fair.c 260.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 23
 */

24
#include <linux/sched/mm.h>
25 26
#include <linux/sched/topology.h>

27
#include <linux/latencytop.h>
28
#include <linux/cpumask.h>
29
#include <linux/cpuidle.h>
30 31 32
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
33
#include <linux/mempolicy.h>
34
#include <linux/migrate.h>
35
#include <linux/task_work.h>
36
#include <linux/sched/isolation.h>
37 38 39 40

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
41

42
/*
43
 * Targeted preemption latency for CPU-bound tasks:
44
 *
45
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
46 47 48
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
49
 *
I
Ingo Molnar 已提交
50 51
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
52 53
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54
 */
55 56
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
57

58 59 60 61
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
62 63 64 65 66 67
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68
 */
69
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70

71
/*
72
 * Minimal preemption granularity for CPU-bound tasks:
73
 *
74
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75
 */
76 77
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
78 79

/*
80
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81
 */
82
static unsigned int sched_nr_latency = 8;
83 84

/*
85
 * After fork, child runs first. If set to 0 (default) then
86
 * parent will (try to) run first.
87
 */
88
unsigned int sysctl_sched_child_runs_first __read_mostly;
89 90 91 92 93 94 95

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
96 97
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98
 */
99 100
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
101

102
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
103

T
Tim Chen 已提交
104 105 106 107 108 109 110 111 112 113
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

114 115 116 117 118 119 120 121 122
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
123 124 125
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 127
#endif

128 129
/*
 * The margin used when comparing utilization with CPU capacity:
130
 * util * margin < capacity * 1024
131 132
 *
 * (default: ~20%)
133
 */
134
unsigned int capacity_margin				= 1280;
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

154 155 156 157 158 159 160 161 162
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
163
static unsigned int get_update_sysctl_factor(void)
164
{
165
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

201
#define WMULT_CONST	(~0U)
202 203
#define WMULT_SHIFT	32

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
220 221

/*
222 223 224 225
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
226
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 228 229 230 231
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
232
 */
233
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234
{
235 236
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
237

238
	__update_inv_weight(lw);
239

240 241 242 243 244
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
245 246
	}

247 248
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
249

250 251 252 253
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
254

255
	return mul_u64_u32_shr(delta_exec, fact, shift);
256 257 258 259
}


const struct sched_class fair_sched_class;
260

261 262 263 264
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

265
#ifdef CONFIG_FAIR_GROUP_SCHED
266

267
/* cpu runqueue to which this cfs_rq is attached */
268 269
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
270
	return cfs_rq->rq;
271 272
}

273 274
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
275

276 277
static inline struct task_struct *task_of(struct sched_entity *se)
{
278
	SCHED_WARN_ON(!entity_is_task(se));
279 280 281
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

303 304 305
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
306 307
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
308 309 310
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
311 312 313 314 315
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
316 317
		 */
		if (cfs_rq->tg->parent &&
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
338
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359
		}
360 361 362 363 364 365 366 367 368 369 370 371 372

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
373
/* Iterate thr' all leaf cfs_rq's on a runqueue */
374 375 376
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
377 378

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
379
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
380 381 382
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
383
		return se->cfs_rq;
P
Peter Zijlstra 已提交
384

P
Peter Zijlstra 已提交
385
	return NULL;
P
Peter Zijlstra 已提交
386 387 388 389 390 391 392
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

393 394 395 396 397 398 399 400 401 402 403 404 405
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
406 407
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

425 426 427 428 429 430
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
431

432 433 434
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
435 436 437 438
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
439 440
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
441

P
Peter Zijlstra 已提交
442
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
443
{
P
Peter Zijlstra 已提交
444
	return &task_rq(p)->cfs;
445 446
}

P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

461 462 463 464 465 466 467 468
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

469 470
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
471 472 473 474 475 476

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

477 478 479 480 481
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
482 483
#endif	/* CONFIG_FAIR_GROUP_SCHED */

484
static __always_inline
485
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
486 487 488 489 490

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

491
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
492
{
493
	s64 delta = (s64)(vruntime - max_vruntime);
494
	if (delta > 0)
495
		max_vruntime = vruntime;
496

497
	return max_vruntime;
498 499
}

500
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
501 502 503 504 505 506 507 508
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

509 510 511 512 513 514
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

515 516
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
517
	struct sched_entity *curr = cfs_rq->curr;
518
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
519

520 521
	u64 vruntime = cfs_rq->min_vruntime;

522 523 524 525 526 527
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
528

529 530 531
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
532

533
		if (!curr)
534 535 536 537 538
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

539
	/* ensure we never gain time by being placed backwards. */
540
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
541 542 543 544
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
545 546
}

547 548 549
/*
 * Enqueue an entity into the rb-tree:
 */
550
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
551
{
552
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
553 554
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
555
	bool leftmost = true;
556 557 558 559 560 561 562 563 564 565 566

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
567
		if (entity_before(se, entry)) {
568 569 570
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
571
			leftmost = false;
572 573 574 575
		}
	}

	rb_link_node(&se->run_node, parent, link);
576 577
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
578 579
}

580
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
581
{
582
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
583 584
}

585
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
586
{
587
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
588 589 590 591 592

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
593 594
}

595 596 597 598 599 600 601 602 603 604 605
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
606
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
607
{
608
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
609

610 611
	if (!last)
		return NULL;
612 613

	return rb_entry(last, struct sched_entity, run_node);
614 615
}

616 617 618 619
/**************************************************************
 * Scheduling class statistics methods:
 */

620
int sched_proc_update_handler(struct ctl_table *table, int write,
621
		void __user *buffer, size_t *lenp,
622 623
		loff_t *ppos)
{
624
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
625
	unsigned int factor = get_update_sysctl_factor();
626 627 628 629 630 631 632

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

633 634 635 636 637 638 639
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

640 641 642
	return 0;
}
#endif
643

644
/*
645
 * delta /= w
646
 */
647
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
648
{
649
	if (unlikely(se->load.weight != NICE_0_LOAD))
650
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
651 652 653 654

	return delta;
}

655 656 657
/*
 * The idea is to set a period in which each task runs once.
 *
658
 * When there are too many tasks (sched_nr_latency) we have to stretch
659 660 661 662
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
663 664
static u64 __sched_period(unsigned long nr_running)
{
665 666 667 668
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
669 670
}

671 672 673 674
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
675
 * s = p*P[w/rw]
676
 */
P
Peter Zijlstra 已提交
677
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
678
{
M
Mike Galbraith 已提交
679
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
680

M
Mike Galbraith 已提交
681
	for_each_sched_entity(se) {
L
Lin Ming 已提交
682
		struct load_weight *load;
683
		struct load_weight lw;
L
Lin Ming 已提交
684 685 686

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
687

M
Mike Galbraith 已提交
688
		if (unlikely(!se->on_rq)) {
689
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
690 691 692 693

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
694
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
695 696
	}
	return slice;
697 698
}

699
/*
A
Andrei Epure 已提交
700
 * We calculate the vruntime slice of a to-be-inserted task.
701
 *
702
 * vs = s/w
703
 */
704
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
705
{
706
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
707 708
}

709
#ifdef CONFIG_SMP
710 711 712

#include "sched-pelt.h"

713
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
714 715
static unsigned long task_h_load(struct task_struct *p);

716 717
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
718
{
719
	struct sched_avg *sa = &se->avg;
720

721 722
	memset(sa, 0, sizeof(*sa));

723 724 725 726 727 728 729
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
730 731
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

732 733
	se->runnable_weight = se->load.weight;

734
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
735
}
736

737
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
738
static void attach_entity_cfs_rq(struct sched_entity *se);
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
769
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
770 771 772 773 774 775 776 777 778 779 780 781

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
782 783 784 785 786 787 788

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
789
			update_cfs_rq_load_avg(now, cfs_rq);
790 791 792 793 794 795
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
796
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
797 798 799 800
			return;
		}
	}

801
	attach_entity_cfs_rq(se);
802 803
}

804
#else /* !CONFIG_SMP */
805
void init_entity_runnable_average(struct sched_entity *se)
806 807
{
}
808 809 810
void post_init_entity_util_avg(struct sched_entity *se)
{
}
811 812 813
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
814
#endif /* CONFIG_SMP */
815

816
/*
817
 * Update the current task's runtime statistics.
818
 */
819
static void update_curr(struct cfs_rq *cfs_rq)
820
{
821
	struct sched_entity *curr = cfs_rq->curr;
822
	u64 now = rq_clock_task(rq_of(cfs_rq));
823
	u64 delta_exec;
824 825 826 827

	if (unlikely(!curr))
		return;

828 829
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
830
		return;
831

I
Ingo Molnar 已提交
832
	curr->exec_start = now;
833

834 835 836 837
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
838
	schedstat_add(cfs_rq->exec_clock, delta_exec);
839 840 841 842

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

843 844 845
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

846
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
847
		cgroup_account_cputime(curtask, delta_exec);
848
		account_group_exec_runtime(curtask, delta_exec);
849
	}
850 851

	account_cfs_rq_runtime(cfs_rq, delta_exec);
852 853
}

854 855 856 857 858
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

859
static inline void
860
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
861
{
862 863 864 865 866 867 868
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
869 870

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
871 872
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
873

874
	__schedstat_set(se->statistics.wait_start, wait_start);
875 876
}

877
static inline void
878 879 880
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
881 882
	u64 delta;

883 884 885 886
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
887 888 889 890 891 892 893 894 895

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
896
			__schedstat_set(se->statistics.wait_start, delta);
897 898 899 900 901
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

902
	__schedstat_set(se->statistics.wait_max,
903
		      max(schedstat_val(se->statistics.wait_max), delta));
904 905 906
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
907 908
}

909
static inline void
910 911 912
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
913 914 915 916 917 918 919
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
920 921 922 923

	if (entity_is_task(se))
		tsk = task_of(se);

924 925
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
931
			__schedstat_set(se->statistics.sleep_max, delta);
932

933 934
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937 938 939 940

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
941 942
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
943 944 945 946

		if ((s64)delta < 0)
			delta = 0;

947
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
948
			__schedstat_set(se->statistics.block_max, delta);
949

950 951
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
952 953 954

		if (tsk) {
			if (tsk->in_iowait) {
955 956
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
975 976
}

977 978 979
/*
 * Task is being enqueued - update stats:
 */
980
static inline void
981
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985
	if (!schedstat_enabled())
		return;

986 987 988 989
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
990
	if (se != cfs_rq->curr)
991
		update_stats_wait_start(cfs_rq, se);
992 993 994

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
995 996 997
}

static inline void
998
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
999
{
1000 1001 1002 1003

	if (!schedstat_enabled())
		return;

1004 1005 1006 1007
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1008
	if (se != cfs_rq->curr)
1009
		update_stats_wait_end(cfs_rq, se);
1010

1011 1012
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1013

1014
		if (tsk->state & TASK_INTERRUPTIBLE)
1015
			__schedstat_set(se->statistics.sleep_start,
1016 1017
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1018
			__schedstat_set(se->statistics.block_start,
1019
				      rq_clock(rq_of(cfs_rq)));
1020 1021 1022
	}
}

1023 1024 1025 1026
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1027
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1028 1029 1030 1031
{
	/*
	 * We are starting a new run period:
	 */
1032
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1033 1034 1035 1036 1037 1038
}

/**************************************************
 * Scheduling class queueing methods:
 */

1039 1040
#ifdef CONFIG_NUMA_BALANCING
/*
1041 1042 1043
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1044
 */
1045 1046
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1047 1048 1049

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1050

1051 1052 1053
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1101
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 1103 1104
	unsigned int scan, floor;
	unsigned int windows = 1;

1105 1106
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1107 1108 1109 1110 1111 1112
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1132 1133
static unsigned int task_scan_max(struct task_struct *p)
{
1134 1135
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1136 1137 1138

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1154 1155 1156
	return max(smin, smax);
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1169 1170 1171 1172 1173 1174 1175 1176 1177
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1178 1179 1180 1181 1182
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1183 1184 1185 1186 1187 1188 1189
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1190
{
1191
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1192 1193 1194 1195
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1196
	if (!p->numa_faults)
1197 1198
		return 0;

1199 1200
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 1202
}

1203 1204 1205 1206 1207
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1208 1209
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1210 1211
}

1212 1213
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1214 1215
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1319 1320 1321 1322 1323 1324
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1325 1326
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1327
{
1328
	unsigned long faults, total_faults;
1329

1330
	if (!p->numa_faults)
1331 1332 1333 1334 1335 1336 1337
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1338
	faults = task_faults(p, nid);
1339 1340
	faults += score_nearby_nodes(p, nid, dist, true);

1341
	return 1000 * faults / total_faults;
1342 1343
}

1344 1345
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1346
{
1347 1348 1349 1350 1351 1352 1353 1354
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1355 1356
		return 0;

1357
	faults = group_faults(p, nid);
1358 1359
	faults += score_nearby_nodes(p, nid, dist, false);

1360
	return 1000 * faults / total_faults;
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1403 1404
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1405
	 */
1406 1407
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1408 1409 1410
		return true;

	/*
1411 1412 1413 1414 1415 1416
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1417
	 */
1418 1419
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1420 1421
}

1422
static unsigned long weighted_cpuload(struct rq *rq);
1423 1424
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1425
static unsigned long capacity_of(int cpu);
1426

1427
/* Cached statistics for all CPUs within a node */
1428
struct numa_stats {
1429
	unsigned long nr_running;
1430
	unsigned long load;
1431 1432

	/* Total compute capacity of CPUs on a node */
1433
	unsigned long compute_capacity;
1434 1435

	/* Approximate capacity in terms of runnable tasks on a node */
1436
	unsigned long task_capacity;
1437
	int has_free_capacity;
1438
};
1439

1440 1441 1442 1443 1444
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1445 1446
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1447 1448 1449 1450 1451 1452

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1453
		ns->load += weighted_cpuload(rq);
1454
		ns->compute_capacity += capacity_of(cpu);
1455 1456

		cpus++;
1457 1458
	}

1459 1460 1461 1462 1463
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1464 1465
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1466 1467 1468 1469
	 */
	if (!cpus)
		return;

1470 1471 1472 1473 1474 1475
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1476
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1477 1478
}

1479 1480
struct task_numa_env {
	struct task_struct *p;
1481

1482 1483
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1484

1485
	struct numa_stats src_stats, dst_stats;
1486

1487
	int imbalance_pct;
1488
	int dist;
1489 1490 1491

	struct task_struct *best_task;
	long best_imp;
1492 1493 1494
	int best_cpu;
};

1495 1496 1497 1498 1499
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1500 1501
	if (p)
		get_task_struct(p);
1502 1503 1504 1505 1506 1507

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1508
static bool load_too_imbalanced(long src_load, long dst_load,
1509 1510
				struct task_numa_env *env)
{
1511 1512
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1524 1525

	/* We care about the slope of the imbalance, not the direction. */
1526 1527
	if (dst_load < src_load)
		swap(dst_load, src_load);
1528 1529

	/* Is the difference below the threshold? */
1530 1531
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1532 1533 1534 1535 1536
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1537
	 * Compare it with the old imbalance.
1538
	 */
1539
	orig_src_load = env->src_stats.load;
1540
	orig_dst_load = env->dst_stats.load;
1541

1542 1543
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1544

1545 1546 1547 1548 1549
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1550 1551
}

1552 1553 1554 1555 1556 1557
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1558 1559
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1560 1561 1562 1563
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1564
	long src_load, dst_load;
1565
	long load;
1566
	long imp = env->p->numa_group ? groupimp : taskimp;
1567
	long moveimp = imp;
1568
	int dist = env->dist;
1569 1570

	rcu_read_lock();
1571 1572
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1573 1574
		cur = NULL;

1575 1576 1577 1578 1579 1580 1581
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1591
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1592 1593
			goto unlock;

1594 1595
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1596
		 * in any group then look only at task weights.
1597
		 */
1598
		if (cur->numa_group == env->p->numa_group) {
1599 1600
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1601 1602 1603 1604 1605 1606
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1607
		} else {
1608 1609 1610 1611 1612 1613
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1614 1615
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1616
			else
1617 1618
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1619
		}
1620 1621
	}

1622
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1623 1624 1625 1626
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1627
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1628
		    !env->dst_stats.has_free_capacity)
1629 1630 1631 1632 1633 1634
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1635 1636
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1637 1638 1639 1640 1641 1642
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1643 1644 1645
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1664
	if (cur) {
1665 1666 1667
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1668 1669
	}

1670
	if (load_too_imbalanced(src_load, dst_load, env))
1671 1672
		goto unlock;

1673 1674 1675 1676
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1677 1678 1679 1680 1681 1682
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1683 1684
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1685 1686
		local_irq_enable();
	}
1687

1688 1689 1690 1691 1692 1693
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1694 1695
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1696 1697 1698 1699 1700
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1701
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1702 1703 1704
			continue;

		env->dst_cpu = cpu;
1705
		task_numa_compare(env, taskimp, groupimp);
1706 1707 1708
	}
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1726 1727 1728
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1729 1730 1731 1732 1733
		return true;

	return false;
}

1734 1735 1736 1737
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1738

1739
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1740
		.src_nid = task_node(p),
1741 1742 1743 1744 1745

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1746
		.best_cpu = -1,
1747 1748
	};
	struct sched_domain *sd;
1749
	unsigned long taskweight, groupweight;
1750
	int nid, ret, dist;
1751
	long taskimp, groupimp;
1752

1753
	/*
1754 1755 1756 1757 1758 1759
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1760 1761
	 */
	rcu_read_lock();
1762
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1763 1764
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1765 1766
	rcu_read_unlock();

1767 1768 1769 1770 1771 1772 1773
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1774
		p->numa_preferred_nid = task_node(p);
1775 1776 1777
		return -EINVAL;
	}

1778
	env.dst_nid = p->numa_preferred_nid;
1779 1780 1781 1782 1783 1784
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1785
	update_numa_stats(&env.dst_stats, env.dst_nid);
1786

1787
	/* Try to find a spot on the preferred nid. */
1788 1789
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1790

1791 1792 1793 1794 1795 1796 1797
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1798
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1799 1800 1801
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1802

1803
			dist = node_distance(env.src_nid, env.dst_nid);
1804 1805 1806 1807 1808
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1809

1810
			/* Only consider nodes where both task and groups benefit */
1811 1812
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1813
			if (taskimp < 0 && groupimp < 0)
1814 1815
				continue;

1816
			env.dist = dist;
1817 1818
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1819 1820
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1821 1822 1823
		}
	}

1824 1825 1826 1827 1828 1829 1830 1831
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1832
	if (p->numa_group) {
1833 1834
		struct numa_group *ng = p->numa_group;

1835 1836 1837 1838 1839
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1840
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1841 1842 1843 1844 1845 1846
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1847

1848 1849 1850 1851
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1852
	p->numa_scan_period = task_scan_start(p);
1853

1854
	if (env.best_task == NULL) {
1855 1856 1857
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 1859 1860 1861
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1862 1863
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 1865
	put_task_struct(env.best_task);
	return ret;
1866 1867
}

1868 1869 1870
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1871 1872
	unsigned long interval = HZ;

1873
	/* This task has no NUMA fault statistics yet */
1874
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875 1876
		return;

1877
	/* Periodically retry migrating the task to the preferred node */
1878 1879
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1880 1881

	/* Success if task is already running on preferred CPU */
1882
	if (task_node(p) == p->numa_preferred_nid)
1883 1884 1885
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1886
	task_numa_migrate(p);
1887 1888
}

1889
/*
1890
 * Find out how many nodes on the workload is actively running on. Do this by
1891 1892 1893 1894
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1895
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 1897
{
	unsigned long faults, max_faults = 0;
1898
	int nid, active_nodes = 0;
1899 1900 1901 1902 1903 1904 1905 1906 1907

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1908 1909
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1910
	}
1911 1912 1913

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1914 1915
}

1916 1917 1918
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1919 1920 1921
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1922 1923
 */
#define NUMA_PERIOD_SLOTS 10
1924
#define NUMA_PERIOD_THRESHOLD 7
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1936
	int lr_ratio, ps_ratio;
1937 1938 1939 1940 1941 1942 1943 1944
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1945 1946 1947
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1948
	 */
1949
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 1986 1987 1988 1989
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1990 1991 1992
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
1993
		 */
1994 1995
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 1997 1998 1999 2000 2001 2002
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2021
		delta = p->se.avg.load_sum;
2022
		*period = LOAD_AVG_MAX;
2023 2024 2025 2026 2027 2028 2029 2030
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2078
		nodemask_t max_group = NODE_MASK_NONE;
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2112 2113
		if (!max_faults)
			break;
2114 2115 2116 2117 2118
		nodes = max_group;
	}
	return nid;
}

2119 2120
static void task_numa_placement(struct task_struct *p)
{
2121 2122
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2123
	unsigned long fault_types[2] = { 0, 0 };
2124 2125
	unsigned long total_faults;
	u64 runtime, period;
2126
	spinlock_t *group_lock = NULL;
2127

2128 2129 2130 2131 2132
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2133
	seq = READ_ONCE(p->mm->numa_scan_seq);
2134 2135 2136
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2137
	p->numa_scan_period_max = task_scan_max(p);
2138

2139 2140 2141 2142
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2143 2144 2145
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2146
		spin_lock_irq(group_lock);
2147 2148
	}

2149 2150
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2151 2152
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153
		unsigned long faults = 0, group_faults = 0;
2154
		int priv;
2155

2156
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157
			long diff, f_diff, f_weight;
2158

2159 2160 2161 2162
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163

2164
			/* Decay existing window, copy faults since last scan */
2165 2166 2167
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2168

2169 2170 2171 2172 2173 2174 2175 2176
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2177
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178
				   (total_faults + 1);
2179 2180
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2181

2182 2183 2184
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2185
			p->total_numa_faults += diff;
2186
			if (p->numa_group) {
2187 2188 2189 2190 2191 2192 2193 2194 2195
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2196
				p->numa_group->total_faults += diff;
2197
				group_faults += p->numa_group->faults[mem_idx];
2198
			}
2199 2200
		}

2201 2202 2203 2204
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2205 2206 2207 2208 2209 2210 2211

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2212 2213
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2214
	if (p->numa_group) {
2215
		numa_group_count_active_nodes(p->numa_group);
2216
		spin_unlock_irq(group_lock);
2217
		max_nid = preferred_group_nid(p, max_group_nid);
2218 2219
	}

2220 2221 2222 2223 2224 2225 2226
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2227
	}
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2241 2242
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2243 2244 2245 2246 2247 2248 2249 2250 2251
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2252
				    4*nr_node_ids*sizeof(unsigned long);
2253 2254 2255 2256 2257 2258

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2259 2260
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2261
		spin_lock_init(&grp->lock);
2262
		grp->gid = p->pid;
2263
		/* Second half of the array tracks nids where faults happen */
2264 2265
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2266

2267
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2268
			grp->faults[i] = p->numa_faults[i];
2269

2270
		grp->total_faults = p->total_numa_faults;
2271

2272 2273 2274 2275 2276
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2277
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2278 2279

	if (!cpupid_match_pid(tsk, cpupid))
2280
		goto no_join;
2281 2282 2283

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2284
		goto no_join;
2285 2286 2287

	my_grp = p->numa_group;
	if (grp == my_grp)
2288
		goto no_join;
2289 2290 2291 2292 2293 2294

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2295
		goto no_join;
2296 2297 2298 2299 2300

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2301
		goto no_join;
2302

2303 2304 2305 2306 2307 2308 2309
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2310

2311 2312 2313
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2314
	if (join && !get_numa_group(grp))
2315
		goto no_join;
2316 2317 2318 2319 2320 2321

	rcu_read_unlock();

	if (!join)
		return;

2322 2323
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2324

2325
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2326 2327
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2328
	}
2329 2330
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2331 2332 2333 2334 2335

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2336
	spin_unlock_irq(&grp->lock);
2337 2338 2339 2340

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2341 2342 2343 2344 2345
	return;

no_join:
	rcu_read_unlock();
	return;
2346 2347 2348 2349 2350
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2351
	void *numa_faults = p->numa_faults;
2352 2353
	unsigned long flags;
	int i;
2354 2355

	if (grp) {
2356
		spin_lock_irqsave(&grp->lock, flags);
2357
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2358
			grp->faults[i] -= p->numa_faults[i];
2359
		grp->total_faults -= p->total_numa_faults;
2360

2361
		grp->nr_tasks--;
2362
		spin_unlock_irqrestore(&grp->lock, flags);
2363
		RCU_INIT_POINTER(p->numa_group, NULL);
2364 2365 2366
		put_numa_group(grp);
	}

2367
	p->numa_faults = NULL;
2368
	kfree(numa_faults);
2369 2370
}

2371 2372 2373
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2374
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2375 2376
{
	struct task_struct *p = current;
2377
	bool migrated = flags & TNF_MIGRATED;
2378
	int cpu_node = task_node(current);
2379
	int local = !!(flags & TNF_FAULT_LOCAL);
2380
	struct numa_group *ng;
2381
	int priv;
2382

2383
	if (!static_branch_likely(&sched_numa_balancing))
2384 2385
		return;

2386 2387 2388 2389
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2390
	/* Allocate buffer to track faults on a per-node basis */
2391 2392
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2393
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2394

2395 2396
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2397
			return;
2398

2399
		p->total_numa_faults = 0;
2400
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2401
	}
2402

2403 2404 2405 2406 2407 2408 2409 2410
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2411
		if (!priv && !(flags & TNF_NO_GROUP))
2412
			task_numa_group(p, last_cpupid, flags, &priv);
2413 2414
	}

2415 2416 2417 2418 2419 2420
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2421 2422 2423 2424
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2425 2426
		local = 1;

2427
	task_numa_placement(p);
2428

2429 2430 2431 2432 2433
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2434 2435
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2436 2437
	if (migrated)
		p->numa_pages_migrated += pages;
2438 2439
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2440

2441 2442
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2443
	p->numa_faults_locality[local] += pages;
2444 2445
}

2446 2447
static void reset_ptenuma_scan(struct task_struct *p)
{
2448 2449 2450 2451 2452 2453 2454 2455
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2456
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2457 2458 2459
	p->mm->numa_scan_offset = 0;
}

2460 2461 2462 2463 2464 2465 2466 2467 2468
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2469
	u64 runtime = p->se.sum_exec_runtime;
2470
	struct vm_area_struct *vma;
2471
	unsigned long start, end;
2472
	unsigned long nr_pte_updates = 0;
2473
	long pages, virtpages;
2474

2475
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2489
	if (!mm->numa_next_scan) {
2490 2491
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2492 2493
	}

2494 2495 2496 2497 2498 2499 2500
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2501 2502
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2503
		p->numa_scan_period = task_scan_start(p);
2504
	}
2505

2506
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2507 2508 2509
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2510 2511 2512 2513 2514 2515
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2516 2517 2518
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2519
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2520 2521
	if (!pages)
		return;
2522

2523

2524 2525
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2526
	vma = find_vma(mm, start);
2527 2528
	if (!vma) {
		reset_ptenuma_scan(p);
2529
		start = 0;
2530 2531
		vma = mm->mmap;
	}
2532
	for (; vma; vma = vma->vm_next) {
2533
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2534
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2535
			continue;
2536
		}
2537

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2548 2549 2550 2551 2552 2553
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2554

2555 2556 2557 2558
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2559
			nr_pte_updates = change_prot_numa(vma, start, end);
2560 2561

			/*
2562 2563 2564 2565 2566 2567
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2568 2569 2570
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2571
			virtpages -= (end - start) >> PAGE_SHIFT;
2572

2573
			start = end;
2574
			if (pages <= 0 || virtpages <= 0)
2575
				goto out;
2576 2577

			cond_resched();
2578
		} while (end != vma->vm_end);
2579
	}
2580

2581
out:
2582
	/*
P
Peter Zijlstra 已提交
2583 2584 2585 2586
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2587 2588
	 */
	if (vma)
2589
		mm->numa_scan_offset = start;
2590 2591 2592
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2629
	if (now > curr->node_stamp + period) {
2630
		if (!curr->node_stamp)
2631
			curr->numa_scan_period = task_scan_start(curr);
2632
		curr->node_stamp += period;
2633 2634 2635 2636 2637 2638 2639

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2640

2641 2642 2643 2644
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2645 2646 2647 2648 2649 2650 2651 2652

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2653

2654 2655
#endif /* CONFIG_NUMA_BALANCING */

2656 2657 2658 2659
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2660
	if (!parent_entity(se))
2661
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2662
#ifdef CONFIG_SMP
2663 2664 2665 2666 2667 2668
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2669
#endif
2670 2671 2672 2673 2674 2675 2676
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2677
	if (!parent_entity(se))
2678
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2679
#ifdef CONFIG_SMP
2680 2681
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2682
		list_del_init(&se->group_node);
2683
	}
2684
#endif
2685 2686 2687
	cfs_rq->nr_running--;
}

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
/*
2727
 * XXX we want to get rid of these helpers and use the full load resolution.
2728 2729 2730 2731 2732 2733
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

2734 2735 2736 2737 2738
static inline long se_runnable(struct sched_entity *se)
{
	return scale_load_down(se->runnable_weight);
}

2739 2740 2741
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2742 2743 2744 2745
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2746 2747 2748 2749 2750
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2751 2752 2753 2754 2755
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2782
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2783
			    unsigned long weight, unsigned long runnable)
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2794
	se->runnable_weight = runnable;
2795 2796 2797
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2798 2799 2800 2801 2802 2803 2804
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2821
	reweight_entity(cfs_rq, se, weight, weight);
2822 2823 2824
	load->inv_weight = sched_prio_to_wmult[prio];
}

2825 2826
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2865
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2891 2892 2893 2894 2895 2896 2897 2898 2899
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2900
static long calc_group_shares(struct cfs_rq *cfs_rq)
2901
{
2902 2903 2904 2905
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2906

2907
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2908

2909
	tg_weight = atomic_long_read(&tg->load_avg);
2910

2911 2912 2913
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2914

2915
	shares = (tg_shares * load);
2916 2917
	if (tg_weight)
		shares /= tg_weight;
2918

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2931
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2932
}
2933 2934

/*
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2960 2961 2962
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2963 2964 2965 2966 2967 2968 2969
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2970 2971 2972 2973

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2974

2975 2976
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2977
# endif /* CONFIG_SMP */
2978

2979 2980
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2981 2982 2983 2984 2985
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2986
{
2987 2988
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
2989

2990
	if (!gcfs_rq)
2991 2992
		return;

2993
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
2994
		return;
2995

2996
#ifndef CONFIG_SMP
2997
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2998 2999

	if (likely(se->load.weight == shares))
3000
		return;
3001
#else
3002 3003
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3004
#endif
P
Peter Zijlstra 已提交
3005

3006
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3007
}
3008

P
Peter Zijlstra 已提交
3009
#else /* CONFIG_FAIR_GROUP_SCHED */
3010
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3011 3012 3013 3014
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3015 3016
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3017 3018 3019
	struct rq *rq = rq_of(cfs_rq);

	if (&rq->cfs == cfs_rq) {
3020 3021 3022
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3023
		 * a real problem.
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3034
		cpufreq_update_util(rq, 0);
3035 3036 3037
	}
}

3038
#ifdef CONFIG_SMP
3039 3040 3041 3042
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
3043
static u64 decay_load(u64 val, u64 n)
3044
{
3045 3046
	unsigned int local_n;

3047
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3048 3049 3050 3051 3052 3053 3054
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
3055 3056
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
3057 3058 3059 3060 3061 3062
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
3063 3064
	}

3065 3066
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
3067 3068
}

3069
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3070
{
3071
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3072

3073
	/*
P
Peter Zijlstra 已提交
3074
	 * c1 = d1 y^p
3075
	 */
3076
	c1 = decay_load((u64)d1, periods);
3077 3078

	/*
P
Peter Zijlstra 已提交
3079
	 *            p-1
3080 3081
	 * c2 = 1024 \Sum y^n
	 *            n=1
3082
	 *
3083 3084
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
3085
	 *              n=0        n=p
3086
	 */
3087
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3088 3089

	return c1 + c2 + c3;
3090 3091
}

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
3103 3104 3105
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
3106
 *
P
Peter Zijlstra 已提交
3107
 *    = u y^p +					(Step 1)
3108
 *
P
Peter Zijlstra 已提交
3109 3110 3111
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
3112 3113 3114
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3115
	       unsigned long load, unsigned long runnable, int running)
3116 3117
{
	unsigned long scale_freq, scale_cpu;
3118
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3119 3120
	u64 periods;

3121
	scale_freq = arch_scale_freq_capacity(cpu);
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
3132 3133
		sa->runnable_load_sum =
			decay_load(sa->runnable_load_sum, periods);
3134 3135
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

3136 3137 3138 3139 3140 3141 3142
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
3143 3144 3145
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
3146 3147 3148 3149
	if (load)
		sa->load_sum += load * contrib;
	if (runnable)
		sa->runnable_load_sum += runnable * contrib;
3150 3151 3152 3153 3154 3155
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
3184
static __always_inline int
3185
___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3186
		  unsigned long load, unsigned long runnable, int running)
3187
{
3188
	u64 delta;
3189

3190
	delta = now - sa->last_update_time;
3191 3192 3193 3194 3195
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
3196
		sa->last_update_time = now;
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3207 3208

	sa->last_update_time += delta << 10;
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
3219 3220
	if (!load)
		runnable = running = 0;
3221

3222 3223 3224 3225 3226 3227 3228
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
3229
	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3230
		return 0;
3231

3232 3233 3234 3235
	return 1;
}

static __always_inline void
3236
___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3237 3238 3239
{
	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

3240 3241 3242
	/*
	 * Step 2: update *_avg.
	 */
3243 3244
	sa->load_avg = div_u64(load * sa->load_sum, divider);
	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3245 3246
	sa->util_avg = sa->util_sum / divider;
}
3247

3248 3249 3250
/*
 * sched_entity:
 *
3251 3252 3253 3254 3255 3256 3257
 *   task:
 *     se_runnable() == se_weight()
 *
 *   group: [ see update_cfs_group() ]
 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
 *
3258 3259 3260
 *   load_sum := runnable_sum
 *   load_avg = se_weight(se) * runnable_avg
 *
3261 3262 3263 3264 3265
 *   runnable_load_sum := runnable_sum
 *   runnable_load_avg = se_runnable(se) * runnable_avg
 *
 * XXX collapse load_sum and runnable_load_sum
 *
3266 3267 3268 3269
 * cfq_rs:
 *
 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 *   load_avg = \Sum se->avg.load_avg
3270 3271 3272
 *
 *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
 *   runnable_load_avg = \Sum se->avg.runable_load_avg
3273 3274
 */

3275 3276 3277
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
3278 3279 3280 3281 3282
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3283 3284 3285 3286
		return 1;
	}

	return 0;
3287 3288 3289 3290 3291
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3292 3293 3294 3295 3296
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
				cfs_rq->curr == se)) {
3297

3298
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3299 3300 3301 3302
		return 1;
	}

	return 0;
3303 3304 3305 3306 3307
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
3308 3309
	if (___update_load_sum(now, cpu, &cfs_rq->avg,
				scale_load_down(cfs_rq->load.weight),
3310 3311 3312 3313
				scale_load_down(cfs_rq->runnable_weight),
				cfs_rq->curr != NULL)) {

		___update_load_avg(&cfs_rq->avg, 1, 1);
3314 3315 3316 3317
		return 1;
	}

	return 0;
3318 3319
}

3320
#ifdef CONFIG_FAIR_GROUP_SCHED
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3334
 * Updating tg's load_avg is necessary before update_cfs_share().
3335
 */
3336
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3337
{
3338
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3339

3340 3341 3342 3343 3344 3345
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3346 3347 3348
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3349
	}
3350
}
3351

3352 3353 3354 3355 3356 3357 3358 3359
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3360 3361 3362
	u64 p_last_update_time;
	u64 n_last_update_time;

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3373 3374
	if (!(se->avg.last_update_time && prev))
		return;
3375 3376

#ifndef CONFIG_64BIT
3377
	{
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3392
	}
3393
#else
3394 3395
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3396
#endif
3397 3398
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3399
}
3400

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3412 3413 3414
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3415 3416 3417 3418 3419 3420 3421 3422
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3423
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3424 3425 3426
 *
 * And per (1) we have:
 *
3427
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3446 3447 3448 3449 3450 3451
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3452
 *
3453
 * So we'll have to approximate.. :/
3454
 *
3455
 * Given the constraint:
3456
 *
3457
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3458
 *
3459 3460
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3461
 *
3462
 * On removal, we'll assume each task is equally runnable; which yields:
3463
 *
3464
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3465
 *
3466
 * XXX: only do this for the part of runnable > running ?
3467 3468 3469
 *
 */

3470
static inline void
3471
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3472 3473 3474 3475 3476 3477 3478
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3479 3480 3481 3482 3483 3484 3485 3486
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3497
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3498
{
3499 3500 3501 3502
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3503

3504 3505
	if (!runnable_sum)
		return;
3506

3507
	gcfs_rq->prop_runnable_sum = 0;
3508

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
	 * As running sum is scale with cpu capacity wehreas the runnable sum
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3539 3540
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3541

3542 3543
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3544

3545 3546 3547 3548
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3549

3550 3551
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3552 3553
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3554

3555 3556
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3557

3558
	if (se->on_rq) {
3559 3560
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3561 3562 3563
	}
}

3564
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3565
{
3566 3567
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3568 3569 3570 3571 3572
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3573
	struct cfs_rq *cfs_rq, *gcfs_rq;
3574 3575 3576 3577

	if (entity_is_task(se))
		return 0;

3578 3579
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3580 3581
		return 0;

3582 3583
	gcfs_rq->propagate = 0;

3584 3585
	cfs_rq = cfs_rq_of(se);

3586
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3587

3588 3589
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3590 3591 3592 3593

	return 1;
}

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3613
	if (gcfs_rq->propagate)
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3624
#else /* CONFIG_FAIR_GROUP_SCHED */
3625

3626
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3627 3628 3629 3630 3631 3632

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3633
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3634

3635
#endif /* CONFIG_FAIR_GROUP_SCHED */
3636

3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3648 3649 3650 3651
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3652
 */
3653
static inline int
3654
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3655
{
3656
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3657
	struct sched_avg *sa = &cfs_rq->avg;
3658
	int decayed = 0;
3659

3660 3661
	if (cfs_rq->removed.nr) {
		unsigned long r;
3662
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3663 3664 3665 3666

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3667
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3668 3669 3670 3671
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3672
		sub_positive(&sa->load_avg, r);
3673
		sub_positive(&sa->load_sum, r * divider);
3674

3675
		r = removed_util;
3676
		sub_positive(&sa->util_avg, r);
3677
		sub_positive(&sa->util_sum, r * divider);
3678

3679
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3680 3681

		decayed = 1;
3682
	}
3683

3684
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3685

3686 3687 3688 3689
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3690

3691
	if (decayed)
3692
		cfs_rq_util_change(cfs_rq);
3693

3694
	return decayed;
3695 3696
}

3697 3698 3699 3700 3701 3702 3703 3704
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3705 3706
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3707 3708 3709 3710 3711 3712 3713 3714 3715
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3716
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3735
	enqueue_load_avg(cfs_rq, se);
3736 3737
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3738 3739

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3740 3741

	cfs_rq_util_change(cfs_rq);
3742 3743
}

3744 3745 3746 3747 3748 3749 3750 3751
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3752 3753
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3754
	dequeue_load_avg(cfs_rq, se);
3755 3756
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3757 3758

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3759 3760

	cfs_rq_util_change(cfs_rq);
3761 3762
}

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

		attach_entity_load_avg(cfs_rq, se);
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3797
#ifndef CONFIG_64BIT
3798 3799
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3800
	u64 last_update_time_copy;
3801
	u64 last_update_time;
3802

3803 3804 3805 3806 3807
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3808 3809 3810

	return last_update_time;
}
3811
#else
3812 3813 3814 3815
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3816 3817
#endif

3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3828
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3829 3830
}

3831 3832 3833 3834 3835 3836 3837
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3838
	unsigned long flags;
3839 3840

	/*
3841 3842 3843 3844 3845 3846 3847
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3848 3849
	 */

3850
	sync_entity_load_avg(se);
3851 3852 3853 3854 3855

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3856
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3857
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3858
}
3859

3860 3861
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3862
	return cfs_rq->avg.runnable_load_avg;
3863 3864 3865 3866 3867 3868 3869
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3870
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3871

3872 3873
#else /* CONFIG_SMP */

3874
static inline int
3875
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3876 3877 3878 3879
{
	return 0;
}

3880 3881
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3882
#define DO_ATTACH	0x0
3883

3884
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3885
{
3886
	cfs_rq_util_change(cfs_rq);
3887 3888
}

3889
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3890

3891 3892 3893 3894 3895
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3896
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3897 3898 3899 3900
{
	return 0;
}

3901
#endif /* CONFIG_SMP */
3902

P
Peter Zijlstra 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3912
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3913 3914 3915
#endif
}

3916 3917 3918
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3919
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3920

3921 3922 3923 3924 3925 3926
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3927
	if (initial && sched_feat(START_DEBIT))
3928
		vruntime += sched_vslice(cfs_rq, se);
3929

3930
	/* sleeps up to a single latency don't count. */
3931
	if (!initial) {
3932
		unsigned long thresh = sysctl_sched_latency;
3933

3934 3935 3936 3937 3938 3939
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3940

3941
		vruntime -= thresh;
3942 3943
	}

3944
	/* ensure we never gain time by being placed backwards. */
3945
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3946 3947
}

3948 3949
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3962
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3963
			     "stat_blocked and stat_runtime require the "
3964
			     "kernel parameter schedstats=enable or "
3965 3966 3967 3968 3969
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3989
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

4001
static void
4002
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4003
{
4004 4005 4006
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

4007
	/*
4008 4009
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
4010
	 */
4011
	if (renorm && curr)
4012 4013
		se->vruntime += cfs_rq->min_vruntime;

4014 4015
	update_curr(cfs_rq);

4016
	/*
4017 4018 4019 4020
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
4021
	 */
4022 4023 4024
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

4025 4026 4027 4028 4029 4030 4031 4032
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
4033
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4034
	update_cfs_group(se);
4035
	enqueue_runnable_load_avg(cfs_rq, se);
4036
	account_entity_enqueue(cfs_rq, se);
4037

4038
	if (flags & ENQUEUE_WAKEUP)
4039
		place_entity(cfs_rq, se, 0);
4040

4041
	check_schedstat_required();
4042 4043
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
4044
	if (!curr)
4045
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
4046
	se->on_rq = 1;
4047

4048
	if (cfs_rq->nr_running == 1) {
4049
		list_add_leaf_cfs_rq(cfs_rq);
4050 4051
		check_enqueue_throttle(cfs_rq);
	}
4052 4053
}

4054
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
4055
{
4056 4057
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4058
		if (cfs_rq->last != se)
4059
			break;
4060 4061

		cfs_rq->last = NULL;
4062 4063
	}
}
P
Peter Zijlstra 已提交
4064

4065 4066 4067 4068
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4069
		if (cfs_rq->next != se)
4070
			break;
4071 4072

		cfs_rq->next = NULL;
4073
	}
P
Peter Zijlstra 已提交
4074 4075
}

4076 4077 4078 4079
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4080
		if (cfs_rq->skip != se)
4081
			break;
4082 4083

		cfs_rq->skip = NULL;
4084 4085 4086
	}
}

P
Peter Zijlstra 已提交
4087 4088
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
4089 4090 4091 4092 4093
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
4094 4095 4096

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
4097 4098
}

4099
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4100

4101
static void
4102
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4103
{
4104 4105 4106 4107
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
4108 4109 4110 4111 4112 4113 4114 4115 4116

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
4117
	update_load_avg(cfs_rq, se, UPDATE_TG);
4118
	dequeue_runnable_load_avg(cfs_rq, se);
4119

4120
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
4121

P
Peter Zijlstra 已提交
4122
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4123

4124
	if (se != cfs_rq->curr)
4125
		__dequeue_entity(cfs_rq, se);
4126
	se->on_rq = 0;
4127
	account_entity_dequeue(cfs_rq, se);
4128 4129

	/*
4130 4131 4132 4133
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
4134
	 */
4135
	if (!(flags & DEQUEUE_SLEEP))
4136
		se->vruntime -= cfs_rq->min_vruntime;
4137

4138 4139 4140
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

4141
	update_cfs_group(se);
4142 4143 4144 4145 4146 4147 4148 4149 4150

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
4151 4152 4153 4154 4155
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4156
static void
I
Ingo Molnar 已提交
4157
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4158
{
4159
	unsigned long ideal_runtime, delta_exec;
4160 4161
	struct sched_entity *se;
	s64 delta;
4162

P
Peter Zijlstra 已提交
4163
	ideal_runtime = sched_slice(cfs_rq, curr);
4164
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4165
	if (delta_exec > ideal_runtime) {
4166
		resched_curr(rq_of(cfs_rq));
4167 4168 4169 4170 4171
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4183 4184
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4185

4186 4187
	if (delta < 0)
		return;
4188

4189
	if (delta > ideal_runtime)
4190
		resched_curr(rq_of(cfs_rq));
4191 4192
}

4193
static void
4194
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4195
{
4196 4197 4198 4199 4200 4201 4202
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4203
		update_stats_wait_end(cfs_rq, se);
4204
		__dequeue_entity(cfs_rq, se);
4205
		update_load_avg(cfs_rq, se, UPDATE_TG);
4206 4207
	}

4208
	update_stats_curr_start(cfs_rq, se);
4209
	cfs_rq->curr = se;
4210

I
Ingo Molnar 已提交
4211 4212 4213 4214 4215
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4216
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4217 4218 4219
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4220
	}
4221

4222
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4223 4224
}

4225 4226 4227
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4228 4229 4230 4231 4232 4233 4234
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4235 4236
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4237
{
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4249

4250 4251 4252 4253 4254
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4265 4266 4267
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4268

4269 4270 4271 4272 4273 4274
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4275 4276 4277 4278 4279 4280
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4281
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4282 4283

	return se;
4284 4285
}

4286
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4287

4288
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4289 4290 4291 4292 4293 4294
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4295
		update_curr(cfs_rq);
4296

4297 4298 4299
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4300
	check_spread(cfs_rq, prev);
4301

4302
	if (prev->on_rq) {
4303
		update_stats_wait_start(cfs_rq, prev);
4304 4305
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4306
		/* in !on_rq case, update occurred at dequeue */
4307
		update_load_avg(cfs_rq, prev, 0);
4308
	}
4309
	cfs_rq->curr = NULL;
4310 4311
}

P
Peter Zijlstra 已提交
4312 4313
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4314 4315
{
	/*
4316
	 * Update run-time statistics of the 'current'.
4317
	 */
4318
	update_curr(cfs_rq);
4319

4320 4321 4322
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4323
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4324
	update_cfs_group(curr);
4325

P
Peter Zijlstra 已提交
4326 4327 4328 4329 4330
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4331
	if (queued) {
4332
		resched_curr(rq_of(cfs_rq));
4333 4334
		return;
	}
P
Peter Zijlstra 已提交
4335 4336 4337 4338 4339 4340 4341 4342
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4343
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4344
		check_preempt_tick(cfs_rq, curr);
4345 4346
}

4347 4348 4349 4350 4351 4352

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4353 4354

#ifdef HAVE_JUMP_LABEL
4355
static struct static_key __cfs_bandwidth_used;
4356 4357 4358

static inline bool cfs_bandwidth_used(void)
{
4359
	return static_key_false(&__cfs_bandwidth_used);
4360 4361
}

4362
void cfs_bandwidth_usage_inc(void)
4363
{
4364
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4365 4366 4367 4368
}

void cfs_bandwidth_usage_dec(void)
{
4369
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4370 4371 4372 4373 4374 4375 4376
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4377 4378
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4379 4380
#endif /* HAVE_JUMP_LABEL */

4381 4382 4383 4384 4385 4386 4387 4388
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4389 4390 4391 4392 4393 4394

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4395 4396 4397 4398 4399 4400 4401
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4402
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4414 4415 4416 4417 4418
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4419 4420 4421 4422
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4423
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4424

4425
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4426 4427
}

4428 4429
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4430 4431 4432
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4433
	u64 amount = 0, min_amount, expires;
4434 4435 4436 4437 4438 4439 4440

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4441
	else {
P
Peter Zijlstra 已提交
4442
		start_cfs_bandwidth(cfs_b);
4443 4444 4445 4446 4447 4448

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4449
	}
P
Paul Turner 已提交
4450
	expires = cfs_b->runtime_expires;
4451 4452 4453
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4454 4455 4456 4457 4458 4459 4460
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4461 4462

	return cfs_rq->runtime_remaining > 0;
4463 4464
}

P
Paul Turner 已提交
4465 4466 4467 4468 4469
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4470
{
P
Paul Turner 已提交
4471 4472 4473
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4474
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4475 4476
		return;

P
Paul Turner 已提交
4477 4478 4479 4480 4481 4482 4483 4484 4485
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4486 4487 4488
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4489 4490
	 */

4491
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4492 4493 4494 4495 4496 4497 4498 4499
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4500
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4501 4502
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4503
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4504 4505 4506
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4507 4508
		return;

4509 4510 4511 4512 4513
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4514
		resched_curr(rq_of(cfs_rq));
4515 4516
}

4517
static __always_inline
4518
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4519
{
4520
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4521 4522 4523 4524 4525
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4526 4527
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4528
	return cfs_bandwidth_used() && cfs_rq->throttled;
4529 4530
}

4531 4532 4533
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4534
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4562
		/* adjust cfs_rq_clock_task() */
4563
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4564
					     cfs_rq->throttled_clock_task;
4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4575 4576
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4577
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4578 4579 4580 4581 4582
	cfs_rq->throttle_count++;

	return 0;
}

4583
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4584 4585 4586 4587 4588
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4589
	bool empty;
4590 4591 4592

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4593
	/* freeze hierarchy runnable averages while throttled */
4594 4595 4596
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4614
		sub_nr_running(rq, task_delta);
4615 4616

	cfs_rq->throttled = 1;
4617
	cfs_rq->throttled_clock = rq_clock(rq);
4618
	raw_spin_lock(&cfs_b->lock);
4619
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4620

4621 4622 4623 4624 4625
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4626 4627 4628 4629 4630 4631 4632 4633

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4634 4635 4636
	raw_spin_unlock(&cfs_b->lock);
}

4637
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4638 4639 4640 4641 4642 4643 4644
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4645
	se = cfs_rq->tg->se[cpu_of(rq)];
4646 4647

	cfs_rq->throttled = 0;
4648 4649 4650

	update_rq_clock(rq);

4651
	raw_spin_lock(&cfs_b->lock);
4652
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4653 4654 4655
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4656 4657 4658
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4677
		add_nr_running(rq, task_delta);
4678 4679 4680

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4681
		resched_curr(rq);
4682 4683 4684 4685 4686 4687
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4688 4689
	u64 runtime;
	u64 starting_runtime = remaining;
4690 4691 4692 4693 4694

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4695
		struct rq_flags rf;
4696

4697
		rq_lock(rq, &rf);
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4714
		rq_unlock(rq, &rf);
4715 4716 4717 4718 4719 4720

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4721
	return starting_runtime - remaining;
4722 4723
}

4724 4725 4726 4727 4728 4729 4730 4731
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4732
	u64 runtime, runtime_expires;
4733
	int throttled;
4734 4735 4736

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4737
		goto out_deactivate;
4738

4739
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4740
	cfs_b->nr_periods += overrun;
4741

4742 4743 4744 4745 4746 4747
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4748 4749 4750

	__refill_cfs_bandwidth_runtime(cfs_b);

4751 4752 4753
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4754
		return 0;
4755 4756
	}

4757 4758 4759
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4760 4761 4762
	runtime_expires = cfs_b->runtime_expires;

	/*
4763 4764 4765 4766 4767
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4768
	 */
4769 4770
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4771 4772 4773 4774 4775 4776 4777
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4778 4779

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4780
	}
4781

4782 4783 4784 4785 4786 4787 4788
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4789

4790 4791 4792 4793
	return 0;

out_deactivate:
	return 1;
4794
}
4795

4796 4797 4798 4799 4800 4801 4802
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4803 4804 4805 4806
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4807
 * hrtimer base being cleared by hrtimer_start. In the case of
4808 4809
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4835 4836 4837
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4867 4868 4869
	if (!cfs_bandwidth_used())
		return;

4870
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4886 4887 4888
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4889
		return;
4890
	}
4891

4892
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4893
		runtime = cfs_b->runtime;
4894

4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4905
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4906 4907 4908
	raw_spin_unlock(&cfs_b->lock);
}

4909 4910 4911 4912 4913 4914 4915
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4916 4917 4918
	if (!cfs_bandwidth_used())
		return;

4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4947
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4948 4949
}

4950
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4951
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4952
{
4953
	if (!cfs_bandwidth_used())
4954
		return false;
4955

4956
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4957
		return false;
4958 4959 4960 4961 4962 4963

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4964
		return true;
4965 4966

	throttle_cfs_rq(cfs_rq);
4967
	return true;
4968
}
4969 4970 4971 4972 4973

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4974

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4987
	raw_spin_lock(&cfs_b->lock);
4988
	for (;;) {
P
Peter Zijlstra 已提交
4989
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4990 4991 4992 4993 4994
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4995 4996
	if (idle)
		cfs_b->period_active = 0;
4997
	raw_spin_unlock(&cfs_b->lock);
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
5010
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
5022
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5023
{
P
Peter Zijlstra 已提交
5024
	lockdep_assert_held(&cfs_b->lock);
5025

P
Peter Zijlstra 已提交
5026 5027 5028 5029 5030
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
5031 5032 5033 5034
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
5035 5036 5037 5038
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

5039 5040 5041 5042
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

5043 5044 5045 5046 5047 5048 5049 5050
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
5051 5052
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
5053
	struct task_group *tg;
5054

5055 5056 5057 5058 5059 5060
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5061 5062 5063 5064 5065

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
5066
	rcu_read_unlock();
5067 5068
}

5069
/* cpu offline callback */
5070
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5071
{
5072 5073 5074 5075 5076 5077 5078
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5079 5080 5081 5082 5083 5084 5085 5086

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
5087
		cfs_rq->runtime_remaining = 1;
5088 5089 5090 5091 5092 5093
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

5094 5095 5096
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
5097
	rcu_read_unlock();
5098 5099 5100
}

#else /* CONFIG_CFS_BANDWIDTH */
5101 5102
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
5103
	return rq_clock_task(rq_of(cfs_rq));
5104 5105
}

5106
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5107
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5108
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5109
static inline void sync_throttle(struct task_group *tg, int cpu) {}
5110
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5111 5112 5113 5114 5115

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5127 5128 5129 5130 5131

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5132 5133
#endif

5134 5135 5136 5137 5138
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5139
static inline void update_runtime_enabled(struct rq *rq) {}
5140
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5141 5142 5143

#endif /* CONFIG_CFS_BANDWIDTH */

5144 5145 5146 5147
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5148 5149 5150 5151 5152 5153
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5154
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5155

5156
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5157 5158 5159 5160 5161 5162
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5163
				resched_curr(rq);
P
Peter Zijlstra 已提交
5164 5165
			return;
		}
5166
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5167 5168
	}
}
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5179
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5180 5181 5182 5183 5184
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5185
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5186 5187 5188 5189
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5190 5191 5192 5193

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5194 5195
#endif

5196 5197 5198 5199 5200
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5201
static void
5202
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5203 5204
{
	struct cfs_rq *cfs_rq;
5205
	struct sched_entity *se = &p->se;
5206

5207 5208 5209 5210 5211 5212
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5213
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5214

5215
	for_each_sched_entity(se) {
5216
		if (se->on_rq)
5217 5218
			break;
		cfs_rq = cfs_rq_of(se);
5219
		enqueue_entity(cfs_rq, se, flags);
5220 5221 5222 5223 5224 5225

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5226
		 */
5227 5228
		if (cfs_rq_throttled(cfs_rq))
			break;
5229
		cfs_rq->h_nr_running++;
5230

5231
		flags = ENQUEUE_WAKEUP;
5232
	}
P
Peter Zijlstra 已提交
5233

P
Peter Zijlstra 已提交
5234
	for_each_sched_entity(se) {
5235
		cfs_rq = cfs_rq_of(se);
5236
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5237

5238 5239 5240
		if (cfs_rq_throttled(cfs_rq))
			break;

5241
		update_load_avg(cfs_rq, se, UPDATE_TG);
5242
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5243 5244
	}

Y
Yuyang Du 已提交
5245
	if (!se)
5246
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5247

5248
	hrtick_update(rq);
5249 5250
}

5251 5252
static void set_next_buddy(struct sched_entity *se);

5253 5254 5255 5256 5257
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5258
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5259 5260
{
	struct cfs_rq *cfs_rq;
5261
	struct sched_entity *se = &p->se;
5262
	int task_sleep = flags & DEQUEUE_SLEEP;
5263 5264 5265

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5266
		dequeue_entity(cfs_rq, se, flags);
5267 5268 5269 5270 5271 5272 5273 5274 5275

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5276
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5277

5278
		/* Don't dequeue parent if it has other entities besides us */
5279
		if (cfs_rq->load.weight) {
5280 5281
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5282 5283 5284 5285
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5286 5287
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5288
			break;
5289
		}
5290
		flags |= DEQUEUE_SLEEP;
5291
	}
P
Peter Zijlstra 已提交
5292

P
Peter Zijlstra 已提交
5293
	for_each_sched_entity(se) {
5294
		cfs_rq = cfs_rq_of(se);
5295
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5296

5297 5298 5299
		if (cfs_rq_throttled(cfs_rq))
			break;

5300
		update_load_avg(cfs_rq, se, UPDATE_TG);
5301
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5302 5303
	}

Y
Yuyang Du 已提交
5304
	if (!se)
5305
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5306

5307
	hrtick_update(rq);
5308 5309
}

5310
#ifdef CONFIG_SMP
5311 5312 5313 5314 5315

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5316
#ifdef CONFIG_NO_HZ_COMMON
5317 5318 5319 5320 5321
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5322
 * The exact cpuload calculated at every tick would be:
5323
 *
5324 5325 5326 5327 5328 5329 5330
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5331 5332 5333
 *
 * decay_load_missed() below does efficient calculation of
 *
5334 5335 5336 5337 5338 5339
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5340
 *
5341
 * The calculation is approximated on a 128 point scale.
5342 5343
 */
#define DEGRADE_SHIFT		7
5344 5345 5346 5347 5348 5349 5350 5351 5352

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5382
#endif /* CONFIG_NO_HZ_COMMON */
5383

5384
/**
5385
 * __cpu_load_update - update the rq->cpu_load[] statistics
5386 5387 5388 5389
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5390
 * Update rq->cpu_load[] statistics. This function is usually called every
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5417
 * term.
5418
 */
5419 5420
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5421
{
5422
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5434
		old_load = this_rq->cpu_load[i];
5435
#ifdef CONFIG_NO_HZ_COMMON
5436
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5437 5438 5439 5440 5441 5442 5443 5444 5445
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5446
#endif
5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5462
/* Used instead of source_load when we know the type == 0 */
5463
static unsigned long weighted_cpuload(struct rq *rq)
5464
{
5465
	return cfs_rq_runnable_load_avg(&rq->cfs);
5466 5467
}

5468
#ifdef CONFIG_NO_HZ_COMMON
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5497
		cpu_load_update(this_rq, load, pending_updates);
5498 5499 5500
	}
}

5501 5502 5503 5504
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5505
static void cpu_load_update_idle(struct rq *this_rq)
5506 5507 5508 5509
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5510
	if (weighted_cpuload(this_rq))
5511 5512
		return;

5513
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5514 5515 5516
}

/*
5517 5518 5519 5520
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5521
 */
5522
void cpu_load_update_nohz_start(void)
5523 5524
{
	struct rq *this_rq = this_rq();
5525 5526 5527 5528 5529 5530

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5531
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5532 5533 5534 5535 5536 5537 5538
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5539
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5540 5541
	struct rq *this_rq = this_rq();
	unsigned long load;
5542
	struct rq_flags rf;
5543 5544 5545 5546

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5547
	load = weighted_cpuload(this_rq);
5548
	rq_lock(this_rq, &rf);
5549
	update_rq_clock(this_rq);
5550
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5551
	rq_unlock(this_rq, &rf);
5552
}
5553 5554 5555 5556 5557 5558 5559 5560
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5561
#ifdef CONFIG_NO_HZ_COMMON
5562 5563
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5564
#endif
5565 5566
	cpu_load_update(this_rq, load, 1);
}
5567 5568 5569 5570

/*
 * Called from scheduler_tick()
 */
5571
void cpu_load_update_active(struct rq *this_rq)
5572
{
5573
	unsigned long load = weighted_cpuload(this_rq);
5574 5575 5576 5577 5578

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5579 5580
}

5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5591
	unsigned long total = weighted_cpuload(rq);
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5606
	unsigned long total = weighted_cpuload(rq);
5607 5608 5609 5610 5611 5612 5613

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5614
static unsigned long capacity_of(int cpu)
5615
{
5616
	return cpu_rq(cpu)->cpu_capacity;
5617 5618
}

5619 5620 5621 5622 5623
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5624 5625 5626
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5627
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5628
	unsigned long load_avg = weighted_cpuload(rq);
5629 5630

	if (nr_running)
5631
		return load_avg / nr_running;
5632 5633 5634 5635

	return 0;
}

P
Peter Zijlstra 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5653 5654
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5655
 *
M
Mike Galbraith 已提交
5656
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5669
 */
5670 5671
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5672 5673
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5674
	int factor = this_cpu_read(sd_llc_size);
5675

M
Mike Galbraith 已提交
5676 5677 5678 5679 5680
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5681 5682
}

5683
/*
5684 5685 5686
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5687
 *
5688 5689
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5690 5691 5692 5693
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5694 5695 5696
 */

static bool
5697 5698
wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
		 int this_cpu, int prev_cpu, int sync)
5699
{
5700 5701 5702 5703 5704 5705 5706
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
	 */
	if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5707 5708
		return true;

5709 5710
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
		return true;
5711

5712
	return false;
5713 5714 5715
}

static bool
5716 5717
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5718 5719 5720 5721
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5722 5723
	this_eff_load = target_load(this_cpu, sd->wake_idx);
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5724 5725 5726 5727

	if (sync) {
		unsigned long current_load = task_h_load(current);

5728
		if (current_load > this_eff_load)
5729 5730
			return true;

5731
		this_eff_load -= current_load;
5732 5733 5734 5735
	}

	task_load = task_h_load(p);

5736 5737 5738 5739
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5740

5741 5742 5743 5744
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5745 5746 5747 5748

	return this_eff_load <= prev_eff_load;
}

5749 5750
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5751
{
5752
	int this_cpu = smp_processor_id();
5753
	bool affine = false;
5754

5755 5756
	if (sched_feat(WA_IDLE) && !affine)
		affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
5757

5758 5759
	if (sched_feat(WA_WEIGHT) && !affine)
		affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5760

5761
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5762 5763 5764 5765
	if (affine) {
		schedstat_inc(sd->ttwu_move_affine);
		schedstat_inc(p->se.statistics.nr_wakeups_affine);
	}
5766

5767
	return affine;
5768 5769
}

5770 5771
static inline unsigned long task_util(struct task_struct *p);
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5772 5773 5774

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5775
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5776 5777
}

5778 5779 5780
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5781 5782
 *
 * Assumes p is allowed on at least one CPU in sd.
5783 5784
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5785
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5786
		  int this_cpu, int sd_flag)
5787
{
5788
	struct sched_group *idlest = NULL, *group = sd->groups;
5789
	struct sched_group *most_spare_sg = NULL;
5790 5791 5792
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5793
	unsigned long most_spare = 0, this_spare = 0;
5794
	int load_idx = sd->forkexec_idx;
5795 5796 5797
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5798

5799 5800 5801
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5802
	do {
5803 5804
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5805 5806
		int local_group;
		int i;
5807

5808
		/* Skip over this group if it has no CPUs allowed */
5809
		if (!cpumask_intersects(sched_group_span(group),
5810
					&p->cpus_allowed))
5811 5812 5813
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5814
					       sched_group_span(group));
5815

5816 5817 5818 5819
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5820
		avg_load = 0;
5821
		runnable_load = 0;
5822
		max_spare_cap = 0;
5823

5824
		for_each_cpu(i, sched_group_span(group)) {
5825 5826 5827 5828 5829 5830
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5831 5832 5833
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5834 5835 5836 5837 5838

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5839 5840
		}

5841
		/* Adjust by relative CPU capacity of the group */
5842 5843 5844 5845
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5846 5847

		if (local_group) {
5848 5849
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5850 5851
			this_spare = max_spare_cap;
		} else {
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5867 5868 5869 5870 5871 5872 5873
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5874 5875 5876
		}
	} while (group = group->next, group != sd->groups);

5877 5878 5879 5880 5881 5882
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5883 5884 5885 5886
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5887
	 */
5888 5889 5890
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5891
	if (this_spare > task_util(p) / 2 &&
5892
	    imbalance_scale*this_spare > 100*most_spare)
5893
		return NULL;
5894 5895

	if (most_spare > task_util(p) / 2)
5896 5897
		return most_spare_sg;

5898
skip_spare:
5899 5900 5901 5902
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5903
		return NULL;
5904 5905 5906 5907 5908

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5909 5910 5911 5912
	return idlest;
}

/*
5913
 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5914 5915
 */
static int
5916
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5917 5918
{
	unsigned long load, min_load = ULONG_MAX;
5919 5920 5921 5922
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5923 5924
	int i;

5925 5926
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5927
		return cpumask_first(sched_group_span(group));
5928

5929
	/* Traverse only the allowed CPUs */
5930
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5953
		} else if (shallowest_idle_cpu == -1) {
5954
			load = weighted_cpuload(cpu_rq(i));
5955
			if (load < min_load) {
5956 5957 5958
				min_load = load;
				least_loaded_cpu = i;
			}
5959 5960 5961
		}
	}

5962
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5963
}
5964

5965 5966 5967
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5968
	int new_cpu = cpu;
5969

5970 5971 5972
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5990
		if (new_cpu == cpu) {
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return new_cpu;
}

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
6041
void __update_idle_core(struct rq *rq)
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6071
	int core, cpu;
6072

P
Peter Zijlstra 已提交
6073 6074 6075
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6076 6077 6078
	if (!test_idle_cores(target, false))
		return -1;

6079
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6080

6081
	for_each_cpu_wrap(core, cpus, target) {
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6109 6110 6111
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6112
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6113
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6140
 */
6141 6142
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6143
	struct sched_domain *this_sd;
6144
	u64 avg_cost, avg_idle;
6145 6146
	u64 time, cost;
	s64 delta;
6147
	int cpu, nr = INT_MAX;
6148

6149 6150 6151 6152
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6153 6154 6155 6156
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6157 6158 6159 6160
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6161 6162
		return -1;

6163 6164 6165 6166 6167 6168 6169 6170
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6171 6172
	time = local_clock();

6173
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6174 6175
		if (!--nr)
			return -1;
6176
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6192
 */
6193
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6194
{
6195
	struct sched_domain *sd;
6196
	int i;
6197

6198 6199
	if (idle_cpu(target))
		return target;
6200 6201

	/*
6202
	 * If the previous cpu is cache affine and idle, don't be stupid.
6203
	 */
6204 6205
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
6206

6207
	sd = rcu_dereference(per_cpu(sd_llc, target));
6208 6209
	if (!sd)
		return target;
6210

6211 6212 6213
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6214

6215 6216 6217 6218 6219 6220 6221
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6222

6223 6224
	return target;
}
6225

6226
/*
6227
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6228
 * tasks. The unit of the return value must be the one of capacity so we can
6229 6230
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6251
 */
6252
static unsigned long cpu_util(int cpu)
6253
{
6254
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6255 6256
	unsigned long capacity = capacity_orig_of(cpu);

6257
	return (util >= capacity) ? capacity : util;
6258
}
6259

6260
static inline unsigned long task_util(struct task_struct *p)
6261 6262 6263 6264
{
	return p->se.avg.util_avg;
}

6265 6266 6267 6268
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
6269
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6301 6302 6303
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6304 6305 6306
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6307
/*
6308 6309 6310
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6311
 *
6312 6313
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6314
 *
6315
 * Returns the target cpu number.
6316 6317 6318
 *
 * preempt must be disabled.
 */
6319
static int
6320
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6321
{
6322
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6323
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6324
	int new_cpu = prev_cpu;
6325
	int want_affine = 0;
6326
	int sync = wake_flags & WF_SYNC;
6327

P
Peter Zijlstra 已提交
6328 6329
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6330
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6331
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6332
	}
6333

6334
	rcu_read_lock();
6335
	for_each_domain(cpu, tmp) {
6336
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6337
			break;
6338

6339
		/*
6340 6341
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6342
		 */
6343 6344 6345
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6346
			break;
6347
		}
6348

6349
		if (tmp->flags & sd_flag)
6350
			sd = tmp;
M
Mike Galbraith 已提交
6351 6352
		else if (!want_affine)
			break;
6353 6354
	}

M
Mike Galbraith 已提交
6355 6356
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6357 6358 6359 6360
		if (cpu == prev_cpu)
			goto pick_cpu;

		if (wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6361
			new_cpu = cpu;
6362
	}
6363

6364 6365 6366 6367 6368 6369 6370 6371 6372
	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
		/*
		 * We're going to need the task's util for capacity_spare_wake
		 * in find_idlest_group. Sync it up to prev_cpu's
		 * last_update_time.
		 */
		sync_entity_load_avg(&p->se);
	}

M
Mike Galbraith 已提交
6373
	if (!sd) {
6374
pick_cpu:
M
Mike Galbraith 已提交
6375
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6376
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6377

6378 6379
	} else {
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6380
	}
6381
	rcu_read_unlock();
6382

6383
	return new_cpu;
6384
}
6385

6386 6387
static void detach_entity_cfs_rq(struct sched_entity *se);

6388 6389 6390
/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6391
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6392
 */
6393
static void migrate_task_rq_fair(struct task_struct *p)
6394
{
6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6440 6441 6442

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6443 6444

	/* We have migrated, no longer consider this task hot */
6445
	p->se.exec_start = 0;
6446
}
6447 6448 6449 6450 6451

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6452 6453
#endif /* CONFIG_SMP */

6454
static unsigned long wakeup_gran(struct sched_entity *se)
6455 6456 6457 6458
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6459 6460
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6470
	 */
6471
	return calc_delta_fair(gran, se);
6472 6473
}

6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6496
	gran = wakeup_gran(se);
6497 6498 6499 6500 6501 6502
	if (vdiff > gran)
		return 1;

	return 0;
}

6503 6504
static void set_last_buddy(struct sched_entity *se)
{
6505 6506 6507
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6508 6509 6510
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6511
		cfs_rq_of(se)->last = se;
6512
	}
6513 6514 6515 6516
}

static void set_next_buddy(struct sched_entity *se)
{
6517 6518 6519
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6520 6521 6522
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6523
		cfs_rq_of(se)->next = se;
6524
	}
6525 6526
}

6527 6528
static void set_skip_buddy(struct sched_entity *se)
{
6529 6530
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6531 6532
}

6533 6534 6535
/*
 * Preempt the current task with a newly woken task if needed:
 */
6536
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6537 6538
{
	struct task_struct *curr = rq->curr;
6539
	struct sched_entity *se = &curr->se, *pse = &p->se;
6540
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6541
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6542
	int next_buddy_marked = 0;
6543

I
Ingo Molnar 已提交
6544 6545 6546
	if (unlikely(se == pse))
		return;

6547
	/*
6548
	 * This is possible from callers such as attach_tasks(), in which we
6549 6550 6551 6552 6553 6554 6555
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6556
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6557
		set_next_buddy(pse);
6558 6559
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6560

6561 6562 6563
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6564 6565 6566 6567 6568 6569
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6570 6571 6572 6573
	 */
	if (test_tsk_need_resched(curr))
		return;

6574 6575 6576 6577 6578
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6579
	/*
6580 6581
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6582
	 */
6583
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6584
		return;
6585

6586
	find_matching_se(&se, &pse);
6587
	update_curr(cfs_rq_of(se));
6588
	BUG_ON(!pse);
6589 6590 6591 6592 6593 6594 6595
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6596
		goto preempt;
6597
	}
6598

6599
	return;
6600

6601
preempt:
6602
	resched_curr(rq);
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6617 6618
}

6619
static struct task_struct *
6620
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6621 6622 6623
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6624
	struct task_struct *p;
6625
	int new_tasks;
6626

6627
again:
6628
	if (!cfs_rq->nr_running)
6629
		goto idle;
6630

6631
#ifdef CONFIG_FAIR_GROUP_SCHED
6632
	if (prev->sched_class != &fair_sched_class)
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6652 6653 6654 6655 6656
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6657

6658 6659 6660
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6661
			 * Therefore the nr_running test will indeed
6662 6663
			 * be correct.
			 */
6664 6665 6666 6667 6668 6669
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6670
				goto simple;
6671
			}
6672
		}
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6706
	goto done;
6707 6708
simple:
#endif
6709

6710
	put_prev_task(rq, prev);
6711

6712
	do {
6713
		se = pick_next_entity(cfs_rq, NULL);
6714
		set_next_entity(cfs_rq, se);
6715 6716 6717
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6718
	p = task_of(se);
6719

6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
done: __maybe_unused
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6730 6731
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6732 6733

	return p;
6734 6735

idle:
6736 6737
	new_tasks = idle_balance(rq, rf);

6738 6739 6740 6741 6742
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6743
	if (new_tasks < 0)
6744 6745
		return RETRY_TASK;

6746
	if (new_tasks > 0)
6747 6748 6749
		goto again;

	return NULL;
6750 6751 6752 6753 6754
}

/*
 * Account for a descheduled task:
 */
6755
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6756 6757 6758 6759 6760 6761
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6762
		put_prev_entity(cfs_rq, se);
6763 6764 6765
	}
}

6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6791 6792 6793 6794 6795
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6796
		rq_clock_skip_update(rq, true);
6797 6798 6799 6800 6801
	}

	set_skip_buddy(se);
}

6802 6803 6804 6805
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6806 6807
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6818
#ifdef CONFIG_SMP
6819
/**************************************************
P
Peter Zijlstra 已提交
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6836
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6837 6838 6839 6840 6841 6842
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6843
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6844 6845 6846 6847 6848 6849
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6850
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6889
 *             log_2 n
P
Peter Zijlstra 已提交
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6935
 */
6936

6937 6938
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6939 6940
enum fbq_type { regular, remote, all };

6941
#define LBF_ALL_PINNED	0x01
6942
#define LBF_NEED_BREAK	0x02
6943 6944
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6945 6946 6947 6948 6949

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6950
	int			src_cpu;
6951 6952 6953 6954

	int			dst_cpu;
	struct rq		*dst_rq;

6955 6956
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6957
	enum cpu_idle_type	idle;
6958
	long			imbalance;
6959 6960 6961
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6962
	unsigned int		flags;
6963 6964 6965 6966

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6967 6968

	enum fbq_type		fbq_type;
6969
	struct list_head	tasks;
6970 6971
};

6972 6973 6974
/*
 * Is this task likely cache-hot:
 */
6975
static int task_hot(struct task_struct *p, struct lb_env *env)
6976 6977 6978
{
	s64 delta;

6979 6980
	lockdep_assert_held(&env->src_rq->lock);

6981 6982 6983 6984 6985 6986 6987 6988 6989
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6990
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6991 6992 6993 6994 6995 6996 6997 6998 6999
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

7000
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7001 7002 7003 7004

	return delta < (s64)sysctl_sched_migration_cost;
}

7005
#ifdef CONFIG_NUMA_BALANCING
7006
/*
7007 7008 7009
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
7010
 */
7011
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7012
{
7013
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7014
	unsigned long src_faults, dst_faults;
7015 7016
	int src_nid, dst_nid;

7017
	if (!static_branch_likely(&sched_numa_balancing))
7018 7019
		return -1;

7020
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7021
		return -1;
7022 7023 7024 7025

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

7026
	if (src_nid == dst_nid)
7027
		return -1;
7028

7029 7030 7031 7032 7033 7034 7035
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
7036

7037 7038
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
7039
		return 0;
7040

7041 7042 7043 7044
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

7045 7046 7047 7048 7049 7050
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
7051 7052
	}

7053
	return dst_faults < src_faults;
7054 7055
}

7056
#else
7057
static inline int migrate_degrades_locality(struct task_struct *p,
7058 7059
					     struct lb_env *env)
{
7060
	return -1;
7061
}
7062 7063
#endif

7064 7065 7066 7067
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7068
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7069
{
7070
	int tsk_cache_hot;
7071 7072 7073

	lockdep_assert_held(&env->src_rq->lock);

7074 7075
	/*
	 * We do not migrate tasks that are:
7076
	 * 1) throttled_lb_pair, or
7077
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7078 7079
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7080
	 */
7081 7082 7083
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7084
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7085
		int cpu;
7086

7087
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7088

7089 7090
		env->flags |= LBF_SOME_PINNED;

7091 7092 7093 7094 7095
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7096 7097
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7098
		 */
7099
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7100 7101
			return 0;

7102 7103
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7104
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7105
				env->flags |= LBF_DST_PINNED;
7106 7107 7108
				env->new_dst_cpu = cpu;
				break;
			}
7109
		}
7110

7111 7112
		return 0;
	}
7113 7114

	/* Record that we found atleast one task that could run on dst_cpu */
7115
	env->flags &= ~LBF_ALL_PINNED;
7116

7117
	if (task_running(env->src_rq, p)) {
7118
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7119 7120 7121 7122 7123
		return 0;
	}

	/*
	 * Aggressive migration if:
7124 7125 7126
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7127
	 */
7128 7129 7130
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7131

7132
	if (tsk_cache_hot <= 0 ||
7133
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7134
		if (tsk_cache_hot == 1) {
7135 7136
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7137
		}
7138 7139 7140
		return 1;
	}

7141
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7142
	return 0;
7143 7144
}

7145
/*
7146 7147 7148 7149 7150 7151 7152
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7153
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7154 7155 7156
	set_task_cpu(p, env->dst_cpu);
}

7157
/*
7158
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7159 7160
 * part of active balancing operations within "domain".
 *
7161
 * Returns a task if successful and NULL otherwise.
7162
 */
7163
static struct task_struct *detach_one_task(struct lb_env *env)
7164
{
7165
	struct task_struct *p;
7166

7167 7168
	lockdep_assert_held(&env->src_rq->lock);

7169 7170
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7171 7172
		if (!can_migrate_task(p, env))
			continue;
7173

7174
		detach_task(p, env);
7175

7176
		/*
7177
		 * Right now, this is only the second place where
7178
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7179
		 * so we can safely collect stats here rather than
7180
		 * inside detach_tasks().
7181
		 */
7182
		schedstat_inc(env->sd->lb_gained[env->idle]);
7183
		return p;
7184
	}
7185
	return NULL;
7186 7187
}

7188 7189
static const unsigned int sched_nr_migrate_break = 32;

7190
/*
7191 7192
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7193
 *
7194
 * Returns number of detached tasks if successful and 0 otherwise.
7195
 */
7196
static int detach_tasks(struct lb_env *env)
7197
{
7198 7199
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7200
	unsigned long load;
7201 7202 7203
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7204

7205
	if (env->imbalance <= 0)
7206
		return 0;
7207

7208
	while (!list_empty(tasks)) {
7209 7210 7211 7212 7213 7214 7215
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7216
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7217

7218 7219
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7220
		if (env->loop > env->loop_max)
7221
			break;
7222 7223

		/* take a breather every nr_migrate tasks */
7224
		if (env->loop > env->loop_break) {
7225
			env->loop_break += sched_nr_migrate_break;
7226
			env->flags |= LBF_NEED_BREAK;
7227
			break;
7228
		}
7229

7230
		if (!can_migrate_task(p, env))
7231 7232 7233
			goto next;

		load = task_h_load(p);
7234

7235
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7236 7237
			goto next;

7238
		if ((load / 2) > env->imbalance)
7239
			goto next;
7240

7241 7242 7243 7244
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7245
		env->imbalance -= load;
7246 7247

#ifdef CONFIG_PREEMPT
7248 7249
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7250
		 * kernels will stop after the first task is detached to minimize
7251 7252
		 * the critical section.
		 */
7253
		if (env->idle == CPU_NEWLY_IDLE)
7254
			break;
7255 7256
#endif

7257 7258 7259 7260
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7261
		if (env->imbalance <= 0)
7262
			break;
7263 7264 7265

		continue;
next:
7266
		list_move(&p->se.group_node, tasks);
7267
	}
7268

7269
	/*
7270 7271 7272
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7273
	 */
7274
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7275

7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7287
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7288
	p->on_rq = TASK_ON_RQ_QUEUED;
7289 7290 7291 7292 7293 7294 7295 7296 7297
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7298 7299 7300
	struct rq_flags rf;

	rq_lock(rq, &rf);
7301
	update_rq_clock(rq);
7302
	attach_task(rq, p);
7303
	rq_unlock(rq, &rf);
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7314
	struct rq_flags rf;
7315

7316
	rq_lock(env->dst_rq, &rf);
7317
	update_rq_clock(env->dst_rq);
7318 7319 7320 7321

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7322

7323 7324 7325
		attach_task(env->dst_rq, p);
	}

7326
	rq_unlock(env->dst_rq, &rf);
7327 7328
}

P
Peter Zijlstra 已提交
7329
#ifdef CONFIG_FAIR_GROUP_SCHED
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7342
	if (cfs_rq->avg.runnable_load_sum)
7343 7344 7345 7346 7347
		return false;

	return true;
}

7348
static void update_blocked_averages(int cpu)
7349 7350
{
	struct rq *rq = cpu_rq(cpu);
7351
	struct cfs_rq *cfs_rq, *pos;
7352
	struct rq_flags rf;
7353

7354
	rq_lock_irqsave(rq, &rf);
7355
	update_rq_clock(rq);
7356

7357 7358 7359 7360
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7361
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7362 7363
		struct sched_entity *se;

7364 7365 7366
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7367

7368
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7369
			update_tg_load_avg(cfs_rq, 0);
7370

7371 7372 7373
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7374
			update_load_avg(cfs_rq_of(se), se, 0);
7375 7376 7377 7378 7379 7380 7381

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7382
	}
7383
	rq_unlock_irqrestore(rq, &rf);
7384 7385
}

7386
/*
7387
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7388 7389 7390
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7391
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7392
{
7393 7394
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7395
	unsigned long now = jiffies;
7396
	unsigned long load;
7397

7398
	if (cfs_rq->last_h_load_update == now)
7399 7400
		return;

7401 7402 7403 7404 7405 7406 7407
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7408

7409
	if (!se) {
7410
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7411 7412 7413 7414 7415
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7416 7417
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7418 7419 7420 7421
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7422 7423
}

7424
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7425
{
7426
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7427

7428
	update_cfs_rq_h_load(cfs_rq);
7429
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7430
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7431 7432
}
#else
7433
static inline void update_blocked_averages(int cpu)
7434
{
7435 7436
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7437
	struct rq_flags rf;
7438

7439
	rq_lock_irqsave(rq, &rf);
7440
	update_rq_clock(rq);
7441
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7442
	rq_unlock_irqrestore(rq, &rf);
7443 7444
}

7445
static unsigned long task_h_load(struct task_struct *p)
7446
{
7447
	return p->se.avg.load_avg;
7448
}
P
Peter Zijlstra 已提交
7449
#endif
7450 7451

/********** Helpers for find_busiest_group ************************/
7452 7453 7454 7455 7456 7457 7458

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7459 7460 7461 7462 7463 7464 7465
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7466
	unsigned long load_per_task;
7467
	unsigned long group_capacity;
7468
	unsigned long group_util; /* Total utilization of the group */
7469 7470 7471
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7472
	enum group_type group_type;
7473
	int group_no_capacity;
7474 7475 7476 7477
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7478 7479
};

J
Joonsoo Kim 已提交
7480 7481 7482 7483 7484 7485 7486
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7487
	unsigned long total_running;
J
Joonsoo Kim 已提交
7488
	unsigned long total_load;	/* Total load of all groups in sd */
7489
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7490 7491 7492
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7493
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7494 7495
};

7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7507
		.total_running = 0UL,
7508
		.total_load = 0UL,
7509
		.total_capacity = 0UL,
7510 7511
		.busiest_stat = {
			.avg_load = 0UL,
7512 7513
			.sum_nr_running = 0,
			.group_type = group_other,
7514 7515 7516 7517
		},
	};
}

7518 7519 7520
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7521
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7522 7523
 *
 * Return: The load index.
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7546
static unsigned long scale_rt_capacity(int cpu)
7547 7548
{
	struct rq *rq = cpu_rq(cpu);
7549
	u64 total, used, age_stamp, avg;
7550
	s64 delta;
7551

7552 7553 7554 7555
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7556 7557
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7558
	delta = __rq_clock_broken(rq) - age_stamp;
7559

7560 7561 7562 7563
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7564

7565
	used = div_u64(avg, total);
7566

7567 7568
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7569

7570
	return 1;
7571 7572
}

7573
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7574
{
7575
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7576 7577
	struct sched_group *sdg = sd->groups;

7578
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7579

7580
	capacity *= scale_rt_capacity(cpu);
7581
	capacity >>= SCHED_CAPACITY_SHIFT;
7582

7583 7584
	if (!capacity)
		capacity = 1;
7585

7586 7587
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7588
	sdg->sgc->min_capacity = capacity;
7589 7590
}

7591
void update_group_capacity(struct sched_domain *sd, int cpu)
7592 7593 7594
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7595
	unsigned long capacity, min_capacity;
7596 7597 7598 7599
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7600
	sdg->sgc->next_update = jiffies + interval;
7601 7602

	if (!child) {
7603
		update_cpu_capacity(sd, cpu);
7604 7605 7606
		return;
	}

7607
	capacity = 0;
7608
	min_capacity = ULONG_MAX;
7609

P
Peter Zijlstra 已提交
7610 7611 7612 7613 7614 7615
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7616
		for_each_cpu(cpu, sched_group_span(sdg)) {
7617
			struct sched_group_capacity *sgc;
7618
			struct rq *rq = cpu_rq(cpu);
7619

7620
			/*
7621
			 * build_sched_domains() -> init_sched_groups_capacity()
7622 7623 7624
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7625 7626
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7627
			 *
7628
			 * This avoids capacity from being 0 and
7629 7630 7631
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7632
				capacity += capacity_of(cpu);
7633 7634 7635
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7636
			}
7637

7638
			min_capacity = min(capacity, min_capacity);
7639
		}
P
Peter Zijlstra 已提交
7640 7641 7642 7643
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7644
		 */
P
Peter Zijlstra 已提交
7645 7646 7647

		group = child->groups;
		do {
7648 7649 7650 7651
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7652 7653 7654
			group = group->next;
		} while (group != child->groups);
	}
7655

7656
	sdg->sgc->capacity = capacity;
7657
	sdg->sgc->min_capacity = min_capacity;
7658 7659
}

7660
/*
7661 7662 7663
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7664 7665
 */
static inline int
7666
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7667
{
7668 7669
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7670 7671
}

7672 7673
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7674
 * groups is inadequate due to ->cpus_allowed constraints.
7675 7676 7677 7678 7679
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7680 7681
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7682 7683 7684 7685 7686 7687
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7688 7689
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7690 7691
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7692
 * update_sd_pick_busiest(). And calculate_imbalance() and
7693
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7694 7695 7696 7697 7698 7699 7700
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7701
static inline int sg_imbalanced(struct sched_group *group)
7702
{
7703
	return group->sgc->imbalance;
7704 7705
}

7706
/*
7707 7708 7709
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7710 7711
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7712 7713 7714 7715 7716
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7717
 */
7718 7719
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7720
{
7721 7722
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7723

7724
	if ((sgs->group_capacity * 100) >
7725
			(sgs->group_util * env->sd->imbalance_pct))
7726
		return true;
7727

7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7744

7745
	if ((sgs->group_capacity * 100) <
7746
			(sgs->group_util * env->sd->imbalance_pct))
7747
		return true;
7748

7749
	return false;
7750 7751
}

7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7763 7764 7765
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7766
{
7767
	if (sgs->group_no_capacity)
7768 7769 7770 7771 7772 7773 7774 7775
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7776 7777
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7778
 * @env: The load balancing environment.
7779 7780 7781 7782
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7783
 * @overload: Indicate more than one runnable task for any CPU.
7784
 */
7785 7786
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7787 7788
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7789
{
7790
	unsigned long load;
7791
	int i, nr_running;
7792

7793 7794
	memset(sgs, 0, sizeof(*sgs));

7795
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7796 7797 7798
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7799
		if (local_group)
7800
			load = target_load(i, load_idx);
7801
		else
7802 7803 7804
			load = source_load(i, load_idx);

		sgs->group_load += load;
7805
		sgs->group_util += cpu_util(i);
7806
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7807

7808 7809
		nr_running = rq->nr_running;
		if (nr_running > 1)
7810 7811
			*overload = true;

7812 7813 7814 7815
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7816
		sgs->sum_weighted_load += weighted_cpuload(rq);
7817 7818 7819 7820
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7821
			sgs->idle_cpus++;
7822 7823
	}

7824 7825
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7826
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7827

7828
	if (sgs->sum_nr_running)
7829
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7830

7831
	sgs->group_weight = group->group_weight;
7832

7833
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7834
	sgs->group_type = group_classify(group, sgs);
7835 7836
}

7837 7838
/**
 * update_sd_pick_busiest - return 1 on busiest group
7839
 * @env: The load balancing environment.
7840 7841
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7842
 * @sgs: sched_group statistics
7843 7844 7845
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7846 7847 7848
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7849
 */
7850
static bool update_sd_pick_busiest(struct lb_env *env,
7851 7852
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7853
				   struct sg_lb_stats *sgs)
7854
{
7855
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7856

7857
	if (sgs->group_type > busiest->group_type)
7858 7859
		return true;

7860 7861 7862 7863 7864 7865
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7880 7881
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7882 7883
		return true;

7884 7885 7886
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7887
	/*
T
Tim Chen 已提交
7888 7889 7890
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7891
	 */
T
Tim Chen 已提交
7892 7893
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7894 7895 7896
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7897 7898 7899
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7900 7901 7902 7903 7904 7905
			return true;
	}

	return false;
}

7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7936
/**
7937
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7938
 * @env: The load balancing environment.
7939 7940
 * @sds: variable to hold the statistics for this sched_domain.
 */
7941
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7942
{
7943 7944
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7945
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7946
	struct sg_lb_stats tmp_sgs;
7947
	int load_idx, prefer_sibling = 0;
7948
	bool overload = false;
7949 7950 7951 7952

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7953
	load_idx = get_sd_load_idx(env->sd, env->idle);
7954 7955

	do {
J
Joonsoo Kim 已提交
7956
		struct sg_lb_stats *sgs = &tmp_sgs;
7957 7958
		int local_group;

7959
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7960 7961
		if (local_group) {
			sds->local = sg;
7962
			sgs = local;
7963 7964

			if (env->idle != CPU_NEWLY_IDLE ||
7965 7966
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7967
		}
7968

7969 7970
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7971

7972 7973 7974
		if (local_group)
			goto next_group;

7975 7976
		/*
		 * In case the child domain prefers tasks go to siblings
7977
		 * first, lower the sg capacity so that we'll try
7978 7979
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7980 7981 7982 7983
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7984
		 */
7985
		if (prefer_sibling && sds->local &&
7986 7987
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7988
			sgs->group_no_capacity = 1;
7989
			sgs->group_type = group_classify(sg, sgs);
7990
		}
7991

7992
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7993
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7994
			sds->busiest_stat = *sgs;
7995 7996
		}

7997 7998
next_group:
		/* Now, start updating sd_lb_stats */
7999
		sds->total_running += sgs->sum_nr_running;
8000
		sds->total_load += sgs->group_load;
8001
		sds->total_capacity += sgs->group_capacity;
8002

8003
		sg = sg->next;
8004
	} while (sg != env->sd->groups);
8005 8006 8007

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8008 8009 8010 8011 8012 8013

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8014 8015 8016 8017
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8018
 *			sched domain.
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8033
 * Return: 1 when packing is required and a task should be moved to
8034
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8035
 *
8036
 * @env: The load balancing environment.
8037 8038
 * @sds: Statistics of the sched_domain which is to be packed
 */
8039
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8040 8041 8042
{
	int busiest_cpu;

8043
	if (!(env->sd->flags & SD_ASYM_PACKING))
8044 8045
		return 0;

8046 8047 8048
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8049 8050 8051
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8052 8053
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8054 8055
		return 0;

8056
	env->imbalance = DIV_ROUND_CLOSEST(
8057
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8058
		SCHED_CAPACITY_SCALE);
8059

8060
	return 1;
8061 8062 8063 8064 8065 8066
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8067
 * @env: The load balancing environment.
8068 8069
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8070 8071
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8072
{
8073
	unsigned long tmp, capa_now = 0, capa_move = 0;
8074
	unsigned int imbn = 2;
8075
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8076
	struct sg_lb_stats *local, *busiest;
8077

J
Joonsoo Kim 已提交
8078 8079
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8080

J
Joonsoo Kim 已提交
8081 8082 8083 8084
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8085

J
Joonsoo Kim 已提交
8086
	scaled_busy_load_per_task =
8087
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8088
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8089

8090 8091
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8092
		env->imbalance = busiest->load_per_task;
8093 8094 8095 8096 8097
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8098
	 * however we may be able to increase total CPU capacity used by
8099 8100 8101
	 * moving them.
	 */

8102
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8103
			min(busiest->load_per_task, busiest->avg_load);
8104
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8105
			min(local->load_per_task, local->avg_load);
8106
	capa_now /= SCHED_CAPACITY_SCALE;
8107 8108

	/* Amount of load we'd subtract */
8109
	if (busiest->avg_load > scaled_busy_load_per_task) {
8110
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8111
			    min(busiest->load_per_task,
8112
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8113
	}
8114 8115

	/* Amount of load we'd add */
8116
	if (busiest->avg_load * busiest->group_capacity <
8117
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8118 8119
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8120
	} else {
8121
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8122
		      local->group_capacity;
J
Joonsoo Kim 已提交
8123
	}
8124
	capa_move += local->group_capacity *
8125
		    min(local->load_per_task, local->avg_load + tmp);
8126
	capa_move /= SCHED_CAPACITY_SCALE;
8127 8128

	/* Move if we gain throughput */
8129
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8130
		env->imbalance = busiest->load_per_task;
8131 8132 8133 8134 8135
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8136
 * @env: load balance environment
8137 8138
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8139
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8140
{
8141
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8142 8143 8144 8145
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8146

8147
	if (busiest->group_type == group_imbalanced) {
8148 8149 8150 8151
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
8152 8153
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8154 8155
	}

8156
	/*
8157 8158 8159 8160
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8161
	 */
8162 8163
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8164 8165
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8166 8167
	}

8168 8169 8170 8171 8172
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8173
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8174
		if (load_above_capacity > busiest->group_capacity) {
8175
			load_above_capacity -= busiest->group_capacity;
8176
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8177 8178
			load_above_capacity /= busiest->group_capacity;
		} else
8179
			load_above_capacity = ~0UL;
8180 8181 8182 8183 8184 8185
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
8186 8187
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8188
	 */
8189
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8190 8191

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8192
	env->imbalance = min(
8193 8194
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8195
	) / SCHED_CAPACITY_SCALE;
8196 8197 8198

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8199
	 * there is no guarantee that any tasks will be moved so we'll have
8200 8201 8202
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8203
	if (env->imbalance < busiest->load_per_task)
8204
		return fix_small_imbalance(env, sds);
8205
}
8206

8207 8208 8209 8210
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8211
 * if there is an imbalance.
8212 8213 8214 8215
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8216
 * @env: The load balancing environment.
8217
 *
8218
 * Return:	- The busiest group if imbalance exists.
8219
 */
J
Joonsoo Kim 已提交
8220
static struct sched_group *find_busiest_group(struct lb_env *env)
8221
{
J
Joonsoo Kim 已提交
8222
	struct sg_lb_stats *local, *busiest;
8223 8224
	struct sd_lb_stats sds;

8225
	init_sd_lb_stats(&sds);
8226 8227 8228 8229 8230

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8231
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8232 8233
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8234

8235
	/* ASYM feature bypasses nice load balance check */
8236
	if (check_asym_packing(env, &sds))
8237 8238
		return sds.busiest;

8239
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8240
	if (!sds.busiest || busiest->sum_nr_running == 0)
8241 8242
		goto out_balanced;

8243
	/* XXX broken for overlapping NUMA groups */
8244 8245
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8246

P
Peter Zijlstra 已提交
8247 8248
	/*
	 * If the busiest group is imbalanced the below checks don't
8249
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8250 8251
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8252
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8253 8254
		goto force_balance;

8255 8256 8257 8258 8259
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8260
	    busiest->group_no_capacity)
8261 8262
		goto force_balance;

8263
	/*
8264
	 * If the local group is busier than the selected busiest group
8265 8266
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8267
	if (local->avg_load >= busiest->avg_load)
8268 8269
		goto out_balanced;

8270 8271 8272 8273
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8274
	if (local->avg_load >= sds.avg_load)
8275 8276
		goto out_balanced;

8277
	if (env->idle == CPU_IDLE) {
8278
		/*
8279 8280 8281 8282 8283
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8284
		 */
8285 8286
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8287
			goto out_balanced;
8288 8289 8290 8291 8292
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8293 8294
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8295
			goto out_balanced;
8296
	}
8297

8298
force_balance:
8299
	/* Looks like there is an imbalance. Compute it */
8300
	calculate_imbalance(env, &sds);
8301 8302 8303
	return sds.busiest;

out_balanced:
8304
	env->imbalance = 0;
8305 8306 8307 8308 8309 8310
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
8311
static struct rq *find_busiest_queue(struct lb_env *env,
8312
				     struct sched_group *group)
8313 8314
{
	struct rq *busiest = NULL, *rq;
8315
	unsigned long busiest_load = 0, busiest_capacity = 1;
8316 8317
	int i;

8318
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8319
		unsigned long capacity, wl;
8320 8321 8322 8323
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8324

8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8347
		capacity = capacity_of(i);
8348

8349
		wl = weighted_cpuload(rq);
8350

8351 8352
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8353
		 * which is not scaled with the cpu capacity.
8354
		 */
8355 8356 8357

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8358 8359
			continue;

8360 8361
		/*
		 * For the load comparisons with the other cpu's, consider
8362 8363 8364
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
8365
		 *
8366
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8367
		 * multiplication to rid ourselves of the division works out
8368 8369
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8370
		 */
8371
		if (wl * busiest_capacity > busiest_load * capacity) {
8372
			busiest_load = wl;
8373
			busiest_capacity = capacity;
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8387
static int need_active_balance(struct lb_env *env)
8388
{
8389 8390 8391
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8392 8393 8394

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8395 8396
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8397
		 */
T
Tim Chen 已提交
8398 8399
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8400
			return 1;
8401 8402
	}

8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8416 8417 8418
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8419 8420
static int active_load_balance_cpu_stop(void *data);

8421 8422 8423 8424 8425
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8426 8427 8428 8429 8430 8431 8432
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8433 8434 8435 8436 8437 8438 8439 8440
	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
8441
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8442
		if (!idle_cpu(cpu))
8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8456
	return balance_cpu == env->dst_cpu;
8457 8458
}

8459 8460 8461 8462 8463 8464
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8465
			int *continue_balancing)
8466
{
8467
	int ld_moved, cur_ld_moved, active_balance = 0;
8468
	struct sched_domain *sd_parent = sd->parent;
8469 8470
	struct sched_group *group;
	struct rq *busiest;
8471
	struct rq_flags rf;
8472
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8473

8474 8475
	struct lb_env env = {
		.sd		= sd,
8476 8477
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8478
		.dst_grpmask    = sched_group_span(sd->groups),
8479
		.idle		= idle,
8480
		.loop_break	= sched_nr_migrate_break,
8481
		.cpus		= cpus,
8482
		.fbq_type	= all,
8483
		.tasks		= LIST_HEAD_INIT(env.tasks),
8484 8485
	};

8486
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8487

8488
	schedstat_inc(sd->lb_count[idle]);
8489 8490

redo:
8491 8492
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8493
		goto out_balanced;
8494
	}
8495

8496
	group = find_busiest_group(&env);
8497
	if (!group) {
8498
		schedstat_inc(sd->lb_nobusyg[idle]);
8499 8500 8501
		goto out_balanced;
	}

8502
	busiest = find_busiest_queue(&env, group);
8503
	if (!busiest) {
8504
		schedstat_inc(sd->lb_nobusyq[idle]);
8505 8506 8507
		goto out_balanced;
	}

8508
	BUG_ON(busiest == env.dst_rq);
8509

8510
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8511

8512 8513 8514
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8515 8516 8517 8518 8519 8520 8521 8522
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8523
		env.flags |= LBF_ALL_PINNED;
8524
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8525

8526
more_balance:
8527
		rq_lock_irqsave(busiest, &rf);
8528
		update_rq_clock(busiest);
8529 8530 8531 8532 8533

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8534
		cur_ld_moved = detach_tasks(&env);
8535 8536

		/*
8537 8538 8539 8540 8541
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8542
		 */
8543

8544
		rq_unlock(busiest, &rf);
8545 8546 8547 8548 8549 8550

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8551
		local_irq_restore(rf.flags);
8552

8553 8554 8555 8556 8557
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8577
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8578

8579 8580 8581
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8582
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8583
			env.dst_cpu	 = env.new_dst_cpu;
8584
			env.flags	&= ~LBF_DST_PINNED;
8585 8586
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8587

8588 8589 8590 8591 8592 8593
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8594

8595 8596 8597 8598
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8599
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8600

8601
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8602 8603 8604
				*group_imbalance = 1;
		}

8605
		/* All tasks on this runqueue were pinned by CPU affinity */
8606
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8607
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8608 8609 8610 8611 8612 8613 8614 8615 8616
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8617 8618
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8619
				goto redo;
8620
			}
8621
			goto out_all_pinned;
8622 8623 8624 8625
		}
	}

	if (!ld_moved) {
8626
		schedstat_inc(sd->lb_failed[idle]);
8627 8628 8629 8630 8631 8632 8633 8634
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8635

8636
		if (need_active_balance(&env)) {
8637 8638
			unsigned long flags;

8639 8640
			raw_spin_lock_irqsave(&busiest->lock, flags);

8641 8642 8643
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8644
			 */
8645
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8646 8647
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8648
				env.flags |= LBF_ALL_PINNED;
8649 8650 8651
				goto out_one_pinned;
			}

8652 8653 8654 8655 8656
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8657 8658 8659 8660 8661 8662
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8663

8664
			if (active_balance) {
8665 8666 8667
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8668
			}
8669

8670
			/* We've kicked active balancing, force task migration. */
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8684
		 * detach_tasks).
8685 8686 8687 8688 8689 8690 8691 8692
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8710
	schedstat_inc(sd->lb_balanced[idle]);
8711 8712 8713 8714 8715

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8716
	if (((env.flags & LBF_ALL_PINNED) &&
8717
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8718 8719 8720
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8721
	ld_moved = 0;
8722 8723 8724 8725
out:
	return ld_moved;
}

8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8742
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8743 8744 8745
{
	unsigned long interval, next;

8746 8747
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8748 8749 8750 8751 8752 8753
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8754 8755 8756 8757
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8758
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8759
{
8760 8761
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8762 8763
	struct sched_domain *sd;
	int pulled_task = 0;
8764
	u64 curr_cost = 0;
8765

8766 8767 8768 8769 8770 8771
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8772 8773 8774 8775 8776 8777
	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

8778 8779 8780 8781 8782 8783 8784 8785
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8786 8787
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8788 8789 8790
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8791
			update_next_balance(sd, &next_balance);
8792 8793
		rcu_read_unlock();

8794
		goto out;
8795
	}
8796

8797 8798
	raw_spin_unlock(&this_rq->lock);

8799
	update_blocked_averages(this_cpu);
8800
	rcu_read_lock();
8801
	for_each_domain(this_cpu, sd) {
8802
		int continue_balancing = 1;
8803
		u64 t0, domain_cost;
8804 8805 8806 8807

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8808
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8809
			update_next_balance(sd, &next_balance);
8810
			break;
8811
		}
8812

8813
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8814 8815
			t0 = sched_clock_cpu(this_cpu);

8816
			pulled_task = load_balance(this_cpu, this_rq,
8817 8818
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8819 8820 8821 8822 8823 8824

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8825
		}
8826

8827
		update_next_balance(sd, &next_balance);
8828 8829 8830 8831 8832 8833

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8834 8835
			break;
	}
8836
	rcu_read_unlock();
8837 8838 8839

	raw_spin_lock(&this_rq->lock);

8840 8841 8842
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8843
	/*
8844 8845 8846
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8847
	 */
8848
	if (this_rq->cfs.h_nr_running && !pulled_task)
8849
		pulled_task = 1;
8850

8851 8852 8853
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8854
		this_rq->next_balance = next_balance;
8855

8856
	/* Is there a task of a high priority class? */
8857
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8858 8859
		pulled_task = -1;

8860
	if (pulled_task)
8861 8862
		this_rq->idle_stamp = 0;

8863 8864
	rq_repin_lock(this_rq, rf);

8865
	return pulled_task;
8866 8867 8868
}

/*
8869 8870 8871 8872
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8873
 */
8874
static int active_load_balance_cpu_stop(void *data)
8875
{
8876 8877
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8878
	int target_cpu = busiest_rq->push_cpu;
8879
	struct rq *target_rq = cpu_rq(target_cpu);
8880
	struct sched_domain *sd;
8881
	struct task_struct *p = NULL;
8882
	struct rq_flags rf;
8883

8884
	rq_lock_irq(busiest_rq, &rf);
8885 8886 8887 8888 8889 8890 8891
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8892 8893 8894 8895 8896

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8897 8898 8899

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8900
		goto out_unlock;
8901 8902 8903 8904 8905 8906 8907 8908 8909

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8910
	rcu_read_lock();
8911 8912 8913 8914 8915 8916 8917
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8918 8919
		struct lb_env env = {
			.sd		= sd,
8920 8921 8922 8923
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8924
			.idle		= CPU_IDLE,
8925 8926 8927 8928 8929 8930 8931
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8932 8933
		};

8934
		schedstat_inc(sd->alb_count);
8935
		update_rq_clock(busiest_rq);
8936

8937
		p = detach_one_task(&env);
8938
		if (p) {
8939
			schedstat_inc(sd->alb_pushed);
8940 8941 8942
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8943
			schedstat_inc(sd->alb_failed);
8944
		}
8945
	}
8946
	rcu_read_unlock();
8947 8948
out_unlock:
	busiest_rq->active_balance = 0;
8949
	rq_unlock(busiest_rq, &rf);
8950 8951 8952 8953 8954 8955

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8956
	return 0;
8957 8958
}

8959 8960 8961 8962 8963
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8964
#ifdef CONFIG_NO_HZ_COMMON
8965 8966 8967 8968 8969 8970
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8971
static struct {
8972
	cpumask_var_t idle_cpus_mask;
8973
	atomic_t nr_cpus;
8974 8975
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8976

8977
static inline int find_new_ilb(void)
8978
{
8979
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8980

8981 8982 8983 8984
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8985 8986
}

8987 8988 8989 8990 8991
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8992
static void nohz_balancer_kick(void)
8993 8994 8995 8996 8997
{
	int ilb_cpu;

	nohz.next_balance++;

8998
	ilb_cpu = find_new_ilb();
8999

9000 9001
	if (ilb_cpu >= nr_cpu_ids)
		return;
9002

9003
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9004 9005 9006 9007 9008 9009 9010 9011
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9012 9013 9014
	return;
}

9015
void nohz_balance_exit_idle(unsigned int cpu)
9016 9017
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9018 9019 9020 9021 9022 9023 9024
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
9025 9026 9027 9028
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

9029 9030 9031
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
9032
	int cpu = smp_processor_id();
9033 9034

	rcu_read_lock();
9035
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9036 9037 9038 9039 9040

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

9041
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9042
unlock:
9043 9044 9045 9046 9047 9048
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
9049
	int cpu = smp_processor_id();
9050 9051

	rcu_read_lock();
9052
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9053 9054 9055 9056 9057

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9058
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9059
unlock:
9060 9061 9062
	rcu_read_unlock();
}

9063
/*
9064
 * This routine will record that the cpu is going idle with tick stopped.
9065
 * This info will be used in performing idle load balancing in the future.
9066
 */
9067
void nohz_balance_enter_idle(int cpu)
9068
{
9069 9070 9071 9072 9073 9074
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

9075
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9076
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9077 9078
		return;

9079 9080
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
9081

9082 9083 9084 9085 9086 9087
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

9088 9089 9090
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9091 9092 9093 9094 9095
}
#endif

static DEFINE_SPINLOCK(balancing);

9096 9097 9098 9099
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
9100
void update_max_interval(void)
9101 9102 9103 9104
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

9105 9106 9107 9108
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
9109
 * Balancing parameters are set up in init_sched_domains.
9110
 */
9111
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9112
{
9113
	int continue_balancing = 1;
9114
	int cpu = rq->cpu;
9115
	unsigned long interval;
9116
	struct sched_domain *sd;
9117 9118 9119
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9120 9121
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
9122

9123
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
9124

9125
	rcu_read_lock();
9126
	for_each_domain(cpu, sd) {
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

9139 9140 9141
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

9153
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9154 9155 9156 9157 9158 9159 9160 9161

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9162
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9163
				/*
9164
				 * The LBF_DST_PINNED logic could have changed
9165 9166
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
9167
				 */
9168
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9169 9170
			}
			sd->last_balance = jiffies;
9171
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9172 9173 9174 9175 9176 9177 9178 9179
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
9180 9181
	}
	if (need_decay) {
9182
		/*
9183 9184
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
9185
		 */
9186 9187
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
9188
	}
9189
	rcu_read_unlock();
9190 9191 9192 9193 9194 9195

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
9196
	if (likely(update_next_balance)) {
9197
		rq->next_balance = next_balance;
9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
9212 9213
}

9214
#ifdef CONFIG_NO_HZ_COMMON
9215
/*
9216
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9217 9218
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
9219
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9220
{
9221
	int this_cpu = this_rq->cpu;
9222 9223
	struct rq *rq;
	int balance_cpu;
9224 9225 9226
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9227

9228 9229 9230
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
9231 9232

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9233
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9234 9235 9236 9237 9238 9239 9240
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
9241
		if (need_resched())
9242 9243
			break;

V
Vincent Guittot 已提交
9244 9245
		rq = cpu_rq(balance_cpu);

9246 9247 9248 9249 9250
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9251 9252 9253
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
9254
			update_rq_clock(rq);
9255
			cpu_load_update_idle(rq);
9256 9257
			rq_unlock_irq(rq, &rf);

9258 9259
			rebalance_domains(rq, CPU_IDLE);
		}
9260

9261 9262 9263 9264
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9265
	}
9266 9267 9268 9269 9270 9271 9272 9273

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
9274 9275
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9276 9277 9278
}

/*
9279
 * Current heuristic for kicking the idle load balancer in the presence
9280
 * of an idle cpu in the system.
9281
 *   - This rq has more than one task.
9282 9283 9284 9285
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
9286 9287
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
9288
 */
9289
static inline bool nohz_kick_needed(struct rq *rq)
9290 9291
{
	unsigned long now = jiffies;
9292
	struct sched_domain_shared *sds;
9293
	struct sched_domain *sd;
T
Tim Chen 已提交
9294
	int nr_busy, i, cpu = rq->cpu;
9295
	bool kick = false;
9296

9297
	if (unlikely(rq->idle_balance))
9298
		return false;
9299

9300 9301 9302 9303
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
9304
	set_cpu_sd_state_busy();
9305
	nohz_balance_exit_idle(cpu);
9306 9307 9308 9309 9310 9311

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
9312
		return false;
9313 9314

	if (time_before(now, nohz.next_balance))
9315
		return false;
9316

9317
	if (rq->nr_running >= 2)
9318
		return true;
9319

9320
	rcu_read_lock();
9321 9322 9323 9324 9325 9326 9327
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
9328 9329 9330 9331 9332
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

9333
	}
9334

9335 9336 9337 9338 9339 9340 9341 9342
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
9343

9344
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
9345 9346 9347 9348 9349
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
9350

T
Tim Chen 已提交
9351 9352 9353 9354 9355 9356
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
9357
unlock:
9358
	rcu_read_unlock();
9359
	return kick;
9360 9361
}
#else
9362
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9363 9364 9365 9366 9367 9368
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9369
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9370
{
9371
	struct rq *this_rq = this_rq();
9372
	enum cpu_idle_type idle = this_rq->idle_balance ?
9373 9374 9375
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9376
	 * If this cpu has a pending nohz_balance_kick, then do the
9377
	 * balancing on behalf of the other idle cpus whose ticks are
9378 9379 9380 9381
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9382
	 */
9383
	nohz_idle_balance(this_rq, idle);
9384
	rebalance_domains(this_rq, idle);
9385 9386 9387 9388 9389
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9390
void trigger_load_balance(struct rq *rq)
9391 9392
{
	/* Don't need to rebalance while attached to NULL domain */
9393 9394 9395 9396
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9397
		raise_softirq(SCHED_SOFTIRQ);
9398
#ifdef CONFIG_NO_HZ_COMMON
9399
	if (nohz_kick_needed(rq))
9400
		nohz_balancer_kick();
9401
#endif
9402 9403
}

9404 9405 9406
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9407 9408

	update_runtime_enabled(rq);
9409 9410 9411 9412 9413
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9414 9415 9416

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9417 9418
}

9419
#endif /* CONFIG_SMP */
9420

9421 9422 9423
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9424
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9425 9426 9427 9428 9429 9430
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9431
		entity_tick(cfs_rq, se, queued);
9432
	}
9433

9434
	if (static_branch_unlikely(&sched_numa_balancing))
9435
		task_tick_numa(rq, curr);
9436 9437 9438
}

/*
P
Peter Zijlstra 已提交
9439 9440 9441
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9442
 */
P
Peter Zijlstra 已提交
9443
static void task_fork_fair(struct task_struct *p)
9444
{
9445 9446
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9447
	struct rq *rq = this_rq();
9448
	struct rq_flags rf;
9449

9450
	rq_lock(rq, &rf);
9451 9452
	update_rq_clock(rq);

9453 9454
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9455 9456
	if (curr) {
		update_curr(cfs_rq);
9457
		se->vruntime = curr->vruntime;
9458
	}
9459
	place_entity(cfs_rq, se, 1);
9460

P
Peter Zijlstra 已提交
9461
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9462
		/*
9463 9464 9465
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9466
		swap(curr->vruntime, se->vruntime);
9467
		resched_curr(rq);
9468
	}
9469

9470
	se->vruntime -= cfs_rq->min_vruntime;
9471
	rq_unlock(rq, &rf);
9472 9473
}

9474 9475 9476 9477
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9478 9479
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9480
{
9481
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9482 9483
		return;

9484 9485 9486 9487 9488
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9489
	if (rq->curr == p) {
9490
		if (p->prio > oldprio)
9491
			resched_curr(rq);
9492
	} else
9493
		check_preempt_curr(rq, p, 0);
9494 9495
}

9496
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9497 9498 9499 9500
{
	struct sched_entity *se = &p->se;

	/*
9501 9502 9503 9504 9505 9506 9507 9508 9509 9510
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9511
	 *
9512 9513 9514 9515
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9516
	 */
9517 9518 9519 9520 9521 9522
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9541
		update_load_avg(cfs_rq, se, UPDATE_TG);
9542 9543 9544 9545 9546 9547
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9548
static void detach_entity_cfs_rq(struct sched_entity *se)
9549 9550 9551
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9552
	/* Catch up with the cfs_rq and remove our load when we leave */
9553
	update_load_avg(cfs_rq, se, 0);
9554
	detach_entity_load_avg(cfs_rq, se);
9555
	update_tg_load_avg(cfs_rq, false);
9556
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9557 9558
}

9559
static void attach_entity_cfs_rq(struct sched_entity *se)
9560
{
9561
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9562 9563

#ifdef CONFIG_FAIR_GROUP_SCHED
9564 9565 9566 9567 9568 9569
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9570

9571
	/* Synchronize entity with its cfs_rq */
9572
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9573
	attach_entity_load_avg(cfs_rq, se);
9574
	update_tg_load_avg(cfs_rq, false);
9575
	propagate_entity_cfs_rq(se);
9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9601 9602 9603 9604

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9605

9606 9607 9608 9609 9610 9611 9612 9613
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9614

9615
	if (task_on_rq_queued(p)) {
9616
		/*
9617 9618 9619
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9620
		 */
9621 9622 9623 9624
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9625
	}
9626 9627
}

9628 9629 9630 9631 9632 9633 9634 9635 9636
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9637 9638 9639 9640 9641 9642 9643
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9644 9645
}

9646 9647
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9648
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9649 9650 9651 9652
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9653
#ifdef CONFIG_SMP
9654
	raw_spin_lock_init(&cfs_rq->removed.lock);
9655
#endif
9656 9657
}

P
Peter Zijlstra 已提交
9658
#ifdef CONFIG_FAIR_GROUP_SCHED
9659 9660 9661 9662 9663 9664 9665 9666
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9667
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9668
{
9669
	detach_task_cfs_rq(p);
9670
	set_task_rq(p, task_cpu(p));
9671 9672 9673 9674 9675

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9676
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9677
}
9678

9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9692 9693 9694 9695 9696 9697 9698 9699 9700
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9701
		if (tg->se)
9702 9703 9704 9705 9706 9707 9708 9709 9710 9711
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9712
	struct cfs_rq *cfs_rq;
9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9739
		init_entity_runnable_average(se);
9740 9741 9742 9743 9744 9745 9746 9747 9748 9749
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9761
		update_rq_clock(rq);
9762
		attach_entity_cfs_rq(se);
9763
		sync_throttle(tg, i);
9764 9765 9766 9767
		raw_spin_unlock_irq(&rq->lock);
	}
}

9768
void unregister_fair_sched_group(struct task_group *tg)
9769 9770
{
	unsigned long flags;
9771 9772
	struct rq *rq;
	int cpu;
9773

9774 9775 9776
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9777

9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9810
	if (!parent) {
9811
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9812 9813
		se->depth = 0;
	} else {
9814
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9815 9816
		se->depth = parent->depth + 1;
	}
9817 9818

	se->my_q = cfs_rq;
9819 9820
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9845 9846
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9847 9848

		/* Propagate contribution to hierarchy */
9849
		rq_lock_irqsave(rq, &rf);
9850
		update_rq_clock(rq);
9851
		for_each_sched_entity(se) {
9852
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9853
			update_cfs_group(se);
9854
		}
9855
		rq_unlock_irqrestore(rq, &rf);
9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9871 9872
void online_fair_sched_group(struct task_group *tg) { }

9873
void unregister_fair_sched_group(struct task_group *tg) { }
9874 9875 9876

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9877

9878
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9879 9880 9881 9882 9883 9884 9885 9886 9887
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9888
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9889 9890 9891 9892

	return rr_interval;
}

9893 9894 9895
/*
 * All the scheduling class methods:
 */
9896
const struct sched_class fair_sched_class = {
9897
	.next			= &idle_sched_class,
9898 9899 9900
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9901
	.yield_to_task		= yield_to_task_fair,
9902

I
Ingo Molnar 已提交
9903
	.check_preempt_curr	= check_preempt_wakeup,
9904 9905 9906 9907

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9908
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9909
	.select_task_rq		= select_task_rq_fair,
9910
	.migrate_task_rq	= migrate_task_rq_fair,
9911

9912 9913
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9914

9915
	.task_dead		= task_dead_fair,
9916
	.set_cpus_allowed	= set_cpus_allowed_common,
9917
#endif
9918

9919
	.set_curr_task          = set_curr_task_fair,
9920
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9921
	.task_fork		= task_fork_fair,
9922 9923

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9924
	.switched_from		= switched_from_fair,
9925
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9926

9927 9928
	.get_rr_interval	= get_rr_interval_fair,

9929 9930
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9931
#ifdef CONFIG_FAIR_GROUP_SCHED
9932
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9933
#endif
9934 9935 9936
};

#ifdef CONFIG_SCHED_DEBUG
9937
void print_cfs_stats(struct seq_file *m, int cpu)
9938
{
9939
	struct cfs_rq *cfs_rq, *pos;
9940

9941
	rcu_read_lock();
9942
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9943
		print_cfs_rq(m, cpu, cfs_rq);
9944
	rcu_read_unlock();
9945
}
9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9967 9968 9969 9970 9971 9972

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9973
#ifdef CONFIG_NO_HZ_COMMON
9974
	nohz.next_balance = jiffies;
9975 9976 9977 9978 9979
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}