fair.c 263.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 23
 */

24
#include <linux/sched/mm.h>
25 26
#include <linux/sched/topology.h>

27
#include <linux/latencytop.h>
28
#include <linux/cpumask.h>
29
#include <linux/cpuidle.h>
30 31 32
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
33
#include <linux/mempolicy.h>
34
#include <linux/migrate.h>
35
#include <linux/task_work.h>
36
#include <linux/sched/isolation.h>
37 38 39 40

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
41

42
/*
43
 * Targeted preemption latency for CPU-bound tasks:
44
 *
45
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
46 47 48
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
49
 *
I
Ingo Molnar 已提交
50 51
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
52 53
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54
 */
55 56
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
57

58 59 60 61
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
62 63 64 65 66 67
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68
 */
69
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70

71
/*
72
 * Minimal preemption granularity for CPU-bound tasks:
73
 *
74
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75
 */
76 77
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
78 79

/*
80
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81
 */
82
static unsigned int sched_nr_latency = 8;
83 84

/*
85
 * After fork, child runs first. If set to 0 (default) then
86
 * parent will (try to) run first.
87
 */
88
unsigned int sysctl_sched_child_runs_first __read_mostly;
89 90 91 92 93 94 95

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
96 97
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98
 */
99 100
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
101

102
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
103

T
Tim Chen 已提交
104 105 106 107 108 109 110 111 112 113
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

114 115 116 117 118 119 120 121 122
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
123 124 125
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 127
#endif

128 129
/*
 * The margin used when comparing utilization with CPU capacity:
130
 * util * margin < capacity * 1024
131 132
 *
 * (default: ~20%)
133
 */
134
unsigned int capacity_margin				= 1280;
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

154 155 156 157 158 159 160 161 162
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
163
static unsigned int get_update_sysctl_factor(void)
164
{
165
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

201
#define WMULT_CONST	(~0U)
202 203
#define WMULT_SHIFT	32

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
220 221

/*
222 223 224 225
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
226
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 228 229 230 231
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
232
 */
233
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234
{
235 236
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
237

238
	__update_inv_weight(lw);
239

240 241 242 243 244
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
245 246
	}

247 248
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
249

250 251 252 253
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
254

255
	return mul_u64_u32_shr(delta_exec, fact, shift);
256 257 258 259
}


const struct sched_class fair_sched_class;
260

261 262 263 264
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

265
#ifdef CONFIG_FAIR_GROUP_SCHED
266

267
/* cpu runqueue to which this cfs_rq is attached */
268 269
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
270
	return cfs_rq->rq;
271 272
}

273 274
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
275

276 277
static inline struct task_struct *task_of(struct sched_entity *se)
{
278
	SCHED_WARN_ON(!entity_is_task(se));
279 280 281
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

303 304 305
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
306 307
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
308 309 310
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
311 312 313 314 315
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
316 317
		 */
		if (cfs_rq->tg->parent &&
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
338
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359
		}
360 361 362 363 364 365 366 367 368 369 370 371 372

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
373
/* Iterate thr' all leaf cfs_rq's on a runqueue */
374 375 376
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
377 378

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
379
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
380 381 382
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
383
		return se->cfs_rq;
P
Peter Zijlstra 已提交
384

P
Peter Zijlstra 已提交
385
	return NULL;
P
Peter Zijlstra 已提交
386 387 388 389 390 391 392
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

393 394 395 396 397 398 399 400 401 402 403 404 405
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
406 407
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

425 426 427 428 429 430
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
431

432 433 434
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
435 436 437 438
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
439 440
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
441

P
Peter Zijlstra 已提交
442
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
443
{
P
Peter Zijlstra 已提交
444
	return &task_rq(p)->cfs;
445 446
}

P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

461 462 463 464 465 466 467 468
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

469 470
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
471 472 473 474 475 476

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

477 478 479 480 481
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
482 483
#endif	/* CONFIG_FAIR_GROUP_SCHED */

484
static __always_inline
485
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
486 487 488 489 490

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

491
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
492
{
493
	s64 delta = (s64)(vruntime - max_vruntime);
494
	if (delta > 0)
495
		max_vruntime = vruntime;
496

497
	return max_vruntime;
498 499
}

500
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
501 502 503 504 505 506 507 508
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

509 510 511 512 513 514
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

515 516
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
517
	struct sched_entity *curr = cfs_rq->curr;
518
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
519

520 521
	u64 vruntime = cfs_rq->min_vruntime;

522 523 524 525 526 527
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
528

529 530 531
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
532

533
		if (!curr)
534 535 536 537 538
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

539
	/* ensure we never gain time by being placed backwards. */
540
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
541 542 543 544
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
545 546
}

547 548 549
/*
 * Enqueue an entity into the rb-tree:
 */
550
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
551
{
552
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
553 554
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
555
	bool leftmost = true;
556 557 558 559 560 561 562 563 564 565 566

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
567
		if (entity_before(se, entry)) {
568 569 570
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
571
			leftmost = false;
572 573 574 575
		}
	}

	rb_link_node(&se->run_node, parent, link);
576 577
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
578 579
}

580
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
581
{
582
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
583 584
}

585
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
586
{
587
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
588 589 590 591 592

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
593 594
}

595 596 597 598 599 600 601 602 603 604 605
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
606
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
607
{
608
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
609

610 611
	if (!last)
		return NULL;
612 613

	return rb_entry(last, struct sched_entity, run_node);
614 615
}

616 617 618 619
/**************************************************************
 * Scheduling class statistics methods:
 */

620
int sched_proc_update_handler(struct ctl_table *table, int write,
621
		void __user *buffer, size_t *lenp,
622 623
		loff_t *ppos)
{
624
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
625
	unsigned int factor = get_update_sysctl_factor();
626 627 628 629 630 631 632

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

633 634 635 636 637 638 639
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

640 641 642
	return 0;
}
#endif
643

644
/*
645
 * delta /= w
646
 */
647
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
648
{
649
	if (unlikely(se->load.weight != NICE_0_LOAD))
650
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
651 652 653 654

	return delta;
}

655 656 657
/*
 * The idea is to set a period in which each task runs once.
 *
658
 * When there are too many tasks (sched_nr_latency) we have to stretch
659 660 661 662
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
663 664
static u64 __sched_period(unsigned long nr_running)
{
665 666 667 668
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
669 670
}

671 672 673 674
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
675
 * s = p*P[w/rw]
676
 */
P
Peter Zijlstra 已提交
677
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
678
{
M
Mike Galbraith 已提交
679
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
680

M
Mike Galbraith 已提交
681
	for_each_sched_entity(se) {
L
Lin Ming 已提交
682
		struct load_weight *load;
683
		struct load_weight lw;
L
Lin Ming 已提交
684 685 686

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
687

M
Mike Galbraith 已提交
688
		if (unlikely(!se->on_rq)) {
689
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
690 691 692 693

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
694
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
695 696
	}
	return slice;
697 698
}

699
/*
A
Andrei Epure 已提交
700
 * We calculate the vruntime slice of a to-be-inserted task.
701
 *
702
 * vs = s/w
703
 */
704
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
705
{
706
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
707 708
}

709
#ifdef CONFIG_SMP
710 711 712

#include "sched-pelt.h"

713
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
714 715
static unsigned long task_h_load(struct task_struct *p);

716 717
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
718
{
719
	struct sched_avg *sa = &se->avg;
720

721 722
	memset(sa, 0, sizeof(*sa));

723 724 725 726 727 728 729
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
730 731
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

732 733
	se->runnable_weight = se->load.weight;

734
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
735
}
736

737
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
738
static void attach_entity_cfs_rq(struct sched_entity *se);
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
769
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
770 771 772 773 774 775 776 777 778 779 780 781

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
782 783 784 785 786 787 788

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
789
			update_cfs_rq_load_avg(now, cfs_rq);
790 791 792 793 794 795
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
796
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
797 798 799 800
			return;
		}
	}

801
	attach_entity_cfs_rq(se);
802 803
}

804
#else /* !CONFIG_SMP */
805
void init_entity_runnable_average(struct sched_entity *se)
806 807
{
}
808 809 810
void post_init_entity_util_avg(struct sched_entity *se)
{
}
811 812 813
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
814
#endif /* CONFIG_SMP */
815

816
/*
817
 * Update the current task's runtime statistics.
818
 */
819
static void update_curr(struct cfs_rq *cfs_rq)
820
{
821
	struct sched_entity *curr = cfs_rq->curr;
822
	u64 now = rq_clock_task(rq_of(cfs_rq));
823
	u64 delta_exec;
824 825 826 827

	if (unlikely(!curr))
		return;

828 829
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
830
		return;
831

I
Ingo Molnar 已提交
832
	curr->exec_start = now;
833

834 835 836 837
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
838
	schedstat_add(cfs_rq->exec_clock, delta_exec);
839 840 841 842

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

843 844 845
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

846
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
847
		cgroup_account_cputime(curtask, delta_exec);
848
		account_group_exec_runtime(curtask, delta_exec);
849
	}
850 851

	account_cfs_rq_runtime(cfs_rq, delta_exec);
852 853
}

854 855 856 857 858
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

859
static inline void
860
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
861
{
862 863 864 865 866 867 868
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
869 870

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
871 872
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
873

874
	__schedstat_set(se->statistics.wait_start, wait_start);
875 876
}

877
static inline void
878 879 880
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
881 882
	u64 delta;

883 884 885 886
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
887 888 889 890 891 892 893 894 895

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
896
			__schedstat_set(se->statistics.wait_start, delta);
897 898 899 900 901
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

902
	__schedstat_set(se->statistics.wait_max,
903
		      max(schedstat_val(se->statistics.wait_max), delta));
904 905 906
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
907 908
}

909
static inline void
910 911 912
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
913 914 915 916 917 918 919
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
920 921 922 923

	if (entity_is_task(se))
		tsk = task_of(se);

924 925
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
931
			__schedstat_set(se->statistics.sleep_max, delta);
932

933 934
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937 938 939 940

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
941 942
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
943 944 945 946

		if ((s64)delta < 0)
			delta = 0;

947
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
948
			__schedstat_set(se->statistics.block_max, delta);
949

950 951
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
952 953 954

		if (tsk) {
			if (tsk->in_iowait) {
955 956
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
975 976
}

977 978 979
/*
 * Task is being enqueued - update stats:
 */
980
static inline void
981
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985
	if (!schedstat_enabled())
		return;

986 987 988 989
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
990
	if (se != cfs_rq->curr)
991
		update_stats_wait_start(cfs_rq, se);
992 993 994

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
995 996 997
}

static inline void
998
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
999
{
1000 1001 1002 1003

	if (!schedstat_enabled())
		return;

1004 1005 1006 1007
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1008
	if (se != cfs_rq->curr)
1009
		update_stats_wait_end(cfs_rq, se);
1010

1011 1012
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1013

1014
		if (tsk->state & TASK_INTERRUPTIBLE)
1015
			__schedstat_set(se->statistics.sleep_start,
1016 1017
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1018
			__schedstat_set(se->statistics.block_start,
1019
				      rq_clock(rq_of(cfs_rq)));
1020 1021 1022
	}
}

1023 1024 1025 1026
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1027
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1028 1029 1030 1031
{
	/*
	 * We are starting a new run period:
	 */
1032
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1033 1034 1035 1036 1037 1038
}

/**************************************************
 * Scheduling class queueing methods:
 */

1039 1040
#ifdef CONFIG_NUMA_BALANCING
/*
1041 1042 1043
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1044
 */
1045 1046
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1047 1048 1049

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1050

1051 1052 1053
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1101
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 1103 1104
	unsigned int scan, floor;
	unsigned int windows = 1;

1105 1106
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1107 1108 1109 1110 1111 1112
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1132 1133
static unsigned int task_scan_max(struct task_struct *p)
{
1134 1135
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1136 1137 1138

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1154 1155 1156
	return max(smin, smax);
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1169 1170 1171 1172 1173 1174 1175 1176 1177
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1178 1179 1180 1181 1182
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1183 1184 1185 1186 1187 1188 1189
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1190
{
1191
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1192 1193 1194 1195
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1196
	if (!p->numa_faults)
1197 1198
		return 0;

1199 1200
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 1202
}

1203 1204 1205 1206 1207
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1208 1209
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1210 1211
}

1212 1213
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1214 1215
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1319 1320 1321 1322 1323 1324
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1325 1326
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1327
{
1328
	unsigned long faults, total_faults;
1329

1330
	if (!p->numa_faults)
1331 1332 1333 1334 1335 1336 1337
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1338
	faults = task_faults(p, nid);
1339 1340
	faults += score_nearby_nodes(p, nid, dist, true);

1341
	return 1000 * faults / total_faults;
1342 1343
}

1344 1345
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1346
{
1347 1348 1349 1350 1351 1352 1353 1354
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1355 1356
		return 0;

1357
	faults = group_faults(p, nid);
1358 1359
	faults += score_nearby_nodes(p, nid, dist, false);

1360
	return 1000 * faults / total_faults;
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1403 1404
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1405
	 */
1406 1407
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1408 1409 1410
		return true;

	/*
1411 1412 1413 1414 1415 1416
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1417
	 */
1418 1419
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1420 1421
}

1422
static unsigned long weighted_cpuload(struct rq *rq);
1423 1424
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1425
static unsigned long capacity_of(int cpu);
1426

1427
/* Cached statistics for all CPUs within a node */
1428
struct numa_stats {
1429
	unsigned long nr_running;
1430
	unsigned long load;
1431 1432

	/* Total compute capacity of CPUs on a node */
1433
	unsigned long compute_capacity;
1434 1435

	/* Approximate capacity in terms of runnable tasks on a node */
1436
	unsigned long task_capacity;
1437
	int has_free_capacity;
1438
};
1439

1440 1441 1442 1443 1444
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1445 1446
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1447 1448 1449 1450 1451 1452

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1453
		ns->load += weighted_cpuload(rq);
1454
		ns->compute_capacity += capacity_of(cpu);
1455 1456

		cpus++;
1457 1458
	}

1459 1460 1461 1462 1463
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1464 1465
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1466 1467 1468 1469
	 */
	if (!cpus)
		return;

1470 1471 1472 1473 1474 1475
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1476
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1477 1478
}

1479 1480
struct task_numa_env {
	struct task_struct *p;
1481

1482 1483
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1484

1485
	struct numa_stats src_stats, dst_stats;
1486

1487
	int imbalance_pct;
1488
	int dist;
1489 1490 1491

	struct task_struct *best_task;
	long best_imp;
1492 1493 1494
	int best_cpu;
};

1495 1496 1497 1498 1499
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1500 1501
	if (p)
		get_task_struct(p);
1502 1503 1504 1505 1506 1507

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1508
static bool load_too_imbalanced(long src_load, long dst_load,
1509 1510
				struct task_numa_env *env)
{
1511 1512
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1524 1525

	/* We care about the slope of the imbalance, not the direction. */
1526 1527
	if (dst_load < src_load)
		swap(dst_load, src_load);
1528 1529

	/* Is the difference below the threshold? */
1530 1531
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1532 1533 1534 1535 1536
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1537
	 * Compare it with the old imbalance.
1538
	 */
1539
	orig_src_load = env->src_stats.load;
1540
	orig_dst_load = env->dst_stats.load;
1541

1542 1543
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1544

1545 1546 1547 1548 1549
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1550 1551
}

1552 1553 1554 1555 1556 1557
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1558 1559
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1560 1561 1562 1563
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1564
	long src_load, dst_load;
1565
	long load;
1566
	long imp = env->p->numa_group ? groupimp : taskimp;
1567
	long moveimp = imp;
1568
	int dist = env->dist;
1569 1570

	rcu_read_lock();
1571 1572
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1573 1574
		cur = NULL;

1575 1576 1577 1578 1579 1580 1581
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1591
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1592 1593
			goto unlock;

1594 1595
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1596
		 * in any group then look only at task weights.
1597
		 */
1598
		if (cur->numa_group == env->p->numa_group) {
1599 1600
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1601 1602 1603 1604 1605 1606
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1607
		} else {
1608 1609 1610 1611 1612 1613
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1614 1615
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1616
			else
1617 1618
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1619
		}
1620 1621
	}

1622
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1623 1624 1625 1626
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1627
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1628
		    !env->dst_stats.has_free_capacity)
1629 1630 1631 1632 1633 1634
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1635 1636
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1637 1638 1639 1640 1641 1642
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1643 1644 1645
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1664
	if (cur) {
1665 1666 1667
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1668 1669
	}

1670
	if (load_too_imbalanced(src_load, dst_load, env))
1671 1672
		goto unlock;

1673 1674 1675 1676
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1677 1678 1679 1680 1681 1682
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1683 1684
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1685 1686
		local_irq_enable();
	}
1687

1688 1689 1690 1691 1692 1693
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1694 1695
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1696 1697 1698 1699 1700
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1701
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1702 1703 1704
			continue;

		env->dst_cpu = cpu;
1705
		task_numa_compare(env, taskimp, groupimp);
1706 1707 1708
	}
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1726 1727 1728
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1729 1730 1731 1732 1733
		return true;

	return false;
}

1734 1735 1736 1737
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1738

1739
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1740
		.src_nid = task_node(p),
1741 1742 1743 1744 1745

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1746
		.best_cpu = -1,
1747 1748
	};
	struct sched_domain *sd;
1749
	unsigned long taskweight, groupweight;
1750
	int nid, ret, dist;
1751
	long taskimp, groupimp;
1752

1753
	/*
1754 1755 1756 1757 1758 1759
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1760 1761
	 */
	rcu_read_lock();
1762
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1763 1764
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1765 1766
	rcu_read_unlock();

1767 1768 1769 1770 1771 1772 1773
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1774
		p->numa_preferred_nid = task_node(p);
1775 1776 1777
		return -EINVAL;
	}

1778
	env.dst_nid = p->numa_preferred_nid;
1779 1780 1781 1782 1783 1784
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1785
	update_numa_stats(&env.dst_stats, env.dst_nid);
1786

1787
	/* Try to find a spot on the preferred nid. */
1788 1789
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1790

1791 1792 1793 1794 1795 1796 1797
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1798
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1799 1800 1801
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1802

1803
			dist = node_distance(env.src_nid, env.dst_nid);
1804 1805 1806 1807 1808
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1809

1810
			/* Only consider nodes where both task and groups benefit */
1811 1812
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1813
			if (taskimp < 0 && groupimp < 0)
1814 1815
				continue;

1816
			env.dist = dist;
1817 1818
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1819 1820
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1821 1822 1823
		}
	}

1824 1825 1826 1827 1828 1829 1830 1831
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1832
	if (p->numa_group) {
1833 1834
		struct numa_group *ng = p->numa_group;

1835 1836 1837 1838 1839
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1840
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1841 1842 1843 1844 1845 1846
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1847

1848 1849 1850 1851
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1852
	p->numa_scan_period = task_scan_start(p);
1853

1854
	if (env.best_task == NULL) {
1855 1856 1857
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 1859 1860 1861
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1862 1863
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 1865
	put_task_struct(env.best_task);
	return ret;
1866 1867
}

1868 1869 1870
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1871
	unsigned long interval = HZ;
1872
	unsigned long numa_migrate_retry;
1873

1874
	/* This task has no NUMA fault statistics yet */
1875
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1876 1877
		return;

1878
	/* Periodically retry migrating the task to the preferred node */
1879
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	numa_migrate_retry = jiffies + interval;

	/*
	 * Check that the new retry threshold is after the current one. If
	 * the retry is in the future, it implies that wake_affine has
	 * temporarily asked NUMA balancing to backoff from placement.
	 */
	if (numa_migrate_retry > p->numa_migrate_retry)
		return;

	/* Safe to try placing the task on the preferred node */
	p->numa_migrate_retry = numa_migrate_retry;
1892 1893

	/* Success if task is already running on preferred CPU */
1894
	if (task_node(p) == p->numa_preferred_nid)
1895 1896 1897
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1898
	task_numa_migrate(p);
1899 1900
}

1901
/*
1902
 * Find out how many nodes on the workload is actively running on. Do this by
1903 1904 1905 1906
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1907
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1908 1909
{
	unsigned long faults, max_faults = 0;
1910
	int nid, active_nodes = 0;
1911 1912 1913 1914 1915 1916 1917 1918 1919

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1920 1921
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1922
	}
1923 1924 1925

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1926 1927
}

1928 1929 1930
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1931 1932 1933
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1934 1935
 */
#define NUMA_PERIOD_SLOTS 10
1936
#define NUMA_PERIOD_THRESHOLD 7
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1948
	int lr_ratio, ps_ratio;
1949 1950 1951 1952 1953 1954 1955 1956
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1957 1958 1959
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1960
	 */
1961
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1997 1998 1999 2000 2001
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2002 2003 2004
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2005
		 */
2006 2007
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2008 2009 2010 2011 2012 2013 2014
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2033
		delta = p->se.avg.load_sum;
2034
		*period = LOAD_AVG_MAX;
2035 2036 2037 2038 2039 2040 2041 2042
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2090
		nodemask_t max_group = NODE_MASK_NONE;
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2124 2125
		if (!max_faults)
			break;
2126 2127 2128 2129 2130
		nodes = max_group;
	}
	return nid;
}

2131 2132
static void task_numa_placement(struct task_struct *p)
{
2133 2134
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2135
	unsigned long fault_types[2] = { 0, 0 };
2136 2137
	unsigned long total_faults;
	u64 runtime, period;
2138
	spinlock_t *group_lock = NULL;
2139

2140 2141 2142 2143 2144
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2145
	seq = READ_ONCE(p->mm->numa_scan_seq);
2146 2147 2148
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2149
	p->numa_scan_period_max = task_scan_max(p);
2150

2151 2152 2153 2154
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2155 2156 2157
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2158
		spin_lock_irq(group_lock);
2159 2160
	}

2161 2162
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2163 2164
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2165
		unsigned long faults = 0, group_faults = 0;
2166
		int priv;
2167

2168
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2169
			long diff, f_diff, f_weight;
2170

2171 2172 2173 2174
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2175

2176
			/* Decay existing window, copy faults since last scan */
2177 2178 2179
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2180

2181 2182 2183 2184 2185 2186 2187 2188
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2189
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2190
				   (total_faults + 1);
2191 2192
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2193

2194 2195 2196
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2197
			p->total_numa_faults += diff;
2198
			if (p->numa_group) {
2199 2200 2201 2202 2203 2204 2205 2206 2207
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2208
				p->numa_group->total_faults += diff;
2209
				group_faults += p->numa_group->faults[mem_idx];
2210
			}
2211 2212
		}

2213 2214 2215 2216
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2217 2218 2219 2220 2221 2222 2223

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2224 2225
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2226
	if (p->numa_group) {
2227
		numa_group_count_active_nodes(p->numa_group);
2228
		spin_unlock_irq(group_lock);
2229
		max_nid = preferred_group_nid(p, max_group_nid);
2230 2231
	}

2232 2233 2234 2235 2236 2237 2238
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2239
	}
2240 2241
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2253 2254
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2255 2256 2257 2258 2259 2260 2261 2262 2263
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2264
				    4*nr_node_ids*sizeof(unsigned long);
2265 2266 2267 2268 2269 2270

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2271 2272
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2273
		spin_lock_init(&grp->lock);
2274
		grp->gid = p->pid;
2275
		/* Second half of the array tracks nids where faults happen */
2276 2277
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2278

2279
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2280
			grp->faults[i] = p->numa_faults[i];
2281

2282
		grp->total_faults = p->total_numa_faults;
2283

2284 2285 2286 2287 2288
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2289
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2290 2291

	if (!cpupid_match_pid(tsk, cpupid))
2292
		goto no_join;
2293 2294 2295

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2296
		goto no_join;
2297 2298 2299

	my_grp = p->numa_group;
	if (grp == my_grp)
2300
		goto no_join;
2301 2302 2303 2304 2305 2306

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2307
		goto no_join;
2308 2309 2310 2311 2312

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2313
		goto no_join;
2314

2315 2316 2317 2318 2319 2320 2321
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2322

2323 2324 2325
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2326
	if (join && !get_numa_group(grp))
2327
		goto no_join;
2328 2329 2330 2331 2332 2333

	rcu_read_unlock();

	if (!join)
		return;

2334 2335
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2336

2337
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2338 2339
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2340
	}
2341 2342
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2343 2344 2345 2346 2347

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2348
	spin_unlock_irq(&grp->lock);
2349 2350 2351 2352

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2353 2354 2355 2356 2357
	return;

no_join:
	rcu_read_unlock();
	return;
2358 2359 2360 2361 2362
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2363
	void *numa_faults = p->numa_faults;
2364 2365
	unsigned long flags;
	int i;
2366 2367

	if (grp) {
2368
		spin_lock_irqsave(&grp->lock, flags);
2369
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2370
			grp->faults[i] -= p->numa_faults[i];
2371
		grp->total_faults -= p->total_numa_faults;
2372

2373
		grp->nr_tasks--;
2374
		spin_unlock_irqrestore(&grp->lock, flags);
2375
		RCU_INIT_POINTER(p->numa_group, NULL);
2376 2377 2378
		put_numa_group(grp);
	}

2379
	p->numa_faults = NULL;
2380
	kfree(numa_faults);
2381 2382
}

2383 2384 2385
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2386
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2387 2388
{
	struct task_struct *p = current;
2389
	bool migrated = flags & TNF_MIGRATED;
2390
	int cpu_node = task_node(current);
2391
	int local = !!(flags & TNF_FAULT_LOCAL);
2392
	struct numa_group *ng;
2393
	int priv;
2394

2395
	if (!static_branch_likely(&sched_numa_balancing))
2396 2397
		return;

2398 2399 2400 2401
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2402
	/* Allocate buffer to track faults on a per-node basis */
2403 2404
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2405
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2406

2407 2408
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2409
			return;
2410

2411
		p->total_numa_faults = 0;
2412
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2413
	}
2414

2415 2416 2417 2418 2419 2420 2421 2422
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2423
		if (!priv && !(flags & TNF_NO_GROUP))
2424
			task_numa_group(p, last_cpupid, flags, &priv);
2425 2426
	}

2427 2428 2429 2430 2431 2432
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2433 2434 2435 2436
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2437 2438
		local = 1;

2439
	task_numa_placement(p);
2440

2441 2442 2443 2444 2445
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2446 2447
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2448 2449
	if (migrated)
		p->numa_pages_migrated += pages;
2450 2451
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2452

2453 2454
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2455
	p->numa_faults_locality[local] += pages;
2456 2457
}

2458 2459
static void reset_ptenuma_scan(struct task_struct *p)
{
2460 2461 2462 2463 2464 2465 2466 2467
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2468
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2469 2470 2471
	p->mm->numa_scan_offset = 0;
}

2472 2473 2474 2475 2476 2477 2478 2479 2480
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2481
	u64 runtime = p->se.sum_exec_runtime;
2482
	struct vm_area_struct *vma;
2483
	unsigned long start, end;
2484
	unsigned long nr_pte_updates = 0;
2485
	long pages, virtpages;
2486

2487
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2501
	if (!mm->numa_next_scan) {
2502 2503
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2504 2505
	}

2506 2507 2508 2509 2510 2511 2512
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2513 2514
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2515
		p->numa_scan_period = task_scan_start(p);
2516
	}
2517

2518
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2519 2520 2521
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2522 2523 2524 2525 2526 2527
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2528 2529 2530
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2531
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2532 2533
	if (!pages)
		return;
2534

2535

2536 2537
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2538
	vma = find_vma(mm, start);
2539 2540
	if (!vma) {
		reset_ptenuma_scan(p);
2541
		start = 0;
2542 2543
		vma = mm->mmap;
	}
2544
	for (; vma; vma = vma->vm_next) {
2545
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2546
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2547
			continue;
2548
		}
2549

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2560 2561 2562 2563 2564 2565
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2566

2567 2568 2569 2570
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2571
			nr_pte_updates = change_prot_numa(vma, start, end);
2572 2573

			/*
2574 2575 2576 2577 2578 2579
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2580 2581 2582
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2583
			virtpages -= (end - start) >> PAGE_SHIFT;
2584

2585
			start = end;
2586
			if (pages <= 0 || virtpages <= 0)
2587
				goto out;
2588 2589

			cond_resched();
2590
		} while (end != vma->vm_end);
2591
	}
2592

2593
out:
2594
	/*
P
Peter Zijlstra 已提交
2595 2596 2597 2598
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2599 2600
	 */
	if (vma)
2601
		mm->numa_scan_offset = start;
2602 2603 2604
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2641
	if (now > curr->node_stamp + period) {
2642
		if (!curr->node_stamp)
2643
			curr->numa_scan_period = task_scan_start(curr);
2644
		curr->node_stamp += period;
2645 2646 2647 2648 2649 2650 2651

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2652

2653 2654 2655 2656
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2657 2658 2659 2660 2661 2662 2663 2664

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2665

2666 2667
#endif /* CONFIG_NUMA_BALANCING */

2668 2669 2670 2671
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2672
	if (!parent_entity(se))
2673
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2674
#ifdef CONFIG_SMP
2675 2676 2677 2678 2679 2680
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2681
#endif
2682 2683 2684 2685 2686 2687 2688
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2689
	if (!parent_entity(se))
2690
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2691
#ifdef CONFIG_SMP
2692 2693
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2694
		list_del_init(&se->group_node);
2695
	}
2696
#endif
2697 2698 2699
	cfs_rq->nr_running--;
}

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
/*
2739
 * XXX we want to get rid of these helpers and use the full load resolution.
2740 2741 2742 2743 2744 2745
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

2746 2747 2748 2749 2750
static inline long se_runnable(struct sched_entity *se)
{
	return scale_load_down(se->runnable_weight);
}

2751 2752 2753
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2754 2755 2756 2757
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2758 2759 2760 2761 2762
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2763 2764 2765 2766 2767
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2794
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2795
			    unsigned long weight, unsigned long runnable)
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2806
	se->runnable_weight = runnable;
2807 2808 2809
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2810 2811 2812 2813 2814 2815 2816
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2833
	reweight_entity(cfs_rq, se, weight, weight);
2834 2835 2836
	load->inv_weight = sched_prio_to_wmult[prio];
}

2837
#ifdef CONFIG_FAIR_GROUP_SCHED
2838
#ifdef CONFIG_SMP
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2877
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2903 2904 2905 2906 2907 2908 2909 2910 2911
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2912
static long calc_group_shares(struct cfs_rq *cfs_rq)
2913
{
2914 2915 2916 2917
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2918

2919
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2920

2921
	tg_weight = atomic_long_read(&tg->load_avg);
2922

2923 2924 2925
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2926

2927
	shares = (tg_shares * load);
2928 2929
	if (tg_weight)
		shares /= tg_weight;
2930

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2943
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2944
}
2945 2946

/*
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2972 2973 2974
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2975 2976 2977 2978 2979 2980 2981
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2982 2983 2984 2985

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2986

2987 2988
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2989
#endif /* CONFIG_SMP */
2990

2991 2992
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2993 2994 2995 2996 2997
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2998
{
2999 3000
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
3001

3002
	if (!gcfs_rq)
3003 3004
		return;

3005
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
3006
		return;
3007

3008
#ifndef CONFIG_SMP
3009
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3010 3011

	if (likely(se->load.weight == shares))
3012
		return;
3013
#else
3014 3015
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3016
#endif
P
Peter Zijlstra 已提交
3017

3018
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3019
}
3020

P
Peter Zijlstra 已提交
3021
#else /* CONFIG_FAIR_GROUP_SCHED */
3022
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3023 3024 3025 3026
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3027 3028
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3029 3030 3031
	struct rq *rq = rq_of(cfs_rq);

	if (&rq->cfs == cfs_rq) {
3032 3033 3034
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3035
		 * a real problem.
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3046
		cpufreq_update_util(rq, 0);
3047 3048 3049
	}
}

3050
#ifdef CONFIG_SMP
3051 3052 3053 3054
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
3055
static u64 decay_load(u64 val, u64 n)
3056
{
3057 3058
	unsigned int local_n;

3059
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3060 3061 3062 3063 3064 3065 3066
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
3067 3068
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
3069 3070 3071 3072 3073 3074
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
3075 3076
	}

3077 3078
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
3079 3080
}

3081
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3082
{
3083
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3084

3085
	/*
P
Peter Zijlstra 已提交
3086
	 * c1 = d1 y^p
3087
	 */
3088
	c1 = decay_load((u64)d1, periods);
3089 3090

	/*
P
Peter Zijlstra 已提交
3091
	 *            p-1
3092 3093
	 * c2 = 1024 \Sum y^n
	 *            n=1
3094
	 *
3095 3096
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
3097
	 *              n=0        n=p
3098
	 */
3099
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3100 3101

	return c1 + c2 + c3;
3102 3103
}

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
3115 3116 3117
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
3118
 *
P
Peter Zijlstra 已提交
3119
 *    = u y^p +					(Step 1)
3120
 *
P
Peter Zijlstra 已提交
3121 3122 3123
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
3124 3125 3126
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3127
	       unsigned long load, unsigned long runnable, int running)
3128 3129
{
	unsigned long scale_freq, scale_cpu;
3130
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3131 3132
	u64 periods;

3133
	scale_freq = arch_scale_freq_capacity(cpu);
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
3144 3145
		sa->runnable_load_sum =
			decay_load(sa->runnable_load_sum, periods);
3146 3147
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

3148 3149 3150 3151 3152 3153 3154
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
3155 3156 3157
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
3158 3159 3160 3161
	if (load)
		sa->load_sum += load * contrib;
	if (runnable)
		sa->runnable_load_sum += runnable * contrib;
3162 3163 3164 3165 3166 3167
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
3196
static __always_inline int
3197
___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3198
		  unsigned long load, unsigned long runnable, int running)
3199
{
3200
	u64 delta;
3201

3202
	delta = now - sa->last_update_time;
3203 3204 3205 3206 3207
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
3208
		sa->last_update_time = now;
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3219 3220

	sa->last_update_time += delta << 10;
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
3231 3232
	if (!load)
		runnable = running = 0;
3233

3234 3235 3236 3237 3238 3239 3240
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
3241
	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3242
		return 0;
3243

3244 3245 3246 3247
	return 1;
}

static __always_inline void
3248
___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3249 3250 3251
{
	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

3252 3253 3254
	/*
	 * Step 2: update *_avg.
	 */
3255 3256
	sa->load_avg = div_u64(load * sa->load_sum, divider);
	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3257 3258
	sa->util_avg = sa->util_sum / divider;
}
3259

3260 3261 3262
/*
 * sched_entity:
 *
3263 3264 3265 3266 3267 3268 3269
 *   task:
 *     se_runnable() == se_weight()
 *
 *   group: [ see update_cfs_group() ]
 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
 *
3270 3271 3272
 *   load_sum := runnable_sum
 *   load_avg = se_weight(se) * runnable_avg
 *
3273 3274 3275 3276 3277
 *   runnable_load_sum := runnable_sum
 *   runnable_load_avg = se_runnable(se) * runnable_avg
 *
 * XXX collapse load_sum and runnable_load_sum
 *
3278 3279 3280 3281
 * cfq_rs:
 *
 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 *   load_avg = \Sum se->avg.load_avg
3282 3283 3284
 *
 *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
 *   runnable_load_avg = \Sum se->avg.runable_load_avg
3285 3286
 */

3287 3288 3289
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
3290 3291 3292 3293 3294
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3295 3296 3297 3298
		return 1;
	}

	return 0;
3299 3300 3301 3302 3303
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3304 3305 3306 3307 3308
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
				cfs_rq->curr == se)) {
3309

3310
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3311 3312 3313 3314
		return 1;
	}

	return 0;
3315 3316 3317 3318 3319
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
3320 3321
	if (___update_load_sum(now, cpu, &cfs_rq->avg,
				scale_load_down(cfs_rq->load.weight),
3322 3323 3324 3325
				scale_load_down(cfs_rq->runnable_weight),
				cfs_rq->curr != NULL)) {

		___update_load_avg(&cfs_rq->avg, 1, 1);
3326 3327 3328 3329
		return 1;
	}

	return 0;
3330 3331
}

3332
#ifdef CONFIG_FAIR_GROUP_SCHED
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3346
 * Updating tg's load_avg is necessary before update_cfs_share().
3347
 */
3348
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3349
{
3350
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3351

3352 3353 3354 3355 3356 3357
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3358 3359 3360
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3361
	}
3362
}
3363

3364 3365 3366 3367 3368 3369 3370 3371
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3372 3373 3374
	u64 p_last_update_time;
	u64 n_last_update_time;

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3385 3386
	if (!(se->avg.last_update_time && prev))
		return;
3387 3388

#ifndef CONFIG_64BIT
3389
	{
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3404
	}
3405
#else
3406 3407
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3408
#endif
3409 3410
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3411
}
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3424 3425 3426
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3427 3428 3429 3430 3431 3432 3433 3434
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3435
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3436 3437 3438
 *
 * And per (1) we have:
 *
3439
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3458 3459 3460 3461 3462 3463
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3464
 *
3465
 * So we'll have to approximate.. :/
3466
 *
3467
 * Given the constraint:
3468
 *
3469
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3470
 *
3471 3472
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3473
 *
3474
 * On removal, we'll assume each task is equally runnable; which yields:
3475
 *
3476
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3477
 *
3478
 * XXX: only do this for the part of runnable > running ?
3479 3480 3481
 *
 */

3482
static inline void
3483
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3484 3485 3486 3487 3488 3489 3490
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3491 3492 3493 3494 3495 3496 3497 3498
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3509
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3510
{
3511 3512 3513 3514
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3515

3516 3517
	if (!runnable_sum)
		return;
3518

3519
	gcfs_rq->prop_runnable_sum = 0;
3520

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
	 * As running sum is scale with cpu capacity wehreas the runnable sum
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3551 3552
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3553

3554 3555
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3556

3557 3558 3559 3560
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3561

3562 3563
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3564 3565
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3566

3567 3568
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3569

3570
	if (se->on_rq) {
3571 3572
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3573 3574 3575
	}
}

3576
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3577
{
3578 3579
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3580 3581 3582 3583 3584
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3585
	struct cfs_rq *cfs_rq, *gcfs_rq;
3586 3587 3588 3589

	if (entity_is_task(se))
		return 0;

3590 3591
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3592 3593
		return 0;

3594 3595
	gcfs_rq->propagate = 0;

3596 3597
	cfs_rq = cfs_rq_of(se);

3598
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3599

3600 3601
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3602 3603 3604 3605

	return 1;
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3625
	if (gcfs_rq->propagate)
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3636
#else /* CONFIG_FAIR_GROUP_SCHED */
3637

3638
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3639 3640 3641 3642 3643 3644

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3645
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3646

3647
#endif /* CONFIG_FAIR_GROUP_SCHED */
3648

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3660 3661 3662 3663
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3664
 */
3665
static inline int
3666
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3667
{
3668
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3669
	struct sched_avg *sa = &cfs_rq->avg;
3670
	int decayed = 0;
3671

3672 3673
	if (cfs_rq->removed.nr) {
		unsigned long r;
3674
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3675 3676 3677 3678

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3679
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3680 3681 3682 3683
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3684
		sub_positive(&sa->load_avg, r);
3685
		sub_positive(&sa->load_sum, r * divider);
3686

3687
		r = removed_util;
3688
		sub_positive(&sa->util_avg, r);
3689
		sub_positive(&sa->util_sum, r * divider);
3690

3691
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3692 3693

		decayed = 1;
3694
	}
3695

3696
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3697

3698 3699 3700 3701
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3702

3703
	if (decayed)
3704
		cfs_rq_util_change(cfs_rq);
3705

3706
	return decayed;
3707 3708
}

3709 3710 3711 3712 3713 3714 3715 3716
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3717 3718
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3719 3720 3721 3722 3723 3724 3725 3726 3727
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3728
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3747
	enqueue_load_avg(cfs_rq, se);
3748 3749
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3750 3751

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3752 3753

	cfs_rq_util_change(cfs_rq);
3754 3755
}

3756 3757 3758 3759 3760 3761 3762 3763
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3764 3765
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3766
	dequeue_load_avg(cfs_rq, se);
3767 3768
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3769 3770

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3771 3772

	cfs_rq_util_change(cfs_rq);
3773 3774
}

3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

		attach_entity_load_avg(cfs_rq, se);
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3809
#ifndef CONFIG_64BIT
3810 3811
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3812
	u64 last_update_time_copy;
3813
	u64 last_update_time;
3814

3815 3816 3817 3818 3819
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3820 3821 3822

	return last_update_time;
}
3823
#else
3824 3825 3826 3827
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3828 3829
#endif

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3840
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3841 3842
}

3843 3844 3845 3846 3847 3848 3849
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3850
	unsigned long flags;
3851 3852

	/*
3853 3854 3855 3856 3857 3858 3859
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3860 3861
	 */

3862
	sync_entity_load_avg(se);
3863 3864 3865 3866 3867

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3868
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3869
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3870
}
3871

3872 3873
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3874
	return cfs_rq->avg.runnable_load_avg;
3875 3876 3877 3878 3879 3880 3881
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3882
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3883

3884 3885
#else /* CONFIG_SMP */

3886
static inline int
3887
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3888 3889 3890 3891
{
	return 0;
}

3892 3893
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3894
#define DO_ATTACH	0x0
3895

3896
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3897
{
3898
	cfs_rq_util_change(cfs_rq);
3899 3900
}

3901
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3902

3903 3904 3905 3906 3907
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3908
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3909 3910 3911 3912
{
	return 0;
}

3913
#endif /* CONFIG_SMP */
3914

P
Peter Zijlstra 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3924
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3925 3926 3927
#endif
}

3928 3929 3930
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3931
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3932

3933 3934 3935 3936 3937 3938
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3939
	if (initial && sched_feat(START_DEBIT))
3940
		vruntime += sched_vslice(cfs_rq, se);
3941

3942
	/* sleeps up to a single latency don't count. */
3943
	if (!initial) {
3944
		unsigned long thresh = sysctl_sched_latency;
3945

3946 3947 3948 3949 3950 3951
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3952

3953
		vruntime -= thresh;
3954 3955
	}

3956
	/* ensure we never gain time by being placed backwards. */
3957
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3958 3959
}

3960 3961
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3974
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3975
			     "stat_blocked and stat_runtime require the "
3976
			     "kernel parameter schedstats=enable or "
3977 3978 3979 3980 3981
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
4001
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

4013
static void
4014
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4015
{
4016 4017 4018
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

4019
	/*
4020 4021
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
4022
	 */
4023
	if (renorm && curr)
4024 4025
		se->vruntime += cfs_rq->min_vruntime;

4026 4027
	update_curr(cfs_rq);

4028
	/*
4029 4030 4031 4032
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
4033
	 */
4034 4035 4036
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

4037 4038 4039 4040 4041 4042 4043 4044
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
4045
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4046
	update_cfs_group(se);
4047
	enqueue_runnable_load_avg(cfs_rq, se);
4048
	account_entity_enqueue(cfs_rq, se);
4049

4050
	if (flags & ENQUEUE_WAKEUP)
4051
		place_entity(cfs_rq, se, 0);
4052

4053
	check_schedstat_required();
4054 4055
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
4056
	if (!curr)
4057
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
4058
	se->on_rq = 1;
4059

4060
	if (cfs_rq->nr_running == 1) {
4061
		list_add_leaf_cfs_rq(cfs_rq);
4062 4063
		check_enqueue_throttle(cfs_rq);
	}
4064 4065
}

4066
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
4067
{
4068 4069
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4070
		if (cfs_rq->last != se)
4071
			break;
4072 4073

		cfs_rq->last = NULL;
4074 4075
	}
}
P
Peter Zijlstra 已提交
4076

4077 4078 4079 4080
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4081
		if (cfs_rq->next != se)
4082
			break;
4083 4084

		cfs_rq->next = NULL;
4085
	}
P
Peter Zijlstra 已提交
4086 4087
}

4088 4089 4090 4091
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4092
		if (cfs_rq->skip != se)
4093
			break;
4094 4095

		cfs_rq->skip = NULL;
4096 4097 4098
	}
}

P
Peter Zijlstra 已提交
4099 4100
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
4101 4102 4103 4104 4105
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
4106 4107 4108

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
4109 4110
}

4111
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4112

4113
static void
4114
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4115
{
4116 4117 4118 4119
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
4120 4121 4122 4123 4124 4125 4126 4127 4128

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
4129
	update_load_avg(cfs_rq, se, UPDATE_TG);
4130
	dequeue_runnable_load_avg(cfs_rq, se);
4131

4132
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
4133

P
Peter Zijlstra 已提交
4134
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4135

4136
	if (se != cfs_rq->curr)
4137
		__dequeue_entity(cfs_rq, se);
4138
	se->on_rq = 0;
4139
	account_entity_dequeue(cfs_rq, se);
4140 4141

	/*
4142 4143 4144 4145
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
4146
	 */
4147
	if (!(flags & DEQUEUE_SLEEP))
4148
		se->vruntime -= cfs_rq->min_vruntime;
4149

4150 4151 4152
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

4153
	update_cfs_group(se);
4154 4155 4156 4157 4158 4159 4160 4161 4162

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
4163 4164 4165 4166 4167
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4168
static void
I
Ingo Molnar 已提交
4169
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4170
{
4171
	unsigned long ideal_runtime, delta_exec;
4172 4173
	struct sched_entity *se;
	s64 delta;
4174

P
Peter Zijlstra 已提交
4175
	ideal_runtime = sched_slice(cfs_rq, curr);
4176
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4177
	if (delta_exec > ideal_runtime) {
4178
		resched_curr(rq_of(cfs_rq));
4179 4180 4181 4182 4183
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4195 4196
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4197

4198 4199
	if (delta < 0)
		return;
4200

4201
	if (delta > ideal_runtime)
4202
		resched_curr(rq_of(cfs_rq));
4203 4204
}

4205
static void
4206
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4207
{
4208 4209 4210 4211 4212 4213 4214
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4215
		update_stats_wait_end(cfs_rq, se);
4216
		__dequeue_entity(cfs_rq, se);
4217
		update_load_avg(cfs_rq, se, UPDATE_TG);
4218 4219
	}

4220
	update_stats_curr_start(cfs_rq, se);
4221
	cfs_rq->curr = se;
4222

I
Ingo Molnar 已提交
4223 4224 4225 4226 4227
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4228
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4229 4230 4231
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4232
	}
4233

4234
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4235 4236
}

4237 4238 4239
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4240 4241 4242 4243 4244 4245 4246
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4247 4248
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4249
{
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4261

4262 4263 4264 4265 4266
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4277 4278 4279
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4280

4281 4282 4283 4284 4285 4286
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4287 4288 4289 4290 4291 4292
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4293
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4294 4295

	return se;
4296 4297
}

4298
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4299

4300
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4301 4302 4303 4304 4305 4306
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4307
		update_curr(cfs_rq);
4308

4309 4310 4311
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4312
	check_spread(cfs_rq, prev);
4313

4314
	if (prev->on_rq) {
4315
		update_stats_wait_start(cfs_rq, prev);
4316 4317
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4318
		/* in !on_rq case, update occurred at dequeue */
4319
		update_load_avg(cfs_rq, prev, 0);
4320
	}
4321
	cfs_rq->curr = NULL;
4322 4323
}

P
Peter Zijlstra 已提交
4324 4325
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4326 4327
{
	/*
4328
	 * Update run-time statistics of the 'current'.
4329
	 */
4330
	update_curr(cfs_rq);
4331

4332 4333 4334
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4335
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4336
	update_cfs_group(curr);
4337

P
Peter Zijlstra 已提交
4338 4339 4340 4341 4342
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4343
	if (queued) {
4344
		resched_curr(rq_of(cfs_rq));
4345 4346
		return;
	}
P
Peter Zijlstra 已提交
4347 4348 4349 4350 4351 4352 4353 4354
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4355
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4356
		check_preempt_tick(cfs_rq, curr);
4357 4358
}

4359 4360 4361 4362 4363 4364

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4365 4366

#ifdef HAVE_JUMP_LABEL
4367
static struct static_key __cfs_bandwidth_used;
4368 4369 4370

static inline bool cfs_bandwidth_used(void)
{
4371
	return static_key_false(&__cfs_bandwidth_used);
4372 4373
}

4374
void cfs_bandwidth_usage_inc(void)
4375
{
4376
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4377 4378 4379 4380
}

void cfs_bandwidth_usage_dec(void)
{
4381
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4382 4383 4384 4385 4386 4387 4388
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4389 4390
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4391 4392
#endif /* HAVE_JUMP_LABEL */

4393 4394 4395 4396 4397 4398 4399 4400
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4401 4402 4403 4404 4405 4406

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4407 4408 4409 4410 4411 4412 4413
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4414
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4426 4427 4428 4429 4430
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4431 4432 4433 4434
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4435
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4436

4437
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4438 4439
}

4440 4441
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4442 4443 4444
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4445
	u64 amount = 0, min_amount, expires;
4446 4447 4448 4449 4450 4451 4452

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4453
	else {
P
Peter Zijlstra 已提交
4454
		start_cfs_bandwidth(cfs_b);
4455 4456 4457 4458 4459 4460

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4461
	}
P
Paul Turner 已提交
4462
	expires = cfs_b->runtime_expires;
4463 4464 4465
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4466 4467 4468 4469 4470 4471 4472
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4473 4474

	return cfs_rq->runtime_remaining > 0;
4475 4476
}

P
Paul Turner 已提交
4477 4478 4479 4480 4481
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4482
{
P
Paul Turner 已提交
4483 4484 4485
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4486
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4487 4488
		return;

P
Paul Turner 已提交
4489 4490 4491 4492 4493 4494 4495 4496 4497
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4498 4499 4500
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4501 4502
	 */

4503
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4504 4505 4506 4507 4508 4509 4510 4511
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4512
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4513 4514
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4515
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4516 4517 4518
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4519 4520
		return;

4521 4522 4523 4524 4525
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4526
		resched_curr(rq_of(cfs_rq));
4527 4528
}

4529
static __always_inline
4530
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4531
{
4532
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4533 4534 4535 4536 4537
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4538 4539
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4540
	return cfs_bandwidth_used() && cfs_rq->throttled;
4541 4542
}

4543 4544 4545
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4546
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4574
		/* adjust cfs_rq_clock_task() */
4575
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4576
					     cfs_rq->throttled_clock_task;
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4587 4588
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4589
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4590 4591 4592 4593 4594
	cfs_rq->throttle_count++;

	return 0;
}

4595
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4596 4597 4598 4599 4600
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4601
	bool empty;
4602 4603 4604

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4605
	/* freeze hierarchy runnable averages while throttled */
4606 4607 4608
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4626
		sub_nr_running(rq, task_delta);
4627 4628

	cfs_rq->throttled = 1;
4629
	cfs_rq->throttled_clock = rq_clock(rq);
4630
	raw_spin_lock(&cfs_b->lock);
4631
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4632

4633 4634 4635 4636 4637
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4638 4639 4640 4641 4642 4643 4644 4645

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4646 4647 4648
	raw_spin_unlock(&cfs_b->lock);
}

4649
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4650 4651 4652 4653 4654 4655 4656
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4657
	se = cfs_rq->tg->se[cpu_of(rq)];
4658 4659

	cfs_rq->throttled = 0;
4660 4661 4662

	update_rq_clock(rq);

4663
	raw_spin_lock(&cfs_b->lock);
4664
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4665 4666 4667
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4668 4669 4670
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4689
		add_nr_running(rq, task_delta);
4690 4691 4692

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4693
		resched_curr(rq);
4694 4695 4696 4697 4698 4699
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4700 4701
	u64 runtime;
	u64 starting_runtime = remaining;
4702 4703 4704 4705 4706

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4707
		struct rq_flags rf;
4708

4709
		rq_lock(rq, &rf);
4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4726
		rq_unlock(rq, &rf);
4727 4728 4729 4730 4731 4732

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4733
	return starting_runtime - remaining;
4734 4735
}

4736 4737 4738 4739 4740 4741 4742 4743
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4744
	u64 runtime, runtime_expires;
4745
	int throttled;
4746 4747 4748

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4749
		goto out_deactivate;
4750

4751
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4752
	cfs_b->nr_periods += overrun;
4753

4754 4755 4756 4757 4758 4759
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4760 4761 4762

	__refill_cfs_bandwidth_runtime(cfs_b);

4763 4764 4765
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4766
		return 0;
4767 4768
	}

4769 4770 4771
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4772 4773 4774
	runtime_expires = cfs_b->runtime_expires;

	/*
4775 4776 4777 4778 4779
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4780
	 */
4781 4782
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4783 4784 4785 4786 4787 4788 4789
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4790 4791

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4792
	}
4793

4794 4795 4796 4797 4798 4799 4800
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4801

4802 4803 4804 4805
	return 0;

out_deactivate:
	return 1;
4806
}
4807

4808 4809 4810 4811 4812 4813 4814
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4815 4816 4817 4818
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4819
 * hrtimer base being cleared by hrtimer_start. In the case of
4820 4821
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4847 4848 4849
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4879 4880 4881
	if (!cfs_bandwidth_used())
		return;

4882
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4898 4899 4900
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4901
		return;
4902
	}
4903

4904
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4905
		runtime = cfs_b->runtime;
4906

4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4917
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4918 4919 4920
	raw_spin_unlock(&cfs_b->lock);
}

4921 4922 4923 4924 4925 4926 4927
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4928 4929 4930
	if (!cfs_bandwidth_used())
		return;

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4959
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4960 4961
}

4962
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4963
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4964
{
4965
	if (!cfs_bandwidth_used())
4966
		return false;
4967

4968
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4969
		return false;
4970 4971 4972 4973 4974 4975

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4976
		return true;
4977 4978

	throttle_cfs_rq(cfs_rq);
4979
	return true;
4980
}
4981 4982 4983 4984 4985

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4986

4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4999
	raw_spin_lock(&cfs_b->lock);
5000
	for (;;) {
P
Peter Zijlstra 已提交
5001
		overrun = hrtimer_forward_now(timer, cfs_b->period);
5002 5003 5004 5005 5006
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
5007 5008
	if (idle)
		cfs_b->period_active = 0;
5009
	raw_spin_unlock(&cfs_b->lock);
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
5022
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
5034
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5035
{
P
Peter Zijlstra 已提交
5036
	lockdep_assert_held(&cfs_b->lock);
5037

P
Peter Zijlstra 已提交
5038 5039 5040 5041 5042
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
5043 5044 5045 5046
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
5047 5048 5049 5050
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

5051 5052 5053 5054
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

5055 5056 5057 5058 5059 5060 5061 5062
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
5063 5064
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
5065
	struct task_group *tg;
5066

5067 5068 5069 5070 5071 5072
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5073 5074 5075 5076 5077

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
5078
	rcu_read_unlock();
5079 5080
}

5081
/* cpu offline callback */
5082
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5083
{
5084 5085 5086 5087 5088 5089 5090
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5091 5092 5093 5094 5095 5096 5097 5098

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
5099
		cfs_rq->runtime_remaining = 1;
5100 5101 5102 5103 5104 5105
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

5106 5107 5108
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
5109
	rcu_read_unlock();
5110 5111 5112
}

#else /* CONFIG_CFS_BANDWIDTH */
5113 5114
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
5115
	return rq_clock_task(rq_of(cfs_rq));
5116 5117
}

5118
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5119
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5120
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5121
static inline void sync_throttle(struct task_group *tg, int cpu) {}
5122
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5123 5124 5125 5126 5127

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5139 5140 5141 5142 5143

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5144 5145
#endif

5146 5147 5148 5149 5150
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5151
static inline void update_runtime_enabled(struct rq *rq) {}
5152
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5153 5154 5155

#endif /* CONFIG_CFS_BANDWIDTH */

5156 5157 5158 5159
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5160 5161 5162 5163 5164 5165
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5166
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5167

5168
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5169 5170 5171 5172 5173 5174
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5175
				resched_curr(rq);
P
Peter Zijlstra 已提交
5176 5177
			return;
		}
5178
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5179 5180
	}
}
5181 5182 5183 5184 5185 5186 5187 5188 5189 5190

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5191
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5192 5193 5194 5195 5196
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5197
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5198 5199 5200 5201
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5202 5203 5204 5205

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5206 5207
#endif

5208 5209 5210 5211 5212
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5213
static void
5214
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5215 5216
{
	struct cfs_rq *cfs_rq;
5217
	struct sched_entity *se = &p->se;
5218

5219 5220 5221 5222 5223 5224
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5225
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5226

5227
	for_each_sched_entity(se) {
5228
		if (se->on_rq)
5229 5230
			break;
		cfs_rq = cfs_rq_of(se);
5231
		enqueue_entity(cfs_rq, se, flags);
5232 5233 5234 5235 5236 5237

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5238
		 */
5239 5240
		if (cfs_rq_throttled(cfs_rq))
			break;
5241
		cfs_rq->h_nr_running++;
5242

5243
		flags = ENQUEUE_WAKEUP;
5244
	}
P
Peter Zijlstra 已提交
5245

P
Peter Zijlstra 已提交
5246
	for_each_sched_entity(se) {
5247
		cfs_rq = cfs_rq_of(se);
5248
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5249

5250 5251 5252
		if (cfs_rq_throttled(cfs_rq))
			break;

5253
		update_load_avg(cfs_rq, se, UPDATE_TG);
5254
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5255 5256
	}

Y
Yuyang Du 已提交
5257
	if (!se)
5258
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5259

5260
	hrtick_update(rq);
5261 5262
}

5263 5264
static void set_next_buddy(struct sched_entity *se);

5265 5266 5267 5268 5269
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5270
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5271 5272
{
	struct cfs_rq *cfs_rq;
5273
	struct sched_entity *se = &p->se;
5274
	int task_sleep = flags & DEQUEUE_SLEEP;
5275 5276 5277

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5278
		dequeue_entity(cfs_rq, se, flags);
5279 5280 5281 5282 5283 5284 5285 5286 5287

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5288
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5289

5290
		/* Don't dequeue parent if it has other entities besides us */
5291
		if (cfs_rq->load.weight) {
5292 5293
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5294 5295 5296 5297
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5298 5299
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5300
			break;
5301
		}
5302
		flags |= DEQUEUE_SLEEP;
5303
	}
P
Peter Zijlstra 已提交
5304

P
Peter Zijlstra 已提交
5305
	for_each_sched_entity(se) {
5306
		cfs_rq = cfs_rq_of(se);
5307
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5308

5309 5310 5311
		if (cfs_rq_throttled(cfs_rq))
			break;

5312
		update_load_avg(cfs_rq, se, UPDATE_TG);
5313
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5314 5315
	}

Y
Yuyang Du 已提交
5316
	if (!se)
5317
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5318

5319
	hrtick_update(rq);
5320 5321
}

5322
#ifdef CONFIG_SMP
5323 5324 5325 5326 5327

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5328
#ifdef CONFIG_NO_HZ_COMMON
5329 5330 5331 5332 5333
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5334
 * The exact cpuload calculated at every tick would be:
5335
 *
5336 5337 5338 5339 5340 5341 5342
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5343 5344 5345
 *
 * decay_load_missed() below does efficient calculation of
 *
5346 5347 5348 5349 5350 5351
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5352
 *
5353
 * The calculation is approximated on a 128 point scale.
5354 5355
 */
#define DEGRADE_SHIFT		7
5356 5357 5358 5359 5360 5361 5362 5363 5364

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5394
#endif /* CONFIG_NO_HZ_COMMON */
5395

5396
/**
5397
 * __cpu_load_update - update the rq->cpu_load[] statistics
5398 5399 5400 5401
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5402
 * Update rq->cpu_load[] statistics. This function is usually called every
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5429
 * term.
5430
 */
5431 5432
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5433
{
5434
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5446
		old_load = this_rq->cpu_load[i];
5447
#ifdef CONFIG_NO_HZ_COMMON
5448
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5449 5450 5451 5452 5453 5454 5455 5456 5457
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5458
#endif
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5474
/* Used instead of source_load when we know the type == 0 */
5475
static unsigned long weighted_cpuload(struct rq *rq)
5476
{
5477
	return cfs_rq_runnable_load_avg(&rq->cfs);
5478 5479
}

5480
#ifdef CONFIG_NO_HZ_COMMON
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5509
		cpu_load_update(this_rq, load, pending_updates);
5510 5511 5512
	}
}

5513 5514 5515 5516
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5517
static void cpu_load_update_idle(struct rq *this_rq)
5518 5519 5520 5521
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5522
	if (weighted_cpuload(this_rq))
5523 5524
		return;

5525
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5526 5527 5528
}

/*
5529 5530 5531 5532
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5533
 */
5534
void cpu_load_update_nohz_start(void)
5535 5536
{
	struct rq *this_rq = this_rq();
5537 5538 5539 5540 5541 5542

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5543
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5544 5545 5546 5547 5548 5549 5550
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5551
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5552 5553
	struct rq *this_rq = this_rq();
	unsigned long load;
5554
	struct rq_flags rf;
5555 5556 5557 5558

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5559
	load = weighted_cpuload(this_rq);
5560
	rq_lock(this_rq, &rf);
5561
	update_rq_clock(this_rq);
5562
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5563
	rq_unlock(this_rq, &rf);
5564
}
5565 5566 5567 5568 5569 5570 5571 5572
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5573
#ifdef CONFIG_NO_HZ_COMMON
5574 5575
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5576
#endif
5577 5578
	cpu_load_update(this_rq, load, 1);
}
5579 5580 5581 5582

/*
 * Called from scheduler_tick()
 */
5583
void cpu_load_update_active(struct rq *this_rq)
5584
{
5585
	unsigned long load = weighted_cpuload(this_rq);
5586 5587 5588 5589 5590

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5591 5592
}

5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5603
	unsigned long total = weighted_cpuload(rq);
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5618
	unsigned long total = weighted_cpuload(rq);
5619 5620 5621 5622 5623 5624 5625

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5626
static unsigned long capacity_of(int cpu)
5627
{
5628
	return cpu_rq(cpu)->cpu_capacity;
5629 5630
}

5631 5632 5633 5634 5635
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5636 5637 5638
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5639
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5640
	unsigned long load_avg = weighted_cpuload(rq);
5641 5642

	if (nr_running)
5643
		return load_avg / nr_running;
5644 5645 5646 5647

	return 0;
}

P
Peter Zijlstra 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5665 5666
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5667
 *
M
Mike Galbraith 已提交
5668
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5681
 */
5682 5683
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5684 5685
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5686
	int factor = this_cpu_read(sd_llc_size);
5687

M
Mike Galbraith 已提交
5688 5689 5690 5691 5692
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5693 5694
}

5695
/*
5696 5697 5698
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5699
 *
5700 5701
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5702 5703 5704 5705
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5706
 */
5707
static int
5708
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5709
{
5710 5711 5712 5713 5714
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5715 5716 5717 5718 5719 5720
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5721 5722
	 */
	if (idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5723
		return idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5724

5725
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5726
		return this_cpu;
5727

5728
	return nr_cpumask_bits;
5729 5730
}

5731
static int
5732 5733
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5734 5735 5736 5737
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5738
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5739 5740 5741 5742

	if (sync) {
		unsigned long current_load = task_h_load(current);

5743
		if (current_load > this_eff_load)
5744
			return this_cpu;
5745

5746
		this_eff_load -= current_load;
5747 5748 5749 5750
	}

	task_load = task_h_load(p);

5751 5752 5753 5754
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5755

5756
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5757 5758 5759 5760
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5761

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5772 5773
}

5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
#ifdef CONFIG_NUMA_BALANCING
static void
update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target)
{
	unsigned long interval;

	if (!static_branch_likely(&sched_numa_balancing))
		return;

	/* If balancing has no preference then continue gathering data */
	if (p->numa_preferred_nid == -1)
		return;

	/*
	 * If the wakeup is not affecting locality then it is neutral from
	 * the perspective of NUMA balacing so continue gathering data.
	 */
	if (cpu_to_node(prev_cpu) == cpu_to_node(target))
		return;

	/*
	 * Temporarily prevent NUMA balancing trying to place waker/wakee after
	 * wakee has been moved by wake_affine. This will potentially allow
	 * related tasks to converge and update their data placement. The
	 * 4 * numa_scan_period is to allow the two-pass filter to migrate
	 * hot data to the wakers node.
	 */
	interval = max(sysctl_numa_balancing_scan_delay,
			 p->numa_scan_period << 2);
	p->numa_migrate_retry = jiffies + msecs_to_jiffies(interval);

	interval = max(sysctl_numa_balancing_scan_delay,
			 current->numa_scan_period << 2);
	current->numa_migrate_retry = jiffies + msecs_to_jiffies(interval);
}
#else
static void
update_wa_numa_placement(struct task_struct *p, int prev_cpu, int target)
{
}
#endif

5816
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5817
		       int this_cpu, int prev_cpu, int sync)
5818
{
5819
	int target = nr_cpumask_bits;
5820

5821
	if (sched_feat(WA_IDLE))
5822
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5823

5824 5825
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5826

5827
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5828 5829
	if (target == nr_cpumask_bits)
		return prev_cpu;
5830

5831
	update_wa_numa_placement(p, prev_cpu, target);
5832 5833 5834
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5835 5836
}

5837 5838
static inline unsigned long task_util(struct task_struct *p);
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5839 5840 5841

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5842
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5843 5844
}

5845 5846 5847
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5848 5849
 *
 * Assumes p is allowed on at least one CPU in sd.
5850 5851
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5852
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5853
		  int this_cpu, int sd_flag)
5854
{
5855
	struct sched_group *idlest = NULL, *group = sd->groups;
5856
	struct sched_group *most_spare_sg = NULL;
5857 5858 5859
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5860
	unsigned long most_spare = 0, this_spare = 0;
5861
	int load_idx = sd->forkexec_idx;
5862 5863 5864
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5865

5866 5867 5868
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5869
	do {
5870 5871
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5872 5873
		int local_group;
		int i;
5874

5875
		/* Skip over this group if it has no CPUs allowed */
5876
		if (!cpumask_intersects(sched_group_span(group),
5877
					&p->cpus_allowed))
5878 5879 5880
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5881
					       sched_group_span(group));
5882

5883 5884 5885 5886
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5887
		avg_load = 0;
5888
		runnable_load = 0;
5889
		max_spare_cap = 0;
5890

5891
		for_each_cpu(i, sched_group_span(group)) {
5892 5893 5894 5895 5896 5897
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5898 5899 5900
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5901 5902 5903 5904 5905

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5906 5907
		}

5908
		/* Adjust by relative CPU capacity of the group */
5909 5910 5911 5912
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5913 5914

		if (local_group) {
5915 5916
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5917 5918
			this_spare = max_spare_cap;
		} else {
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5934 5935 5936 5937 5938 5939 5940
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5941 5942 5943
		}
	} while (group = group->next, group != sd->groups);

5944 5945 5946 5947 5948 5949
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5950 5951 5952 5953
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5954
	 */
5955 5956 5957
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5958
	if (this_spare > task_util(p) / 2 &&
5959
	    imbalance_scale*this_spare > 100*most_spare)
5960
		return NULL;
5961 5962

	if (most_spare > task_util(p) / 2)
5963 5964
		return most_spare_sg;

5965
skip_spare:
5966 5967 5968
	if (!idlest)
		return NULL;

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5981
	if (min_runnable_load > (this_runnable_load + imbalance))
5982
		return NULL;
5983 5984 5985 5986 5987

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5988 5989 5990 5991
	return idlest;
}

/*
5992
 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5993 5994
 */
static int
5995
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5996 5997
{
	unsigned long load, min_load = ULONG_MAX;
5998 5999 6000 6001
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
6002 6003
	int i;

6004 6005
	/* Check if we have any choice: */
	if (group->group_weight == 1)
6006
		return cpumask_first(sched_group_span(group));
6007

6008
	/* Traverse only the allowed CPUs */
6009
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
6032
		} else if (shallowest_idle_cpu == -1) {
6033
			load = weighted_cpuload(cpu_rq(i));
6034
			if (load < min_load) {
6035 6036 6037
				min_load = load;
				least_loaded_cpu = i;
			}
6038 6039 6040
		}
	}

6041
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6042
}
6043

6044 6045 6046
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
6047
	int new_cpu = cpu;
6048

6049 6050 6051
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
6069
		if (new_cpu == cpu) {
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return new_cpu;
}

6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
6120
void __update_idle_core(struct rq *rq)
6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6150
	int core, cpu;
6151

P
Peter Zijlstra 已提交
6152 6153 6154
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6155 6156 6157
	if (!test_idle_cores(target, false))
		return -1;

6158
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6159

6160
	for_each_cpu_wrap(core, cpus, target) {
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6188 6189 6190
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6191
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6192
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6219
 */
6220 6221
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6222
	struct sched_domain *this_sd;
6223
	u64 avg_cost, avg_idle;
6224 6225
	u64 time, cost;
	s64 delta;
6226
	int cpu, nr = INT_MAX;
6227

6228 6229 6230 6231
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6232 6233 6234 6235
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6236 6237 6238 6239
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6240 6241
		return -1;

6242 6243 6244 6245 6246 6247 6248 6249
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6250 6251
	time = local_clock();

6252
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6253 6254
		if (!--nr)
			return -1;
6255
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6271
 */
6272
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6273
{
6274
	struct sched_domain *sd;
6275
	int i, recent_used_cpu;
6276

6277 6278
	if (idle_cpu(target))
		return target;
6279 6280

	/*
6281
	 * If the previous cpu is cache affine and idle, don't be stupid.
6282
	 */
6283 6284
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
6285

6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
	/* Check a recently used CPU as a potential idle candidate */
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
	    idle_cpu(recent_used_cpu) &&
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
		 * candidate for the next wake.
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6301
	sd = rcu_dereference(per_cpu(sd_llc, target));
6302 6303
	if (!sd)
		return target;
6304

6305 6306 6307
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6308

6309 6310 6311 6312 6313 6314 6315
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6316

6317 6318
	return target;
}
6319

6320
/*
6321
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6322
 * tasks. The unit of the return value must be the one of capacity so we can
6323 6324
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6345
 */
6346
static unsigned long cpu_util(int cpu)
6347
{
6348
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6349 6350
	unsigned long capacity = capacity_orig_of(cpu);

6351
	return (util >= capacity) ? capacity : util;
6352
}
6353

6354
static inline unsigned long task_util(struct task_struct *p)
6355 6356 6357 6358
{
	return p->se.avg.util_avg;
}

6359 6360 6361 6362
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
6363
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6395 6396 6397
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6398 6399 6400
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6401
/*
6402 6403 6404
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6405
 *
6406 6407
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6408
 *
6409
 * Returns the target cpu number.
6410 6411 6412
 *
 * preempt must be disabled.
 */
6413
static int
6414
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6415
{
6416
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6417
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6418
	int new_cpu = prev_cpu;
6419
	int want_affine = 0;
6420
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6421

P
Peter Zijlstra 已提交
6422 6423
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6424
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6425
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6426
	}
6427

6428
	rcu_read_lock();
6429
	for_each_domain(cpu, tmp) {
6430
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6431
			break;
6432

6433
		/*
6434 6435
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6436
		 */
6437 6438 6439
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6440
			break;
6441
		}
6442

6443
		if (tmp->flags & sd_flag)
6444
			sd = tmp;
M
Mike Galbraith 已提交
6445 6446
		else if (!want_affine)
			break;
6447 6448
	}

M
Mike Galbraith 已提交
6449 6450
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6451 6452 6453
		if (cpu == prev_cpu)
			goto pick_cpu;

6454
		new_cpu = wake_affine(affine_sd, p, cpu, prev_cpu, sync);
6455
	}
6456

6457 6458 6459 6460 6461 6462 6463 6464 6465
	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
		/*
		 * We're going to need the task's util for capacity_spare_wake
		 * in find_idlest_group. Sync it up to prev_cpu's
		 * last_update_time.
		 */
		sync_entity_load_avg(&p->se);
	}

M
Mike Galbraith 已提交
6466
	if (!sd) {
6467
pick_cpu:
6468
		if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6469
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6470

6471 6472 6473
			if (want_affine)
				current->recent_used_cpu = cpu;
		}
6474 6475
	} else {
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6476
	}
6477
	rcu_read_unlock();
6478

6479
	return new_cpu;
6480
}
6481

6482 6483
static void detach_entity_cfs_rq(struct sched_entity *se);

6484 6485 6486
/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6487
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6488
 */
6489
static void migrate_task_rq_fair(struct task_struct *p)
6490
{
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6536 6537 6538

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6539 6540

	/* We have migrated, no longer consider this task hot */
6541
	p->se.exec_start = 0;
6542
}
6543 6544 6545 6546 6547

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6548 6549
#endif /* CONFIG_SMP */

6550
static unsigned long wakeup_gran(struct sched_entity *se)
6551 6552 6553 6554
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6555 6556
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6566
	 */
6567
	return calc_delta_fair(gran, se);
6568 6569
}

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6592
	gran = wakeup_gran(se);
6593 6594 6595 6596 6597 6598
	if (vdiff > gran)
		return 1;

	return 0;
}

6599 6600
static void set_last_buddy(struct sched_entity *se)
{
6601 6602 6603
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6604 6605 6606
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6607
		cfs_rq_of(se)->last = se;
6608
	}
6609 6610 6611 6612
}

static void set_next_buddy(struct sched_entity *se)
{
6613 6614 6615
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6616 6617 6618
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6619
		cfs_rq_of(se)->next = se;
6620
	}
6621 6622
}

6623 6624
static void set_skip_buddy(struct sched_entity *se)
{
6625 6626
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6627 6628
}

6629 6630 6631
/*
 * Preempt the current task with a newly woken task if needed:
 */
6632
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6633 6634
{
	struct task_struct *curr = rq->curr;
6635
	struct sched_entity *se = &curr->se, *pse = &p->se;
6636
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6637
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6638
	int next_buddy_marked = 0;
6639

I
Ingo Molnar 已提交
6640 6641 6642
	if (unlikely(se == pse))
		return;

6643
	/*
6644
	 * This is possible from callers such as attach_tasks(), in which we
6645 6646 6647 6648 6649 6650 6651
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6652
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6653
		set_next_buddy(pse);
6654 6655
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6656

6657 6658 6659
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6660 6661 6662 6663 6664 6665
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6666 6667 6668 6669
	 */
	if (test_tsk_need_resched(curr))
		return;

6670 6671 6672 6673 6674
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6675
	/*
6676 6677
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6678
	 */
6679
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6680
		return;
6681

6682
	find_matching_se(&se, &pse);
6683
	update_curr(cfs_rq_of(se));
6684
	BUG_ON(!pse);
6685 6686 6687 6688 6689 6690 6691
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6692
		goto preempt;
6693
	}
6694

6695
	return;
6696

6697
preempt:
6698
	resched_curr(rq);
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6713 6714
}

6715
static struct task_struct *
6716
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6717 6718 6719
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6720
	struct task_struct *p;
6721
	int new_tasks;
6722

6723
again:
6724
	if (!cfs_rq->nr_running)
6725
		goto idle;
6726

6727
#ifdef CONFIG_FAIR_GROUP_SCHED
6728
	if (prev->sched_class != &fair_sched_class)
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6748 6749 6750 6751 6752
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6753

6754 6755 6756
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6757
			 * Therefore the nr_running test will indeed
6758 6759
			 * be correct.
			 */
6760 6761 6762 6763 6764 6765
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6766
				goto simple;
6767
			}
6768
		}
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6802
	goto done;
6803 6804
simple:
#endif
6805

6806
	put_prev_task(rq, prev);
6807

6808
	do {
6809
		se = pick_next_entity(cfs_rq, NULL);
6810
		set_next_entity(cfs_rq, se);
6811 6812 6813
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6814
	p = task_of(se);
6815

6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
done: __maybe_unused
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6826 6827
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6828 6829

	return p;
6830 6831

idle:
6832 6833
	new_tasks = idle_balance(rq, rf);

6834 6835 6836 6837 6838
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6839
	if (new_tasks < 0)
6840 6841
		return RETRY_TASK;

6842
	if (new_tasks > 0)
6843 6844 6845
		goto again;

	return NULL;
6846 6847 6848 6849 6850
}

/*
 * Account for a descheduled task:
 */
6851
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6852 6853 6854 6855 6856 6857
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6858
		put_prev_entity(cfs_rq, se);
6859 6860 6861
	}
}

6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6887 6888 6889 6890 6891
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6892
		rq_clock_skip_update(rq, true);
6893 6894 6895 6896 6897
	}

	set_skip_buddy(se);
}

6898 6899 6900 6901
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6902 6903
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6914
#ifdef CONFIG_SMP
6915
/**************************************************
P
Peter Zijlstra 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6932
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6933 6934 6935 6936 6937 6938
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6939
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6940 6941 6942 6943 6944 6945
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6946
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6985
 *             log_2 n
P
Peter Zijlstra 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
7031
 */
7032

7033 7034
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

7035 7036
enum fbq_type { regular, remote, all };

7037
#define LBF_ALL_PINNED	0x01
7038
#define LBF_NEED_BREAK	0x02
7039 7040
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
7041 7042 7043 7044 7045

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
7046
	int			src_cpu;
7047 7048 7049 7050

	int			dst_cpu;
	struct rq		*dst_rq;

7051 7052
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
7053
	enum cpu_idle_type	idle;
7054
	long			imbalance;
7055 7056 7057
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

7058
	unsigned int		flags;
7059 7060 7061 7062

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
7063 7064

	enum fbq_type		fbq_type;
7065
	struct list_head	tasks;
7066 7067
};

7068 7069 7070
/*
 * Is this task likely cache-hot:
 */
7071
static int task_hot(struct task_struct *p, struct lb_env *env)
7072 7073 7074
{
	s64 delta;

7075 7076
	lockdep_assert_held(&env->src_rq->lock);

7077 7078 7079 7080 7081 7082 7083 7084 7085
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
7086
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7087 7088 7089 7090 7091 7092 7093 7094 7095
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

7096
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7097 7098 7099 7100

	return delta < (s64)sysctl_sched_migration_cost;
}

7101
#ifdef CONFIG_NUMA_BALANCING
7102
/*
7103 7104 7105
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
7106
 */
7107
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7108
{
7109
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7110
	unsigned long src_faults, dst_faults;
7111 7112
	int src_nid, dst_nid;

7113
	if (!static_branch_likely(&sched_numa_balancing))
7114 7115
		return -1;

7116
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7117
		return -1;
7118 7119 7120 7121

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

7122
	if (src_nid == dst_nid)
7123
		return -1;
7124

7125 7126 7127 7128 7129 7130 7131
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
7132

7133 7134
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
7135
		return 0;
7136

7137 7138 7139 7140
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

7141 7142 7143 7144 7145 7146
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
7147 7148
	}

7149
	return dst_faults < src_faults;
7150 7151
}

7152
#else
7153
static inline int migrate_degrades_locality(struct task_struct *p,
7154 7155
					     struct lb_env *env)
{
7156
	return -1;
7157
}
7158 7159
#endif

7160 7161 7162 7163
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7164
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7165
{
7166
	int tsk_cache_hot;
7167 7168 7169

	lockdep_assert_held(&env->src_rq->lock);

7170 7171
	/*
	 * We do not migrate tasks that are:
7172
	 * 1) throttled_lb_pair, or
7173
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7174 7175
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7176
	 */
7177 7178 7179
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7180
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7181
		int cpu;
7182

7183
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7184

7185 7186
		env->flags |= LBF_SOME_PINNED;

7187 7188 7189 7190 7191
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7192 7193
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7194
		 */
7195
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7196 7197
			return 0;

7198 7199
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7200
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7201
				env->flags |= LBF_DST_PINNED;
7202 7203 7204
				env->new_dst_cpu = cpu;
				break;
			}
7205
		}
7206

7207 7208
		return 0;
	}
7209 7210

	/* Record that we found atleast one task that could run on dst_cpu */
7211
	env->flags &= ~LBF_ALL_PINNED;
7212

7213
	if (task_running(env->src_rq, p)) {
7214
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7215 7216 7217 7218 7219
		return 0;
	}

	/*
	 * Aggressive migration if:
7220 7221 7222
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7223
	 */
7224 7225 7226
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7227

7228
	if (tsk_cache_hot <= 0 ||
7229
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7230
		if (tsk_cache_hot == 1) {
7231 7232
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7233
		}
7234 7235 7236
		return 1;
	}

7237
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7238
	return 0;
7239 7240
}

7241
/*
7242 7243 7244 7245 7246 7247 7248
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7249
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7250 7251 7252
	set_task_cpu(p, env->dst_cpu);
}

7253
/*
7254
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7255 7256
 * part of active balancing operations within "domain".
 *
7257
 * Returns a task if successful and NULL otherwise.
7258
 */
7259
static struct task_struct *detach_one_task(struct lb_env *env)
7260
{
7261
	struct task_struct *p;
7262

7263 7264
	lockdep_assert_held(&env->src_rq->lock);

7265 7266
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7267 7268
		if (!can_migrate_task(p, env))
			continue;
7269

7270
		detach_task(p, env);
7271

7272
		/*
7273
		 * Right now, this is only the second place where
7274
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7275
		 * so we can safely collect stats here rather than
7276
		 * inside detach_tasks().
7277
		 */
7278
		schedstat_inc(env->sd->lb_gained[env->idle]);
7279
		return p;
7280
	}
7281
	return NULL;
7282 7283
}

7284 7285
static const unsigned int sched_nr_migrate_break = 32;

7286
/*
7287 7288
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7289
 *
7290
 * Returns number of detached tasks if successful and 0 otherwise.
7291
 */
7292
static int detach_tasks(struct lb_env *env)
7293
{
7294 7295
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7296
	unsigned long load;
7297 7298 7299
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7300

7301
	if (env->imbalance <= 0)
7302
		return 0;
7303

7304
	while (!list_empty(tasks)) {
7305 7306 7307 7308 7309 7310 7311
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7312
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7313

7314 7315
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7316
		if (env->loop > env->loop_max)
7317
			break;
7318 7319

		/* take a breather every nr_migrate tasks */
7320
		if (env->loop > env->loop_break) {
7321
			env->loop_break += sched_nr_migrate_break;
7322
			env->flags |= LBF_NEED_BREAK;
7323
			break;
7324
		}
7325

7326
		if (!can_migrate_task(p, env))
7327 7328 7329
			goto next;

		load = task_h_load(p);
7330

7331
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7332 7333
			goto next;

7334
		if ((load / 2) > env->imbalance)
7335
			goto next;
7336

7337 7338 7339 7340
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7341
		env->imbalance -= load;
7342 7343

#ifdef CONFIG_PREEMPT
7344 7345
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7346
		 * kernels will stop after the first task is detached to minimize
7347 7348
		 * the critical section.
		 */
7349
		if (env->idle == CPU_NEWLY_IDLE)
7350
			break;
7351 7352
#endif

7353 7354 7355 7356
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7357
		if (env->imbalance <= 0)
7358
			break;
7359 7360 7361

		continue;
next:
7362
		list_move(&p->se.group_node, tasks);
7363
	}
7364

7365
	/*
7366 7367 7368
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7369
	 */
7370
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7371

7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7383
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7384
	p->on_rq = TASK_ON_RQ_QUEUED;
7385 7386 7387 7388 7389 7390 7391 7392 7393
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7394 7395 7396
	struct rq_flags rf;

	rq_lock(rq, &rf);
7397
	update_rq_clock(rq);
7398
	attach_task(rq, p);
7399
	rq_unlock(rq, &rf);
7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7410
	struct rq_flags rf;
7411

7412
	rq_lock(env->dst_rq, &rf);
7413
	update_rq_clock(env->dst_rq);
7414 7415 7416 7417

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7418

7419 7420 7421
		attach_task(env->dst_rq, p);
	}

7422
	rq_unlock(env->dst_rq, &rf);
7423 7424
}

P
Peter Zijlstra 已提交
7425
#ifdef CONFIG_FAIR_GROUP_SCHED
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7438
	if (cfs_rq->avg.runnable_load_sum)
7439 7440 7441 7442 7443
		return false;

	return true;
}

7444
static void update_blocked_averages(int cpu)
7445 7446
{
	struct rq *rq = cpu_rq(cpu);
7447
	struct cfs_rq *cfs_rq, *pos;
7448
	struct rq_flags rf;
7449

7450
	rq_lock_irqsave(rq, &rf);
7451
	update_rq_clock(rq);
7452

7453 7454 7455 7456
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7457
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7458 7459
		struct sched_entity *se;

7460 7461 7462
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7463

7464
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7465
			update_tg_load_avg(cfs_rq, 0);
7466

7467 7468 7469
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7470
			update_load_avg(cfs_rq_of(se), se, 0);
7471 7472 7473 7474 7475 7476 7477

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7478
	}
7479
	rq_unlock_irqrestore(rq, &rf);
7480 7481
}

7482
/*
7483
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7484 7485 7486
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7487
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7488
{
7489 7490
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7491
	unsigned long now = jiffies;
7492
	unsigned long load;
7493

7494
	if (cfs_rq->last_h_load_update == now)
7495 7496
		return;

7497 7498 7499 7500 7501 7502 7503
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7504

7505
	if (!se) {
7506
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7507 7508 7509 7510 7511
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7512 7513
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7514 7515 7516 7517
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7518 7519
}

7520
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7521
{
7522
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7523

7524
	update_cfs_rq_h_load(cfs_rq);
7525
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7526
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7527 7528
}
#else
7529
static inline void update_blocked_averages(int cpu)
7530
{
7531 7532
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7533
	struct rq_flags rf;
7534

7535
	rq_lock_irqsave(rq, &rf);
7536
	update_rq_clock(rq);
7537
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7538
	rq_unlock_irqrestore(rq, &rf);
7539 7540
}

7541
static unsigned long task_h_load(struct task_struct *p)
7542
{
7543
	return p->se.avg.load_avg;
7544
}
P
Peter Zijlstra 已提交
7545
#endif
7546 7547

/********** Helpers for find_busiest_group ************************/
7548 7549 7550 7551 7552 7553 7554

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7555 7556 7557 7558 7559 7560 7561
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7562
	unsigned long load_per_task;
7563
	unsigned long group_capacity;
7564
	unsigned long group_util; /* Total utilization of the group */
7565 7566 7567
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7568
	enum group_type group_type;
7569
	int group_no_capacity;
7570 7571 7572 7573
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7574 7575
};

J
Joonsoo Kim 已提交
7576 7577 7578 7579 7580 7581 7582
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7583
	unsigned long total_running;
J
Joonsoo Kim 已提交
7584
	unsigned long total_load;	/* Total load of all groups in sd */
7585
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7586 7587 7588
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7589
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7590 7591
};

7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7603
		.total_running = 0UL,
7604
		.total_load = 0UL,
7605
		.total_capacity = 0UL,
7606 7607
		.busiest_stat = {
			.avg_load = 0UL,
7608 7609
			.sum_nr_running = 0,
			.group_type = group_other,
7610 7611 7612 7613
		},
	};
}

7614 7615 7616
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7617
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7618 7619
 *
 * Return: The load index.
7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7642
static unsigned long scale_rt_capacity(int cpu)
7643 7644
{
	struct rq *rq = cpu_rq(cpu);
7645
	u64 total, used, age_stamp, avg;
7646
	s64 delta;
7647

7648 7649 7650 7651
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7652 7653
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7654
	delta = __rq_clock_broken(rq) - age_stamp;
7655

7656 7657 7658 7659
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7660

7661
	used = div_u64(avg, total);
7662

7663 7664
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7665

7666
	return 1;
7667 7668
}

7669
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7670
{
7671
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7672 7673
	struct sched_group *sdg = sd->groups;

7674
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7675

7676
	capacity *= scale_rt_capacity(cpu);
7677
	capacity >>= SCHED_CAPACITY_SHIFT;
7678

7679 7680
	if (!capacity)
		capacity = 1;
7681

7682 7683
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7684
	sdg->sgc->min_capacity = capacity;
7685 7686
}

7687
void update_group_capacity(struct sched_domain *sd, int cpu)
7688 7689 7690
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7691
	unsigned long capacity, min_capacity;
7692 7693 7694 7695
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7696
	sdg->sgc->next_update = jiffies + interval;
7697 7698

	if (!child) {
7699
		update_cpu_capacity(sd, cpu);
7700 7701 7702
		return;
	}

7703
	capacity = 0;
7704
	min_capacity = ULONG_MAX;
7705

P
Peter Zijlstra 已提交
7706 7707 7708 7709 7710 7711
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7712
		for_each_cpu(cpu, sched_group_span(sdg)) {
7713
			struct sched_group_capacity *sgc;
7714
			struct rq *rq = cpu_rq(cpu);
7715

7716
			/*
7717
			 * build_sched_domains() -> init_sched_groups_capacity()
7718 7719 7720
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7721 7722
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7723
			 *
7724
			 * This avoids capacity from being 0 and
7725 7726 7727
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7728
				capacity += capacity_of(cpu);
7729 7730 7731
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7732
			}
7733

7734
			min_capacity = min(capacity, min_capacity);
7735
		}
P
Peter Zijlstra 已提交
7736 7737 7738 7739
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7740
		 */
P
Peter Zijlstra 已提交
7741 7742 7743

		group = child->groups;
		do {
7744 7745 7746 7747
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7748 7749 7750
			group = group->next;
		} while (group != child->groups);
	}
7751

7752
	sdg->sgc->capacity = capacity;
7753
	sdg->sgc->min_capacity = min_capacity;
7754 7755
}

7756
/*
7757 7758 7759
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7760 7761
 */
static inline int
7762
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7763
{
7764 7765
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7766 7767
}

7768 7769
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7770
 * groups is inadequate due to ->cpus_allowed constraints.
7771 7772 7773 7774 7775
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7776 7777
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7778 7779 7780 7781 7782 7783
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7784 7785
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7786 7787
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7788
 * update_sd_pick_busiest(). And calculate_imbalance() and
7789
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7790 7791 7792 7793 7794 7795 7796
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7797
static inline int sg_imbalanced(struct sched_group *group)
7798
{
7799
	return group->sgc->imbalance;
7800 7801
}

7802
/*
7803 7804 7805
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7806 7807
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7808 7809 7810 7811 7812
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7813
 */
7814 7815
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7816
{
7817 7818
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7819

7820
	if ((sgs->group_capacity * 100) >
7821
			(sgs->group_util * env->sd->imbalance_pct))
7822
		return true;
7823

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7840

7841
	if ((sgs->group_capacity * 100) <
7842
			(sgs->group_util * env->sd->imbalance_pct))
7843
		return true;
7844

7845
	return false;
7846 7847
}

7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7859 7860 7861
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7862
{
7863
	if (sgs->group_no_capacity)
7864 7865 7866 7867 7868 7869 7870 7871
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7872 7873
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7874
 * @env: The load balancing environment.
7875 7876 7877 7878
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7879
 * @overload: Indicate more than one runnable task for any CPU.
7880
 */
7881 7882
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7883 7884
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7885
{
7886
	unsigned long load;
7887
	int i, nr_running;
7888

7889 7890
	memset(sgs, 0, sizeof(*sgs));

7891
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7892 7893 7894
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7895
		if (local_group)
7896
			load = target_load(i, load_idx);
7897
		else
7898 7899 7900
			load = source_load(i, load_idx);

		sgs->group_load += load;
7901
		sgs->group_util += cpu_util(i);
7902
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7903

7904 7905
		nr_running = rq->nr_running;
		if (nr_running > 1)
7906 7907
			*overload = true;

7908 7909 7910 7911
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7912
		sgs->sum_weighted_load += weighted_cpuload(rq);
7913 7914 7915 7916
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7917
			sgs->idle_cpus++;
7918 7919
	}

7920 7921
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7922
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7923

7924
	if (sgs->sum_nr_running)
7925
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7926

7927
	sgs->group_weight = group->group_weight;
7928

7929
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7930
	sgs->group_type = group_classify(group, sgs);
7931 7932
}

7933 7934
/**
 * update_sd_pick_busiest - return 1 on busiest group
7935
 * @env: The load balancing environment.
7936 7937
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7938
 * @sgs: sched_group statistics
7939 7940 7941
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7942 7943 7944
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7945
 */
7946
static bool update_sd_pick_busiest(struct lb_env *env,
7947 7948
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7949
				   struct sg_lb_stats *sgs)
7950
{
7951
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7952

7953
	if (sgs->group_type > busiest->group_type)
7954 7955
		return true;

7956 7957 7958 7959 7960 7961
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7976 7977
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7978 7979
		return true;

7980 7981 7982
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7983
	/*
T
Tim Chen 已提交
7984 7985 7986
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7987
	 */
T
Tim Chen 已提交
7988 7989
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7990 7991 7992
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7993 7994 7995
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7996 7997 7998 7999 8000 8001
			return true;
	}

	return false;
}

8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

8032
/**
8033
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8034
 * @env: The load balancing environment.
8035 8036
 * @sds: variable to hold the statistics for this sched_domain.
 */
8037
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8038
{
8039 8040
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
8041
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
8042
	struct sg_lb_stats tmp_sgs;
8043
	int load_idx, prefer_sibling = 0;
8044
	bool overload = false;
8045 8046 8047 8048

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

8049
	load_idx = get_sd_load_idx(env->sd, env->idle);
8050 8051

	do {
J
Joonsoo Kim 已提交
8052
		struct sg_lb_stats *sgs = &tmp_sgs;
8053 8054
		int local_group;

8055
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
8056 8057
		if (local_group) {
			sds->local = sg;
8058
			sgs = local;
8059 8060

			if (env->idle != CPU_NEWLY_IDLE ||
8061 8062
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
8063
		}
8064

8065 8066
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
8067

8068 8069 8070
		if (local_group)
			goto next_group;

8071 8072
		/*
		 * In case the child domain prefers tasks go to siblings
8073
		 * first, lower the sg capacity so that we'll try
8074 8075
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
8076 8077 8078 8079
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
8080
		 */
8081
		if (prefer_sibling && sds->local &&
8082 8083
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8084
			sgs->group_no_capacity = 1;
8085
			sgs->group_type = group_classify(sg, sgs);
8086
		}
8087

8088
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8089
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8090
			sds->busiest_stat = *sgs;
8091 8092
		}

8093 8094
next_group:
		/* Now, start updating sd_lb_stats */
8095
		sds->total_running += sgs->sum_nr_running;
8096
		sds->total_load += sgs->group_load;
8097
		sds->total_capacity += sgs->group_capacity;
8098

8099
		sg = sg->next;
8100
	} while (sg != env->sd->groups);
8101 8102 8103

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8104 8105 8106 8107 8108 8109

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8110 8111 8112 8113
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8114
 *			sched domain.
8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8129
 * Return: 1 when packing is required and a task should be moved to
8130
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8131
 *
8132
 * @env: The load balancing environment.
8133 8134
 * @sds: Statistics of the sched_domain which is to be packed
 */
8135
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8136 8137 8138
{
	int busiest_cpu;

8139
	if (!(env->sd->flags & SD_ASYM_PACKING))
8140 8141
		return 0;

8142 8143 8144
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8145 8146 8147
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8148 8149
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8150 8151
		return 0;

8152
	env->imbalance = DIV_ROUND_CLOSEST(
8153
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8154
		SCHED_CAPACITY_SCALE);
8155

8156
	return 1;
8157 8158 8159 8160 8161 8162
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8163
 * @env: The load balancing environment.
8164 8165
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8166 8167
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8168
{
8169
	unsigned long tmp, capa_now = 0, capa_move = 0;
8170
	unsigned int imbn = 2;
8171
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8172
	struct sg_lb_stats *local, *busiest;
8173

J
Joonsoo Kim 已提交
8174 8175
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8176

J
Joonsoo Kim 已提交
8177 8178 8179 8180
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8181

J
Joonsoo Kim 已提交
8182
	scaled_busy_load_per_task =
8183
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8184
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8185

8186 8187
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8188
		env->imbalance = busiest->load_per_task;
8189 8190 8191 8192 8193
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8194
	 * however we may be able to increase total CPU capacity used by
8195 8196 8197
	 * moving them.
	 */

8198
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8199
			min(busiest->load_per_task, busiest->avg_load);
8200
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8201
			min(local->load_per_task, local->avg_load);
8202
	capa_now /= SCHED_CAPACITY_SCALE;
8203 8204

	/* Amount of load we'd subtract */
8205
	if (busiest->avg_load > scaled_busy_load_per_task) {
8206
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8207
			    min(busiest->load_per_task,
8208
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8209
	}
8210 8211

	/* Amount of load we'd add */
8212
	if (busiest->avg_load * busiest->group_capacity <
8213
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8214 8215
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8216
	} else {
8217
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8218
		      local->group_capacity;
J
Joonsoo Kim 已提交
8219
	}
8220
	capa_move += local->group_capacity *
8221
		    min(local->load_per_task, local->avg_load + tmp);
8222
	capa_move /= SCHED_CAPACITY_SCALE;
8223 8224

	/* Move if we gain throughput */
8225
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8226
		env->imbalance = busiest->load_per_task;
8227 8228 8229 8230 8231
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8232
 * @env: load balance environment
8233 8234
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8235
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8236
{
8237
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8238 8239 8240 8241
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8242

8243
	if (busiest->group_type == group_imbalanced) {
8244 8245 8246 8247
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
8248 8249
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8250 8251
	}

8252
	/*
8253 8254 8255 8256
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8257
	 */
8258 8259
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8260 8261
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8262 8263
	}

8264 8265 8266 8267 8268
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8269
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8270
		if (load_above_capacity > busiest->group_capacity) {
8271
			load_above_capacity -= busiest->group_capacity;
8272
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8273 8274
			load_above_capacity /= busiest->group_capacity;
		} else
8275
			load_above_capacity = ~0UL;
8276 8277 8278 8279 8280 8281
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
8282 8283
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8284
	 */
8285
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8286 8287

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8288
	env->imbalance = min(
8289 8290
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8291
	) / SCHED_CAPACITY_SCALE;
8292 8293 8294

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8295
	 * there is no guarantee that any tasks will be moved so we'll have
8296 8297 8298
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8299
	if (env->imbalance < busiest->load_per_task)
8300
		return fix_small_imbalance(env, sds);
8301
}
8302

8303 8304 8305 8306
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8307
 * if there is an imbalance.
8308 8309 8310 8311
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8312
 * @env: The load balancing environment.
8313
 *
8314
 * Return:	- The busiest group if imbalance exists.
8315
 */
J
Joonsoo Kim 已提交
8316
static struct sched_group *find_busiest_group(struct lb_env *env)
8317
{
J
Joonsoo Kim 已提交
8318
	struct sg_lb_stats *local, *busiest;
8319 8320
	struct sd_lb_stats sds;

8321
	init_sd_lb_stats(&sds);
8322 8323 8324 8325 8326

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8327
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8328 8329
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8330

8331
	/* ASYM feature bypasses nice load balance check */
8332
	if (check_asym_packing(env, &sds))
8333 8334
		return sds.busiest;

8335
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8336
	if (!sds.busiest || busiest->sum_nr_running == 0)
8337 8338
		goto out_balanced;

8339
	/* XXX broken for overlapping NUMA groups */
8340 8341
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8342

P
Peter Zijlstra 已提交
8343 8344
	/*
	 * If the busiest group is imbalanced the below checks don't
8345
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8346 8347
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8348
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8349 8350
		goto force_balance;

8351 8352 8353 8354 8355
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8356
	    busiest->group_no_capacity)
8357 8358
		goto force_balance;

8359
	/*
8360
	 * If the local group is busier than the selected busiest group
8361 8362
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8363
	if (local->avg_load >= busiest->avg_load)
8364 8365
		goto out_balanced;

8366 8367 8368 8369
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8370
	if (local->avg_load >= sds.avg_load)
8371 8372
		goto out_balanced;

8373
	if (env->idle == CPU_IDLE) {
8374
		/*
8375 8376 8377 8378 8379
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8380
		 */
8381 8382
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8383
			goto out_balanced;
8384 8385 8386 8387 8388
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8389 8390
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8391
			goto out_balanced;
8392
	}
8393

8394
force_balance:
8395
	/* Looks like there is an imbalance. Compute it */
8396
	calculate_imbalance(env, &sds);
8397 8398 8399
	return sds.busiest;

out_balanced:
8400
	env->imbalance = 0;
8401 8402 8403 8404 8405 8406
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
8407
static struct rq *find_busiest_queue(struct lb_env *env,
8408
				     struct sched_group *group)
8409 8410
{
	struct rq *busiest = NULL, *rq;
8411
	unsigned long busiest_load = 0, busiest_capacity = 1;
8412 8413
	int i;

8414
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8415
		unsigned long capacity, wl;
8416 8417 8418 8419
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8420

8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8443
		capacity = capacity_of(i);
8444

8445
		wl = weighted_cpuload(rq);
8446

8447 8448
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8449
		 * which is not scaled with the cpu capacity.
8450
		 */
8451 8452 8453

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8454 8455
			continue;

8456 8457
		/*
		 * For the load comparisons with the other cpu's, consider
8458 8459 8460
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
8461
		 *
8462
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8463
		 * multiplication to rid ourselves of the division works out
8464 8465
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8466
		 */
8467
		if (wl * busiest_capacity > busiest_load * capacity) {
8468
			busiest_load = wl;
8469
			busiest_capacity = capacity;
8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8483
static int need_active_balance(struct lb_env *env)
8484
{
8485 8486 8487
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8488 8489 8490

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8491 8492
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8493
		 */
T
Tim Chen 已提交
8494 8495
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8496
			return 1;
8497 8498
	}

8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8512 8513 8514
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8515 8516
static int active_load_balance_cpu_stop(void *data);

8517 8518 8519 8520 8521
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8522 8523 8524 8525 8526 8527 8528
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8529 8530 8531 8532 8533 8534 8535 8536
	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
8537
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8538
		if (!idle_cpu(cpu))
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8552
	return balance_cpu == env->dst_cpu;
8553 8554
}

8555 8556 8557 8558 8559 8560
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8561
			int *continue_balancing)
8562
{
8563
	int ld_moved, cur_ld_moved, active_balance = 0;
8564
	struct sched_domain *sd_parent = sd->parent;
8565 8566
	struct sched_group *group;
	struct rq *busiest;
8567
	struct rq_flags rf;
8568
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8569

8570 8571
	struct lb_env env = {
		.sd		= sd,
8572 8573
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8574
		.dst_grpmask    = sched_group_span(sd->groups),
8575
		.idle		= idle,
8576
		.loop_break	= sched_nr_migrate_break,
8577
		.cpus		= cpus,
8578
		.fbq_type	= all,
8579
		.tasks		= LIST_HEAD_INIT(env.tasks),
8580 8581
	};

8582
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8583

8584
	schedstat_inc(sd->lb_count[idle]);
8585 8586

redo:
8587 8588
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8589
		goto out_balanced;
8590
	}
8591

8592
	group = find_busiest_group(&env);
8593
	if (!group) {
8594
		schedstat_inc(sd->lb_nobusyg[idle]);
8595 8596 8597
		goto out_balanced;
	}

8598
	busiest = find_busiest_queue(&env, group);
8599
	if (!busiest) {
8600
		schedstat_inc(sd->lb_nobusyq[idle]);
8601 8602 8603
		goto out_balanced;
	}

8604
	BUG_ON(busiest == env.dst_rq);
8605

8606
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8607

8608 8609 8610
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8611 8612 8613 8614 8615 8616 8617 8618
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8619
		env.flags |= LBF_ALL_PINNED;
8620
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8621

8622
more_balance:
8623
		rq_lock_irqsave(busiest, &rf);
8624
		update_rq_clock(busiest);
8625 8626 8627 8628 8629

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8630
		cur_ld_moved = detach_tasks(&env);
8631 8632

		/*
8633 8634 8635 8636 8637
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8638
		 */
8639

8640
		rq_unlock(busiest, &rf);
8641 8642 8643 8644 8645 8646

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8647
		local_irq_restore(rf.flags);
8648

8649 8650 8651 8652 8653
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8673
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8674

8675 8676 8677
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8678
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8679
			env.dst_cpu	 = env.new_dst_cpu;
8680
			env.flags	&= ~LBF_DST_PINNED;
8681 8682
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8683

8684 8685 8686 8687 8688 8689
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8690

8691 8692 8693 8694
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8695
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8696

8697
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8698 8699 8700
				*group_imbalance = 1;
		}

8701
		/* All tasks on this runqueue were pinned by CPU affinity */
8702
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8703
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8704 8705 8706 8707 8708 8709 8710 8711 8712
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8713 8714
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8715
				goto redo;
8716
			}
8717
			goto out_all_pinned;
8718 8719 8720 8721
		}
	}

	if (!ld_moved) {
8722
		schedstat_inc(sd->lb_failed[idle]);
8723 8724 8725 8726 8727 8728 8729 8730
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8731

8732
		if (need_active_balance(&env)) {
8733 8734
			unsigned long flags;

8735 8736
			raw_spin_lock_irqsave(&busiest->lock, flags);

8737 8738 8739
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8740
			 */
8741
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8742 8743
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8744
				env.flags |= LBF_ALL_PINNED;
8745 8746 8747
				goto out_one_pinned;
			}

8748 8749 8750 8751 8752
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8753 8754 8755 8756 8757 8758
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8759

8760
			if (active_balance) {
8761 8762 8763
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8764
			}
8765

8766
			/* We've kicked active balancing, force task migration. */
8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8780
		 * detach_tasks).
8781 8782 8783 8784 8785 8786 8787 8788
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8806
	schedstat_inc(sd->lb_balanced[idle]);
8807 8808 8809 8810 8811

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8812
	if (((env.flags & LBF_ALL_PINNED) &&
8813
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8814 8815 8816
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8817
	ld_moved = 0;
8818 8819 8820 8821
out:
	return ld_moved;
}

8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8838
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8839 8840 8841
{
	unsigned long interval, next;

8842 8843
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8844 8845 8846 8847 8848 8849
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8850 8851 8852 8853
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8854
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8855
{
8856 8857
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8858 8859
	struct sched_domain *sd;
	int pulled_task = 0;
8860
	u64 curr_cost = 0;
8861

8862 8863 8864 8865 8866 8867
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8868 8869 8870 8871 8872 8873
	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

8874 8875 8876 8877 8878 8879 8880 8881
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8882 8883
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8884 8885 8886
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8887
			update_next_balance(sd, &next_balance);
8888 8889
		rcu_read_unlock();

8890
		goto out;
8891
	}
8892

8893 8894
	raw_spin_unlock(&this_rq->lock);

8895
	update_blocked_averages(this_cpu);
8896
	rcu_read_lock();
8897
	for_each_domain(this_cpu, sd) {
8898
		int continue_balancing = 1;
8899
		u64 t0, domain_cost;
8900 8901 8902 8903

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8904
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8905
			update_next_balance(sd, &next_balance);
8906
			break;
8907
		}
8908

8909
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8910 8911
			t0 = sched_clock_cpu(this_cpu);

8912
			pulled_task = load_balance(this_cpu, this_rq,
8913 8914
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8915 8916 8917 8918 8919 8920

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8921
		}
8922

8923
		update_next_balance(sd, &next_balance);
8924 8925 8926 8927 8928 8929

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8930 8931
			break;
	}
8932
	rcu_read_unlock();
8933 8934 8935

	raw_spin_lock(&this_rq->lock);

8936 8937 8938
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8939
	/*
8940 8941 8942
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8943
	 */
8944
	if (this_rq->cfs.h_nr_running && !pulled_task)
8945
		pulled_task = 1;
8946

8947 8948 8949
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8950
		this_rq->next_balance = next_balance;
8951

8952
	/* Is there a task of a high priority class? */
8953
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8954 8955
		pulled_task = -1;

8956
	if (pulled_task)
8957 8958
		this_rq->idle_stamp = 0;

8959 8960
	rq_repin_lock(this_rq, rf);

8961
	return pulled_task;
8962 8963 8964
}

/*
8965 8966 8967 8968
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8969
 */
8970
static int active_load_balance_cpu_stop(void *data)
8971
{
8972 8973
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8974
	int target_cpu = busiest_rq->push_cpu;
8975
	struct rq *target_rq = cpu_rq(target_cpu);
8976
	struct sched_domain *sd;
8977
	struct task_struct *p = NULL;
8978
	struct rq_flags rf;
8979

8980
	rq_lock_irq(busiest_rq, &rf);
8981 8982 8983 8984 8985 8986 8987
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8988 8989 8990 8991 8992

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8993 8994 8995

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8996
		goto out_unlock;
8997 8998 8999 9000 9001 9002 9003 9004 9005

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
9006
	rcu_read_lock();
9007 9008 9009 9010 9011 9012 9013
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
9014 9015
		struct lb_env env = {
			.sd		= sd,
9016 9017 9018 9019
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
9020
			.idle		= CPU_IDLE,
9021 9022 9023 9024 9025 9026 9027
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
9028 9029
		};

9030
		schedstat_inc(sd->alb_count);
9031
		update_rq_clock(busiest_rq);
9032

9033
		p = detach_one_task(&env);
9034
		if (p) {
9035
			schedstat_inc(sd->alb_pushed);
9036 9037 9038
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
9039
			schedstat_inc(sd->alb_failed);
9040
		}
9041
	}
9042
	rcu_read_unlock();
9043 9044
out_unlock:
	busiest_rq->active_balance = 0;
9045
	rq_unlock(busiest_rq, &rf);
9046 9047 9048 9049 9050 9051

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

9052
	return 0;
9053 9054
}

9055 9056 9057 9058 9059
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

9060
#ifdef CONFIG_NO_HZ_COMMON
9061 9062 9063 9064 9065 9066
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
9067
static struct {
9068
	cpumask_var_t idle_cpus_mask;
9069
	atomic_t nr_cpus;
9070 9071
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
9072

9073
static inline int find_new_ilb(void)
9074
{
9075
	int ilb = cpumask_first(nohz.idle_cpus_mask);
9076

9077 9078 9079 9080
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
9081 9082
}

9083 9084 9085 9086 9087
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
9088
static void nohz_balancer_kick(void)
9089 9090 9091 9092 9093
{
	int ilb_cpu;

	nohz.next_balance++;

9094
	ilb_cpu = find_new_ilb();
9095

9096 9097
	if (ilb_cpu >= nr_cpu_ids)
		return;
9098

9099
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9100 9101 9102 9103 9104 9105 9106 9107
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9108 9109 9110
	return;
}

9111
void nohz_balance_exit_idle(unsigned int cpu)
9112 9113
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9114 9115 9116 9117 9118 9119 9120
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
9121 9122 9123 9124
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

9125 9126 9127
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
9128
	int cpu = smp_processor_id();
9129 9130

	rcu_read_lock();
9131
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9132 9133 9134 9135 9136

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

9137
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9138
unlock:
9139 9140 9141 9142 9143 9144
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
9145
	int cpu = smp_processor_id();
9146 9147

	rcu_read_lock();
9148
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9149 9150 9151 9152 9153

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9154
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9155
unlock:
9156 9157 9158
	rcu_read_unlock();
}

9159
/*
9160
 * This routine will record that the cpu is going idle with tick stopped.
9161
 * This info will be used in performing idle load balancing in the future.
9162
 */
9163
void nohz_balance_enter_idle(int cpu)
9164
{
9165 9166 9167 9168 9169 9170
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

9171
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9172
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9173 9174
		return;

9175 9176
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
9177

9178 9179 9180 9181 9182 9183
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

9184 9185 9186
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9187 9188 9189 9190 9191
}
#endif

static DEFINE_SPINLOCK(balancing);

9192 9193 9194 9195
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
9196
void update_max_interval(void)
9197 9198 9199 9200
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

9201 9202 9203 9204
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
9205
 * Balancing parameters are set up in init_sched_domains.
9206
 */
9207
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9208
{
9209
	int continue_balancing = 1;
9210
	int cpu = rq->cpu;
9211
	unsigned long interval;
9212
	struct sched_domain *sd;
9213 9214 9215
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9216 9217
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
9218

9219
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
9220

9221
	rcu_read_lock();
9222
	for_each_domain(cpu, sd) {
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

9235 9236 9237
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

9249
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9250 9251 9252 9253 9254 9255 9256 9257

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9258
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9259
				/*
9260
				 * The LBF_DST_PINNED logic could have changed
9261 9262
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
9263
				 */
9264
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9265 9266
			}
			sd->last_balance = jiffies;
9267
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9268 9269 9270 9271 9272 9273 9274 9275
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
9276 9277
	}
	if (need_decay) {
9278
		/*
9279 9280
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
9281
		 */
9282 9283
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
9284
	}
9285
	rcu_read_unlock();
9286 9287 9288 9289 9290 9291

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
9292
	if (likely(update_next_balance)) {
9293
		rq->next_balance = next_balance;
9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
9308 9309
}

9310
#ifdef CONFIG_NO_HZ_COMMON
9311
/*
9312
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9313 9314
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
9315
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9316
{
9317
	int this_cpu = this_rq->cpu;
9318 9319
	struct rq *rq;
	int balance_cpu;
9320 9321 9322
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9323

9324 9325 9326
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
9327 9328

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9329
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9330 9331 9332 9333 9334 9335 9336
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
9337
		if (need_resched())
9338 9339
			break;

V
Vincent Guittot 已提交
9340 9341
		rq = cpu_rq(balance_cpu);

9342 9343 9344 9345 9346
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9347 9348 9349
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
9350
			update_rq_clock(rq);
9351
			cpu_load_update_idle(rq);
9352 9353
			rq_unlock_irq(rq, &rf);

9354 9355
			rebalance_domains(rq, CPU_IDLE);
		}
9356

9357 9358 9359 9360
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9361
	}
9362 9363 9364 9365 9366 9367 9368 9369

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
9370 9371
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9372 9373 9374
}

/*
9375
 * Current heuristic for kicking the idle load balancer in the presence
9376
 * of an idle cpu in the system.
9377
 *   - This rq has more than one task.
9378 9379 9380 9381
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
9382 9383
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
9384
 */
9385
static inline bool nohz_kick_needed(struct rq *rq)
9386 9387
{
	unsigned long now = jiffies;
9388
	struct sched_domain_shared *sds;
9389
	struct sched_domain *sd;
T
Tim Chen 已提交
9390
	int nr_busy, i, cpu = rq->cpu;
9391
	bool kick = false;
9392

9393
	if (unlikely(rq->idle_balance))
9394
		return false;
9395

9396 9397 9398 9399
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
9400
	set_cpu_sd_state_busy();
9401
	nohz_balance_exit_idle(cpu);
9402 9403 9404 9405 9406 9407

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
9408
		return false;
9409 9410

	if (time_before(now, nohz.next_balance))
9411
		return false;
9412

9413
	if (rq->nr_running >= 2)
9414
		return true;
9415

9416
	rcu_read_lock();
9417 9418 9419 9420 9421 9422 9423
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
9424 9425 9426 9427 9428
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

9429
	}
9430

9431 9432 9433 9434 9435 9436 9437 9438
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
9439

9440
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
9441 9442 9443 9444 9445
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
9446

T
Tim Chen 已提交
9447 9448 9449 9450 9451 9452
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
9453
unlock:
9454
	rcu_read_unlock();
9455
	return kick;
9456 9457
}
#else
9458
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9459 9460 9461 9462 9463 9464
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9465
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9466
{
9467
	struct rq *this_rq = this_rq();
9468
	enum cpu_idle_type idle = this_rq->idle_balance ?
9469 9470 9471
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9472
	 * If this cpu has a pending nohz_balance_kick, then do the
9473
	 * balancing on behalf of the other idle cpus whose ticks are
9474 9475 9476 9477
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9478
	 */
9479
	nohz_idle_balance(this_rq, idle);
9480
	rebalance_domains(this_rq, idle);
9481 9482 9483 9484 9485
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9486
void trigger_load_balance(struct rq *rq)
9487 9488
{
	/* Don't need to rebalance while attached to NULL domain */
9489 9490 9491 9492
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9493
		raise_softirq(SCHED_SOFTIRQ);
9494
#ifdef CONFIG_NO_HZ_COMMON
9495
	if (nohz_kick_needed(rq))
9496
		nohz_balancer_kick();
9497
#endif
9498 9499
}

9500 9501 9502
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9503 9504

	update_runtime_enabled(rq);
9505 9506 9507 9508 9509
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9510 9511 9512

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9513 9514
}

9515
#endif /* CONFIG_SMP */
9516

9517 9518 9519
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9520
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9521 9522 9523 9524 9525 9526
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9527
		entity_tick(cfs_rq, se, queued);
9528
	}
9529

9530
	if (static_branch_unlikely(&sched_numa_balancing))
9531
		task_tick_numa(rq, curr);
9532 9533 9534
}

/*
P
Peter Zijlstra 已提交
9535 9536 9537
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9538
 */
P
Peter Zijlstra 已提交
9539
static void task_fork_fair(struct task_struct *p)
9540
{
9541 9542
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9543
	struct rq *rq = this_rq();
9544
	struct rq_flags rf;
9545

9546
	rq_lock(rq, &rf);
9547 9548
	update_rq_clock(rq);

9549 9550
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9551 9552
	if (curr) {
		update_curr(cfs_rq);
9553
		se->vruntime = curr->vruntime;
9554
	}
9555
	place_entity(cfs_rq, se, 1);
9556

P
Peter Zijlstra 已提交
9557
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9558
		/*
9559 9560 9561
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9562
		swap(curr->vruntime, se->vruntime);
9563
		resched_curr(rq);
9564
	}
9565

9566
	se->vruntime -= cfs_rq->min_vruntime;
9567
	rq_unlock(rq, &rf);
9568 9569
}

9570 9571 9572 9573
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9574 9575
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9576
{
9577
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9578 9579
		return;

9580 9581 9582 9583 9584
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9585
	if (rq->curr == p) {
9586
		if (p->prio > oldprio)
9587
			resched_curr(rq);
9588
	} else
9589
		check_preempt_curr(rq, p, 0);
9590 9591
}

9592
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9593 9594 9595 9596
{
	struct sched_entity *se = &p->se;

	/*
9597 9598 9599 9600 9601 9602 9603 9604 9605 9606
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9607
	 *
9608 9609 9610 9611
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9612
	 */
9613 9614 9615 9616 9617 9618
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9637
		update_load_avg(cfs_rq, se, UPDATE_TG);
9638 9639 9640 9641 9642 9643
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9644
static void detach_entity_cfs_rq(struct sched_entity *se)
9645 9646 9647
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9648
	/* Catch up with the cfs_rq and remove our load when we leave */
9649
	update_load_avg(cfs_rq, se, 0);
9650
	detach_entity_load_avg(cfs_rq, se);
9651
	update_tg_load_avg(cfs_rq, false);
9652
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9653 9654
}

9655
static void attach_entity_cfs_rq(struct sched_entity *se)
9656
{
9657
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9658 9659

#ifdef CONFIG_FAIR_GROUP_SCHED
9660 9661 9662 9663 9664 9665
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9666

9667
	/* Synchronize entity with its cfs_rq */
9668
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9669
	attach_entity_load_avg(cfs_rq, se);
9670
	update_tg_load_avg(cfs_rq, false);
9671
	propagate_entity_cfs_rq(se);
9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9697 9698 9699 9700

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9701

9702 9703 9704 9705 9706 9707 9708 9709
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9710

9711
	if (task_on_rq_queued(p)) {
9712
		/*
9713 9714 9715
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9716
		 */
9717 9718 9719 9720
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9721
	}
9722 9723
}

9724 9725 9726 9727 9728 9729 9730 9731 9732
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9733 9734 9735 9736 9737 9738 9739
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9740 9741
}

9742 9743
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9744
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9745 9746 9747 9748
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9749
#ifdef CONFIG_SMP
9750
	raw_spin_lock_init(&cfs_rq->removed.lock);
9751
#endif
9752 9753
}

P
Peter Zijlstra 已提交
9754
#ifdef CONFIG_FAIR_GROUP_SCHED
9755 9756 9757 9758 9759 9760 9761 9762
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9763
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9764
{
9765
	detach_task_cfs_rq(p);
9766
	set_task_rq(p, task_cpu(p));
9767 9768 9769 9770 9771

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9772
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9773
}
9774

9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9788 9789 9790 9791 9792 9793 9794 9795 9796
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9797
		if (tg->se)
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9808
	struct cfs_rq *cfs_rq;
9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9835
		init_entity_runnable_average(se);
9836 9837 9838 9839 9840 9841 9842 9843 9844 9845
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9857
		update_rq_clock(rq);
9858
		attach_entity_cfs_rq(se);
9859
		sync_throttle(tg, i);
9860 9861 9862 9863
		raw_spin_unlock_irq(&rq->lock);
	}
}

9864
void unregister_fair_sched_group(struct task_group *tg)
9865 9866
{
	unsigned long flags;
9867 9868
	struct rq *rq;
	int cpu;
9869

9870 9871 9872
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9873

9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9906
	if (!parent) {
9907
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9908 9909
		se->depth = 0;
	} else {
9910
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9911 9912
		se->depth = parent->depth + 1;
	}
9913 9914

	se->my_q = cfs_rq;
9915 9916
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9941 9942
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9943 9944

		/* Propagate contribution to hierarchy */
9945
		rq_lock_irqsave(rq, &rf);
9946
		update_rq_clock(rq);
9947
		for_each_sched_entity(se) {
9948
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9949
			update_cfs_group(se);
9950
		}
9951
		rq_unlock_irqrestore(rq, &rf);
9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9967 9968
void online_fair_sched_group(struct task_group *tg) { }

9969
void unregister_fair_sched_group(struct task_group *tg) { }
9970 9971 9972

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9973

9974
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9975 9976 9977 9978 9979 9980 9981 9982 9983
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9984
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9985 9986 9987 9988

	return rr_interval;
}

9989 9990 9991
/*
 * All the scheduling class methods:
 */
9992
const struct sched_class fair_sched_class = {
9993
	.next			= &idle_sched_class,
9994 9995 9996
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9997
	.yield_to_task		= yield_to_task_fair,
9998

I
Ingo Molnar 已提交
9999
	.check_preempt_curr	= check_preempt_wakeup,
10000 10001 10002 10003

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10004
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10005
	.select_task_rq		= select_task_rq_fair,
10006
	.migrate_task_rq	= migrate_task_rq_fair,
10007

10008 10009
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10010

10011
	.task_dead		= task_dead_fair,
10012
	.set_cpus_allowed	= set_cpus_allowed_common,
10013
#endif
10014

10015
	.set_curr_task          = set_curr_task_fair,
10016
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10017
	.task_fork		= task_fork_fair,
10018 10019

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10020
	.switched_from		= switched_from_fair,
10021
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10022

10023 10024
	.get_rr_interval	= get_rr_interval_fair,

10025 10026
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10027
#ifdef CONFIG_FAIR_GROUP_SCHED
10028
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10029
#endif
10030 10031 10032
};

#ifdef CONFIG_SCHED_DEBUG
10033
void print_cfs_stats(struct seq_file *m, int cpu)
10034
{
10035
	struct cfs_rq *cfs_rq, *pos;
10036

10037
	rcu_read_lock();
10038
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10039
		print_cfs_rq(m, cpu, cfs_rq);
10040
	rcu_read_unlock();
10041
}
10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10063 10064 10065 10066 10067 10068

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10069
#ifdef CONFIG_NO_HZ_COMMON
10070
	nohz.next_balance = jiffies;
10071 10072 10073 10074 10075
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}