */
7739
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7740 7741

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7742
	env->imbalance = min(
7743 7744
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7745
	) / SCHED_CAPACITY_SCALE;
7746 7747 7748

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7749
	 * there is no guarantee that any tasks will be moved so we'll have
7750 7751 7752
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7753
	if (env->imbalance < busiest->load_per_task)
7754
		return fix_small_imbalance(env, sds);
7755
}
7756

7757 7758 7759 7760
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7761
 * if there is an imbalance.
7762 7763 7764 7765
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7766
 * @env: The load balancing environment.
7767
 *
7768
 * Return:	- The busiest group if imbalance exists.
7769
 */
J
Joonsoo Kim 已提交
7770
static struct sched_group *find_busiest_group(struct lb_env *env)
7771
{
J
Joonsoo Kim 已提交
7772
	struct sg_lb_stats *local, *busiest;
7773 7774
	struct sd_lb_stats sds;

7775
	init_sd_lb_stats(&sds);
7776 7777 7778 7779 7780

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7781
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7782 7783
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7784

7785
	/* ASYM feature bypasses nice load balance check */
7786
	if (check_asym_packing(env, &sds))
7787 7788
		return sds.busiest;

7789
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7790
	if (!sds.busiest || busiest->sum_nr_running == 0)
7791 7792
		goto out_balanced;

7793 7794
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7795

P
Peter Zijlstra 已提交
7796 7797
	/*
	 * If the busiest group is imbalanced the below checks don't
7798
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7799 7800
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7801
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7802 7803
		goto force_balance;

7804
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7805 7806
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7807 7808
		goto force_balance;

7809
	/*
7810
	 * If the local group is busier than the selected busiest group
7811 7812
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7813
	if (local->avg_load >= busiest->avg_load)
7814 7815
		goto out_balanced;

7816 7817 7818 7819
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7820
	if (local->avg_load >= sds.avg_load)
7821 7822
		goto out_balanced;

7823
	if (env->idle == CPU_IDLE) {
7824
		/*
7825 7826 7827 7828 7829
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7830
		 */
7831 7832
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7833
			goto out_balanced;
7834 7835 7836 7837 7838
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7839 7840
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7841
			goto out_balanced;
7842
	}
7843

7844
force_balance:
7845
	/* Looks like there is an imbalance. Compute it */
7846
	calculate_imbalance(env, &sds);
7847 7848 7849
	return sds.busiest;

out_balanced:
7850
	env->imbalance = 0;
7851 7852 7853 7854 7855 7856
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7857
static struct rq *find_busiest_queue(struct lb_env *env,
7858
				     struct sched_group *group)
7859 7860
{
	struct rq *busiest = NULL, *rq;
7861
	unsigned long busiest_load = 0, busiest_capacity = 1;
7862 7863
	int i;

7864
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7865
		unsigned long capacity, wl;
7866 7867 7868 7869
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7870

7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7893
		capacity = capacity_of(i);
7894

7895
		wl = weighted_cpuload(i);
7896

7897 7898
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7899
		 * which is not scaled with the cpu capacity.
7900
		 */
7901 7902 7903

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7904 7905
			continue;

7906 7907
		/*
		 * For the load comparisons with the other cpu's, consider
7908 7909 7910
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7911
		 *
7912
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7913
		 * multiplication to rid ourselves of the division works out
7914 7915
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7916
		 */
7917
		if (wl * busiest_capacity > busiest_load * capacity) {
7918
			busiest_load = wl;
7919
			busiest_capacity = capacity;
7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

7933
static int need_active_balance(struct lb_env *env)
7934
{
7935 7936 7937
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7938 7939 7940

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
7941 7942
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
7943
		 */
T
Tim Chen 已提交
7944 7945
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7946
			return 1;
7947 7948
	}

7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7962 7963 7964
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7965 7966
static int active_load_balance_cpu_stop(void *data);

7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
7980
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
7981
		if (!idle_cpu(cpu))
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7995
	return balance_cpu == env->dst_cpu;
7996 7997
}

7998 7999 8000 8001 8002 8003
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8004
			int *continue_balancing)
8005
{
8006
	int ld_moved, cur_ld_moved, active_balance = 0;
8007
	struct sched_domain *sd_parent = sd->parent;
8008 8009
	struct sched_group *group;
	struct rq *busiest;
8010
	struct rq_flags rf;
8011
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8012

8013 8014
	struct lb_env env = {
		.sd		= sd,
8015 8016
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8017
		.dst_grpmask    = sched_group_span(sd->groups),
8018
		.idle		= idle,
8019
		.loop_break	= sched_nr_migrate_break,
8020
		.cpus		= cpus,
8021
		.fbq_type	= all,
8022
		.tasks		= LIST_HEAD_INIT(env.tasks),
8023 8024
	};

8025
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8026

8027
	schedstat_inc(sd->lb_count[idle]);
8028 8029

redo:
8030 8031
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8032
		goto out_balanced;
8033
	}
8034

8035
	group = find_busiest_group(&env);
8036
	if (!group) {
8037
		schedstat_inc(sd->lb_nobusyg[idle]);
8038 8039 8040
		goto out_balanced;
	}

8041
	busiest = find_busiest_queue(&env, group);
8042
	if (!busiest) {
8043
		schedstat_inc(sd->lb_nobusyq[idle]);
8044 8045 8046
		goto out_balanced;
	}

8047
	BUG_ON(busiest == env.dst_rq);
8048

8049
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8050

8051 8052 8053
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8054 8055 8056 8057 8058 8059 8060 8061
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8062
		env.flags |= LBF_ALL_PINNED;
8063
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8064

8065
more_balance:
8066
		rq_lock_irqsave(busiest, &rf);
8067
		update_rq_clock(busiest);
8068 8069 8070 8071 8072

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8073
		cur_ld_moved = detach_tasks(&env);
8074 8075

		/*
8076 8077 8078 8079 8080
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8081
		 */
8082

8083
		rq_unlock(busiest, &rf);
8084 8085 8086 8087 8088 8089

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8090
		local_irq_restore(rf.flags);
8091

8092 8093 8094 8095 8096
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8116
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8117

8118 8119 8120
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8121
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8122
			env.dst_cpu	 = env.new_dst_cpu;
8123
			env.flags	&= ~LBF_DST_PINNED;
8124 8125
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8126

8127 8128 8129 8130 8131 8132
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8133

8134 8135 8136 8137
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8138
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8139

8140
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8141 8142 8143
				*group_imbalance = 1;
		}

8144
		/* All tasks on this runqueue were pinned by CPU affinity */
8145
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8146
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8147 8148 8149 8150 8151 8152 8153 8154 8155
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8156 8157
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8158
				goto redo;
8159
			}
8160
			goto out_all_pinned;
8161 8162 8163 8164
		}
	}

	if (!ld_moved) {
8165
		schedstat_inc(sd->lb_failed[idle]);
8166 8167 8168 8169 8170 8171 8172 8173
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8174

8175
		if (need_active_balance(&env)) {
8176 8177
			unsigned long flags;

8178 8179
			raw_spin_lock_irqsave(&busiest->lock, flags);

8180 8181 8182
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8183
			 */
8184
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8185 8186
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8187
				env.flags |= LBF_ALL_PINNED;
8188 8189 8190
				goto out_one_pinned;
			}

8191 8192 8193 8194 8195
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8196 8197 8198 8199 8200 8201
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8202

8203
			if (active_balance) {
8204 8205 8206
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8207
			}
8208

8209
			/* We've kicked active balancing, force task migration. */
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8223
		 * detach_tasks).
8224 8225 8226 8227 8228 8229 8230 8231
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8249
	schedstat_inc(sd->lb_balanced[idle]);
8250 8251 8252 8253 8254

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8255
	if (((env.flags & LBF_ALL_PINNED) &&
8256
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8257 8258 8259
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8260
	ld_moved = 0;
8261 8262 8263 8264
out:
	return ld_moved;
}

8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8281
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8282 8283 8284
{
	unsigned long interval, next;

8285 8286
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8287 8288 8289 8290 8291 8292
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8293 8294 8295 8296
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8297
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8298
{
8299 8300
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8301 8302
	struct sched_domain *sd;
	int pulled_task = 0;
8303
	u64 curr_cost = 0;
8304

8305 8306 8307 8308 8309 8310
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8311 8312 8313 8314 8315 8316 8317 8318
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8319 8320
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8321 8322 8323
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8324
			update_next_balance(sd, &next_balance);
8325 8326
		rcu_read_unlock();

8327
		goto out;
8328
	}
8329

8330 8331
	raw_spin_unlock(&this_rq->lock);

8332
	update_blocked_averages(this_cpu);
8333
	rcu_read_lock();
8334
	for_each_domain(this_cpu, sd) {
8335
		int continue_balancing = 1;
8336
		u64 t0, domain_cost;
8337 8338 8339 8340

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8341
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8342
			update_next_balance(sd, &next_balance);
8343
			break;
8344
		}
8345

8346
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8347 8348
			t0 = sched_clock_cpu(this_cpu);

8349
			pulled_task = load_balance(this_cpu, this_rq,
8350 8351
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8352 8353 8354 8355 8356 8357

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8358
		}
8359

8360
		update_next_balance(sd, &next_balance);
8361 8362 8363 8364 8365 8366

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8367 8368
			break;
	}
8369
	rcu_read_unlock();
8370 8371 8372

	raw_spin_lock(&this_rq->lock);

8373 8374 8375
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8376
	/*
8377 8378 8379
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8380
	 */
8381
	if (this_rq->cfs.h_nr_running && !pulled_task)
8382
		pulled_task = 1;
8383

8384 8385 8386
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8387
		this_rq->next_balance = next_balance;
8388

8389
	/* Is there a task of a high priority class? */
8390
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8391 8392
		pulled_task = -1;

8393
	if (pulled_task)
8394 8395
		this_rq->idle_stamp = 0;

8396 8397
	rq_repin_lock(this_rq, rf);

8398
	return pulled_task;
8399 8400 8401
}

/*
8402 8403 8404 8405
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8406
 */
8407
static int active_load_balance_cpu_stop(void *data)
8408
{
8409 8410
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8411
	int target_cpu = busiest_rq->push_cpu;
8412
	struct rq *target_rq = cpu_rq(target_cpu);
8413
	struct sched_domain *sd;
8414
	struct task_struct *p = NULL;
8415
	struct rq_flags rf;
8416

8417
	rq_lock_irq(busiest_rq, &rf);
8418 8419 8420 8421 8422

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8423 8424 8425

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8426
		goto out_unlock;
8427 8428 8429 8430 8431 8432 8433 8434 8435

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8436
	rcu_read_lock();
8437 8438 8439 8440 8441 8442 8443
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8444 8445
		struct lb_env env = {
			.sd		= sd,
8446 8447 8448 8449
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8450
			.idle		= CPU_IDLE,
8451 8452 8453 8454 8455 8456 8457
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8458 8459
		};

8460
		schedstat_inc(sd->alb_count);
8461
		update_rq_clock(busiest_rq);
8462

8463
		p = detach_one_task(&env);
8464
		if (p) {
8465
			schedstat_inc(sd->alb_pushed);
8466 8467 8468
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8469
			schedstat_inc(sd->alb_failed);
8470
		}
8471
	}
8472
	rcu_read_unlock();
8473 8474
out_unlock:
	busiest_rq->active_balance = 0;
8475
	rq_unlock(busiest_rq, &rf);
8476 8477 8478 8479 8480 8481

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8482
	return 0;
8483 8484
}

8485 8486 8487 8488 8489
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8490
#ifdef CONFIG_NO_HZ_COMMON
8491 8492 8493 8494 8495 8496
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8497
static struct {
8498
	cpumask_var_t idle_cpus_mask;
8499
	atomic_t nr_cpus;
8500 8501
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8502

8503
static inline int find_new_ilb(void)
8504
{
8505
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8506

8507 8508 8509 8510
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8511 8512
}

8513 8514 8515 8516 8517
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8518
static void nohz_balancer_kick(void)
8519 8520 8521 8522 8523
{
	int ilb_cpu;

	nohz.next_balance++;

8524
	ilb_cpu = find_new_ilb();
8525

8526 8527
	if (ilb_cpu >= nr_cpu_ids)
		return;
8528

8529
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8530 8531 8532 8533 8534 8535 8536 8537
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8538 8539 8540
	return;
}

8541
void nohz_balance_exit_idle(unsigned int cpu)
8542 8543
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8544 8545 8546 8547 8548 8549 8550
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8551 8552 8553 8554
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8555 8556 8557
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8558
	int cpu = smp_processor_id();
8559 8560

	rcu_read_lock();
8561
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8562 8563 8564 8565 8566

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8567
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8568
unlock:
8569 8570 8571 8572 8573 8574
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8575
	int cpu = smp_processor_id();
8576 8577

	rcu_read_lock();
8578
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8579 8580 8581 8582 8583

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8584
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8585
unlock:
8586 8587 8588
	rcu_read_unlock();
}

8589
/*
8590
 * This routine will record that the cpu is going idle with tick stopped.
8591
 * This info will be used in performing idle load balancing in the future.
8592
 */
8593
void nohz_balance_enter_idle(int cpu)
8594
{
8595 8596 8597 8598 8599 8600
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8601 8602 8603 8604
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
	if (!is_housekeeping_cpu(cpu))
		return;

8605 8606
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8607

8608 8609 8610 8611 8612 8613
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8614 8615 8616
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8617 8618 8619 8620 8621
}
#endif

static DEFINE_SPINLOCK(balancing);

8622 8623 8624 8625
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8626
void update_max_interval(void)
8627 8628 8629 8630
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8631 8632 8633 8634
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8635
 * Balancing parameters are set up in init_sched_domains.
8636
 */
8637
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8638
{
8639
	int continue_balancing = 1;
8640
	int cpu = rq->cpu;
8641
	unsigned long interval;
8642
	struct sched_domain *sd;
8643 8644 8645
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8646 8647
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8648

8649
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8650

8651
	rcu_read_lock();
8652
	for_each_domain(cpu, sd) {
8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8665 8666 8667
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8679
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8680 8681 8682 8683 8684 8685 8686 8687

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8688
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8689
				/*
8690
				 * The LBF_DST_PINNED logic could have changed
8691 8692
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8693
				 */
8694
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8695 8696
			}
			sd->last_balance = jiffies;
8697
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8698 8699 8700 8701 8702 8703 8704 8705
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8706 8707
	}
	if (need_decay) {
8708
		/*
8709 8710
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8711
		 */
8712 8713
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8714
	}
8715
	rcu_read_unlock();
8716 8717 8718 8719 8720 8721

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8722
	if (likely(update_next_balance)) {
8723
		rq->next_balance = next_balance;
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8738 8739
}

8740
#ifdef CONFIG_NO_HZ_COMMON
8741
/*
8742
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8743 8744
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8745
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8746
{
8747
	int this_cpu = this_rq->cpu;
8748 8749
	struct rq *rq;
	int balance_cpu;
8750 8751 8752
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8753

8754 8755 8756
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8757 8758

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8759
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8760 8761 8762 8763 8764 8765 8766
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8767
		if (need_resched())
8768 8769
			break;

V
Vincent Guittot 已提交
8770 8771
		rq = cpu_rq(balance_cpu);

8772 8773 8774 8775 8776
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8777 8778 8779
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8780
			update_rq_clock(rq);
8781
			cpu_load_update_idle(rq);
8782 8783
			rq_unlock_irq(rq, &rf);

8784 8785
			rebalance_domains(rq, CPU_IDLE);
		}
8786

8787 8788 8789 8790
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8791
	}
8792 8793 8794 8795 8796 8797 8798 8799

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8800 8801
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8802 8803 8804
}

/*
8805
 * Current heuristic for kicking the idle load balancer in the presence
8806
 * of an idle cpu in the system.
8807
 *   - This rq has more than one task.
8808 8809 8810 8811
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8812 8813
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8814
 */
8815
static inline bool nohz_kick_needed(struct rq *rq)
8816 8817
{
	unsigned long now = jiffies;
8818
	struct sched_domain_shared *sds;
8819
	struct sched_domain *sd;
T
Tim Chen 已提交
8820
	int nr_busy, i, cpu = rq->cpu;
8821
	bool kick = false;
8822

8823
	if (unlikely(rq->idle_balance))
8824
		return false;
8825

8826 8827 8828 8829
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8830
	set_cpu_sd_state_busy();
8831
	nohz_balance_exit_idle(cpu);
8832 8833 8834 8835 8836 8837

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8838
		return false;
8839 8840

	if (time_before(now, nohz.next_balance))
8841
		return false;
8842

8843
	if (rq->nr_running >= 2)
8844
		return true;
8845

8846
	rcu_read_lock();
8847 8848 8849 8850 8851 8852 8853
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8854 8855 8856 8857 8858
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8859
	}
8860

8861 8862 8863 8864 8865 8866 8867 8868
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8869

8870
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8871 8872 8873 8874 8875
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8876

T
Tim Chen 已提交
8877 8878 8879 8880 8881 8882
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8883
unlock:
8884
	rcu_read_unlock();
8885
	return kick;
8886 8887
}
#else
8888
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8889 8890 8891 8892 8893 8894
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8895
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8896
{
8897
	struct rq *this_rq = this_rq();
8898
	enum cpu_idle_type idle = this_rq->idle_balance ?
8899 8900 8901
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8902
	 * If this cpu has a pending nohz_balance_kick, then do the
8903
	 * balancing on behalf of the other idle cpus whose ticks are
8904 8905 8906 8907
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8908
	 */
8909
	nohz_idle_balance(this_rq, idle);
8910
	rebalance_domains(this_rq, idle);
8911 8912 8913 8914 8915
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8916
void trigger_load_balance(struct rq *rq)
8917 8918
{
	/* Don't need to rebalance while attached to NULL domain */
8919 8920 8921 8922
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8923
		raise_softirq(SCHED_SOFTIRQ);
8924
#ifdef CONFIG_NO_HZ_COMMON
8925
	if (nohz_kick_needed(rq))
8926
		nohz_balancer_kick();
8927
#endif
8928 8929
}

8930 8931 8932
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8933 8934

	update_runtime_enabled(rq);
8935 8936 8937 8938 8939
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8940 8941 8942

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8943 8944
}

8945
#endif /* CONFIG_SMP */
8946

8947 8948 8949
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8950
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8951 8952 8953 8954 8955 8956
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8957
		entity_tick(cfs_rq, se, queued);
8958
	}
8959

8960
	if (static_branch_unlikely(&sched_numa_balancing))
8961
		task_tick_numa(rq, curr);
8962 8963 8964
}

/*
P
Peter Zijlstra 已提交
8965 8966 8967
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8968
 */
P
Peter Zijlstra 已提交
8969
static void task_fork_fair(struct task_struct *p)
8970
{
8971 8972
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8973
	struct rq *rq = this_rq();
8974
	struct rq_flags rf;
8975

8976
	rq_lock(rq, &rf);
8977 8978
	update_rq_clock(rq);

8979 8980
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8981 8982
	if (curr) {
		update_curr(cfs_rq);
8983
		se->vruntime = curr->vruntime;
8984
	}
8985
	place_entity(cfs_rq, se, 1);
8986

P
Peter Zijlstra 已提交
8987
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8988
		/*
8989 8990 8991
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8992
		swap(curr->vruntime, se->vruntime);
8993
		resched_curr(rq);
8994
	}
8995

8996
	se->vruntime -= cfs_rq->min_vruntime;
8997
	rq_unlock(rq, &rf);
8998 8999
}

9000 9001 9002 9003
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9004 9005
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9006
{
9007
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9008 9009
		return;

9010 9011 9012 9013 9014
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9015
	if (rq->curr == p) {
9016
		if (p->prio > oldprio)
9017
			resched_curr(rq);
9018
	} else
9019
		check_preempt_curr(rq, p, 0);
9020 9021
}

9022
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9023 9024 9025 9026
{
	struct sched_entity *se = &p->se;

	/*
9027 9028 9029 9030 9031 9032 9033 9034 9035 9036
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9037
	 *
9038 9039 9040 9041
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9042
	 */
9043 9044 9045 9046 9047 9048
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9074
static void detach_entity_cfs_rq(struct sched_entity *se)
9075 9076 9077
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9078
	/* Catch up with the cfs_rq and remove our load when we leave */
9079
	update_load_avg(se, 0);
9080
	detach_entity_load_avg(cfs_rq, se);
9081
	update_tg_load_avg(cfs_rq, false);
9082
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9083 9084
}

9085
static void attach_entity_cfs_rq(struct sched_entity *se)
9086
{
9087
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9088 9089

#ifdef CONFIG_FAIR_GROUP_SCHED
9090 9091 9092 9093 9094 9095
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9096

9097
	/* Synchronize entity with its cfs_rq */
9098
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9099
	attach_entity_load_avg(cfs_rq, se);
9100
	update_tg_load_avg(cfs_rq, false);
9101
	propagate_entity_cfs_rq(se);
9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9127 9128 9129 9130

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9131

9132 9133 9134 9135 9136 9137 9138 9139
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9140

9141
	if (task_on_rq_queued(p)) {
9142
		/*
9143 9144 9145
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9146
		 */
9147 9148 9149 9150
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9151
	}
9152 9153
}

9154 9155 9156 9157 9158 9159 9160 9161 9162
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9163 9164 9165 9166 9167 9168 9169
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9170 9171
}

9172 9173 9174 9175 9176 9177 9178
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9179
#ifdef CONFIG_SMP
9180 9181 9182
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9183 9184
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9185
#endif
9186 9187
}

P
Peter Zijlstra 已提交
9188
#ifdef CONFIG_FAIR_GROUP_SCHED
9189 9190 9191 9192 9193 9194 9195 9196
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9197
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9198
{
9199
	detach_task_cfs_rq(p);
9200
	set_task_rq(p, task_cpu(p));
9201 9202 9203 9204 9205

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9206
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9207
}
9208

9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9222 9223 9224 9225 9226 9227 9228 9229 9230
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9231
		if (tg->se)
9232 9233 9234 9235 9236 9237 9238 9239 9240 9241
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9242
	struct cfs_rq *cfs_rq;
9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9269
		init_entity_runnable_average(se);
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9291
		update_rq_clock(rq);
9292
		attach_entity_cfs_rq(se);
9293
		sync_throttle(tg, i);
9294 9295 9296 9297
		raw_spin_unlock_irq(&rq->lock);
	}
}

9298
void unregister_fair_sched_group(struct task_group *tg)
9299 9300
{
	unsigned long flags;
9301 9302
	struct rq *rq;
	int cpu;
9303

9304 9305 9306
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9307

9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9340
	if (!parent) {
9341
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9342 9343
		se->depth = 0;
	} else {
9344
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9345 9346
		se->depth = parent->depth + 1;
	}
9347 9348

	se->my_q = cfs_rq;
9349 9350
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9375 9376
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9377 9378

		/* Propagate contribution to hierarchy */
9379
		rq_lock_irqsave(rq, &rf);
9380
		update_rq_clock(rq);
9381 9382 9383 9384
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9385
		rq_unlock_irqrestore(rq, &rf);
9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9401 9402
void online_fair_sched_group(struct task_group *tg) { }

9403
void unregister_fair_sched_group(struct task_group *tg) { }
9404 9405 9406

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9407

9408
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9409 9410 9411 9412 9413 9414 9415 9416 9417
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9418
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9419 9420 9421 9422

	return rr_interval;
}

9423 9424 9425
/*
 * All the scheduling class methods:
 */
9426
const struct sched_class fair_sched_class = {
9427
	.next			= &idle_sched_class,
9428 9429 9430
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9431
	.yield_to_task		= yield_to_task_fair,
9432

I
Ingo Molnar 已提交
9433
	.check_preempt_curr	= check_preempt_wakeup,
9434 9435 9436 9437

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9438
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9439
	.select_task_rq		= select_task_rq_fair,
9440
	.migrate_task_rq	= migrate_task_rq_fair,
9441

9442 9443
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9444

9445
	.task_dead		= task_dead_fair,
9446
	.set_cpus_allowed	= set_cpus_allowed_common,
9447
#endif
9448

9449
	.set_curr_task          = set_curr_task_fair,
9450
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9451
	.task_fork		= task_fork_fair,
9452 9453

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9454
	.switched_from		= switched_from_fair,
9455
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9456

9457 9458
	.get_rr_interval	= get_rr_interval_fair,

9459 9460
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9461
#ifdef CONFIG_FAIR_GROUP_SCHED
9462
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9463
#endif
9464 9465 9466
};

#ifdef CONFIG_SCHED_DEBUG
9467
void print_cfs_stats(struct seq_file *m, int cpu)
9468
{
9469
	struct cfs_rq *cfs_rq, *pos;
9470

9471
	rcu_read_lock();
9472
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9473
		print_cfs_rq(m, cpu, cfs_rq);
9474
	rcu_read_unlock();
9475
}
9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9497 9498 9499 9500 9501 9502

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9503
#ifdef CONFIG_NO_HZ_COMMON
9504
	nohz.next_balance = jiffies;
9505 9506 9507 9508 9509
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}