fair.c 232.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122
/*
 * The margin used when comparing utilization with CPU capacity:
 * util * 1024 < capacity * margin
 */
unsigned int capacity_margin = 1280; /* ~20% */

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

141 142 143 144 145 146 147 148 149
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
150
static unsigned int get_update_sysctl_factor(void)
151
{
152
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

188
#define WMULT_CONST	(~0U)
189 190
#define WMULT_SHIFT	32

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
207 208

/*
209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
213
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214 215 216 217 218
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
219
 */
220
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
221
{
222 223
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
224

225
	__update_inv_weight(lw);
226

227 228 229 230 231
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
232 233
	}

234 235
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
236

237 238 239 240
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
241

242
	return mul_u64_u32_shr(delta_exec, fact, shift);
243 244 245 246
}


const struct sched_class fair_sched_class;
247

248 249 250 251
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

252
#ifdef CONFIG_FAIR_GROUP_SCHED
253

254
/* cpu runqueue to which this cfs_rq is attached */
255 256
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
257
	return cfs_rq->rq;
258 259
}

260 261
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
262

263 264 265 266 267 268 269 270
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

292 293 294
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
295 296 297 298 299 300 301 302 303 304 305 306
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
307
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
308
		}
309 310 311 312 313 314 315 316 317 318 319 320 321

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
322 323 324 325 326
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
327
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
328 329 330
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
331
		return se->cfs_rq;
P
Peter Zijlstra 已提交
332

P
Peter Zijlstra 已提交
333
	return NULL;
P
Peter Zijlstra 已提交
334 335 336 337 338 339 340
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

341 342 343 344 345 346 347 348 349 350 351 352 353
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
354 355
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

373 374 375 376 377 378
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
379

380 381 382
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
383 384 385 386
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
387 388
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
389

P
Peter Zijlstra 已提交
390
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
391
{
P
Peter Zijlstra 已提交
392
	return &task_rq(p)->cfs;
393 394
}

P
Peter Zijlstra 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

409 410 411 412 413 414 415 416
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
417 418 419 420 421 422 423 424
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

425 426 427 428 429
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
430 431
#endif	/* CONFIG_FAIR_GROUP_SCHED */

432
static __always_inline
433
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
434 435 436 437 438

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

439
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
440
{
441
	s64 delta = (s64)(vruntime - max_vruntime);
442
	if (delta > 0)
443
		max_vruntime = vruntime;
444

445
	return max_vruntime;
446 447
}

448
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
449 450 451 452 453 454 455 456
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

457 458 459 460 461 462
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

463 464 465 466 467 468 469 470 471
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

472
		vruntime = se->vruntime;
473 474
	}

475 476 477
	if (cfs_rq->curr)
		vruntime = min_vruntime(vruntime, cfs_rq->curr->vruntime);

478
	/* ensure we never gain time by being placed backwards. */
479
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
480 481 482 483
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
484 485
}

486 487 488
/*
 * Enqueue an entity into the rb-tree:
 */
489
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
506
		if (entity_before(se, entry)) {
507 508 509 510 511 512 513 514 515 516 517
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
518
	if (leftmost)
I
Ingo Molnar 已提交
519
		cfs_rq->rb_leftmost = &se->run_node;
520 521 522 523 524

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

525
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
526
{
P
Peter Zijlstra 已提交
527 528 529 530 531 532
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
533

534 535 536
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

537
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
538
{
539 540 541 542 543 544
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
545 546
}

547 548 549 550 551 552 553 554 555 556 557
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
558
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
559
{
560
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
561

562 563
	if (!last)
		return NULL;
564 565

	return rb_entry(last, struct sched_entity, run_node);
566 567
}

568 569 570 571
/**************************************************************
 * Scheduling class statistics methods:
 */

572
int sched_proc_update_handler(struct ctl_table *table, int write,
573
		void __user *buffer, size_t *lenp,
574 575
		loff_t *ppos)
{
576
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
577
	unsigned int factor = get_update_sysctl_factor();
578 579 580 581 582 583 584

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

585 586 587 588 589 590 591
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

592 593 594
	return 0;
}
#endif
595

596
/*
597
 * delta /= w
598
 */
599
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
600
{
601
	if (unlikely(se->load.weight != NICE_0_LOAD))
602
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
603 604 605 606

	return delta;
}

607 608 609
/*
 * The idea is to set a period in which each task runs once.
 *
610
 * When there are too many tasks (sched_nr_latency) we have to stretch
611 612 613 614
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
615 616
static u64 __sched_period(unsigned long nr_running)
{
617 618 619 620
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
621 622
}

623 624 625 626
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
627
 * s = p*P[w/rw]
628
 */
P
Peter Zijlstra 已提交
629
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
630
{
M
Mike Galbraith 已提交
631
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
632

M
Mike Galbraith 已提交
633
	for_each_sched_entity(se) {
L
Lin Ming 已提交
634
		struct load_weight *load;
635
		struct load_weight lw;
L
Lin Ming 已提交
636 637 638

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
639

M
Mike Galbraith 已提交
640
		if (unlikely(!se->on_rq)) {
641
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
642 643 644 645

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
646
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
647 648
	}
	return slice;
649 650
}

651
/*
A
Andrei Epure 已提交
652
 * We calculate the vruntime slice of a to-be-inserted task.
653
 *
654
 * vs = s/w
655
 */
656
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
657
{
658
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
659 660
}

661
#ifdef CONFIG_SMP
662
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
663 664
static unsigned long task_h_load(struct task_struct *p);

665 666
/*
 * We choose a half-life close to 1 scheduling period.
667 668
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
669 670 671
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
672
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
673

674 675
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
676
{
677
	struct sched_avg *sa = &se->avg;
678

679 680 681 682 683 684 685
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
686
	sa->load_avg = scale_load_down(se->load.weight);
687
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
688 689 690 691 692
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
693
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
694
}
695

696 697
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
698
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
699 700
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
730
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
731
	u64 now = cfs_rq_clock_task(cfs_rq);
732 733 734 735 736 737 738 739 740 741 742 743 744

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
			se->avg.last_update_time = now;
			return;
		}
	}

764
	update_cfs_rq_load_avg(now, cfs_rq, false);
765
	attach_entity_load_avg(cfs_rq, se);
766
	update_tg_load_avg(cfs_rq, false);
767 768
}

769
#else /* !CONFIG_SMP */
770
void init_entity_runnable_average(struct sched_entity *se)
771 772
{
}
773 774 775
void post_init_entity_util_avg(struct sched_entity *se)
{
}
776 777 778
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
779
#endif /* CONFIG_SMP */
780

781
/*
782
 * Update the current task's runtime statistics.
783
 */
784
static void update_curr(struct cfs_rq *cfs_rq)
785
{
786
	struct sched_entity *curr = cfs_rq->curr;
787
	u64 now = rq_clock_task(rq_of(cfs_rq));
788
	u64 delta_exec;
789 790 791 792

	if (unlikely(!curr))
		return;

793 794
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
795
		return;
796

I
Ingo Molnar 已提交
797
	curr->exec_start = now;
798

799 800 801 802
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
803
	schedstat_add(cfs_rq->exec_clock, delta_exec);
804 805 806 807

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

808 809 810
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

811
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
812
		cpuacct_charge(curtask, delta_exec);
813
		account_group_exec_runtime(curtask, delta_exec);
814
	}
815 816

	account_cfs_rq_runtime(cfs_rq, delta_exec);
817 818
}

819 820 821 822 823
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

824
#ifdef CONFIG_SCHEDSTATS
825
static inline void
826
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
827
{
828 829 830 831 832 833 834
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
835 836
}

837 838 839 840
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
841 842 843
	u64 delta;

	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
static void
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

	if (se->statistics.sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;

		se->statistics.sleep_start = 0;
		se->statistics.sum_sleep_runtime += delta;

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
	if (se->statistics.block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;

		se->statistics.block_start = 0;
		se->statistics.sum_sleep_runtime += delta;

		if (tsk) {
			if (tsk->in_iowait) {
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
}

926 927 928
/*
 * Task is being enqueued - update stats:
 */
929
static inline void
930
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
931 932 933 934 935
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
936
	if (se != cfs_rq->curr)
937
		update_stats_wait_start(cfs_rq, se);
938 939 940

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
941 942 943
}

static inline void
944
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
945 946 947 948 949
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
950
	if (se != cfs_rq->curr)
951
		update_stats_wait_end(cfs_rq, se);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

	if (flags & DEQUEUE_SLEEP) {
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
	}

}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
977 978 979 980 981 982
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
983 984 985 986 987 988
{
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
989
}
990
#endif
991 992 993 994 995

/*
 * We are picking a new current task - update its stats:
 */
static inline void
996
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
997 998 999 1000
{
	/*
	 * We are starting a new run period:
	 */
1001
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1002 1003 1004 1005 1006 1007
}

/**************************************************
 * Scheduling class queueing methods:
 */

1008 1009
#ifdef CONFIG_NUMA_BALANCING
/*
1010 1011 1012
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1013
 */
1014 1015
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1016 1017 1018

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1019

1020 1021 1022
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1047
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1048 1049 1050
	unsigned int scan, floor;
	unsigned int windows = 1;

1051 1052
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1081 1082 1083 1084 1085
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1086
	pid_t gid;
1087
	int active_nodes;
1088 1089

	struct rcu_head rcu;
1090
	unsigned long total_faults;
1091
	unsigned long max_faults_cpu;
1092 1093 1094 1095 1096
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1097
	unsigned long *faults_cpu;
1098
	unsigned long faults[0];
1099 1100
};

1101 1102 1103 1104 1105 1106 1107 1108 1109
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1110 1111 1112 1113 1114
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1115 1116 1117 1118 1119 1120 1121
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1122
{
1123
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1124 1125 1126 1127
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1128
	if (!p->numa_faults)
1129 1130
		return 0;

1131 1132
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1133 1134
}

1135 1136 1137 1138 1139
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1140 1141
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1142 1143
}

1144 1145
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1146 1147
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1227 1228 1229 1230 1231 1232
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1233 1234
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1235
{
1236
	unsigned long faults, total_faults;
1237

1238
	if (!p->numa_faults)
1239 1240 1241 1242 1243 1244 1245
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1246
	faults = task_faults(p, nid);
1247 1248
	faults += score_nearby_nodes(p, nid, dist, true);

1249
	return 1000 * faults / total_faults;
1250 1251
}

1252 1253
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1254
{
1255 1256 1257 1258 1259 1260 1261 1262
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1263 1264
		return 0;

1265
	faults = group_faults(p, nid);
1266 1267
	faults += score_nearby_nodes(p, nid, dist, false);

1268
	return 1000 * faults / total_faults;
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1311 1312
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1313
	 */
1314 1315
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1316 1317 1318
		return true;

	/*
1319 1320 1321 1322 1323 1324
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1325
	 */
1326 1327
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1328 1329
}

1330
static unsigned long weighted_cpuload(const int cpu);
1331 1332
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1333
static unsigned long capacity_of(int cpu);
1334 1335
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1336
/* Cached statistics for all CPUs within a node */
1337
struct numa_stats {
1338
	unsigned long nr_running;
1339
	unsigned long load;
1340 1341

	/* Total compute capacity of CPUs on a node */
1342
	unsigned long compute_capacity;
1343 1344

	/* Approximate capacity in terms of runnable tasks on a node */
1345
	unsigned long task_capacity;
1346
	int has_free_capacity;
1347
};
1348

1349 1350 1351 1352 1353
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1354 1355
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1356 1357 1358 1359 1360 1361 1362

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1363
		ns->compute_capacity += capacity_of(cpu);
1364 1365

		cpus++;
1366 1367
	}

1368 1369 1370 1371 1372
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1373 1374
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1375 1376 1377 1378
	 */
	if (!cpus)
		return;

1379 1380 1381 1382 1383 1384
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1385
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1386 1387
}

1388 1389
struct task_numa_env {
	struct task_struct *p;
1390

1391 1392
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1393

1394
	struct numa_stats src_stats, dst_stats;
1395

1396
	int imbalance_pct;
1397
	int dist;
1398 1399 1400

	struct task_struct *best_task;
	long best_imp;
1401 1402 1403
	int best_cpu;
};

1404 1405 1406 1407 1408
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1409 1410
	if (p)
		get_task_struct(p);
1411 1412 1413 1414 1415 1416

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1417
static bool load_too_imbalanced(long src_load, long dst_load,
1418 1419
				struct task_numa_env *env)
{
1420 1421
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1433 1434

	/* We care about the slope of the imbalance, not the direction. */
1435 1436
	if (dst_load < src_load)
		swap(dst_load, src_load);
1437 1438

	/* Is the difference below the threshold? */
1439 1440
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1441 1442 1443 1444 1445
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1446
	 * Compare it with the old imbalance.
1447
	 */
1448
	orig_src_load = env->src_stats.load;
1449
	orig_dst_load = env->dst_stats.load;
1450

1451 1452
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1453

1454 1455 1456 1457 1458
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1459 1460
}

1461 1462 1463 1464 1465 1466
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1467 1468
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1469 1470 1471 1472
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1473
	long src_load, dst_load;
1474
	long load;
1475
	long imp = env->p->numa_group ? groupimp : taskimp;
1476
	long moveimp = imp;
1477
	int dist = env->dist;
1478 1479

	rcu_read_lock();
1480 1481
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1482 1483
		cur = NULL;

1484 1485 1486 1487 1488 1489 1490
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1503 1504
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1505
		 * in any group then look only at task weights.
1506
		 */
1507
		if (cur->numa_group == env->p->numa_group) {
1508 1509
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1510 1511 1512 1513 1514 1515
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1516
		} else {
1517 1518 1519 1520 1521 1522
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1523 1524
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1525
			else
1526 1527
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1528
		}
1529 1530
	}

1531
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1532 1533 1534 1535
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1536
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1537
		    !env->dst_stats.has_free_capacity)
1538 1539 1540 1541 1542 1543
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1544 1545
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1546 1547 1548 1549 1550 1551
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1552 1553 1554
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1573
	if (cur) {
1574 1575 1576
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1577 1578
	}

1579
	if (load_too_imbalanced(src_load, dst_load, env))
1580 1581
		goto unlock;

1582 1583 1584 1585 1586
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
1587 1588
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1589

1590 1591 1592 1593 1594 1595
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1596 1597
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1598 1599 1600 1601 1602 1603 1604 1605 1606
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1607
		task_numa_compare(env, taskimp, groupimp);
1608 1609 1610
	}
}

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1628 1629 1630
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1631 1632 1633 1634 1635
		return true;

	return false;
}

1636 1637 1638 1639
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1640

1641
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1642
		.src_nid = task_node(p),
1643 1644 1645 1646 1647

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1648
		.best_cpu = -1,
1649 1650
	};
	struct sched_domain *sd;
1651
	unsigned long taskweight, groupweight;
1652
	int nid, ret, dist;
1653
	long taskimp, groupimp;
1654

1655
	/*
1656 1657 1658 1659 1660 1661
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1662 1663
	 */
	rcu_read_lock();
1664
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1665 1666
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1667 1668
	rcu_read_unlock();

1669 1670 1671 1672 1673 1674 1675
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1676
		p->numa_preferred_nid = task_node(p);
1677 1678 1679
		return -EINVAL;
	}

1680
	env.dst_nid = p->numa_preferred_nid;
1681 1682 1683 1684 1685 1686
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1687
	update_numa_stats(&env.dst_stats, env.dst_nid);
1688

1689
	/* Try to find a spot on the preferred nid. */
1690 1691
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1692

1693 1694 1695 1696 1697 1698 1699
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1700
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1701 1702 1703
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1704

1705
			dist = node_distance(env.src_nid, env.dst_nid);
1706 1707 1708 1709 1710
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1711

1712
			/* Only consider nodes where both task and groups benefit */
1713 1714
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1715
			if (taskimp < 0 && groupimp < 0)
1716 1717
				continue;

1718
			env.dist = dist;
1719 1720
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1721 1722
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1723 1724 1725
		}
	}

1726 1727 1728 1729 1730 1731 1732 1733
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1734
	if (p->numa_group) {
1735 1736
		struct numa_group *ng = p->numa_group;

1737 1738 1739 1740 1741
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1742
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1743 1744 1745 1746 1747 1748
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1749

1750 1751 1752 1753 1754 1755
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1756
	if (env.best_task == NULL) {
1757 1758 1759
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1760 1761 1762 1763
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1764 1765
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1766 1767
	put_task_struct(env.best_task);
	return ret;
1768 1769
}

1770 1771 1772
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1773 1774
	unsigned long interval = HZ;

1775
	/* This task has no NUMA fault statistics yet */
1776
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1777 1778
		return;

1779
	/* Periodically retry migrating the task to the preferred node */
1780 1781
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1782 1783

	/* Success if task is already running on preferred CPU */
1784
	if (task_node(p) == p->numa_preferred_nid)
1785 1786 1787
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1788
	task_numa_migrate(p);
1789 1790
}

1791
/*
1792
 * Find out how many nodes on the workload is actively running on. Do this by
1793 1794 1795 1796
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1797
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1798 1799
{
	unsigned long faults, max_faults = 0;
1800
	int nid, active_nodes = 0;
1801 1802 1803 1804 1805 1806 1807 1808 1809

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1810 1811
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1812
	}
1813 1814 1815

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1816 1817
}

1818 1819 1820
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1821 1822 1823
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1824 1825
 */
#define NUMA_PERIOD_SLOTS 10
1826
#define NUMA_PERIOD_THRESHOLD 7
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1847 1848 1849
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1850
	 */
1851
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1885
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1886 1887 1888 1889 1890 1891 1892 1893
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1912 1913
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1914 1915 1916 1917 1918 1919 1920 1921
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1969
		nodemask_t max_group = NODE_MASK_NONE;
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2003 2004
		if (!max_faults)
			break;
2005 2006 2007 2008 2009
		nodes = max_group;
	}
	return nid;
}

2010 2011
static void task_numa_placement(struct task_struct *p)
{
2012 2013
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2014
	unsigned long fault_types[2] = { 0, 0 };
2015 2016
	unsigned long total_faults;
	u64 runtime, period;
2017
	spinlock_t *group_lock = NULL;
2018

2019 2020 2021 2022 2023
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2024
	seq = READ_ONCE(p->mm->numa_scan_seq);
2025 2026 2027
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2028
	p->numa_scan_period_max = task_scan_max(p);
2029

2030 2031 2032 2033
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2034 2035 2036
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2037
		spin_lock_irq(group_lock);
2038 2039
	}

2040 2041
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2042 2043
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2044
		unsigned long faults = 0, group_faults = 0;
2045
		int priv;
2046

2047
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2048
			long diff, f_diff, f_weight;
2049

2050 2051 2052 2053
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2054

2055
			/* Decay existing window, copy faults since last scan */
2056 2057 2058
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2059

2060 2061 2062 2063 2064 2065 2066 2067
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2068
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2069
				   (total_faults + 1);
2070 2071
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2072

2073 2074 2075
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2076
			p->total_numa_faults += diff;
2077
			if (p->numa_group) {
2078 2079 2080 2081 2082 2083 2084 2085 2086
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2087
				p->numa_group->total_faults += diff;
2088
				group_faults += p->numa_group->faults[mem_idx];
2089
			}
2090 2091
		}

2092 2093 2094 2095
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2096 2097 2098 2099 2100 2101 2102

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2103 2104
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2105
	if (p->numa_group) {
2106
		numa_group_count_active_nodes(p->numa_group);
2107
		spin_unlock_irq(group_lock);
2108
		max_nid = preferred_group_nid(p, max_group_nid);
2109 2110
	}

2111 2112 2113 2114 2115 2116 2117
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2118
	}
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2132 2133
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2134 2135 2136 2137 2138 2139 2140 2141 2142
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2143
				    4*nr_node_ids*sizeof(unsigned long);
2144 2145 2146 2147 2148 2149

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2150 2151
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2152
		spin_lock_init(&grp->lock);
2153
		grp->gid = p->pid;
2154
		/* Second half of the array tracks nids where faults happen */
2155 2156
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2157

2158
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2159
			grp->faults[i] = p->numa_faults[i];
2160

2161
		grp->total_faults = p->total_numa_faults;
2162

2163 2164 2165 2166 2167
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2168
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2169 2170

	if (!cpupid_match_pid(tsk, cpupid))
2171
		goto no_join;
2172 2173 2174

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2175
		goto no_join;
2176 2177 2178

	my_grp = p->numa_group;
	if (grp == my_grp)
2179
		goto no_join;
2180 2181 2182 2183 2184 2185

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2186
		goto no_join;
2187 2188 2189 2190 2191

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2192
		goto no_join;
2193

2194 2195 2196 2197 2198 2199 2200
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2201

2202 2203 2204
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2205
	if (join && !get_numa_group(grp))
2206
		goto no_join;
2207 2208 2209 2210 2211 2212

	rcu_read_unlock();

	if (!join)
		return;

2213 2214
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2215

2216
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2217 2218
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2219
	}
2220 2221
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2222 2223 2224 2225 2226

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2227
	spin_unlock_irq(&grp->lock);
2228 2229 2230 2231

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2232 2233 2234 2235 2236
	return;

no_join:
	rcu_read_unlock();
	return;
2237 2238 2239 2240 2241
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2242
	void *numa_faults = p->numa_faults;
2243 2244
	unsigned long flags;
	int i;
2245 2246

	if (grp) {
2247
		spin_lock_irqsave(&grp->lock, flags);
2248
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2249
			grp->faults[i] -= p->numa_faults[i];
2250
		grp->total_faults -= p->total_numa_faults;
2251

2252
		grp->nr_tasks--;
2253
		spin_unlock_irqrestore(&grp->lock, flags);
2254
		RCU_INIT_POINTER(p->numa_group, NULL);
2255 2256 2257
		put_numa_group(grp);
	}

2258
	p->numa_faults = NULL;
2259
	kfree(numa_faults);
2260 2261
}

2262 2263 2264
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2265
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2266 2267
{
	struct task_struct *p = current;
2268
	bool migrated = flags & TNF_MIGRATED;
2269
	int cpu_node = task_node(current);
2270
	int local = !!(flags & TNF_FAULT_LOCAL);
2271
	struct numa_group *ng;
2272
	int priv;
2273

2274
	if (!static_branch_likely(&sched_numa_balancing))
2275 2276
		return;

2277 2278 2279 2280
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2281
	/* Allocate buffer to track faults on a per-node basis */
2282 2283
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2284
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2285

2286 2287
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2288
			return;
2289

2290
		p->total_numa_faults = 0;
2291
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2292
	}
2293

2294 2295 2296 2297 2298 2299 2300 2301
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2302
		if (!priv && !(flags & TNF_NO_GROUP))
2303
			task_numa_group(p, last_cpupid, flags, &priv);
2304 2305
	}

2306 2307 2308 2309 2310 2311
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2312 2313 2314 2315
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2316 2317
		local = 1;

2318
	task_numa_placement(p);
2319

2320 2321 2322 2323 2324
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2325 2326
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2327 2328
	if (migrated)
		p->numa_pages_migrated += pages;
2329 2330
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2331

2332 2333
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2334
	p->numa_faults_locality[local] += pages;
2335 2336
}

2337 2338
static void reset_ptenuma_scan(struct task_struct *p)
{
2339 2340 2341 2342 2343 2344 2345 2346
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2347
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2348 2349 2350
	p->mm->numa_scan_offset = 0;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2360
	u64 runtime = p->se.sum_exec_runtime;
2361
	struct vm_area_struct *vma;
2362
	unsigned long start, end;
2363
	unsigned long nr_pte_updates = 0;
2364
	long pages, virtpages;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2380
	if (!mm->numa_next_scan) {
2381 2382
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2383 2384
	}

2385 2386 2387 2388 2389 2390 2391
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2392 2393 2394 2395
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2396

2397
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2398 2399 2400
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2401 2402 2403 2404 2405 2406
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2407 2408 2409
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2410
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2411 2412
	if (!pages)
		return;
2413

2414

2415
	down_read(&mm->mmap_sem);
2416
	vma = find_vma(mm, start);
2417 2418
	if (!vma) {
		reset_ptenuma_scan(p);
2419
		start = 0;
2420 2421
		vma = mm->mmap;
	}
2422
	for (; vma; vma = vma->vm_next) {
2423
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2424
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2425
			continue;
2426
		}
2427

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2438 2439 2440 2441 2442 2443
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2444

2445 2446 2447 2448
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2449
			nr_pte_updates = change_prot_numa(vma, start, end);
2450 2451

			/*
2452 2453 2454 2455 2456 2457
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2458 2459 2460
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2461
			virtpages -= (end - start) >> PAGE_SHIFT;
2462

2463
			start = end;
2464
			if (pages <= 0 || virtpages <= 0)
2465
				goto out;
2466 2467

			cond_resched();
2468
		} while (end != vma->vm_end);
2469
	}
2470

2471
out:
2472
	/*
P
Peter Zijlstra 已提交
2473 2474 2475 2476
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2477 2478
	 */
	if (vma)
2479
		mm->numa_scan_offset = start;
2480 2481 2482
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2519
	if (now > curr->node_stamp + period) {
2520
		if (!curr->node_stamp)
2521
			curr->numa_scan_period = task_scan_min(curr);
2522
		curr->node_stamp += period;
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2534 2535 2536 2537 2538 2539 2540 2541

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2542 2543
#endif /* CONFIG_NUMA_BALANCING */

2544 2545 2546 2547
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2548
	if (!parent_entity(se))
2549
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2550
#ifdef CONFIG_SMP
2551 2552 2553 2554 2555 2556
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2557
#endif
2558 2559 2560 2561 2562 2563 2564
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2565
	if (!parent_entity(se))
2566
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2567
#ifdef CONFIG_SMP
2568 2569
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2570
		list_del_init(&se->group_node);
2571
	}
2572
#endif
2573 2574 2575
	cfs_rq->nr_running--;
}

2576 2577
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2578
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2579
{
2580
	long tg_weight, load, shares;
2581 2582

	/*
2583 2584 2585
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2586
	 */
2587
	load = scale_load_down(cfs_rq->load.weight);
2588

2589
	tg_weight = atomic_long_read(&tg->load_avg);
2590

2591 2592 2593
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2594 2595

	shares = (tg->shares * load);
2596 2597
	if (tg_weight)
		shares /= tg_weight;
2598 2599 2600 2601 2602 2603 2604 2605 2606

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2607
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2608 2609 2610 2611
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2612

P
Peter Zijlstra 已提交
2613 2614 2615
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2616 2617 2618 2619
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2620
		account_entity_dequeue(cfs_rq, se);
2621
	}
P
Peter Zijlstra 已提交
2622 2623 2624 2625 2626 2627 2628

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2629 2630
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2631
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2632 2633 2634
{
	struct task_group *tg;
	struct sched_entity *se;
2635
	long shares;
P
Peter Zijlstra 已提交
2636 2637 2638

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2639
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2640
		return;
2641 2642 2643 2644
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2645
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2646 2647 2648 2649

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2650
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2651 2652 2653 2654
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2655
#ifdef CONFIG_SMP
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2686 2687 2688 2689 2690 2691
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2704 2705
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2706 2707 2708 2709 2710 2711
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2712 2713
	}

2714 2715
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2734 2735 2736
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2737 2738
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2739 2740
}

2741
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2771 2772
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2773
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2774
{
2775
	u64 delta, scaled_delta, periods;
2776
	u32 contrib;
2777
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2778
	unsigned long scale_freq, scale_cpu;
2779

2780
	delta = now - sa->last_update_time;
2781 2782 2783 2784 2785
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2786
		sa->last_update_time = now;
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2797
	sa->last_update_time = now;
2798

2799 2800 2801
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2802
	/* delta_w is the amount already accumulated against our next period */
2803
	delta_w = sa->period_contrib;
2804 2805 2806
	if (delta + delta_w >= 1024) {
		decayed = 1;

2807 2808 2809
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2810 2811 2812 2813 2814 2815
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2816
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2817
		if (weight) {
2818 2819 2820 2821 2822
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2823
		}
2824
		if (running)
2825
			sa->util_sum += scaled_delta_w * scale_cpu;
2826 2827 2828 2829 2830 2831 2832

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2833
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2834 2835 2836 2837
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2838
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2839 2840

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2841
		contrib = __compute_runnable_contrib(periods);
2842
		contrib = cap_scale(contrib, scale_freq);
2843
		if (weight) {
2844
			sa->load_sum += weight * contrib;
2845 2846 2847
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2848
		if (running)
2849
			sa->util_sum += contrib * scale_cpu;
2850 2851 2852
	}

	/* Remainder of delta accrued against u_0` */
2853
	scaled_delta = cap_scale(delta, scale_freq);
2854
	if (weight) {
2855
		sa->load_sum += weight * scaled_delta;
2856
		if (cfs_rq)
2857
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2858
	}
2859
	if (running)
2860
		sa->util_sum += scaled_delta * scale_cpu;
2861

2862
	sa->period_contrib += delta;
2863

2864 2865
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2866 2867 2868 2869
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2870
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2871
	}
2872

2873
	return decayed;
2874 2875
}

2876
#ifdef CONFIG_FAIR_GROUP_SCHED
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2892
 */
2893
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2894
{
2895
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2896

2897 2898 2899 2900 2901 2902
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2903 2904 2905
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2906
	}
2907
}
2908

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2955
#else /* CONFIG_FAIR_GROUP_SCHED */
2956
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2957
#endif /* CONFIG_FAIR_GROUP_SCHED */
2958

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3017 3018 3019 3020
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3021
 */
3022 3023
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3024
{
3025
	struct sched_avg *sa = &cfs_rq->avg;
3026
	int decayed, removed_load = 0, removed_util = 0;
3027

3028
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3029
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3030 3031
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3032
		removed_load = 1;
3033
	}
3034

3035 3036
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3037 3038
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3039
		removed_util = 1;
3040
	}
3041

3042
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3043
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3044

3045 3046 3047 3048
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3049

3050 3051
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3052

3053
	return decayed || removed_load;
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3072
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
3073
		update_tg_load_avg(cfs_rq, 0);
3074 3075
}

3076 3077 3078 3079 3080 3081 3082 3083
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3084 3085
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3086 3087 3088
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

3089 3090 3091
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
3092 3093
	 *
	 * Or we're fresh through post_init_entity_util_avg().
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

3105
skip_aging:
3106 3107 3108 3109 3110
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3111 3112

	cfs_rq_util_change(cfs_rq);
3113 3114
}

3115 3116 3117 3118 3119 3120 3121 3122
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3123 3124 3125 3126 3127 3128
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3129 3130 3131 3132
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3133 3134

	cfs_rq_util_change(cfs_rq);
3135 3136
}

3137 3138 3139
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3140
{
3141 3142
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
3143
	int migrated, decayed;
3144

3145 3146
	migrated = !sa->last_update_time;
	if (!migrated) {
3147
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3148 3149
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3150
	}
3151

3152
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3153

3154 3155 3156
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3157 3158
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3159

3160 3161
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3162 3163
}

3164 3165 3166 3167 3168 3169 3170 3171 3172
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3173
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3174 3175
}

3176
#ifndef CONFIG_64BIT
3177 3178
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3179
	u64 last_update_time_copy;
3180
	u64 last_update_time;
3181

3182 3183 3184 3185 3186
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3187 3188 3189

	return last_update_time;
}
3190
#else
3191 3192 3193 3194
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3195 3196
#endif

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
3207 3208 3209 3210 3211 3212 3213
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3214 3215 3216 3217
	 */

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3218
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3219 3220
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3221
}
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3233 3234
static int idle_balance(struct rq *this_rq);

3235 3236
#else /* CONFIG_SMP */

3237 3238 3239 3240 3241 3242
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3243 3244 3245 3246 3247 3248 3249 3250
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3251 3252
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3253 3254
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3255
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3256

3257 3258 3259 3260 3261
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3262 3263 3264 3265 3266
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3267
#endif /* CONFIG_SMP */
3268

P
Peter Zijlstra 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3278
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3279 3280 3281
#endif
}

3282 3283 3284
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3285
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3286

3287 3288 3289 3290 3291 3292
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3293
	if (initial && sched_feat(START_DEBIT))
3294
		vruntime += sched_vslice(cfs_rq, se);
3295

3296
	/* sleeps up to a single latency don't count. */
3297
	if (!initial) {
3298
		unsigned long thresh = sysctl_sched_latency;
3299

3300 3301 3302 3303 3304 3305
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3306

3307
		vruntime -= thresh;
3308 3309
	}

3310
	/* ensure we never gain time by being placed backwards. */
3311
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3312 3313
}

3314 3315
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3328
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3329 3330 3331 3332 3333 3334 3335
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3355
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3367
static void
3368
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3369
{
3370 3371 3372
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3373
	/*
3374 3375
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3376
	 */
3377
	if (renorm && curr)
3378 3379
		se->vruntime += cfs_rq->min_vruntime;

3380 3381
	update_curr(cfs_rq);

3382
	/*
3383 3384 3385 3386
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3387
	 */
3388 3389 3390
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3391
	enqueue_entity_load_avg(cfs_rq, se);
3392 3393
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3394

3395
	if (flags & ENQUEUE_WAKEUP)
3396
		place_entity(cfs_rq, se, 0);
3397

3398 3399
	check_schedstat_required();
	if (schedstat_enabled()) {
3400
		update_stats_enqueue(cfs_rq, se, flags);
3401 3402
		check_spread(cfs_rq, se);
	}
3403
	if (!curr)
3404
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3405
	se->on_rq = 1;
3406

3407
	if (cfs_rq->nr_running == 1) {
3408
		list_add_leaf_cfs_rq(cfs_rq);
3409 3410
		check_enqueue_throttle(cfs_rq);
	}
3411 3412
}

3413
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3414
{
3415 3416
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3417
		if (cfs_rq->last != se)
3418
			break;
3419 3420

		cfs_rq->last = NULL;
3421 3422
	}
}
P
Peter Zijlstra 已提交
3423

3424 3425 3426 3427
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3428
		if (cfs_rq->next != se)
3429
			break;
3430 3431

		cfs_rq->next = NULL;
3432
	}
P
Peter Zijlstra 已提交
3433 3434
}

3435 3436 3437 3438
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3439
		if (cfs_rq->skip != se)
3440
			break;
3441 3442

		cfs_rq->skip = NULL;
3443 3444 3445
	}
}

P
Peter Zijlstra 已提交
3446 3447
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3448 3449 3450 3451 3452
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3453 3454 3455

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3456 3457
}

3458
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3459

3460
static void
3461
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3462
{
3463 3464 3465 3466
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3467
	dequeue_entity_load_avg(cfs_rq, se);
3468

3469 3470
	if (schedstat_enabled())
		update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3471

P
Peter Zijlstra 已提交
3472
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3473

3474
	if (se != cfs_rq->curr)
3475
		__dequeue_entity(cfs_rq, se);
3476
	se->on_rq = 0;
3477
	account_entity_dequeue(cfs_rq, se);
3478 3479 3480 3481 3482 3483

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3484
	if (!(flags & DEQUEUE_SLEEP))
3485
		se->vruntime -= cfs_rq->min_vruntime;
3486

3487 3488 3489
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3490
	update_min_vruntime(cfs_rq);
3491
	update_cfs_shares(cfs_rq);
3492 3493 3494 3495 3496
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3497
static void
I
Ingo Molnar 已提交
3498
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3499
{
3500
	unsigned long ideal_runtime, delta_exec;
3501 3502
	struct sched_entity *se;
	s64 delta;
3503

P
Peter Zijlstra 已提交
3504
	ideal_runtime = sched_slice(cfs_rq, curr);
3505
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3506
	if (delta_exec > ideal_runtime) {
3507
		resched_curr(rq_of(cfs_rq));
3508 3509 3510 3511 3512
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3524 3525
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3526

3527 3528
	if (delta < 0)
		return;
3529

3530
	if (delta > ideal_runtime)
3531
		resched_curr(rq_of(cfs_rq));
3532 3533
}

3534
static void
3535
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3536
{
3537 3538 3539 3540 3541 3542 3543
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3544 3545
		if (schedstat_enabled())
			update_stats_wait_end(cfs_rq, se);
3546
		__dequeue_entity(cfs_rq, se);
3547
		update_load_avg(se, 1);
3548 3549
	}

3550
	update_stats_curr_start(cfs_rq, se);
3551
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3552 3553 3554 3555 3556 3557
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3558
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3559
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3560 3561 3562
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3563
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3564 3565
}

3566 3567 3568
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3569 3570 3571 3572 3573 3574 3575
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3576 3577
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3578
{
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3590

3591 3592 3593 3594 3595
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3606 3607 3608
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3609

3610 3611 3612 3613 3614 3615
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3616 3617 3618 3619 3620 3621
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3622
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3623 3624

	return se;
3625 3626
}

3627
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3628

3629
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3630 3631 3632 3633 3634 3635
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3636
		update_curr(cfs_rq);
3637

3638 3639 3640
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3641 3642 3643 3644 3645 3646
	if (schedstat_enabled()) {
		check_spread(cfs_rq, prev);
		if (prev->on_rq)
			update_stats_wait_start(cfs_rq, prev);
	}

3647 3648 3649
	if (prev->on_rq) {
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3650
		/* in !on_rq case, update occurred at dequeue */
3651
		update_load_avg(prev, 0);
3652
	}
3653
	cfs_rq->curr = NULL;
3654 3655
}

P
Peter Zijlstra 已提交
3656 3657
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3658 3659
{
	/*
3660
	 * Update run-time statistics of the 'current'.
3661
	 */
3662
	update_curr(cfs_rq);
3663

3664 3665 3666
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3667
	update_load_avg(curr, 1);
3668
	update_cfs_shares(cfs_rq);
3669

P
Peter Zijlstra 已提交
3670 3671 3672 3673 3674
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3675
	if (queued) {
3676
		resched_curr(rq_of(cfs_rq));
3677 3678
		return;
	}
P
Peter Zijlstra 已提交
3679 3680 3681 3682 3683 3684 3685 3686
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3687
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3688
		check_preempt_tick(cfs_rq, curr);
3689 3690
}

3691 3692 3693 3694 3695 3696

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3697 3698

#ifdef HAVE_JUMP_LABEL
3699
static struct static_key __cfs_bandwidth_used;
3700 3701 3702

static inline bool cfs_bandwidth_used(void)
{
3703
	return static_key_false(&__cfs_bandwidth_used);
3704 3705
}

3706
void cfs_bandwidth_usage_inc(void)
3707
{
3708 3709 3710 3711 3712 3713
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3714 3715 3716 3717 3718 3719 3720
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3721 3722
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3723 3724
#endif /* HAVE_JUMP_LABEL */

3725 3726 3727 3728 3729 3730 3731 3732
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3733 3734 3735 3736 3737 3738

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3739 3740 3741 3742 3743 3744 3745
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3746
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3758 3759 3760 3761 3762
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3763 3764 3765 3766
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3767
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3768

3769
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3770 3771
}

3772 3773
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3774 3775 3776
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3777
	u64 amount = 0, min_amount, expires;
3778 3779 3780 3781 3782 3783 3784

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3785
	else {
P
Peter Zijlstra 已提交
3786
		start_cfs_bandwidth(cfs_b);
3787 3788 3789 3790 3791 3792

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3793
	}
P
Paul Turner 已提交
3794
	expires = cfs_b->runtime_expires;
3795 3796 3797
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3798 3799 3800 3801 3802 3803 3804
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3805 3806

	return cfs_rq->runtime_remaining > 0;
3807 3808
}

P
Paul Turner 已提交
3809 3810 3811 3812 3813
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3814
{
P
Paul Turner 已提交
3815 3816 3817
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3818
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3819 3820
		return;

P
Paul Turner 已提交
3821 3822 3823 3824 3825 3826 3827 3828 3829
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3830 3831 3832
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3833 3834
	 */

3835
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3836 3837 3838 3839 3840 3841 3842 3843
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3844
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3845 3846
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3847
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3848 3849 3850
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3851 3852
		return;

3853 3854 3855 3856 3857
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3858
		resched_curr(rq_of(cfs_rq));
3859 3860
}

3861
static __always_inline
3862
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3863
{
3864
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3865 3866 3867 3868 3869
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3870 3871
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3872
	return cfs_bandwidth_used() && cfs_rq->throttled;
3873 3874
}

3875 3876 3877
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3878
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3906
		/* adjust cfs_rq_clock_task() */
3907
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3908
					     cfs_rq->throttled_clock_task;
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3919 3920
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3921
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3922 3923 3924 3925 3926
	cfs_rq->throttle_count++;

	return 0;
}

3927
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3928 3929 3930 3931 3932
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3933
	bool empty;
3934 3935 3936

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3937
	/* freeze hierarchy runnable averages while throttled */
3938 3939 3940
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3958
		sub_nr_running(rq, task_delta);
3959 3960

	cfs_rq->throttled = 1;
3961
	cfs_rq->throttled_clock = rq_clock(rq);
3962
	raw_spin_lock(&cfs_b->lock);
3963
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3964

3965 3966 3967 3968 3969
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3970 3971 3972 3973 3974 3975 3976 3977

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3978 3979 3980
	raw_spin_unlock(&cfs_b->lock);
}

3981
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3982 3983 3984 3985 3986 3987 3988
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3989
	se = cfs_rq->tg->se[cpu_of(rq)];
3990 3991

	cfs_rq->throttled = 0;
3992 3993 3994

	update_rq_clock(rq);

3995
	raw_spin_lock(&cfs_b->lock);
3996
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3997 3998 3999
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4000 4001 4002
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4021
		add_nr_running(rq, task_delta);
4022 4023 4024

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4025
		resched_curr(rq);
4026 4027 4028 4029 4030 4031
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4032 4033
	u64 runtime;
	u64 starting_runtime = remaining;
4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4064
	return starting_runtime - remaining;
4065 4066
}

4067 4068 4069 4070 4071 4072 4073 4074
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4075
	u64 runtime, runtime_expires;
4076
	int throttled;
4077 4078 4079

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4080
		goto out_deactivate;
4081

4082
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4083
	cfs_b->nr_periods += overrun;
4084

4085 4086 4087 4088 4089 4090
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4091 4092 4093

	__refill_cfs_bandwidth_runtime(cfs_b);

4094 4095 4096
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4097
		return 0;
4098 4099
	}

4100 4101 4102
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4103 4104 4105
	runtime_expires = cfs_b->runtime_expires;

	/*
4106 4107 4108 4109 4110
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4111
	 */
4112 4113
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4114 4115 4116 4117 4118 4119 4120
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4121 4122

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4123
	}
4124

4125 4126 4127 4128 4129 4130 4131
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4132

4133 4134 4135 4136
	return 0;

out_deactivate:
	return 1;
4137
}
4138

4139 4140 4141 4142 4143 4144 4145
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4146 4147 4148 4149
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4150
 * hrtimer base being cleared by hrtimer_start. In the case of
4151 4152
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4178 4179 4180
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4210 4211 4212
	if (!cfs_bandwidth_used())
		return;

4213
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4229 4230 4231
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4232
		return;
4233
	}
4234

4235
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4236
		runtime = cfs_b->runtime;
4237

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4248
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4249 4250 4251
	raw_spin_unlock(&cfs_b->lock);
}

4252 4253 4254 4255 4256 4257 4258
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4259 4260 4261
	if (!cfs_bandwidth_used())
		return;

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4290
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4291 4292
}

4293
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4294
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4295
{
4296
	if (!cfs_bandwidth_used())
4297
		return false;
4298

4299
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4300
		return false;
4301 4302 4303 4304 4305 4306

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4307
		return true;
4308 4309

	throttle_cfs_rq(cfs_rq);
4310
	return true;
4311
}
4312 4313 4314 4315 4316

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4317

4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4330
	raw_spin_lock(&cfs_b->lock);
4331
	for (;;) {
P
Peter Zijlstra 已提交
4332
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4333 4334 4335 4336 4337
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4338 4339
	if (idle)
		cfs_b->period_active = 0;
4340
	raw_spin_unlock(&cfs_b->lock);
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4353
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4365
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4366
{
P
Peter Zijlstra 已提交
4367
	lockdep_assert_held(&cfs_b->lock);
4368

P
Peter Zijlstra 已提交
4369 4370 4371 4372 4373
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4374 4375 4376 4377
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4378 4379 4380 4381
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4382 4383 4384 4385
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4399
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4411
		cfs_rq->runtime_remaining = 1;
4412 4413 4414 4415 4416 4417
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4418 4419 4420 4421 4422 4423
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4424 4425
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4426
	return rq_clock_task(rq_of(cfs_rq));
4427 4428
}

4429
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4430
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4431
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4432
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4433
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4434 4435 4436 4437 4438

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4450 4451 4452 4453 4454

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4455 4456
#endif

4457 4458 4459 4460 4461
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4462
static inline void update_runtime_enabled(struct rq *rq) {}
4463
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4464 4465 4466

#endif /* CONFIG_CFS_BANDWIDTH */

4467 4468 4469 4470
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4471 4472 4473 4474 4475 4476 4477 4478
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4479
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4480 4481 4482 4483 4484 4485
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4486
				resched_curr(rq);
P
Peter Zijlstra 已提交
4487 4488
			return;
		}
4489
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4490 4491
	}
}
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4502
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4503 4504 4505 4506 4507
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4508
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4509 4510 4511 4512
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4513 4514 4515 4516

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4517 4518
#endif

4519 4520 4521 4522 4523
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4524
static void
4525
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4526 4527
{
	struct cfs_rq *cfs_rq;
4528
	struct sched_entity *se = &p->se;
4529 4530

	for_each_sched_entity(se) {
4531
		if (se->on_rq)
4532 4533
			break;
		cfs_rq = cfs_rq_of(se);
4534
		enqueue_entity(cfs_rq, se, flags);
4535 4536 4537 4538 4539 4540

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4541
		 */
4542 4543
		if (cfs_rq_throttled(cfs_rq))
			break;
4544
		cfs_rq->h_nr_running++;
4545

4546
		flags = ENQUEUE_WAKEUP;
4547
	}
P
Peter Zijlstra 已提交
4548

P
Peter Zijlstra 已提交
4549
	for_each_sched_entity(se) {
4550
		cfs_rq = cfs_rq_of(se);
4551
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4552

4553 4554 4555
		if (cfs_rq_throttled(cfs_rq))
			break;

4556
		update_load_avg(se, 1);
4557
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4558 4559
	}

Y
Yuyang Du 已提交
4560
	if (!se)
4561
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4562

4563
	hrtick_update(rq);
4564 4565
}

4566 4567
static void set_next_buddy(struct sched_entity *se);

4568 4569 4570 4571 4572
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4573
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4574 4575
{
	struct cfs_rq *cfs_rq;
4576
	struct sched_entity *se = &p->se;
4577
	int task_sleep = flags & DEQUEUE_SLEEP;
4578 4579 4580

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4581
		dequeue_entity(cfs_rq, se, flags);
4582 4583 4584 4585 4586 4587 4588 4589 4590

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4591
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4592

4593
		/* Don't dequeue parent if it has other entities besides us */
4594
		if (cfs_rq->load.weight) {
4595 4596
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4597 4598 4599 4600
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4601 4602
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4603
			break;
4604
		}
4605
		flags |= DEQUEUE_SLEEP;
4606
	}
P
Peter Zijlstra 已提交
4607

P
Peter Zijlstra 已提交
4608
	for_each_sched_entity(se) {
4609
		cfs_rq = cfs_rq_of(se);
4610
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4611

4612 4613 4614
		if (cfs_rq_throttled(cfs_rq))
			break;

4615
		update_load_avg(se, 1);
4616
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4617 4618
	}

Y
Yuyang Du 已提交
4619
	if (!se)
4620
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4621

4622
	hrtick_update(rq);
4623 4624
}

4625
#ifdef CONFIG_SMP
4626
#ifdef CONFIG_NO_HZ_COMMON
4627 4628 4629 4630 4631
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4632
 * The exact cpuload calculated at every tick would be:
4633
 *
4634 4635 4636 4637 4638 4639 4640
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4641 4642 4643
 *
 * decay_load_missed() below does efficient calculation of
 *
4644 4645 4646 4647 4648 4649
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4650
 *
4651
 * The calculation is approximated on a 128 point scale.
4652 4653
 */
#define DEGRADE_SHIFT		7
4654 4655 4656 4657 4658 4659 4660 4661 4662

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4692
#endif /* CONFIG_NO_HZ_COMMON */
4693

4694
/**
4695
 * __cpu_load_update - update the rq->cpu_load[] statistics
4696 4697 4698 4699
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4700
 * Update rq->cpu_load[] statistics. This function is usually called every
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4727
 * term.
4728
 */
4729 4730
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4731
{
4732
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4744
		old_load = this_rq->cpu_load[i];
4745
#ifdef CONFIG_NO_HZ_COMMON
4746
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4747 4748 4749 4750 4751 4752 4753 4754 4755
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4756
#endif
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4772 4773 4774 4775 4776 4777
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4778
#ifdef CONFIG_NO_HZ_COMMON
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4807
		cpu_load_update(this_rq, load, pending_updates);
4808 4809 4810
	}
}

4811 4812 4813 4814
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4815
static void cpu_load_update_idle(struct rq *this_rq)
4816 4817 4818 4819
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4820
	if (weighted_cpuload(cpu_of(this_rq)))
4821 4822
		return;

4823
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4824 4825 4826
}

/*
4827 4828 4829 4830
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4831
 */
4832
void cpu_load_update_nohz_start(void)
4833 4834
{
	struct rq *this_rq = this_rq();
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4849
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4850 4851
	struct rq *this_rq = this_rq();
	unsigned long load;
4852 4853 4854 4855

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4856
	load = weighted_cpuload(cpu_of(this_rq));
4857
	raw_spin_lock(&this_rq->lock);
4858
	update_rq_clock(this_rq);
4859
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4860 4861
	raw_spin_unlock(&this_rq->lock);
}
4862 4863 4864 4865 4866 4867 4868 4869
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4870
#ifdef CONFIG_NO_HZ_COMMON
4871 4872
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4873
#endif
4874 4875
	cpu_load_update(this_rq, load, 1);
}
4876 4877 4878 4879

/*
 * Called from scheduler_tick()
 */
4880
void cpu_load_update_active(struct rq *this_rq)
4881
{
4882
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4883 4884 4885 4886 4887

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4888 4889
}

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4923
static unsigned long capacity_of(int cpu)
4924
{
4925
	return cpu_rq(cpu)->cpu_capacity;
4926 4927
}

4928 4929 4930 4931 4932
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4933 4934 4935
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4936
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4937
	unsigned long load_avg = weighted_cpuload(cpu);
4938 4939

	if (nr_running)
4940
		return load_avg / nr_running;
4941 4942 4943 4944

	return 0;
}

4945
#ifdef CONFIG_FAIR_GROUP_SCHED
4946 4947 4948 4949 4950 4951
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4995
 */
P
Peter Zijlstra 已提交
4996
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4997
{
P
Peter Zijlstra 已提交
4998
	struct sched_entity *se = tg->se[cpu];
4999

5000
	if (!tg->parent)	/* the trivial, non-cgroup case */
5001 5002
		return wl;

P
Peter Zijlstra 已提交
5003
	for_each_sched_entity(se) {
5004 5005
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5006

5007
		tg = cfs_rq->tg;
5008

5009 5010 5011
		/*
		 * W = @wg + \Sum rw_j
		 */
5012 5013 5014 5015 5016
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5017

5018 5019 5020
		/*
		 * w = rw_i + @wl
		 */
5021
		w += wl;
5022

5023 5024 5025 5026
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5027
			wl = (w * (long)tg->shares) / W;
5028 5029
		else
			wl = tg->shares;
5030

5031 5032 5033 5034 5035
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5036 5037
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5038 5039 5040 5041

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5042
		wl -= se->avg.load_avg;
5043 5044 5045 5046 5047 5048 5049 5050

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5051 5052
		wg = 0;
	}
5053

P
Peter Zijlstra 已提交
5054
	return wl;
5055 5056
}
#else
P
Peter Zijlstra 已提交
5057

5058
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5059
{
5060
	return wl;
5061
}
P
Peter Zijlstra 已提交
5062

5063 5064
#endif

P
Peter Zijlstra 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5082 5083
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5084
 *
M
Mike Galbraith 已提交
5085
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5098
 */
5099 5100
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5101 5102
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5103
	int factor = this_cpu_read(sd_llc_size);
5104

M
Mike Galbraith 已提交
5105 5106 5107 5108 5109
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5110 5111
}

5112 5113
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5114
{
5115
	s64 this_load, load;
5116
	s64 this_eff_load, prev_eff_load;
5117
	int idx, this_cpu;
5118
	struct task_group *tg;
5119
	unsigned long weight;
5120
	int balanced;
5121

5122 5123 5124 5125
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5126

5127 5128 5129 5130 5131
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5132 5133
	if (sync) {
		tg = task_group(current);
5134
		weight = current->se.avg.load_avg;
5135

5136
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5137 5138
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5139

5140
	tg = task_group(p);
5141
	weight = p->se.avg.load_avg;
5142

5143 5144
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5145 5146 5147
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5148 5149 5150 5151
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5152 5153
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5154

5155 5156
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5157

5158
	if (this_load > 0) {
5159 5160 5161 5162
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5163
	}
5164

5165
	balanced = this_eff_load <= prev_eff_load;
5166

5167
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5168

5169 5170
	if (!balanced)
		return 0;
5171

5172 5173
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5174 5175

	return 1;
5176 5177
}

5178 5179 5180 5181 5182
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5183
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5184
		  int this_cpu, int sd_flag)
5185
{
5186
	struct sched_group *idlest = NULL, *group = sd->groups;
5187
	unsigned long min_load = ULONG_MAX, this_load = 0;
5188
	int load_idx = sd->forkexec_idx;
5189
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5190

5191 5192 5193
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5194 5195 5196 5197
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5198

5199 5200
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5201
					tsk_cpus_allowed(p)))
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5220
		/* Adjust by relative CPU capacity of the group */
5221
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5243 5244 5245 5246
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5247 5248
	int i;

5249 5250 5251 5252
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5253
	/* Traverse only the allowed CPUs */
5254
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5277
		} else if (shallowest_idle_cpu == -1) {
5278 5279 5280 5281 5282
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5283 5284 5285
		}
	}

5286
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5287
}
5288

5289 5290 5291
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5292
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5293
{
5294
	struct sched_domain *sd;
5295
	struct sched_group *sg;
5296

5297 5298
	if (idle_cpu(target))
		return target;
5299 5300

	/*
5301
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5302
	 */
5303 5304
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5305 5306

	/*
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5320
	 */
5321
	sd = rcu_dereference(per_cpu(sd_llc, target));
5322
	for_each_lower_domain(sd) {
5323 5324
		sg = sd->groups;
		do {
5325 5326
			int i;

5327 5328 5329 5330
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5331
			/* Ensure the entire group is idle */
5332
			for_each_cpu(i, sched_group_cpus(sg)) {
5333
				if (i == target || !idle_cpu(i))
5334 5335
					goto next;
			}
5336

5337 5338 5339 5340
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5341 5342 5343 5344 5345 5346 5347 5348
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5349 5350
	return target;
}
5351

5352
/*
5353
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5354
 * tasks. The unit of the return value must be the one of capacity so we can
5355 5356
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5377
 */
5378
static int cpu_util(int cpu)
5379
{
5380
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5381 5382
	unsigned long capacity = capacity_orig_of(cpu);

5383
	return (util >= capacity) ? capacity : util;
5384
}
5385

5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5412
/*
5413 5414 5415
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5416
 *
5417 5418
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5419
 *
5420
 * Returns the target cpu number.
5421 5422 5423
 *
 * preempt must be disabled.
 */
5424
static int
5425
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5426
{
5427
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5428
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5429
	int new_cpu = prev_cpu;
5430
	int want_affine = 0;
5431
	int sync = wake_flags & WF_SYNC;
5432

P
Peter Zijlstra 已提交
5433 5434
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5435 5436
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5437
	}
5438

5439
	rcu_read_lock();
5440
	for_each_domain(cpu, tmp) {
5441
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5442
			break;
5443

5444
		/*
5445 5446
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5447
		 */
5448 5449 5450
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5451
			break;
5452
		}
5453

5454
		if (tmp->flags & sd_flag)
5455
			sd = tmp;
M
Mike Galbraith 已提交
5456 5457
		else if (!want_affine)
			break;
5458 5459
	}

M
Mike Galbraith 已提交
5460 5461
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5462
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5463
			new_cpu = cpu;
5464
	}
5465

M
Mike Galbraith 已提交
5466 5467
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5468
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5469 5470

	} else while (sd) {
5471
		struct sched_group *group;
5472
		int weight;
5473

5474
		if (!(sd->flags & sd_flag)) {
5475 5476 5477
			sd = sd->child;
			continue;
		}
5478

5479
		group = find_idlest_group(sd, p, cpu, sd_flag);
5480 5481 5482 5483
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5484

5485
		new_cpu = find_idlest_cpu(group, p, cpu);
5486 5487 5488 5489
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5490
		}
5491 5492 5493

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5494
		weight = sd->span_weight;
5495 5496
		sd = NULL;
		for_each_domain(cpu, tmp) {
5497
			if (weight <= tmp->span_weight)
5498
				break;
5499
			if (tmp->flags & sd_flag)
5500 5501 5502
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5503
	}
5504
	rcu_read_unlock();
5505

5506
	return new_cpu;
5507
}
5508 5509 5510 5511

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5512
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5513
 */
5514
static void migrate_task_rq_fair(struct task_struct *p)
5515
{
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5542
	/*
5543 5544 5545 5546 5547
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5548
	 */
5549 5550 5551 5552
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5553 5554

	/* We have migrated, no longer consider this task hot */
5555
	p->se.exec_start = 0;
5556
}
5557 5558 5559 5560 5561

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5562 5563
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5564 5565
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5566 5567 5568 5569
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5570 5571
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5581
	 */
5582
	return calc_delta_fair(gran, se);
5583 5584
}

5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5607
	gran = wakeup_gran(curr, se);
5608 5609 5610 5611 5612 5613
	if (vdiff > gran)
		return 1;

	return 0;
}

5614 5615
static void set_last_buddy(struct sched_entity *se)
{
5616 5617 5618 5619 5620
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5621 5622 5623 5624
}

static void set_next_buddy(struct sched_entity *se)
{
5625 5626 5627 5628 5629
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5630 5631
}

5632 5633
static void set_skip_buddy(struct sched_entity *se)
{
5634 5635
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5636 5637
}

5638 5639 5640
/*
 * Preempt the current task with a newly woken task if needed:
 */
5641
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5642 5643
{
	struct task_struct *curr = rq->curr;
5644
	struct sched_entity *se = &curr->se, *pse = &p->se;
5645
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5646
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5647
	int next_buddy_marked = 0;
5648

I
Ingo Molnar 已提交
5649 5650 5651
	if (unlikely(se == pse))
		return;

5652
	/*
5653
	 * This is possible from callers such as attach_tasks(), in which we
5654 5655 5656 5657 5658 5659 5660
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5661
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5662
		set_next_buddy(pse);
5663 5664
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5665

5666 5667 5668
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5669 5670 5671 5672 5673 5674
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5675 5676 5677 5678
	 */
	if (test_tsk_need_resched(curr))
		return;

5679 5680 5681 5682 5683
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5684
	/*
5685 5686
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5687
	 */
5688
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5689
		return;
5690

5691
	find_matching_se(&se, &pse);
5692
	update_curr(cfs_rq_of(se));
5693
	BUG_ON(!pse);
5694 5695 5696 5697 5698 5699 5700
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5701
		goto preempt;
5702
	}
5703

5704
	return;
5705

5706
preempt:
5707
	resched_curr(rq);
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5722 5723
}

5724
static struct task_struct *
5725
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5726 5727 5728
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5729
	struct task_struct *p;
5730
	int new_tasks;
5731

5732
again:
5733 5734
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5735
		goto idle;
5736

5737
	if (prev->sched_class != &fair_sched_class)
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5757 5758 5759 5760 5761
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5762

5763 5764 5765 5766 5767 5768 5769 5770 5771
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5812

5813
	if (!cfs_rq->nr_running)
5814
		goto idle;
5815

5816
	put_prev_task(rq, prev);
5817

5818
	do {
5819
		se = pick_next_entity(cfs_rq, NULL);
5820
		set_next_entity(cfs_rq, se);
5821 5822 5823
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5824
	p = task_of(se);
5825

5826 5827
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5828 5829

	return p;
5830 5831

idle:
5832 5833 5834 5835 5836 5837
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
5838
	lockdep_unpin_lock(&rq->lock, cookie);
5839
	new_tasks = idle_balance(rq);
5840
	lockdep_repin_lock(&rq->lock, cookie);
5841 5842 5843 5844 5845
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5846
	if (new_tasks < 0)
5847 5848
		return RETRY_TASK;

5849
	if (new_tasks > 0)
5850 5851 5852
		goto again;

	return NULL;
5853 5854 5855 5856 5857
}

/*
 * Account for a descheduled task:
 */
5858
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5859 5860 5861 5862 5863 5864
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5865
		put_prev_entity(cfs_rq, se);
5866 5867 5868
	}
}

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5894 5895 5896 5897 5898
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5899
		rq_clock_skip_update(rq, true);
5900 5901 5902 5903 5904
	}

	set_skip_buddy(se);
}

5905 5906 5907 5908
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5909 5910
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5921
#ifdef CONFIG_SMP
5922
/**************************************************
P
Peter Zijlstra 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5939
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
5940 5941 5942 5943 5944 5945
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5946
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5947 5948 5949 5950 5951 5952
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5953
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
5992
 *             log_2 n
P
Peter Zijlstra 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6038
 */
6039

6040 6041
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6042 6043
enum fbq_type { regular, remote, all };

6044
#define LBF_ALL_PINNED	0x01
6045
#define LBF_NEED_BREAK	0x02
6046 6047
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6048 6049 6050 6051 6052

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6053
	int			src_cpu;
6054 6055 6056 6057

	int			dst_cpu;
	struct rq		*dst_rq;

6058 6059
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6060
	enum cpu_idle_type	idle;
6061
	long			imbalance;
6062 6063 6064
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6065
	unsigned int		flags;
6066 6067 6068 6069

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6070 6071

	enum fbq_type		fbq_type;
6072
	struct list_head	tasks;
6073 6074
};

6075 6076 6077
/*
 * Is this task likely cache-hot:
 */
6078
static int task_hot(struct task_struct *p, struct lb_env *env)
6079 6080 6081
{
	s64 delta;

6082 6083
	lockdep_assert_held(&env->src_rq->lock);

6084 6085 6086 6087 6088 6089 6090 6091 6092
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6093
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6094 6095 6096 6097 6098 6099 6100 6101 6102
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6103
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6104 6105 6106 6107

	return delta < (s64)sysctl_sched_migration_cost;
}

6108
#ifdef CONFIG_NUMA_BALANCING
6109
/*
6110 6111 6112
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6113
 */
6114
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6115
{
6116
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6117
	unsigned long src_faults, dst_faults;
6118 6119
	int src_nid, dst_nid;

6120
	if (!static_branch_likely(&sched_numa_balancing))
6121 6122
		return -1;

6123
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6124
		return -1;
6125 6126 6127 6128

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6129
	if (src_nid == dst_nid)
6130
		return -1;
6131

6132 6133 6134 6135 6136 6137 6138
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6139

6140 6141
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6142
		return 0;
6143

6144 6145 6146 6147 6148 6149
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6150 6151
	}

6152
	return dst_faults < src_faults;
6153 6154
}

6155
#else
6156
static inline int migrate_degrades_locality(struct task_struct *p,
6157 6158
					     struct lb_env *env)
{
6159
	return -1;
6160
}
6161 6162
#endif

6163 6164 6165 6166
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6167
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6168
{
6169
	int tsk_cache_hot;
6170 6171 6172

	lockdep_assert_held(&env->src_rq->lock);

6173 6174
	/*
	 * We do not migrate tasks that are:
6175
	 * 1) throttled_lb_pair, or
6176
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6177 6178
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6179
	 */
6180 6181 6182
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6183
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6184
		int cpu;
6185

6186
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6187

6188 6189
		env->flags |= LBF_SOME_PINNED;

6190 6191 6192 6193 6194 6195 6196 6197
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6198
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6199 6200
			return 0;

6201 6202 6203
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6204
				env->flags |= LBF_DST_PINNED;
6205 6206 6207
				env->new_dst_cpu = cpu;
				break;
			}
6208
		}
6209

6210 6211
		return 0;
	}
6212 6213

	/* Record that we found atleast one task that could run on dst_cpu */
6214
	env->flags &= ~LBF_ALL_PINNED;
6215

6216
	if (task_running(env->src_rq, p)) {
6217
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6218 6219 6220 6221 6222
		return 0;
	}

	/*
	 * Aggressive migration if:
6223 6224 6225
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6226
	 */
6227 6228 6229
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6230

6231
	if (tsk_cache_hot <= 0 ||
6232
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6233
		if (tsk_cache_hot == 1) {
6234 6235
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6236
		}
6237 6238 6239
		return 1;
	}

6240
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6241
	return 0;
6242 6243
}

6244
/*
6245 6246 6247 6248 6249 6250 6251
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6252
	deactivate_task(env->src_rq, p, 0);
6253 6254 6255
	set_task_cpu(p, env->dst_cpu);
}

6256
/*
6257
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6258 6259
 * part of active balancing operations within "domain".
 *
6260
 * Returns a task if successful and NULL otherwise.
6261
 */
6262
static struct task_struct *detach_one_task(struct lb_env *env)
6263 6264 6265
{
	struct task_struct *p, *n;

6266 6267
	lockdep_assert_held(&env->src_rq->lock);

6268 6269 6270
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6271

6272
		detach_task(p, env);
6273

6274
		/*
6275
		 * Right now, this is only the second place where
6276
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6277
		 * so we can safely collect stats here rather than
6278
		 * inside detach_tasks().
6279
		 */
6280
		schedstat_inc(env->sd->lb_gained[env->idle]);
6281
		return p;
6282
	}
6283
	return NULL;
6284 6285
}

6286 6287
static const unsigned int sched_nr_migrate_break = 32;

6288
/*
6289 6290
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6291
 *
6292
 * Returns number of detached tasks if successful and 0 otherwise.
6293
 */
6294
static int detach_tasks(struct lb_env *env)
6295
{
6296 6297
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6298
	unsigned long load;
6299 6300 6301
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6302

6303
	if (env->imbalance <= 0)
6304
		return 0;
6305

6306
	while (!list_empty(tasks)) {
6307 6308 6309 6310 6311 6312 6313
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6314
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6315

6316 6317
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6318
		if (env->loop > env->loop_max)
6319
			break;
6320 6321

		/* take a breather every nr_migrate tasks */
6322
		if (env->loop > env->loop_break) {
6323
			env->loop_break += sched_nr_migrate_break;
6324
			env->flags |= LBF_NEED_BREAK;
6325
			break;
6326
		}
6327

6328
		if (!can_migrate_task(p, env))
6329 6330 6331
			goto next;

		load = task_h_load(p);
6332

6333
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6334 6335
			goto next;

6336
		if ((load / 2) > env->imbalance)
6337
			goto next;
6338

6339 6340 6341 6342
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6343
		env->imbalance -= load;
6344 6345

#ifdef CONFIG_PREEMPT
6346 6347
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6348
		 * kernels will stop after the first task is detached to minimize
6349 6350
		 * the critical section.
		 */
6351
		if (env->idle == CPU_NEWLY_IDLE)
6352
			break;
6353 6354
#endif

6355 6356 6357 6358
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6359
		if (env->imbalance <= 0)
6360
			break;
6361 6362 6363

		continue;
next:
6364
		list_move_tail(&p->se.group_node, tasks);
6365
	}
6366

6367
	/*
6368 6369 6370
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6371
	 */
6372
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6373

6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6386
	p->on_rq = TASK_ON_RQ_QUEUED;
6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6415

6416 6417 6418 6419
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6420 6421
}

P
Peter Zijlstra 已提交
6422
#ifdef CONFIG_FAIR_GROUP_SCHED
6423
static void update_blocked_averages(int cpu)
6424 6425
{
	struct rq *rq = cpu_rq(cpu);
6426 6427
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6428

6429 6430
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6431

6432 6433 6434 6435
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6436
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6437 6438 6439
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6440

6441
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6442 6443
			update_tg_load_avg(cfs_rq, 0);
	}
6444
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6445 6446
}

6447
/*
6448
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6449 6450 6451
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6452
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6453
{
6454 6455
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6456
	unsigned long now = jiffies;
6457
	unsigned long load;
6458

6459
	if (cfs_rq->last_h_load_update == now)
6460 6461
		return;

6462 6463 6464 6465 6466 6467 6468
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6469

6470
	if (!se) {
6471
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6472 6473 6474 6475 6476
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6477 6478
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6479 6480 6481 6482
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6483 6484
}

6485
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6486
{
6487
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6488

6489
	update_cfs_rq_h_load(cfs_rq);
6490
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6491
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6492 6493
}
#else
6494
static inline void update_blocked_averages(int cpu)
6495
{
6496 6497 6498 6499 6500 6501
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6502
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6503
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6504 6505
}

6506
static unsigned long task_h_load(struct task_struct *p)
6507
{
6508
	return p->se.avg.load_avg;
6509
}
P
Peter Zijlstra 已提交
6510
#endif
6511 6512

/********** Helpers for find_busiest_group ************************/
6513 6514 6515 6516 6517 6518 6519

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6520 6521 6522 6523 6524 6525 6526
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6527
	unsigned long load_per_task;
6528
	unsigned long group_capacity;
6529
	unsigned long group_util; /* Total utilization of the group */
6530 6531 6532
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6533
	enum group_type group_type;
6534
	int group_no_capacity;
6535 6536 6537 6538
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6539 6540
};

J
Joonsoo Kim 已提交
6541 6542 6543 6544 6545 6546 6547 6548
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6549
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6550 6551 6552
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6553
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6554 6555
};

6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6568
		.total_capacity = 0UL,
6569 6570
		.busiest_stat = {
			.avg_load = 0UL,
6571 6572
			.sum_nr_running = 0,
			.group_type = group_other,
6573 6574 6575 6576
		},
	};
}

6577 6578 6579
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6580
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6581 6582
 *
 * Return: The load index.
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6605
static unsigned long scale_rt_capacity(int cpu)
6606 6607
{
	struct rq *rq = cpu_rq(cpu);
6608
	u64 total, used, age_stamp, avg;
6609
	s64 delta;
6610

6611 6612 6613 6614
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6615 6616
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6617
	delta = __rq_clock_broken(rq) - age_stamp;
6618

6619 6620 6621 6622
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6623

6624
	used = div_u64(avg, total);
6625

6626 6627
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6628

6629
	return 1;
6630 6631
}

6632
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6633
{
6634
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6635 6636
	struct sched_group *sdg = sd->groups;

6637
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6638

6639
	capacity *= scale_rt_capacity(cpu);
6640
	capacity >>= SCHED_CAPACITY_SHIFT;
6641

6642 6643
	if (!capacity)
		capacity = 1;
6644

6645 6646
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6647 6648
}

6649
void update_group_capacity(struct sched_domain *sd, int cpu)
6650 6651 6652
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6653
	unsigned long capacity;
6654 6655 6656 6657
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6658
	sdg->sgc->next_update = jiffies + interval;
6659 6660

	if (!child) {
6661
		update_cpu_capacity(sd, cpu);
6662 6663 6664
		return;
	}

6665
	capacity = 0;
6666

P
Peter Zijlstra 已提交
6667 6668 6669 6670 6671 6672
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6673
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6674
			struct sched_group_capacity *sgc;
6675
			struct rq *rq = cpu_rq(cpu);
6676

6677
			/*
6678
			 * build_sched_domains() -> init_sched_groups_capacity()
6679 6680 6681
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6682 6683
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6684
			 *
6685
			 * This avoids capacity from being 0 and
6686 6687 6688
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6689
				capacity += capacity_of(cpu);
6690 6691
				continue;
			}
6692

6693 6694
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6695
		}
P
Peter Zijlstra 已提交
6696 6697 6698 6699
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
6700
		 */
P
Peter Zijlstra 已提交
6701 6702 6703

		group = child->groups;
		do {
6704
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6705 6706 6707
			group = group->next;
		} while (group != child->groups);
	}
6708

6709
	sdg->sgc->capacity = capacity;
6710 6711
}

6712
/*
6713 6714 6715
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6716 6717
 */
static inline int
6718
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6719
{
6720 6721
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6722 6723
}

6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6740 6741
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6742 6743
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6744
 * update_sd_pick_busiest(). And calculate_imbalance() and
6745
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6746 6747 6748 6749 6750 6751 6752
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6753
static inline int sg_imbalanced(struct sched_group *group)
6754
{
6755
	return group->sgc->imbalance;
6756 6757
}

6758
/*
6759 6760 6761
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6762 6763
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6764 6765 6766 6767 6768
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6769
 */
6770 6771
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6772
{
6773 6774
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6775

6776
	if ((sgs->group_capacity * 100) >
6777
			(sgs->group_util * env->sd->imbalance_pct))
6778
		return true;
6779

6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6796

6797
	if ((sgs->group_capacity * 100) <
6798
			(sgs->group_util * env->sd->imbalance_pct))
6799
		return true;
6800

6801
	return false;
6802 6803
}

6804 6805 6806
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6807
{
6808
	if (sgs->group_no_capacity)
6809 6810 6811 6812 6813 6814 6815 6816
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6817 6818
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6819
 * @env: The load balancing environment.
6820 6821 6822 6823
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6824
 * @overload: Indicate more than one runnable task for any CPU.
6825
 */
6826 6827
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6828 6829
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6830
{
6831
	unsigned long load;
6832
	int i, nr_running;
6833

6834 6835
	memset(sgs, 0, sizeof(*sgs));

6836
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6837 6838 6839
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6840
		if (local_group)
6841
			load = target_load(i, load_idx);
6842
		else
6843 6844 6845
			load = source_load(i, load_idx);

		sgs->group_load += load;
6846
		sgs->group_util += cpu_util(i);
6847
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6848

6849 6850
		nr_running = rq->nr_running;
		if (nr_running > 1)
6851 6852
			*overload = true;

6853 6854 6855 6856
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6857
		sgs->sum_weighted_load += weighted_cpuload(i);
6858 6859 6860 6861
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6862
			sgs->idle_cpus++;
6863 6864
	}

6865 6866
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6867
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6868

6869
	if (sgs->sum_nr_running)
6870
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6871

6872
	sgs->group_weight = group->group_weight;
6873

6874
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6875
	sgs->group_type = group_classify(group, sgs);
6876 6877
}

6878 6879
/**
 * update_sd_pick_busiest - return 1 on busiest group
6880
 * @env: The load balancing environment.
6881 6882
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6883
 * @sgs: sched_group statistics
6884 6885 6886
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6887 6888 6889
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6890
 */
6891
static bool update_sd_pick_busiest(struct lb_env *env,
6892 6893
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6894
				   struct sg_lb_stats *sgs)
6895
{
6896
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6897

6898
	if (sgs->group_type > busiest->group_type)
6899 6900
		return true;

6901 6902 6903 6904 6905 6906 6907 6908
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6909 6910
		return true;

6911 6912 6913
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
6914 6915 6916 6917 6918
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6919
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6920 6921 6922
		if (!sds->busiest)
			return true;

6923 6924
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6925 6926 6927 6928 6929 6930
			return true;
	}

	return false;
}

6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6961
/**
6962
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6963
 * @env: The load balancing environment.
6964 6965
 * @sds: variable to hold the statistics for this sched_domain.
 */
6966
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6967
{
6968 6969
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6970
	struct sg_lb_stats tmp_sgs;
6971
	int load_idx, prefer_sibling = 0;
6972
	bool overload = false;
6973 6974 6975 6976

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6977
	load_idx = get_sd_load_idx(env->sd, env->idle);
6978 6979

	do {
J
Joonsoo Kim 已提交
6980
		struct sg_lb_stats *sgs = &tmp_sgs;
6981 6982
		int local_group;

6983
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6984 6985 6986
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6987 6988

			if (env->idle != CPU_NEWLY_IDLE ||
6989 6990
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6991
		}
6992

6993 6994
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6995

6996 6997 6998
		if (local_group)
			goto next_group;

6999 7000
		/*
		 * In case the child domain prefers tasks go to siblings
7001
		 * first, lower the sg capacity so that we'll try
7002 7003
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7004 7005 7006 7007
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7008
		 */
7009
		if (prefer_sibling && sds->local &&
7010 7011 7012
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7013
			sgs->group_type = group_classify(sg, sgs);
7014
		}
7015

7016
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7017
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7018
			sds->busiest_stat = *sgs;
7019 7020
		}

7021 7022 7023
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7024
		sds->total_capacity += sgs->group_capacity;
7025

7026
		sg = sg->next;
7027
	} while (sg != env->sd->groups);
7028 7029 7030

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7031 7032 7033 7034 7035 7036 7037

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7057
 * Return: 1 when packing is required and a task should be moved to
7058 7059
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7060
 * @env: The load balancing environment.
7061 7062
 * @sds: Statistics of the sched_domain which is to be packed
 */
7063
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7064 7065 7066
{
	int busiest_cpu;

7067
	if (!(env->sd->flags & SD_ASYM_PACKING))
7068 7069
		return 0;

7070 7071 7072
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7073 7074 7075 7076
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
7077
	if (env->dst_cpu > busiest_cpu)
7078 7079
		return 0;

7080
	env->imbalance = DIV_ROUND_CLOSEST(
7081
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7082
		SCHED_CAPACITY_SCALE);
7083

7084
	return 1;
7085 7086 7087 7088 7089 7090
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7091
 * @env: The load balancing environment.
7092 7093
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7094 7095
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7096
{
7097
	unsigned long tmp, capa_now = 0, capa_move = 0;
7098
	unsigned int imbn = 2;
7099
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7100
	struct sg_lb_stats *local, *busiest;
7101

J
Joonsoo Kim 已提交
7102 7103
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7104

J
Joonsoo Kim 已提交
7105 7106 7107 7108
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7109

J
Joonsoo Kim 已提交
7110
	scaled_busy_load_per_task =
7111
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7112
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7113

7114 7115
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7116
		env->imbalance = busiest->load_per_task;
7117 7118 7119 7120 7121
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7122
	 * however we may be able to increase total CPU capacity used by
7123 7124 7125
	 * moving them.
	 */

7126
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7127
			min(busiest->load_per_task, busiest->avg_load);
7128
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7129
			min(local->load_per_task, local->avg_load);
7130
	capa_now /= SCHED_CAPACITY_SCALE;
7131 7132

	/* Amount of load we'd subtract */
7133
	if (busiest->avg_load > scaled_busy_load_per_task) {
7134
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7135
			    min(busiest->load_per_task,
7136
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7137
	}
7138 7139

	/* Amount of load we'd add */
7140
	if (busiest->avg_load * busiest->group_capacity <
7141
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7142 7143
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7144
	} else {
7145
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7146
		      local->group_capacity;
J
Joonsoo Kim 已提交
7147
	}
7148
	capa_move += local->group_capacity *
7149
		    min(local->load_per_task, local->avg_load + tmp);
7150
	capa_move /= SCHED_CAPACITY_SCALE;
7151 7152

	/* Move if we gain throughput */
7153
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7154
		env->imbalance = busiest->load_per_task;
7155 7156 7157 7158 7159
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7160
 * @env: load balance environment
7161 7162
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7163
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7164
{
7165
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7166 7167 7168 7169
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7170

7171
	if (busiest->group_type == group_imbalanced) {
7172 7173 7174 7175
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7176 7177
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7178 7179
	}

7180
	/*
7181 7182 7183 7184
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7185
	 */
7186 7187
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7188 7189
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7190 7191
	}

7192 7193 7194 7195 7196
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7197
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7198
		if (load_above_capacity > busiest->group_capacity) {
7199
			load_above_capacity -= busiest->group_capacity;
7200
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7201 7202
			load_above_capacity /= busiest->group_capacity;
		} else
7203
			load_above_capacity = ~0UL;
7204 7205 7206 7207 7208 7209
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7210 7211
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7212
	 */
7213
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7214 7215

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7216
	env->imbalance = min(
7217 7218
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7219
	) / SCHED_CAPACITY_SCALE;
7220 7221 7222

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7223
	 * there is no guarantee that any tasks will be moved so we'll have
7224 7225 7226
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7227
	if (env->imbalance < busiest->load_per_task)
7228
		return fix_small_imbalance(env, sds);
7229
}
7230

7231 7232 7233 7234
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7235
 * if there is an imbalance.
7236 7237 7238 7239
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7240
 * @env: The load balancing environment.
7241
 *
7242
 * Return:	- The busiest group if imbalance exists.
7243
 */
J
Joonsoo Kim 已提交
7244
static struct sched_group *find_busiest_group(struct lb_env *env)
7245
{
J
Joonsoo Kim 已提交
7246
	struct sg_lb_stats *local, *busiest;
7247 7248
	struct sd_lb_stats sds;

7249
	init_sd_lb_stats(&sds);
7250 7251 7252 7253 7254

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7255
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7256 7257
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7258

7259
	/* ASYM feature bypasses nice load balance check */
7260
	if (check_asym_packing(env, &sds))
7261 7262
		return sds.busiest;

7263
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7264
	if (!sds.busiest || busiest->sum_nr_running == 0)
7265 7266
		goto out_balanced;

7267 7268
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7269

P
Peter Zijlstra 已提交
7270 7271
	/*
	 * If the busiest group is imbalanced the below checks don't
7272
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7273 7274
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7275
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7276 7277
		goto force_balance;

7278
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7279 7280
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7281 7282
		goto force_balance;

7283
	/*
7284
	 * If the local group is busier than the selected busiest group
7285 7286
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7287
	if (local->avg_load >= busiest->avg_load)
7288 7289
		goto out_balanced;

7290 7291 7292 7293
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7294
	if (local->avg_load >= sds.avg_load)
7295 7296
		goto out_balanced;

7297
	if (env->idle == CPU_IDLE) {
7298
		/*
7299 7300 7301 7302 7303
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7304
		 */
7305 7306
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7307
			goto out_balanced;
7308 7309 7310 7311 7312
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7313 7314
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7315
			goto out_balanced;
7316
	}
7317

7318
force_balance:
7319
	/* Looks like there is an imbalance. Compute it */
7320
	calculate_imbalance(env, &sds);
7321 7322 7323
	return sds.busiest;

out_balanced:
7324
	env->imbalance = 0;
7325 7326 7327 7328 7329 7330
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7331
static struct rq *find_busiest_queue(struct lb_env *env,
7332
				     struct sched_group *group)
7333 7334
{
	struct rq *busiest = NULL, *rq;
7335
	unsigned long busiest_load = 0, busiest_capacity = 1;
7336 7337
	int i;

7338
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7339
		unsigned long capacity, wl;
7340 7341 7342 7343
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7344

7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7367
		capacity = capacity_of(i);
7368

7369
		wl = weighted_cpuload(i);
7370

7371 7372
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7373
		 * which is not scaled with the cpu capacity.
7374
		 */
7375 7376 7377

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7378 7379
			continue;

7380 7381
		/*
		 * For the load comparisons with the other cpu's, consider
7382 7383 7384
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7385
		 *
7386
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7387
		 * multiplication to rid ourselves of the division works out
7388 7389
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7390
		 */
7391
		if (wl * busiest_capacity > busiest_load * capacity) {
7392
			busiest_load = wl;
7393
			busiest_capacity = capacity;
7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7408
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7409

7410
static int need_active_balance(struct lb_env *env)
7411
{
7412 7413 7414
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7415 7416 7417 7418 7419 7420

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7421
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7422
			return 1;
7423 7424
	}

7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7438 7439 7440
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7441 7442
static int active_load_balance_cpu_stop(void *data);

7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7474
	return balance_cpu == env->dst_cpu;
7475 7476
}

7477 7478 7479 7480 7481 7482
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7483
			int *continue_balancing)
7484
{
7485
	int ld_moved, cur_ld_moved, active_balance = 0;
7486
	struct sched_domain *sd_parent = sd->parent;
7487 7488 7489
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7490
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7491

7492 7493
	struct lb_env env = {
		.sd		= sd,
7494 7495
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7496
		.dst_grpmask    = sched_group_cpus(sd->groups),
7497
		.idle		= idle,
7498
		.loop_break	= sched_nr_migrate_break,
7499
		.cpus		= cpus,
7500
		.fbq_type	= all,
7501
		.tasks		= LIST_HEAD_INIT(env.tasks),
7502 7503
	};

7504 7505 7506 7507
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7508
	if (idle == CPU_NEWLY_IDLE)
7509 7510
		env.dst_grpmask = NULL;

7511 7512
	cpumask_copy(cpus, cpu_active_mask);

7513
	schedstat_inc(sd->lb_count[idle]);
7514 7515

redo:
7516 7517
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7518
		goto out_balanced;
7519
	}
7520

7521
	group = find_busiest_group(&env);
7522
	if (!group) {
7523
		schedstat_inc(sd->lb_nobusyg[idle]);
7524 7525 7526
		goto out_balanced;
	}

7527
	busiest = find_busiest_queue(&env, group);
7528
	if (!busiest) {
7529
		schedstat_inc(sd->lb_nobusyq[idle]);
7530 7531 7532
		goto out_balanced;
	}

7533
	BUG_ON(busiest == env.dst_rq);
7534

7535
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
7536

7537 7538 7539
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7540 7541 7542 7543 7544 7545 7546 7547
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7548
		env.flags |= LBF_ALL_PINNED;
7549
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7550

7551
more_balance:
7552
		raw_spin_lock_irqsave(&busiest->lock, flags);
7553 7554 7555 7556 7557

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7558
		cur_ld_moved = detach_tasks(&env);
7559 7560

		/*
7561 7562 7563 7564 7565
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7566
		 */
7567 7568 7569 7570 7571 7572 7573 7574

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7575
		local_irq_restore(flags);
7576

7577 7578 7579 7580 7581
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7601
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7602

7603 7604 7605
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7606
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7607
			env.dst_cpu	 = env.new_dst_cpu;
7608
			env.flags	&= ~LBF_DST_PINNED;
7609 7610
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7611

7612 7613 7614 7615 7616 7617
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7618

7619 7620 7621 7622
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7623
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7624

7625
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7626 7627 7628
				*group_imbalance = 1;
		}

7629
		/* All tasks on this runqueue were pinned by CPU affinity */
7630
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7631
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7632 7633 7634
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7635
				goto redo;
7636
			}
7637
			goto out_all_pinned;
7638 7639 7640 7641
		}
	}

	if (!ld_moved) {
7642
		schedstat_inc(sd->lb_failed[idle]);
7643 7644 7645 7646 7647 7648 7649 7650
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7651

7652
		if (need_active_balance(&env)) {
7653 7654
			raw_spin_lock_irqsave(&busiest->lock, flags);

7655 7656 7657
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7658 7659
			 */
			if (!cpumask_test_cpu(this_cpu,
7660
					tsk_cpus_allowed(busiest->curr))) {
7661 7662
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7663
				env.flags |= LBF_ALL_PINNED;
7664 7665 7666
				goto out_one_pinned;
			}

7667 7668 7669 7670 7671
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7672 7673 7674 7675 7676 7677
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7678

7679
			if (active_balance) {
7680 7681 7682
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7683
			}
7684

7685
			/* We've kicked active balancing, force task migration. */
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7699
		 * detach_tasks).
7700 7701 7702 7703 7704 7705 7706 7707
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7725
	schedstat_inc(sd->lb_balanced[idle]);
7726 7727 7728 7729 7730

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7731
	if (((env.flags & LBF_ALL_PINNED) &&
7732
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7733 7734 7735
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7736
	ld_moved = 0;
7737 7738 7739 7740
out:
	return ld_moved;
}

7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
7757
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
7758 7759 7760
{
	unsigned long interval, next;

7761 7762
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
7763 7764 7765 7766 7767 7768
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7769 7770 7771 7772
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7773
static int idle_balance(struct rq *this_rq)
7774
{
7775 7776
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7777 7778
	struct sched_domain *sd;
	int pulled_task = 0;
7779
	u64 curr_cost = 0;
7780

7781 7782 7783 7784 7785 7786
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7787 7788
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7789 7790 7791
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
7792
			update_next_balance(sd, &next_balance);
7793 7794
		rcu_read_unlock();

7795
		goto out;
7796
	}
7797

7798 7799
	raw_spin_unlock(&this_rq->lock);

7800
	update_blocked_averages(this_cpu);
7801
	rcu_read_lock();
7802
	for_each_domain(this_cpu, sd) {
7803
		int continue_balancing = 1;
7804
		u64 t0, domain_cost;
7805 7806 7807 7808

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7809
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7810
			update_next_balance(sd, &next_balance);
7811
			break;
7812
		}
7813

7814
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7815 7816
			t0 = sched_clock_cpu(this_cpu);

7817
			pulled_task = load_balance(this_cpu, this_rq,
7818 7819
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7820 7821 7822 7823 7824 7825

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7826
		}
7827

7828
		update_next_balance(sd, &next_balance);
7829 7830 7831 7832 7833 7834

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7835 7836
			break;
	}
7837
	rcu_read_unlock();
7838 7839 7840

	raw_spin_lock(&this_rq->lock);

7841 7842 7843
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7844
	/*
7845 7846 7847
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7848
	 */
7849
	if (this_rq->cfs.h_nr_running && !pulled_task)
7850
		pulled_task = 1;
7851

7852 7853 7854
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7855
		this_rq->next_balance = next_balance;
7856

7857
	/* Is there a task of a high priority class? */
7858
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7859 7860
		pulled_task = -1;

7861
	if (pulled_task)
7862 7863
		this_rq->idle_stamp = 0;

7864
	return pulled_task;
7865 7866 7867
}

/*
7868 7869 7870 7871
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7872
 */
7873
static int active_load_balance_cpu_stop(void *data)
7874
{
7875 7876
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7877
	int target_cpu = busiest_rq->push_cpu;
7878
	struct rq *target_rq = cpu_rq(target_cpu);
7879
	struct sched_domain *sd;
7880
	struct task_struct *p = NULL;
7881 7882 7883 7884 7885 7886 7887

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7888 7889 7890

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7891
		goto out_unlock;
7892 7893 7894 7895 7896 7897 7898 7899 7900

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7901
	rcu_read_lock();
7902 7903 7904 7905 7906 7907 7908
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7909 7910
		struct lb_env env = {
			.sd		= sd,
7911 7912 7913 7914
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7915 7916 7917
			.idle		= CPU_IDLE,
		};

7918
		schedstat_inc(sd->alb_count);
7919

7920
		p = detach_one_task(&env);
7921
		if (p) {
7922
			schedstat_inc(sd->alb_pushed);
7923 7924 7925
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
7926
			schedstat_inc(sd->alb_failed);
7927
		}
7928
	}
7929
	rcu_read_unlock();
7930 7931
out_unlock:
	busiest_rq->active_balance = 0;
7932 7933 7934 7935 7936 7937 7938
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7939
	return 0;
7940 7941
}

7942 7943 7944 7945 7946
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7947
#ifdef CONFIG_NO_HZ_COMMON
7948 7949 7950 7951 7952 7953
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7954
static struct {
7955
	cpumask_var_t idle_cpus_mask;
7956
	atomic_t nr_cpus;
7957 7958
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7959

7960
static inline int find_new_ilb(void)
7961
{
7962
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7963

7964 7965 7966 7967
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7968 7969
}

7970 7971 7972 7973 7974
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7975
static void nohz_balancer_kick(void)
7976 7977 7978 7979 7980
{
	int ilb_cpu;

	nohz.next_balance++;

7981
	ilb_cpu = find_new_ilb();
7982

7983 7984
	if (ilb_cpu >= nr_cpu_ids)
		return;
7985

7986
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7987 7988 7989 7990 7991 7992 7993 7994
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7995 7996 7997
	return;
}

7998
void nohz_balance_exit_idle(unsigned int cpu)
7999 8000
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8001 8002 8003 8004 8005 8006 8007
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8008 8009 8010 8011
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8012 8013 8014
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8015
	int cpu = smp_processor_id();
8016 8017

	rcu_read_lock();
8018
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
8019 8020 8021 8022 8023

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8024
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
8025
unlock:
8026 8027 8028 8029 8030 8031
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8032
	int cpu = smp_processor_id();
8033 8034

	rcu_read_lock();
8035
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
8036 8037 8038 8039 8040

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8041
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
8042
unlock:
8043 8044 8045
	rcu_read_unlock();
}

8046
/*
8047
 * This routine will record that the cpu is going idle with tick stopped.
8048
 * This info will be used in performing idle load balancing in the future.
8049
 */
8050
void nohz_balance_enter_idle(int cpu)
8051
{
8052 8053 8054 8055 8056 8057
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8058 8059
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8060

8061 8062 8063 8064 8065 8066
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8067 8068 8069
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8070 8071 8072 8073 8074
}
#endif

static DEFINE_SPINLOCK(balancing);

8075 8076 8077 8078
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8079
void update_max_interval(void)
8080 8081 8082 8083
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8084 8085 8086 8087
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8088
 * Balancing parameters are set up in init_sched_domains.
8089
 */
8090
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8091
{
8092
	int continue_balancing = 1;
8093
	int cpu = rq->cpu;
8094
	unsigned long interval;
8095
	struct sched_domain *sd;
8096 8097 8098
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8099 8100
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8101

8102
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8103

8104
	rcu_read_lock();
8105
	for_each_domain(cpu, sd) {
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8118 8119 8120
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8132
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8133 8134 8135 8136 8137 8138 8139 8140

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8141
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8142
				/*
8143
				 * The LBF_DST_PINNED logic could have changed
8144 8145
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8146
				 */
8147
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8148 8149
			}
			sd->last_balance = jiffies;
8150
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8151 8152 8153 8154 8155 8156 8157 8158
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8159 8160
	}
	if (need_decay) {
8161
		/*
8162 8163
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8164
		 */
8165 8166
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8167
	}
8168
	rcu_read_unlock();
8169 8170 8171 8172 8173 8174

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8175
	if (likely(update_next_balance)) {
8176
		rq->next_balance = next_balance;
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8191 8192
}

8193
#ifdef CONFIG_NO_HZ_COMMON
8194
/*
8195
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8196 8197
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8198
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8199
{
8200
	int this_cpu = this_rq->cpu;
8201 8202
	struct rq *rq;
	int balance_cpu;
8203 8204 8205
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8206

8207 8208 8209
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8210 8211

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8212
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8213 8214 8215 8216 8217 8218 8219
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8220
		if (need_resched())
8221 8222
			break;

V
Vincent Guittot 已提交
8223 8224
		rq = cpu_rq(balance_cpu);

8225 8226 8227 8228 8229 8230 8231
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8232
			cpu_load_update_idle(rq);
8233 8234 8235
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8236

8237 8238 8239 8240
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8241
	}
8242 8243 8244 8245 8246 8247 8248 8249

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8250 8251
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8252 8253 8254
}

/*
8255
 * Current heuristic for kicking the idle load balancer in the presence
8256
 * of an idle cpu in the system.
8257
 *   - This rq has more than one task.
8258 8259 8260 8261
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8262 8263
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8264
 */
8265
static inline bool nohz_kick_needed(struct rq *rq)
8266 8267
{
	unsigned long now = jiffies;
8268
	struct sched_domain *sd;
8269
	struct sched_group_capacity *sgc;
8270
	int nr_busy, cpu = rq->cpu;
8271
	bool kick = false;
8272

8273
	if (unlikely(rq->idle_balance))
8274
		return false;
8275

8276 8277 8278 8279
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8280
	set_cpu_sd_state_busy();
8281
	nohz_balance_exit_idle(cpu);
8282 8283 8284 8285 8286 8287

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8288
		return false;
8289 8290

	if (time_before(now, nohz.next_balance))
8291
		return false;
8292

8293
	if (rq->nr_running >= 2)
8294
		return true;
8295

8296
	rcu_read_lock();
8297 8298
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8299 8300
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8301

8302 8303 8304 8305 8306
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8307
	}
8308

8309 8310 8311 8312 8313 8314 8315 8316
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8317

8318
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8319
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8320 8321 8322 8323
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8324

8325
unlock:
8326
	rcu_read_unlock();
8327
	return kick;
8328 8329
}
#else
8330
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8331 8332 8333 8334 8335 8336
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8337 8338
static void run_rebalance_domains(struct softirq_action *h)
{
8339
	struct rq *this_rq = this_rq();
8340
	enum cpu_idle_type idle = this_rq->idle_balance ?
8341 8342 8343
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8344
	 * If this cpu has a pending nohz_balance_kick, then do the
8345
	 * balancing on behalf of the other idle cpus whose ticks are
8346 8347 8348 8349
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8350
	 */
8351
	nohz_idle_balance(this_rq, idle);
8352
	rebalance_domains(this_rq, idle);
8353 8354 8355 8356 8357
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8358
void trigger_load_balance(struct rq *rq)
8359 8360
{
	/* Don't need to rebalance while attached to NULL domain */
8361 8362 8363 8364
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8365
		raise_softirq(SCHED_SOFTIRQ);
8366
#ifdef CONFIG_NO_HZ_COMMON
8367
	if (nohz_kick_needed(rq))
8368
		nohz_balancer_kick();
8369
#endif
8370 8371
}

8372 8373 8374
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8375 8376

	update_runtime_enabled(rq);
8377 8378 8379 8380 8381
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8382 8383 8384

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8385 8386
}

8387
#endif /* CONFIG_SMP */
8388

8389 8390 8391
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8392
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8393 8394 8395 8396 8397 8398
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8399
		entity_tick(cfs_rq, se, queued);
8400
	}
8401

8402
	if (static_branch_unlikely(&sched_numa_balancing))
8403
		task_tick_numa(rq, curr);
8404 8405 8406
}

/*
P
Peter Zijlstra 已提交
8407 8408 8409
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8410
 */
P
Peter Zijlstra 已提交
8411
static void task_fork_fair(struct task_struct *p)
8412
{
8413 8414
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8415
	struct rq *rq = this_rq();
8416

8417
	raw_spin_lock(&rq->lock);
8418 8419
	update_rq_clock(rq);

8420 8421
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8422 8423
	if (curr) {
		update_curr(cfs_rq);
8424
		se->vruntime = curr->vruntime;
8425
	}
8426
	place_entity(cfs_rq, se, 1);
8427

P
Peter Zijlstra 已提交
8428
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8429
		/*
8430 8431 8432
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8433
		swap(curr->vruntime, se->vruntime);
8434
		resched_curr(rq);
8435
	}
8436

8437
	se->vruntime -= cfs_rq->min_vruntime;
8438
	raw_spin_unlock(&rq->lock);
8439 8440
}

8441 8442 8443 8444
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8445 8446
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8447
{
8448
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8449 8450
		return;

8451 8452 8453 8454 8455
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8456
	if (rq->curr == p) {
8457
		if (p->prio > oldprio)
8458
			resched_curr(rq);
8459
	} else
8460
		check_preempt_curr(rq, p, 0);
8461 8462
}

8463
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8464 8465 8466 8467
{
	struct sched_entity *se = &p->se;

	/*
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8478
	 *
8479 8480 8481 8482
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8483
	 */
8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8494
	u64 now = cfs_rq_clock_task(cfs_rq);
8495 8496

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8497 8498 8499 8500 8501 8502 8503
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8504

8505
	/* Catch up with the cfs_rq and remove our load when we leave */
8506
	update_cfs_rq_load_avg(now, cfs_rq, false);
8507
	detach_entity_load_avg(cfs_rq, se);
8508
	update_tg_load_avg(cfs_rq, false);
P
Peter Zijlstra 已提交
8509 8510
}

8511
static void attach_task_cfs_rq(struct task_struct *p)
8512
{
8513
	struct sched_entity *se = &p->se;
8514
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8515
	u64 now = cfs_rq_clock_task(cfs_rq);
8516 8517

#ifdef CONFIG_FAIR_GROUP_SCHED
8518 8519 8520 8521 8522 8523
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8524

8525
	/* Synchronize task with its cfs_rq */
8526
	update_cfs_rq_load_avg(now, cfs_rq, false);
8527
	attach_entity_load_avg(cfs_rq, se);
8528
	update_tg_load_avg(cfs_rq, false);
8529 8530 8531 8532

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8533

8534 8535 8536 8537 8538 8539 8540 8541
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8542

8543
	if (task_on_rq_queued(p)) {
8544
		/*
8545 8546 8547
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8548
		 */
8549 8550 8551 8552
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8553
	}
8554 8555
}

8556 8557 8558 8559 8560 8561 8562 8563 8564
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8565 8566 8567 8568 8569 8570 8571
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8572 8573
}

8574 8575 8576 8577 8578 8579 8580
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8581
#ifdef CONFIG_SMP
8582 8583
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8584
#endif
8585 8586
}

P
Peter Zijlstra 已提交
8587
#ifdef CONFIG_FAIR_GROUP_SCHED
8588 8589 8590 8591 8592 8593 8594 8595
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

8596
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8597
{
8598
	detach_task_cfs_rq(p);
8599
	set_task_rq(p, task_cpu(p));
8600 8601 8602 8603 8604

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8605
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8606
}
8607

8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

8621 8622 8623 8624 8625 8626 8627 8628 8629
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8630
		if (tg->se)
8631 8632 8633 8634 8635 8636 8637 8638 8639 8640
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8641 8642
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8657 8658
		rq = cpu_rq(i);

8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8671
		init_entity_runnable_average(se);
8672 8673 8674 8675 8676 8677 8678 8679 8680 8681
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
		post_init_entity_util_avg(se);
8694
		sync_throttle(tg, i);
8695 8696 8697 8698
		raw_spin_unlock_irq(&rq->lock);
	}
}

8699
void unregister_fair_sched_group(struct task_group *tg)
8700 8701
{
	unsigned long flags;
8702 8703
	struct rq *rq;
	int cpu;
8704

8705 8706 8707
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8708

8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8741
	if (!parent) {
8742
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8743 8744
		se->depth = 0;
	} else {
8745
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8746 8747
		se->depth = parent->depth + 1;
	}
8748 8749

	se->my_q = cfs_rq;
8750 8751
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8782 8783 8784

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8785
		for_each_sched_entity(se)
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8803 8804
void online_fair_sched_group(struct task_group *tg) { }

8805
void unregister_fair_sched_group(struct task_group *tg) { }
8806 8807 8808

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8809

8810
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8811 8812 8813 8814 8815 8816 8817 8818 8819
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8820
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8821 8822 8823 8824

	return rr_interval;
}

8825 8826 8827
/*
 * All the scheduling class methods:
 */
8828
const struct sched_class fair_sched_class = {
8829
	.next			= &idle_sched_class,
8830 8831 8832
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8833
	.yield_to_task		= yield_to_task_fair,
8834

I
Ingo Molnar 已提交
8835
	.check_preempt_curr	= check_preempt_wakeup,
8836 8837 8838 8839

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8840
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8841
	.select_task_rq		= select_task_rq_fair,
8842
	.migrate_task_rq	= migrate_task_rq_fair,
8843

8844 8845
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8846

8847
	.task_dead		= task_dead_fair,
8848
	.set_cpus_allowed	= set_cpus_allowed_common,
8849
#endif
8850

8851
	.set_curr_task          = set_curr_task_fair,
8852
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8853
	.task_fork		= task_fork_fair,
8854 8855

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8856
	.switched_from		= switched_from_fair,
8857
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8858

8859 8860
	.get_rr_interval	= get_rr_interval_fair,

8861 8862
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8863
#ifdef CONFIG_FAIR_GROUP_SCHED
8864
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
8865
#endif
8866 8867 8868
};

#ifdef CONFIG_SCHED_DEBUG
8869
void print_cfs_stats(struct seq_file *m, int cpu)
8870 8871 8872
{
	struct cfs_rq *cfs_rq;

8873
	rcu_read_lock();
8874
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8875
		print_cfs_rq(m, cpu, cfs_rq);
8876
	rcu_read_unlock();
8877
}
8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8899 8900 8901 8902 8903 8904

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8905
#ifdef CONFIG_NO_HZ_COMMON
8906
	nohz.next_balance = jiffies;
8907 8908 8909 8910 8911
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}