fair.c 269.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

355 356 357
/* Iterate through all leaf cfs_rq's on a runqueue: */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
358 359

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
360
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
361 362 363
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
364
		return se->cfs_rq;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	return NULL;
P
Peter Zijlstra 已提交
367 368 369 370 371 372 373
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

374 375 376 377 378 379 380 381 382 383 384 385 386
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
387 388
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

406 407 408 409 410 411
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
412

413 414 415
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
416 417 418
}


P
Peter Zijlstra 已提交
419 420
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
421

P
Peter Zijlstra 已提交
422
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
423
{
P
Peter Zijlstra 已提交
424
	return &task_rq(p)->cfs;
425 426
}

P
Peter Zijlstra 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

441 442 443 444 445 446 447 448
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

449 450
#define for_each_leaf_cfs_rq(rq, cfs_rq)	\
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
P
Peter Zijlstra 已提交
451 452 453 454 455 456

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

457 458 459 460 461
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
462 463
#endif	/* CONFIG_FAIR_GROUP_SCHED */

464
static __always_inline
465
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
466 467 468 469 470

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

471
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
472
{
473
	s64 delta = (s64)(vruntime - max_vruntime);
474
	if (delta > 0)
475
		max_vruntime = vruntime;
476

477
	return max_vruntime;
478 479
}

480
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
481 482 483 484 485 486 487 488
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

489 490 491 492 493 494
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

495 496
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
497
	struct sched_entity *curr = cfs_rq->curr;
498
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
499

500 501
	u64 vruntime = cfs_rq->min_vruntime;

502 503 504 505 506 507
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
508

509 510 511
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
512

513
		if (!curr)
514 515 516 517 518
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

519
	/* ensure we never gain time by being placed backwards. */
520
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
521 522 523 524
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
525 526
}

527 528 529
/*
 * Enqueue an entity into the rb-tree:
 */
530
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
531
{
532
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
533 534
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
535
	bool leftmost = true;
536 537 538 539 540 541 542 543 544 545 546

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
547
		if (entity_before(se, entry)) {
548 549 550
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
551
			leftmost = false;
552 553 554 555
		}
	}

	rb_link_node(&se->run_node, parent, link);
556 557
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
558 559
}

560
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
561
{
562
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
563 564
}

565
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
566
{
567
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
568 569 570 571 572

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
573 574
}

575 576 577 578 579 580 581 582 583 584 585
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
586
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
587
{
588
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
589

590 591
	if (!last)
		return NULL;
592 593

	return rb_entry(last, struct sched_entity, run_node);
594 595
}

596 597 598 599
/**************************************************************
 * Scheduling class statistics methods:
 */

600
int sched_proc_update_handler(struct ctl_table *table, int write,
601
		void __user *buffer, size_t *lenp,
602 603
		loff_t *ppos)
{
604
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
605
	unsigned int factor = get_update_sysctl_factor();
606 607 608 609 610 611 612

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

613 614 615 616 617 618 619
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

620 621 622
	return 0;
}
#endif
623

624
/*
625
 * delta /= w
626
 */
627
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
628
{
629
	if (unlikely(se->load.weight != NICE_0_LOAD))
630
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
631 632 633 634

	return delta;
}

635 636 637
/*
 * The idea is to set a period in which each task runs once.
 *
638
 * When there are too many tasks (sched_nr_latency) we have to stretch
639 640 641 642
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
643 644
static u64 __sched_period(unsigned long nr_running)
{
645 646 647 648
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
649 650
}

651 652 653 654
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
655
 * s = p*P[w/rw]
656
 */
P
Peter Zijlstra 已提交
657
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
658
{
M
Mike Galbraith 已提交
659
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
660

M
Mike Galbraith 已提交
661
	for_each_sched_entity(se) {
L
Lin Ming 已提交
662
		struct load_weight *load;
663
		struct load_weight lw;
L
Lin Ming 已提交
664 665 666

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
667

M
Mike Galbraith 已提交
668
		if (unlikely(!se->on_rq)) {
669
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
670 671 672 673

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
674
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
675 676
	}
	return slice;
677 678
}

679
/*
A
Andrei Epure 已提交
680
 * We calculate the vruntime slice of a to-be-inserted task.
681
 *
682
 * vs = s/w
683
 */
684
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
685
{
686
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
687 688
}

689
#ifdef CONFIG_SMP
690
#include "pelt.h"
691 692
#include "sched-pelt.h"

693
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
694 695
static unsigned long task_h_load(struct task_struct *p);

696 697
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
698
{
699
	struct sched_avg *sa = &se->avg;
700

701 702
	memset(sa, 0, sizeof(*sa));

703 704 705 706 707 708 709
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
710 711
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

712 713
	se->runnable_weight = se->load.weight;

714
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
715
}
716

717
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
718
static void attach_entity_cfs_rq(struct sched_entity *se);
719

720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
733
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
734
 *
735
 * where n denotes the nth task and cpu_scale the CPU capacity.
736
 *
737 738
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
739 740 741 742 743 744 745 746 747 748 749
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
750 751
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
752 753 754 755 756 757 758 759 760 761 762 763

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
764 765 766 767 768 769 770

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
771
			update_cfs_rq_load_avg(now, cfs_rq);
772
			attach_entity_load_avg(cfs_rq, se, 0);
773 774 775 776 777
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
778
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
779 780 781 782
			return;
		}
	}

783
	attach_entity_cfs_rq(se);
784 785
}

786
#else /* !CONFIG_SMP */
787
void init_entity_runnable_average(struct sched_entity *se)
788 789
{
}
790 791 792
void post_init_entity_util_avg(struct sched_entity *se)
{
}
793 794 795
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
796
#endif /* CONFIG_SMP */
797

798
/*
799
 * Update the current task's runtime statistics.
800
 */
801
static void update_curr(struct cfs_rq *cfs_rq)
802
{
803
	struct sched_entity *curr = cfs_rq->curr;
804
	u64 now = rq_clock_task(rq_of(cfs_rq));
805
	u64 delta_exec;
806 807 808 809

	if (unlikely(!curr))
		return;

810 811
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
812
		return;
813

I
Ingo Molnar 已提交
814
	curr->exec_start = now;
815

816 817 818 819
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
820
	schedstat_add(cfs_rq->exec_clock, delta_exec);
821 822 823 824

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

825 826 827
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

828
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
829
		cgroup_account_cputime(curtask, delta_exec);
830
		account_group_exec_runtime(curtask, delta_exec);
831
	}
832 833

	account_cfs_rq_runtime(cfs_rq, delta_exec);
834 835
}

836 837 838 839 840
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

841
static inline void
842
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
843
{
844 845 846 847 848 849 850
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
851 852

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
853 854
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
855

856
	__schedstat_set(se->statistics.wait_start, wait_start);
857 858
}

859
static inline void
860 861 862
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
863 864
	u64 delta;

865 866 867 868
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
869 870 871 872 873 874 875 876 877

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
878
			__schedstat_set(se->statistics.wait_start, delta);
879 880 881 882 883
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

884
	__schedstat_set(se->statistics.wait_max,
885
		      max(schedstat_val(se->statistics.wait_max), delta));
886 887 888
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
889 890
}

891
static inline void
892 893 894
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
895 896 897 898 899 900 901
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
902 903 904 905

	if (entity_is_task(se))
		tsk = task_of(se);

906 907
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
908 909 910 911

		if ((s64)delta < 0)
			delta = 0;

912
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
913
			__schedstat_set(se->statistics.sleep_max, delta);
914

915 916
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
917 918 919 920 921 922

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
923 924
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
925 926 927 928

		if ((s64)delta < 0)
			delta = 0;

929
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
930
			__schedstat_set(se->statistics.block_max, delta);
931

932 933
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
934 935 936

		if (tsk) {
			if (tsk->in_iowait) {
937 938
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
957 958
}

959 960 961
/*
 * Task is being enqueued - update stats:
 */
962
static inline void
963
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
964
{
965 966 967
	if (!schedstat_enabled())
		return;

968 969 970 971
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
972
	if (se != cfs_rq->curr)
973
		update_stats_wait_start(cfs_rq, se);
974 975 976

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
977 978 979
}

static inline void
980
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
981
{
982 983 984 985

	if (!schedstat_enabled())
		return;

986 987 988 989
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
990
	if (se != cfs_rq->curr)
991
		update_stats_wait_end(cfs_rq, se);
992

993 994
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
995

996
		if (tsk->state & TASK_INTERRUPTIBLE)
997
			__schedstat_set(se->statistics.sleep_start,
998 999
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1000
			__schedstat_set(se->statistics.block_start,
1001
				      rq_clock(rq_of(cfs_rq)));
1002 1003 1004
	}
}

1005 1006 1007 1008
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1009
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1010 1011 1012 1013
{
	/*
	 * We are starting a new run period:
	 */
1014
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1015 1016 1017 1018 1019 1020
}

/**************************************************
 * Scheduling class queueing methods:
 */

1021 1022
#ifdef CONFIG_NUMA_BALANCING
/*
1023 1024 1025
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1026
 */
1027 1028
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1029 1030 1031

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1032

1033 1034 1035
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * For functions that can be called in multiple contexts that permit reading
 * ->numa_group (see struct task_struct for locking rules).
 */
static struct numa_group *deref_task_numa_group(struct task_struct *p)
{
	return rcu_dereference_check(p->numa_group, p == current ||
		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
}

static struct numa_group *deref_curr_numa_group(struct task_struct *p)
{
	return rcu_dereference_protected(p->numa_group, p == current);
}

1071 1072 1073
static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1098
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1099 1100 1101
	unsigned int scan, floor;
	unsigned int windows = 1;

1102 1103
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1104 1105 1106 1107 1108 1109
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1110 1111 1112 1113
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;
1114
	struct numa_group *ng;
1115 1116

	/* Scale the maximum scan period with the amount of shared memory. */
1117 1118 1119
	rcu_read_lock();
	ng = rcu_dereference(p->numa_group);
	if (ng) {
1120 1121 1122 1123 1124 1125 1126
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}
1127
	rcu_read_unlock();
1128 1129 1130 1131

	return max(smin, period);
}

1132 1133
static unsigned int task_scan_max(struct task_struct *p)
{
1134 1135
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1136
	struct numa_group *ng;
1137 1138 1139

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1140 1141

	/* Scale the maximum scan period with the amount of shared memory. */
1142 1143
	ng = deref_curr_numa_group(p);
	if (ng) {
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1155 1156 1157
	return max(smin, smax);
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
1175
	RCU_INIT_POINTER(p->numa_group, NULL);
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1211 1212 1213 1214 1215 1216 1217 1218 1219
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1220 1221
pid_t task_numa_group_id(struct task_struct *p)
{
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	struct numa_group *ng;
	pid_t gid = 0;

	rcu_read_lock();
	ng = rcu_dereference(p->numa_group);
	if (ng)
		gid = ng->gid;
	rcu_read_unlock();

	return gid;
1232 1233
}

1234
/*
1235
 * The averaged statistics, shared & private, memory & CPU,
1236 1237 1238 1239 1240
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1241
{
1242
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1243 1244 1245 1246
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1247
	if (!p->numa_faults)
1248 1249
		return 0;

1250 1251
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1252 1253
}

1254 1255
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
1256 1257 1258
	struct numa_group *ng = deref_task_numa_group(p);

	if (!ng)
1259 1260
		return 0;

1261 1262
	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263 1264
}

1265 1266
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1267 1268
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1269 1270
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1344
					dist >= maxdist)
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1372 1373 1374 1375 1376 1377
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1378 1379
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1380
{
1381
	unsigned long faults, total_faults;
1382

1383
	if (!p->numa_faults)
1384 1385 1386 1387 1388 1389 1390
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1391
	faults = task_faults(p, nid);
1392 1393
	faults += score_nearby_nodes(p, nid, dist, true);

1394
	return 1000 * faults / total_faults;
1395 1396
}

1397 1398
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1399
{
1400
	struct numa_group *ng = deref_task_numa_group(p);
1401 1402
	unsigned long faults, total_faults;

1403
	if (!ng)
1404 1405
		return 0;

1406
	total_faults = ng->total_faults;
1407 1408

	if (!total_faults)
1409 1410
		return 0;

1411
	faults = group_faults(p, nid);
1412 1413
	faults += score_nearby_nodes(p, nid, dist, false);

1414
	return 1000 * faults / total_faults;
1415 1416
}

1417 1418 1419
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
1420
	struct numa_group *ng = deref_curr_numa_group(p);
1421 1422 1423 1424
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);

	/*
	 * Allow first faults or private faults to migrate immediately early in
	 * the lifetime of a task. The magic number 4 is based on waiting for
	 * two full passes of the "multi-stage node selection" test that is
	 * executed below.
	 */
	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
		return true;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1467 1468
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1469
	 */
1470 1471
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1472 1473 1474
		return true;

	/*
1475 1476 1477 1478 1479 1480
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1481
	 */
1482 1483
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1484 1485
}

1486
static unsigned long weighted_cpuload(struct rq *rq);
1487 1488
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1489
static unsigned long capacity_of(int cpu);
1490

1491
/* Cached statistics for all CPUs within a node */
1492 1493
struct numa_stats {
	unsigned long load;
1494 1495

	/* Total compute capacity of CPUs on a node */
1496
	unsigned long compute_capacity;
1497

1498
	unsigned int nr_running;
1499
};
1500

1501 1502 1503 1504 1505
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1506 1507
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1508 1509 1510 1511 1512 1513

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1514
		ns->load += weighted_cpuload(rq);
1515
		ns->compute_capacity += capacity_of(cpu);
1516 1517

		cpus++;
1518 1519
	}

1520 1521 1522 1523 1524
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1525
	 * We'll detect a huge imbalance and bail there.
1526 1527 1528 1529
	 */
	if (!cpus)
		return;

1530 1531 1532 1533
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

1534
	capacity = min_t(unsigned, capacity,
1535
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1536 1537
}

1538 1539
struct task_numa_env {
	struct task_struct *p;
1540

1541 1542
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1543

1544
	struct numa_stats src_stats, dst_stats;
1545

1546
	int imbalance_pct;
1547
	int dist;
1548 1549 1550

	struct task_struct *best_task;
	long best_imp;
1551 1552 1553
	int best_cpu;
};

1554 1555 1556
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	struct rq *rq = cpu_rq(env->dst_cpu);

	/* Bail out if run-queue part of active NUMA balance. */
	if (xchg(&rq->numa_migrate_on, 1))
		return;

	/*
	 * Clear previous best_cpu/rq numa-migrate flag, since task now
	 * found a better CPU to move/swap.
	 */
	if (env->best_cpu != -1) {
		rq = cpu_rq(env->best_cpu);
		WRITE_ONCE(rq->numa_migrate_on, 0);
	}

1572 1573
	if (env->best_task)
		put_task_struct(env->best_task);
1574 1575
	if (p)
		get_task_struct(p);
1576 1577 1578 1579 1580 1581

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1582
static bool load_too_imbalanced(long src_load, long dst_load,
1583 1584
				struct task_numa_env *env)
{
1585 1586
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1598

1599
	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1600

1601
	orig_src_load = env->src_stats.load;
1602
	orig_dst_load = env->dst_stats.load;
1603

1604
	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1605 1606 1607

	/* Would this change make things worse? */
	return (imb > old_imb);
1608 1609
}

1610 1611 1612 1613 1614 1615 1616
/*
 * Maximum NUMA importance can be 1998 (2*999);
 * SMALLIMP @ 30 would be close to 1998/64.
 * Used to deter task migration.
 */
#define SMALLIMP	30

1617 1618 1619 1620 1621 1622
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1623
static void task_numa_compare(struct task_numa_env *env,
1624
			      long taskimp, long groupimp, bool maymove)
1625
{
1626
	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1627
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1628
	long imp = p_ng ? groupimp : taskimp;
1629
	struct task_struct *cur;
1630
	long src_load, dst_load;
1631
	int dist = env->dist;
1632 1633
	long moveimp = imp;
	long load;
1634

1635 1636 1637
	if (READ_ONCE(dst_rq->numa_migrate_on))
		return;

1638
	rcu_read_lock();
1639 1640
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1641 1642
		cur = NULL;

1643 1644 1645 1646 1647 1648 1649
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1650
	if (!cur) {
1651
		if (maymove && moveimp >= env->best_imp)
1652 1653 1654 1655 1656
			goto assign;
		else
			goto unlock;
	}

1657 1658 1659 1660
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1661
	 * the value is, the more remote accesses that would be expected to
1662 1663
	 * be incurred if the tasks were swapped.
	 */
1664 1665 1666
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1667

1668 1669 1670 1671
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
1672 1673
	cur_ng = rcu_dereference(cur->numa_group);
	if (cur_ng == p_ng) {
1674 1675
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1676
		/*
1677 1678
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1679
		 */
1680
		if (cur_ng)
1681 1682 1683 1684 1685 1686
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
1687
		if (cur_ng && p_ng)
1688 1689 1690 1691 1692
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1693 1694
	}

1695
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1696
		imp = moveimp;
1697
		cur = NULL;
1698
		goto assign;
1699
	}
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709
	/*
	 * If the NUMA importance is less than SMALLIMP,
	 * task migration might only result in ping pong
	 * of tasks and also hurt performance due to cache
	 * misses.
	 */
	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
		goto unlock;

1710 1711 1712
	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1713 1714 1715 1716
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1717 1718
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1719

1720
	if (load_too_imbalanced(src_load, dst_load, env))
1721 1722
		goto unlock;

1723
assign:
1724 1725 1726 1727
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1728 1729
	if (!cur) {
		/*
1730
		 * select_idle_siblings() uses an per-CPU cpumask that
1731 1732 1733
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1734 1735
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1736 1737
		local_irq_enable();
	}
1738

1739 1740 1741 1742 1743
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1744 1745
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1746
{
1747 1748
	long src_load, dst_load, load;
	bool maymove = false;
1749 1750
	int cpu;

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1761 1762
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1763
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1764 1765 1766
			continue;

		env->dst_cpu = cpu;
1767
		task_numa_compare(env, taskimp, groupimp, maymove);
1768 1769 1770
	}
}

1771 1772 1773 1774
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1775

1776
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1777
		.src_nid = task_node(p),
1778 1779 1780 1781 1782

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1783
		.best_cpu = -1,
1784
	};
1785
	unsigned long taskweight, groupweight;
1786
	struct sched_domain *sd;
1787 1788
	long taskimp, groupimp;
	struct numa_group *ng;
1789
	struct rq *best_rq;
1790
	int nid, ret, dist;
1791

1792
	/*
1793 1794 1795 1796 1797 1798
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1799 1800
	 */
	rcu_read_lock();
1801
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1802 1803
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1804 1805
	rcu_read_unlock();

1806 1807 1808 1809 1810 1811 1812
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1813
		sched_setnuma(p, task_node(p));
1814 1815 1816
		return -EINVAL;
	}

1817
	env.dst_nid = p->numa_preferred_nid;
1818 1819 1820 1821 1822 1823
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1824
	update_numa_stats(&env.dst_stats, env.dst_nid);
1825

1826
	/* Try to find a spot on the preferred nid. */
1827
	task_numa_find_cpu(&env, taskimp, groupimp);
1828

1829 1830 1831 1832 1833 1834 1835
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1836 1837
	ng = deref_curr_numa_group(p);
	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1838 1839 1840
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1841

1842
			dist = node_distance(env.src_nid, env.dst_nid);
1843 1844 1845 1846 1847
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1848

1849
			/* Only consider nodes where both task and groups benefit */
1850 1851
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1852
			if (taskimp < 0 && groupimp < 0)
1853 1854
				continue;

1855
			env.dist = dist;
1856 1857
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1858
			task_numa_find_cpu(&env, taskimp, groupimp);
1859 1860 1861
		}
	}

1862 1863 1864 1865 1866 1867 1868 1869
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1870
	if (ng) {
1871 1872 1873
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
1874
			nid = cpu_to_node(env.best_cpu);
1875

1876 1877
		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
1878 1879 1880 1881 1882
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1883

1884
	best_rq = cpu_rq(env.best_cpu);
1885
	if (env.best_task == NULL) {
1886
		ret = migrate_task_to(p, env.best_cpu);
1887
		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1888 1889
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1890 1891 1892
		return ret;
	}

1893
	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1894
	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1895

1896 1897
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1898 1899
	put_task_struct(env.best_task);
	return ret;
1900 1901
}

1902 1903 1904
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1905 1906
	unsigned long interval = HZ;

1907
	/* This task has no NUMA fault statistics yet */
1908
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1909 1910
		return;

1911
	/* Periodically retry migrating the task to the preferred node */
1912
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1913
	p->numa_migrate_retry = jiffies + interval;
1914 1915

	/* Success if task is already running on preferred CPU */
1916
	if (task_node(p) == p->numa_preferred_nid)
1917 1918 1919
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1920
	task_numa_migrate(p);
1921 1922
}

1923
/*
1924
 * Find out how many nodes on the workload is actively running on. Do this by
1925 1926 1927 1928
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1929
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1930 1931
{
	unsigned long faults, max_faults = 0;
1932
	int nid, active_nodes = 0;
1933 1934 1935 1936 1937 1938 1939 1940 1941

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1942 1943
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1944
	}
1945 1946 1947

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1948 1949
}

1950 1951 1952
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1953 1954 1955
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1956 1957
 */
#define NUMA_PERIOD_SLOTS 10
1958
#define NUMA_PERIOD_THRESHOLD 7
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1970
	int lr_ratio, ps_ratio;
1971 1972 1973 1974 1975 1976 1977 1978
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1979 1980 1981
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1982
	 */
1983
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2019 2020 2021 2022 2023
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2024 2025 2026
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2027
		 */
2028 2029
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2030 2031 2032 2033 2034 2035 2036
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
2054 2055 2056 2057

		/* Avoid time going backwards, prevent potential divide error: */
		if (unlikely((s64)*period < 0))
			*period = 0;
2058
	} else {
2059
		delta = p->se.avg.load_sum;
2060
		*period = LOAD_AVG_MAX;
2061 2062 2063 2064 2065 2066 2067 2068
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2116
		nodemask_t max_group = NODE_MASK_NONE;
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2150 2151
		if (!max_faults)
			break;
2152 2153 2154 2155 2156
		nodes = max_group;
	}
	return nid;
}

2157 2158
static void task_numa_placement(struct task_struct *p)
{
2159 2160
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
2161
	unsigned long fault_types[2] = { 0, 0 };
2162 2163
	unsigned long total_faults;
	u64 runtime, period;
2164
	spinlock_t *group_lock = NULL;
2165
	struct numa_group *ng;
2166

2167 2168 2169 2170 2171
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2172
	seq = READ_ONCE(p->mm->numa_scan_seq);
2173 2174 2175
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2176
	p->numa_scan_period_max = task_scan_max(p);
2177

2178 2179 2180 2181
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2182
	/* If the task is part of a group prevent parallel updates to group stats */
2183 2184 2185
	ng = deref_curr_numa_group(p);
	if (ng) {
		group_lock = &ng->lock;
2186
		spin_lock_irq(group_lock);
2187 2188
	}

2189 2190
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2191 2192
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2193
		unsigned long faults = 0, group_faults = 0;
2194
		int priv;
2195

2196
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2197
			long diff, f_diff, f_weight;
2198

2199 2200 2201 2202
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2203

2204
			/* Decay existing window, copy faults since last scan */
2205 2206 2207
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2208

2209 2210 2211 2212 2213 2214 2215 2216
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2217
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2218
				   (total_faults + 1);
2219 2220
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2221

2222 2223 2224
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2225
			p->total_numa_faults += diff;
2226
			if (ng) {
2227 2228 2229 2230 2231 2232 2233
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
2234 2235 2236 2237
				ng->faults[mem_idx] += diff;
				ng->faults_cpu[mem_idx] += f_diff;
				ng->total_faults += diff;
				group_faults += ng->faults[mem_idx];
2238
			}
2239 2240
		}

2241
		if (!ng) {
2242 2243 2244 2245 2246 2247
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
2248 2249
			max_nid = nid;
		}
2250 2251
	}

2252 2253
	if (ng) {
		numa_group_count_active_nodes(ng);
2254
		spin_unlock_irq(group_lock);
2255
		max_nid = preferred_group_nid(p, max_nid);
2256 2257
	}

2258 2259 2260 2261
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);
2262
	}
2263 2264

	update_task_scan_period(p, fault_types[0], fault_types[1]);
2265 2266
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2278 2279
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2280 2281 2282 2283 2284 2285 2286
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

2287
	if (unlikely(!deref_curr_numa_group(p))) {
2288
		unsigned int size = sizeof(struct numa_group) +
2289
				    4*nr_node_ids*sizeof(unsigned long);
2290 2291 2292 2293 2294 2295

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2296 2297
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2298
		spin_lock_init(&grp->lock);
2299
		grp->gid = p->pid;
2300
		/* Second half of the array tracks nids where faults happen */
2301 2302
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2303

2304
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2305
			grp->faults[i] = p->numa_faults[i];
2306

2307
		grp->total_faults = p->total_numa_faults;
2308

2309 2310 2311 2312 2313
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2314
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2315 2316

	if (!cpupid_match_pid(tsk, cpupid))
2317
		goto no_join;
2318 2319 2320

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2321
		goto no_join;
2322

2323
	my_grp = deref_curr_numa_group(p);
2324
	if (grp == my_grp)
2325
		goto no_join;
2326 2327 2328 2329 2330 2331

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2332
		goto no_join;
2333 2334 2335 2336 2337

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2338
		goto no_join;
2339

2340 2341 2342 2343 2344 2345 2346
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2347

2348 2349 2350
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2351
	if (join && !get_numa_group(grp))
2352
		goto no_join;
2353 2354 2355 2356 2357 2358

	rcu_read_unlock();

	if (!join)
		return;

2359 2360
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2361

2362
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2363 2364
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2365
	}
2366 2367
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2368 2369 2370 2371 2372

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2373
	spin_unlock_irq(&grp->lock);
2374 2375 2376 2377

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2378 2379 2380 2381 2382
	return;

no_join:
	rcu_read_unlock();
	return;
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392
/*
 * Get rid of NUMA staticstics associated with a task (either current or dead).
 * If @final is set, the task is dead and has reached refcount zero, so we can
 * safely free all relevant data structures. Otherwise, there might be
 * concurrent reads from places like load balancing and procfs, and we should
 * reset the data back to default state without freeing ->numa_faults.
 */
void task_numa_free(struct task_struct *p, bool final)
2393
{
2394 2395
	/* safe: p either is current or is being freed by current */
	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2396
	unsigned long *numa_faults = p->numa_faults;
2397 2398
	unsigned long flags;
	int i;
2399

2400 2401 2402
	if (!numa_faults)
		return;

2403
	if (grp) {
2404
		spin_lock_irqsave(&grp->lock, flags);
2405
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2406
			grp->faults[i] -= p->numa_faults[i];
2407
		grp->total_faults -= p->total_numa_faults;
2408

2409
		grp->nr_tasks--;
2410
		spin_unlock_irqrestore(&grp->lock, flags);
2411
		RCU_INIT_POINTER(p->numa_group, NULL);
2412 2413 2414
		put_numa_group(grp);
	}

2415 2416 2417 2418 2419 2420 2421 2422
	if (final) {
		p->numa_faults = NULL;
		kfree(numa_faults);
	} else {
		p->total_numa_faults = 0;
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
			numa_faults[i] = 0;
	}
2423 2424
}

2425 2426 2427
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2428
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2429 2430
{
	struct task_struct *p = current;
2431
	bool migrated = flags & TNF_MIGRATED;
2432
	int cpu_node = task_node(current);
2433
	int local = !!(flags & TNF_FAULT_LOCAL);
2434
	struct numa_group *ng;
2435
	int priv;
2436

2437
	if (!static_branch_likely(&sched_numa_balancing))
2438 2439
		return;

2440 2441 2442 2443
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2444
	/* Allocate buffer to track faults on a per-node basis */
2445 2446
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2447
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2448

2449 2450
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2451
			return;
2452

2453
		p->total_numa_faults = 0;
2454
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2455
	}
2456

2457 2458 2459 2460 2461 2462 2463 2464
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2465
		if (!priv && !(flags & TNF_NO_GROUP))
2466
			task_numa_group(p, last_cpupid, flags, &priv);
2467 2468
	}

2469 2470 2471 2472 2473 2474
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2475
	ng = deref_curr_numa_group(p);
2476 2477 2478
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2479 2480
		local = 1;

2481 2482 2483 2484
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
2485 2486
	if (time_after(jiffies, p->numa_migrate_retry)) {
		task_numa_placement(p);
2487
		numa_migrate_preferred(p);
2488
	}
2489

I
Ingo Molnar 已提交
2490 2491
	if (migrated)
		p->numa_pages_migrated += pages;
2492 2493
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2494

2495 2496
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2497
	p->numa_faults_locality[local] += pages;
2498 2499
}

2500 2501
static void reset_ptenuma_scan(struct task_struct *p)
{
2502 2503 2504 2505 2506 2507 2508 2509
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2510
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2511 2512 2513
	p->mm->numa_scan_offset = 0;
}

2514 2515 2516 2517 2518 2519 2520 2521 2522
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2523
	u64 runtime = p->se.sum_exec_runtime;
2524
	struct vm_area_struct *vma;
2525
	unsigned long start, end;
2526
	unsigned long nr_pte_updates = 0;
2527
	long pages, virtpages;
2528

2529
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2543
	if (!mm->numa_next_scan) {
2544 2545
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2546 2547
	}

2548 2549 2550 2551 2552 2553 2554
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2555 2556
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2557
		p->numa_scan_period = task_scan_start(p);
2558
	}
2559

2560
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2561 2562 2563
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2564 2565 2566 2567 2568 2569
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2570 2571 2572
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2573
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2574 2575
	if (!pages)
		return;
2576

2577

2578 2579
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2580
	vma = find_vma(mm, start);
2581 2582
	if (!vma) {
		reset_ptenuma_scan(p);
2583
		start = 0;
2584 2585
		vma = mm->mmap;
	}
2586
	for (; vma; vma = vma->vm_next) {
2587
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2588
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2589
			continue;
2590
		}
2591

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2602 2603 2604 2605 2606 2607
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2608

2609 2610 2611 2612
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2613
			nr_pte_updates = change_prot_numa(vma, start, end);
2614 2615

			/*
2616 2617 2618 2619 2620 2621
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2622 2623 2624
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2625
			virtpages -= (end - start) >> PAGE_SHIFT;
2626

2627
			start = end;
2628
			if (pages <= 0 || virtpages <= 0)
2629
				goto out;
2630 2631

			cond_resched();
2632
		} while (end != vma->vm_end);
2633
	}
2634

2635
out:
2636
	/*
P
Peter Zijlstra 已提交
2637 2638 2639 2640
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2641 2642
	 */
	if (vma)
2643
		mm->numa_scan_offset = start;
2644 2645 2646
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2683
	if (now > curr->node_stamp + period) {
2684
		if (!curr->node_stamp)
2685
			curr->numa_scan_period = task_scan_start(curr);
2686
		curr->node_stamp += period;
2687 2688 2689 2690 2691 2692 2693

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2694

2695 2696 2697 2698 2699
static void update_scan_period(struct task_struct *p, int new_cpu)
{
	int src_nid = cpu_to_node(task_cpu(p));
	int dst_nid = cpu_to_node(new_cpu);

2700 2701 2702
	if (!static_branch_likely(&sched_numa_balancing))
		return;

2703 2704 2705
	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
		return;

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	if (src_nid == dst_nid)
		return;

	/*
	 * Allow resets if faults have been trapped before one scan
	 * has completed. This is most likely due to a new task that
	 * is pulled cross-node due to wakeups or load balancing.
	 */
	if (p->numa_scan_seq) {
		/*
		 * Avoid scan adjustments if moving to the preferred
		 * node or if the task was not previously running on
		 * the preferred node.
		 */
		if (dst_nid == p->numa_preferred_nid ||
		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
			return;
	}

	p->numa_scan_period = task_scan_start(p);
2726 2727
}

2728 2729 2730 2731
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2732 2733 2734 2735 2736 2737 2738 2739

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2740

2741 2742 2743 2744
static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}

2745 2746
#endif /* CONFIG_NUMA_BALANCING */

2747 2748 2749 2750
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2751
	if (!parent_entity(se))
2752
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2753
#ifdef CONFIG_SMP
2754 2755 2756 2757 2758 2759
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2760
#endif
2761 2762 2763 2764 2765 2766 2767
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2768
	if (!parent_entity(se))
2769
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2770
#ifdef CONFIG_SMP
2771 2772
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2773
		list_del_init(&se->group_node);
2774
	}
2775
#endif
2776 2777 2778
	cfs_rq->nr_running--;
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2820 2821 2822 2823
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2824 2825 2826 2827 2828
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2829 2830 2831 2832 2833
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2860
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2861
			    unsigned long weight, unsigned long runnable)
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2872
	se->runnable_weight = runnable;
2873 2874 2875
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2876 2877 2878 2879 2880 2881 2882
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2899
	reweight_entity(cfs_rq, se, weight, weight);
2900 2901 2902
	load->inv_weight = sched_prio_to_wmult[prio];
}

2903
#ifdef CONFIG_FAIR_GROUP_SCHED
2904
#ifdef CONFIG_SMP
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2943
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2969 2970 2971 2972 2973 2974 2975 2976 2977
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2978
static long calc_group_shares(struct cfs_rq *cfs_rq)
2979
{
2980 2981 2982 2983
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2984

2985
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2986

2987
	tg_weight = atomic_long_read(&tg->load_avg);
2988

2989 2990 2991
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2992

2993
	shares = (tg_shares * load);
2994 2995
	if (tg_weight)
		shares /= tg_weight;
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
3009
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3010
}
3011 3012

/*
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
3038 3039 3040
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
3041 3042 3043 3044 3045 3046 3047
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
3048 3049 3050 3051

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
3052

3053 3054
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
3055
#endif /* CONFIG_SMP */
3056

3057 3058
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

3059 3060 3061 3062 3063
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3064
{
3065 3066
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
3067

3068
	if (!gcfs_rq)
3069 3070
		return;

3071
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
3072
		return;
3073

3074
#ifndef CONFIG_SMP
3075
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3076 3077

	if (likely(se->load.weight == shares))
3078
		return;
3079
#else
3080 3081
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3082
#endif
P
Peter Zijlstra 已提交
3083

3084
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3085
}
3086

P
Peter Zijlstra 已提交
3087
#else /* CONFIG_FAIR_GROUP_SCHED */
3088
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3089 3090 3091 3092
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3093
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3094
{
3095 3096
	struct rq *rq = rq_of(cfs_rq);

3097
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3098 3099 3100
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3101
		 * a real problem.
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3112
		cpufreq_update_util(rq, flags);
3113 3114 3115
	}
}

3116
#ifdef CONFIG_SMP
3117
#ifdef CONFIG_FAIR_GROUP_SCHED
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3131
 * Updating tg's load_avg is necessary before update_cfs_share().
3132
 */
3133
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3134
{
3135
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3136

3137 3138 3139 3140 3141 3142
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3143 3144 3145
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3146
	}
3147
}
3148

3149
/*
3150
 * Called within set_task_rq() right before setting a task's CPU. The
3151 3152 3153 3154 3155 3156
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3157 3158 3159
	u64 p_last_update_time;
	u64 n_last_update_time;

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3170 3171
	if (!(se->avg.last_update_time && prev))
		return;
3172 3173

#ifndef CONFIG_64BIT
3174
	{
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3189
	}
3190
#else
3191 3192
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3193
#endif
3194 3195
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3196
}
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3209 3210 3211
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3212 3213 3214 3215 3216 3217 3218 3219
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3220
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3221 3222 3223
 *
 * And per (1) we have:
 *
3224
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3243 3244 3245 3246 3247 3248
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3249
 *
3250
 * So we'll have to approximate.. :/
3251
 *
3252
 * Given the constraint:
3253
 *
3254
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3255
 *
3256 3257
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3258
 *
3259
 * On removal, we'll assume each task is equally runnable; which yields:
3260
 *
3261
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3262
 *
3263
 * XXX: only do this for the part of runnable > running ?
3264 3265 3266
 *
 */

3267
static inline void
3268
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3269 3270 3271 3272 3273 3274 3275
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3276 3277 3278 3279 3280 3281 3282 3283
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3294
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3295
{
3296 3297 3298 3299
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3300

3301 3302
	if (!runnable_sum)
		return;
3303

3304
	gcfs_rq->prop_runnable_sum = 0;
3305

3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3329
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3330 3331 3332 3333 3334 3335
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3336 3337
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3338

3339 3340
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3341

3342 3343 3344 3345
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3346

3347 3348
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3349 3350
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3351

3352 3353
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3354

3355
	if (se->on_rq) {
3356 3357
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3358 3359 3360
	}
}

3361
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3362
{
3363 3364
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3365 3366 3367 3368 3369
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3370
	struct cfs_rq *cfs_rq, *gcfs_rq;
3371 3372 3373 3374

	if (entity_is_task(se))
		return 0;

3375 3376
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3377 3378
		return 0;

3379 3380
	gcfs_rq->propagate = 0;

3381 3382
	cfs_rq = cfs_rq_of(se);

3383
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3384

3385 3386
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3387 3388 3389 3390

	return 1;
}

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3410
	if (gcfs_rq->propagate)
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3421
#else /* CONFIG_FAIR_GROUP_SCHED */
3422

3423
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3424 3425 3426 3427 3428 3429

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3430
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3431

3432
#endif /* CONFIG_FAIR_GROUP_SCHED */
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3445 3446 3447 3448
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3449
 */
3450
static inline int
3451
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3452
{
3453
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3454
	struct sched_avg *sa = &cfs_rq->avg;
3455
	int decayed = 0;
3456

3457 3458
	if (cfs_rq->removed.nr) {
		unsigned long r;
3459
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3460 3461 3462 3463

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3464
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3465 3466 3467 3468
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3469
		sub_positive(&sa->load_avg, r);
3470
		sub_positive(&sa->load_sum, r * divider);
3471

3472
		r = removed_util;
3473
		sub_positive(&sa->util_avg, r);
3474
		sub_positive(&sa->util_sum, r * divider);
3475

3476
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3477 3478

		decayed = 1;
3479
	}
3480

3481
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3482

3483 3484 3485 3486
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3487

3488
	if (decayed)
3489
		cfs_rq_util_change(cfs_rq, 0);
3490

3491
	return decayed;
3492 3493
}

3494 3495 3496 3497
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
3498
 * @flags: migration hints
3499 3500 3501 3502
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3503
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3504
{
3505 3506 3507 3508 3509 3510 3511 3512 3513
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3514
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3533
	enqueue_load_avg(cfs_rq, se);
3534 3535
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3536 3537

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3538

3539
	cfs_rq_util_change(cfs_rq, flags);
3540 3541
}

3542 3543 3544 3545 3546 3547 3548 3549
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3550 3551
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3552
	dequeue_load_avg(cfs_rq, se);
3553 3554
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3555 3556

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3557

3558
	cfs_rq_util_change(cfs_rq, 0);
3559 3560
}

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3588 3589 3590 3591 3592 3593 3594 3595
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3596 3597 3598 3599 3600 3601
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3602
#ifndef CONFIG_64BIT
3603 3604
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3605
	u64 last_update_time_copy;
3606
	u64 last_update_time;
3607

3608 3609 3610 3611 3612
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3613 3614 3615

	return last_update_time;
}
3616
#else
3617 3618 3619 3620
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3621 3622
#endif

3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3633
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3634 3635
}

3636 3637 3638 3639 3640 3641 3642
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3643
	unsigned long flags;
3644 3645

	/*
3646 3647 3648 3649 3650 3651 3652
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3653 3654
	 */

3655
	sync_entity_load_avg(se);
3656 3657 3658 3659 3660

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3661
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3662
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3663
}
3664

3665 3666
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3667
	return cfs_rq->avg.runnable_load_avg;
3668 3669 3670 3671 3672 3673 3674
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3675
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3676

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3704
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3730 3731 3732 3733
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3734 3735 3736 3737 3738 3739 3740 3741 3742
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3743 3744 3745 3746 3747 3748 3749 3750
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3751 3752 3753 3754
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3755
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3783 3784
#else /* CONFIG_SMP */

3785 3786
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3787
#define DO_ATTACH	0x0
3788

3789
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3790
{
3791
	cfs_rq_util_change(cfs_rq, 0);
3792 3793
}

3794
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3795

3796
static inline void
3797
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3798 3799 3800
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3801
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3802 3803 3804 3805
{
	return 0;
}

3806 3807 3808 3809 3810 3811 3812
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3813
#endif /* CONFIG_SMP */
3814

P
Peter Zijlstra 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3824
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3825 3826 3827
#endif
}

3828 3829 3830
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3831
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3832

3833 3834 3835 3836 3837 3838
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3839
	if (initial && sched_feat(START_DEBIT))
3840
		vruntime += sched_vslice(cfs_rq, se);
3841

3842
	/* sleeps up to a single latency don't count. */
3843
	if (!initial) {
3844
		unsigned long thresh = sysctl_sched_latency;
3845

3846 3847 3848 3849 3850 3851
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3852

3853
		vruntime -= thresh;
3854 3855
	}

3856
	/* ensure we never gain time by being placed backwards. */
3857
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3858 3859
}

3860 3861
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3874
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3875
			     "stat_blocked and stat_runtime require the "
3876
			     "kernel parameter schedstats=enable or "
3877 3878 3879 3880 3881
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3901
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3913
static void
3914
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3915
{
3916 3917 3918
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3919
	/*
3920 3921
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3922
	 */
3923
	if (renorm && curr)
3924 3925
		se->vruntime += cfs_rq->min_vruntime;

3926 3927
	update_curr(cfs_rq);

3928
	/*
3929 3930 3931 3932
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3933
	 */
3934 3935 3936
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3937 3938 3939 3940 3941 3942 3943 3944
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3945
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3946
	update_cfs_group(se);
3947
	enqueue_runnable_load_avg(cfs_rq, se);
3948
	account_entity_enqueue(cfs_rq, se);
3949

3950
	if (flags & ENQUEUE_WAKEUP)
3951
		place_entity(cfs_rq, se, 0);
3952

3953
	check_schedstat_required();
3954 3955
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3956
	if (!curr)
3957
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3958
	se->on_rq = 1;
3959

3960
	if (cfs_rq->nr_running == 1) {
3961
		list_add_leaf_cfs_rq(cfs_rq);
3962 3963
		check_enqueue_throttle(cfs_rq);
	}
3964 3965
}

3966
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3967
{
3968 3969
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3970
		if (cfs_rq->last != se)
3971
			break;
3972 3973

		cfs_rq->last = NULL;
3974 3975
	}
}
P
Peter Zijlstra 已提交
3976

3977 3978 3979 3980
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3981
		if (cfs_rq->next != se)
3982
			break;
3983 3984

		cfs_rq->next = NULL;
3985
	}
P
Peter Zijlstra 已提交
3986 3987
}

3988 3989 3990 3991
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3992
		if (cfs_rq->skip != se)
3993
			break;
3994 3995

		cfs_rq->skip = NULL;
3996 3997 3998
	}
}

P
Peter Zijlstra 已提交
3999 4000
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
4001 4002 4003 4004 4005
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
4006 4007 4008

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
4009 4010
}

4011
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4012

4013
static void
4014
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4015
{
4016 4017 4018 4019
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
4020 4021 4022 4023 4024 4025 4026 4027 4028

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
4029
	update_load_avg(cfs_rq, se, UPDATE_TG);
4030
	dequeue_runnable_load_avg(cfs_rq, se);
4031

4032
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
4033

P
Peter Zijlstra 已提交
4034
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4035

4036
	if (se != cfs_rq->curr)
4037
		__dequeue_entity(cfs_rq, se);
4038
	se->on_rq = 0;
4039
	account_entity_dequeue(cfs_rq, se);
4040 4041

	/*
4042 4043 4044 4045
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
4046
	 */
4047
	if (!(flags & DEQUEUE_SLEEP))
4048
		se->vruntime -= cfs_rq->min_vruntime;
4049

4050 4051 4052
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

4053
	update_cfs_group(se);
4054 4055 4056 4057 4058 4059 4060

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
4061
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4062
		update_min_vruntime(cfs_rq);
4063 4064 4065 4066 4067
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4068
static void
I
Ingo Molnar 已提交
4069
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4070
{
4071
	unsigned long ideal_runtime, delta_exec;
4072 4073
	struct sched_entity *se;
	s64 delta;
4074

P
Peter Zijlstra 已提交
4075
	ideal_runtime = sched_slice(cfs_rq, curr);
4076
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4077
	if (delta_exec > ideal_runtime) {
4078
		resched_curr(rq_of(cfs_rq));
4079 4080 4081 4082 4083
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4095 4096
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4097

4098 4099
	if (delta < 0)
		return;
4100

4101
	if (delta > ideal_runtime)
4102
		resched_curr(rq_of(cfs_rq));
4103 4104
}

4105
static void
4106
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4107
{
4108 4109 4110 4111 4112 4113 4114
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4115
		update_stats_wait_end(cfs_rq, se);
4116
		__dequeue_entity(cfs_rq, se);
4117
		update_load_avg(cfs_rq, se, UPDATE_TG);
4118 4119
	}

4120
	update_stats_curr_start(cfs_rq, se);
4121
	cfs_rq->curr = se;
4122

I
Ingo Molnar 已提交
4123 4124 4125 4126 4127
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4128
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4129 4130 4131
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4132
	}
4133

4134
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4135 4136
}

4137 4138 4139
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4140 4141 4142 4143 4144 4145 4146
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4147 4148
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4149
{
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4161

4162 4163 4164 4165 4166
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4177 4178 4179
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4180

4181 4182 4183 4184 4185 4186
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4187 4188 4189 4190 4191 4192
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4193
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4194 4195

	return se;
4196 4197
}

4198
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4199

4200
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4201 4202 4203 4204 4205 4206
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4207
		update_curr(cfs_rq);
4208

4209 4210 4211
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4212
	check_spread(cfs_rq, prev);
4213

4214
	if (prev->on_rq) {
4215
		update_stats_wait_start(cfs_rq, prev);
4216 4217
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4218
		/* in !on_rq case, update occurred at dequeue */
4219
		update_load_avg(cfs_rq, prev, 0);
4220
	}
4221
	cfs_rq->curr = NULL;
4222 4223
}

P
Peter Zijlstra 已提交
4224 4225
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4226 4227
{
	/*
4228
	 * Update run-time statistics of the 'current'.
4229
	 */
4230
	update_curr(cfs_rq);
4231

4232 4233 4234
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4235
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4236
	update_cfs_group(curr);
4237

P
Peter Zijlstra 已提交
4238 4239 4240 4241 4242
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4243
	if (queued) {
4244
		resched_curr(rq_of(cfs_rq));
4245 4246
		return;
	}
P
Peter Zijlstra 已提交
4247 4248 4249 4250 4251 4252 4253 4254
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4255
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4256
		check_preempt_tick(cfs_rq, curr);
4257 4258
}

4259 4260 4261 4262 4263 4264

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4265

4266
#ifdef CONFIG_JUMP_LABEL
4267
static struct static_key __cfs_bandwidth_used;
4268 4269 4270

static inline bool cfs_bandwidth_used(void)
{
4271
	return static_key_false(&__cfs_bandwidth_used);
4272 4273
}

4274
void cfs_bandwidth_usage_inc(void)
4275
{
4276
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4277 4278 4279 4280
}

void cfs_bandwidth_usage_dec(void)
{
4281
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4282
}
4283
#else /* CONFIG_JUMP_LABEL */
4284 4285 4286 4287 4288
static bool cfs_bandwidth_used(void)
{
	return true;
}

4289 4290
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4291
#endif /* CONFIG_JUMP_LABEL */
4292

4293 4294 4295 4296 4297 4298 4299 4300
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4301 4302 4303 4304 4305 4306

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4307
/*
4308 4309 4310
 * Replenish runtime according to assigned quota. We use sched_clock_cpu
 * directly instead of rq->clock to avoid adding additional synchronization
 * around rq->lock.
P
Paul Turner 已提交
4311 4312 4313
 *
 * requires cfs_b->lock
 */
4314
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4315
{
4316 4317
	if (cfs_b->quota != RUNTIME_INF)
		cfs_b->runtime = cfs_b->quota;
P
Paul Turner 已提交
4318 4319
}

4320 4321 4322 4323 4324
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4325 4326 4327 4328
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4329
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4330

4331
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4332 4333
}

4334 4335
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4336 4337 4338
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4339
	u64 amount = 0, min_amount;
4340 4341 4342 4343 4344 4345 4346

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4347
	else {
P
Peter Zijlstra 已提交
4348
		start_cfs_bandwidth(cfs_b);
4349 4350 4351 4352 4353 4354

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4355 4356 4357 4358
	}
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
4359 4360

	return cfs_rq->runtime_remaining > 0;
4361 4362
}

4363
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4364 4365
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4366
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4367 4368

	if (likely(cfs_rq->runtime_remaining > 0))
4369 4370
		return;

4371 4372
	if (cfs_rq->throttled)
		return;
4373 4374 4375 4376 4377
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4378
		resched_curr(rq_of(cfs_rq));
4379 4380
}

4381
static __always_inline
4382
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4383
{
4384
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4385 4386 4387 4388 4389
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4390 4391
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4392
	return cfs_bandwidth_used() && cfs_rq->throttled;
4393 4394
}

4395 4396 4397
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4398
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4425
		/* adjust cfs_rq_clock_task() */
4426
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4427
					     cfs_rq->throttled_clock_task;
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4438 4439
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4440
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4441 4442 4443 4444 4445
	cfs_rq->throttle_count++;

	return 0;
}

4446
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4447 4448 4449 4450 4451
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4452
	bool empty;
4453 4454 4455

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4456
	/* freeze hierarchy runnable averages while throttled */
4457 4458 4459
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4477
		sub_nr_running(rq, task_delta);
4478 4479

	cfs_rq->throttled = 1;
4480
	cfs_rq->throttled_clock = rq_clock(rq);
4481
	raw_spin_lock(&cfs_b->lock);
4482
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4483

4484 4485
	/*
	 * Add to the _head_ of the list, so that an already-started
4486 4487
	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
	 * not running add to the tail so that later runqueues don't get starved.
4488
	 */
4489 4490 4491 4492
	if (cfs_b->distribute_running)
		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	else
		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4493 4494 4495 4496 4497 4498 4499 4500

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4501 4502 4503
	raw_spin_unlock(&cfs_b->lock);
}

4504
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4505 4506 4507 4508 4509 4510 4511
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4512
	se = cfs_rq->tg->se[cpu_of(rq)];
4513 4514

	cfs_rq->throttled = 0;
4515 4516 4517

	update_rq_clock(rq);

4518
	raw_spin_lock(&cfs_b->lock);
4519
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4520 4521 4522
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4523 4524 4525
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4544
		add_nr_running(rq, task_delta);
4545

4546
	/* Determine whether we need to wake up potentially idle CPU: */
4547
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4548
		resched_curr(rq);
4549 4550
}

4551
static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4552 4553
{
	struct cfs_rq *cfs_rq;
4554 4555
	u64 runtime;
	u64 starting_runtime = remaining;
4556 4557 4558 4559 4560

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4561
		struct rq_flags rf;
4562

4563
		rq_lock(rq, &rf);
4564 4565 4566
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

4567 4568 4569
		/* By the above check, this should never be true */
		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4582
		rq_unlock(rq, &rf);
4583 4584 4585 4586 4587 4588

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4589
	return starting_runtime - remaining;
4590 4591
}

4592 4593 4594 4595 4596 4597 4598 4599
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4600
	u64 runtime;
4601
	int throttled;
4602 4603 4604

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4605
		goto out_deactivate;
4606

4607
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4608
	cfs_b->nr_periods += overrun;
4609

4610 4611 4612 4613 4614 4615
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4616 4617 4618

	__refill_cfs_bandwidth_runtime(cfs_b);

4619 4620 4621
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4622
		return 0;
4623 4624
	}

4625 4626 4627
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4628
	/*
4629 4630 4631 4632 4633
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4634
	 */
4635
	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4636
		runtime = cfs_b->runtime;
4637
		cfs_b->distribute_running = 1;
4638 4639
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
4640
		runtime = distribute_cfs_runtime(cfs_b, runtime);
4641 4642
		raw_spin_lock(&cfs_b->lock);

4643
		cfs_b->distribute_running = 0;
4644
		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4645 4646

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4647
	}
4648

4649 4650 4651 4652 4653 4654 4655
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4656

4657 4658 4659 4660
	return 0;

out_deactivate:
	return 1;
4661
}
4662

4663 4664 4665 4666 4667 4668 4669
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4670 4671 4672 4673
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4674
 * hrtimer base being cleared by hrtimer_start. In the case of
4675 4676
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4702 4703 4704
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
4717
	if (cfs_b->quota != RUNTIME_INF) {
4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4733 4734 4735
	if (!cfs_bandwidth_used())
		return;

4736
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();

	/* confirm we're still not at a refresh boundary */
4751
	raw_spin_lock(&cfs_b->lock);
4752 4753 4754 4755 4756
	if (cfs_b->distribute_running) {
		raw_spin_unlock(&cfs_b->lock);
		return;
	}

4757 4758
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4759
		return;
4760
	}
4761

4762
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4763
		runtime = cfs_b->runtime;
4764

4765 4766 4767
	if (runtime)
		cfs_b->distribute_running = 1;

4768 4769 4770 4771 4772
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

4773
	runtime = distribute_cfs_runtime(cfs_b, runtime);
4774 4775

	raw_spin_lock(&cfs_b->lock);
4776
	cfs_b->runtime -= min(runtime, cfs_b->runtime);
4777
	cfs_b->distribute_running = 0;
4778 4779 4780
	raw_spin_unlock(&cfs_b->lock);
}

4781 4782 4783 4784 4785 4786 4787
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4788 4789 4790
	if (!cfs_bandwidth_used())
		return;

4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4819
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4820 4821
}

4822
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4823
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4824
{
4825
	if (!cfs_bandwidth_used())
4826
		return false;
4827

4828
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4829
		return false;
4830 4831 4832 4833 4834 4835

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4836
		return true;
4837 4838

	throttle_cfs_rq(cfs_rq);
4839
	return true;
4840
}
4841 4842 4843 4844 4845

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4846

4847 4848 4849 4850 4851
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

4852 4853
extern const u64 max_cfs_quota_period;

4854 4855 4856 4857 4858 4859
static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;
4860
	int count = 0;
4861

4862
	raw_spin_lock(&cfs_b->lock);
4863
	for (;;) {
P
Peter Zijlstra 已提交
4864
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4865 4866 4867
		if (!overrun)
			break;

4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
		if (++count > 3) {
			u64 new, old = ktime_to_ns(cfs_b->period);

			new = (old * 147) / 128; /* ~115% */
			new = min(new, max_cfs_quota_period);

			cfs_b->period = ns_to_ktime(new);

			/* since max is 1s, this is limited to 1e9^2, which fits in u64 */
			cfs_b->quota *= new;
			cfs_b->quota = div64_u64(cfs_b->quota, old);

			pr_warn_ratelimited(
        "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us %lld, cfs_quota_us = %lld)\n",
	                        smp_processor_id(),
	                        div_u64(new, NSEC_PER_USEC),
                                div_u64(cfs_b->quota, NSEC_PER_USEC));

			/* reset count so we don't come right back in here */
			count = 0;
		}

4890 4891
		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4892 4893
	if (idle)
		cfs_b->period_active = 0;
4894
	raw_spin_unlock(&cfs_b->lock);
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4907
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4908 4909 4910
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4911
	cfs_b->distribute_running = 0;
4912 4913 4914 4915 4916 4917 4918 4919
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4920
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4921
{
P
Peter Zijlstra 已提交
4922
	lockdep_assert_held(&cfs_b->lock);
4923

4924 4925 4926 4927
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
4928
	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4929
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4930 4931 4932 4933
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4934 4935 4936 4937
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4938 4939 4940 4941
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4942
/*
4943
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4944 4945 4946 4947 4948 4949
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4950 4951
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4952
	struct task_group *tg;
4953

4954 4955 4956 4957 4958 4959
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4960 4961 4962 4963 4964

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4965
	rcu_read_unlock();
4966 4967
}

4968
/* cpu offline callback */
4969
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4970
{
4971 4972 4973 4974 4975 4976 4977
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4978 4979 4980 4981 4982 4983 4984 4985

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4986
		cfs_rq->runtime_remaining = 1;
4987
		/*
4988
		 * Offline rq is schedulable till CPU is completely disabled
4989 4990 4991 4992
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4993 4994 4995
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4996
	rcu_read_unlock();
4997 4998 4999
}

#else /* CONFIG_CFS_BANDWIDTH */
5000 5001
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
5002
	return rq_clock_task(rq_of(cfs_rq));
5003 5004
}

5005
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5006
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5007
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5008
static inline void sync_throttle(struct task_group *tg, int cpu) {}
5009
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5010 5011 5012 5013 5014

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5026 5027 5028 5029 5030

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5031 5032
#endif

5033 5034 5035 5036 5037
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5038
static inline void update_runtime_enabled(struct rq *rq) {}
5039
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5040 5041 5042

#endif /* CONFIG_CFS_BANDWIDTH */

5043 5044 5045 5046
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5047 5048 5049 5050 5051 5052
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5053
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5054

5055
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5056 5057 5058 5059 5060 5061
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5062
				resched_curr(rq);
P
Peter Zijlstra 已提交
5063 5064
			return;
		}
5065
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5066 5067
	}
}
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5078
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5079 5080 5081 5082 5083
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5084
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5085 5086 5087 5088
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5089 5090 5091 5092

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5093 5094
#endif

5095 5096 5097 5098 5099
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5100
static void
5101
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5102 5103
{
	struct cfs_rq *cfs_rq;
5104
	struct sched_entity *se = &p->se;
5105

5106 5107 5108 5109 5110 5111 5112 5113
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5114 5115 5116 5117 5118 5119
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5120
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5121

5122
	for_each_sched_entity(se) {
5123
		if (se->on_rq)
5124 5125
			break;
		cfs_rq = cfs_rq_of(se);
5126
		enqueue_entity(cfs_rq, se, flags);
5127 5128 5129 5130 5131 5132

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5133
		 */
5134 5135
		if (cfs_rq_throttled(cfs_rq))
			break;
5136
		cfs_rq->h_nr_running++;
5137

5138
		flags = ENQUEUE_WAKEUP;
5139
	}
P
Peter Zijlstra 已提交
5140

P
Peter Zijlstra 已提交
5141
	for_each_sched_entity(se) {
5142
		cfs_rq = cfs_rq_of(se);
5143
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5144

5145 5146 5147
		if (cfs_rq_throttled(cfs_rq))
			break;

5148
		update_load_avg(cfs_rq, se, UPDATE_TG);
5149
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5150 5151
	}

Y
Yuyang Du 已提交
5152
	if (!se)
5153
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5154

5155
	hrtick_update(rq);
5156 5157
}

5158 5159
static void set_next_buddy(struct sched_entity *se);

5160 5161 5162 5163 5164
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5165
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5166 5167
{
	struct cfs_rq *cfs_rq;
5168
	struct sched_entity *se = &p->se;
5169
	int task_sleep = flags & DEQUEUE_SLEEP;
5170 5171 5172

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5173
		dequeue_entity(cfs_rq, se, flags);
5174 5175 5176 5177 5178 5179 5180 5181 5182

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5183
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5184

5185
		/* Don't dequeue parent if it has other entities besides us */
5186
		if (cfs_rq->load.weight) {
5187 5188
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5189 5190 5191 5192
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5193 5194
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5195
			break;
5196
		}
5197
		flags |= DEQUEUE_SLEEP;
5198
	}
P
Peter Zijlstra 已提交
5199

P
Peter Zijlstra 已提交
5200
	for_each_sched_entity(se) {
5201
		cfs_rq = cfs_rq_of(se);
5202
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5203

5204 5205 5206
		if (cfs_rq_throttled(cfs_rq))
			break;

5207
		update_load_avg(cfs_rq, se, UPDATE_TG);
5208
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5209 5210
	}

Y
Yuyang Du 已提交
5211
	if (!se)
5212
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5213

5214
	util_est_dequeue(&rq->cfs, p, task_sleep);
5215
	hrtick_update(rq);
5216 5217
}

5218
#ifdef CONFIG_SMP
5219 5220 5221 5222 5223

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5224
#ifdef CONFIG_NO_HZ_COMMON
5225 5226 5227 5228 5229
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5230
 * The exact cpuload calculated at every tick would be:
5231
 *
5232 5233
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5234 5235
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5236 5237 5238
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5239 5240 5241
 *
 * decay_load_missed() below does efficient calculation of
 *
5242 5243 5244 5245 5246 5247
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5248
 *
5249
 * The calculation is approximated on a 128 point scale.
5250 5251
 */
#define DEGRADE_SHIFT		7
5252 5253 5254 5255 5256 5257 5258 5259 5260

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5290 5291 5292 5293

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5294
	int has_blocked;		/* Idle CPUS has blocked load */
5295
	unsigned long next_balance;     /* in jiffy units */
5296
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5297 5298
} nohz ____cacheline_aligned;

5299
#endif /* CONFIG_NO_HZ_COMMON */
5300

5301
/**
5302
 * __cpu_load_update - update the rq->cpu_load[] statistics
5303 5304 5305 5306
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5307
 * Update rq->cpu_load[] statistics. This function is usually called every
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5334
 * term.
5335
 */
5336 5337
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5338
{
5339
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5351
		old_load = this_rq->cpu_load[i];
5352
#ifdef CONFIG_NO_HZ_COMMON
5353
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5354 5355 5356 5357 5358 5359 5360 5361 5362
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5363
#endif
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5377
/* Used instead of source_load when we know the type == 0 */
5378
static unsigned long weighted_cpuload(struct rq *rq)
5379
{
5380
	return cfs_rq_runnable_load_avg(&rq->cfs);
5381 5382
}

5383
#ifdef CONFIG_NO_HZ_COMMON
5384 5385
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5386
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5412
		cpu_load_update(this_rq, load, pending_updates);
5413 5414 5415
	}
}

5416 5417 5418 5419
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5420
static void cpu_load_update_idle(struct rq *this_rq)
5421 5422 5423 5424
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5425
	if (weighted_cpuload(this_rq))
5426 5427
		return;

5428
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5429 5430 5431
}

/*
5432 5433 5434 5435
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5436
 */
5437
void cpu_load_update_nohz_start(void)
5438 5439
{
	struct rq *this_rq = this_rq();
5440 5441 5442 5443 5444 5445

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5446
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5447 5448 5449 5450 5451 5452 5453
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5454
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5455 5456
	struct rq *this_rq = this_rq();
	unsigned long load;
5457
	struct rq_flags rf;
5458 5459 5460 5461

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5462
	load = weighted_cpuload(this_rq);
5463
	rq_lock(this_rq, &rf);
5464
	update_rq_clock(this_rq);
5465
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5466
	rq_unlock(this_rq, &rf);
5467
}
5468 5469 5470 5471 5472 5473 5474 5475
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5476
#ifdef CONFIG_NO_HZ_COMMON
5477 5478
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5479
#endif
5480 5481
	cpu_load_update(this_rq, load, 1);
}
5482 5483 5484 5485

/*
 * Called from scheduler_tick()
 */
5486
void cpu_load_update_active(struct rq *this_rq)
5487
{
5488
	unsigned long load = weighted_cpuload(this_rq);
5489 5490 5491 5492 5493

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5494 5495
}

5496
/*
5497
 * Return a low guess at the load of a migration-source CPU weighted
5498 5499 5500 5501 5502 5503 5504 5505
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5506
	unsigned long total = weighted_cpuload(rq);
5507 5508 5509 5510 5511 5512 5513 5514

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5515
 * Return a high guess at the load of a migration-target CPU weighted
5516 5517 5518 5519 5520
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5521
	unsigned long total = weighted_cpuload(rq);
5522 5523 5524 5525 5526 5527 5528

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5529
static unsigned long capacity_of(int cpu)
5530
{
5531
	return cpu_rq(cpu)->cpu_capacity;
5532 5533
}

5534 5535 5536 5537 5538
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5539 5540 5541
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5542
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5543
	unsigned long load_avg = weighted_cpuload(rq);
5544 5545

	if (nr_running)
5546
		return load_avg / nr_running;
5547 5548 5549 5550

	return 0;
}

P
Peter Zijlstra 已提交
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5568 5569
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5570
 *
M
Mike Galbraith 已提交
5571
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5584
 */
5585 5586
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5587 5588
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5589
	int factor = this_cpu_read(sd_llc_size);
5590

M
Mike Galbraith 已提交
5591 5592 5593 5594 5595
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5596 5597
}

5598
/*
5599 5600 5601
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5602
 *
5603 5604
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5605 5606 5607 5608
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5609
 */
5610
static int
5611
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5612
{
5613 5614 5615 5616 5617
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5618 5619 5620 5621 5622 5623
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5624
	 */
5625 5626
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5627

5628
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5629
		return this_cpu;
5630

5631
	return nr_cpumask_bits;
5632 5633
}

5634
static int
5635 5636
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5637 5638 5639 5640
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5641
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5642 5643 5644 5645

	if (sync) {
		unsigned long current_load = task_h_load(current);

5646
		if (current_load > this_eff_load)
5647
			return this_cpu;
5648

5649
		this_eff_load -= current_load;
5650 5651 5652 5653
	}

	task_load = task_h_load(p);

5654 5655 5656 5657
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5658

5659
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5660 5661 5662 5663
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5664

5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5675 5676
}

5677
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5678
		       int this_cpu, int prev_cpu, int sync)
5679
{
5680
	int target = nr_cpumask_bits;
5681

5682
	if (sched_feat(WA_IDLE))
5683
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5684

5685 5686
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5687

5688
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5689 5690
	if (target == nr_cpumask_bits)
		return prev_cpu;
5691

5692 5693 5694
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5695 5696
}

5697
static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5698

5699
static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5700
{
5701
	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5702 5703
}

5704 5705 5706
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5707 5708
 *
 * Assumes p is allowed on at least one CPU in sd.
5709 5710
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5711
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5712
		  int this_cpu, int sd_flag)
5713
{
5714
	struct sched_group *idlest = NULL, *group = sd->groups;
5715
	struct sched_group *most_spare_sg = NULL;
5716 5717 5718
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5719
	unsigned long most_spare = 0, this_spare = 0;
5720
	int load_idx = sd->forkexec_idx;
5721 5722 5723
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5724

5725 5726 5727
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5728
	do {
5729 5730
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5731 5732
		int local_group;
		int i;
5733

5734
		/* Skip over this group if it has no CPUs allowed */
5735
		if (!cpumask_intersects(sched_group_span(group),
5736
					&p->cpus_allowed))
5737 5738 5739
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5740
					       sched_group_span(group));
5741

5742 5743 5744 5745
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5746
		avg_load = 0;
5747
		runnable_load = 0;
5748
		max_spare_cap = 0;
5749

5750
		for_each_cpu(i, sched_group_span(group)) {
5751
			/* Bias balancing toward CPUs of our domain */
5752 5753 5754 5755 5756
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5757 5758 5759
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5760

5761
			spare_cap = capacity_spare_without(i, p);
5762 5763 5764

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5765 5766
		}

5767
		/* Adjust by relative CPU capacity of the group */
5768 5769 5770 5771
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5772 5773

		if (local_group) {
5774 5775
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5776 5777
			this_spare = max_spare_cap;
		} else {
5778 5779 5780
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5781
				 * so we can pick this new CPU:
5782 5783 5784 5785 5786 5787 5788 5789
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5790
				 * blocked load into account through avg_load:
5791 5792
				 */
				min_avg_load = avg_load;
5793 5794 5795 5796 5797 5798 5799
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5800 5801 5802
		}
	} while (group = group->next, group != sd->groups);

5803 5804 5805 5806 5807 5808
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5809 5810 5811 5812
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5813
	 */
5814 5815 5816
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5817
	if (this_spare > task_util(p) / 2 &&
5818
	    imbalance_scale*this_spare > 100*most_spare)
5819
		return NULL;
5820 5821

	if (most_spare > task_util(p) / 2)
5822 5823
		return most_spare_sg;

5824
skip_spare:
5825 5826 5827
	if (!idlest)
		return NULL;

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5840
	if (min_runnable_load > (this_runnable_load + imbalance))
5841
		return NULL;
5842 5843 5844 5845 5846

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5847 5848 5849 5850
	return idlest;
}

/*
5851
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5852 5853
 */
static int
5854
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5855 5856
{
	unsigned long load, min_load = ULONG_MAX;
5857 5858 5859 5860
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5861 5862
	int i;

5863 5864
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5865
		return cpumask_first(sched_group_span(group));
5866

5867
	/* Traverse only the allowed CPUs */
5868
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5869
		if (available_idle_cpu(i)) {
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5891
		} else if (shallowest_idle_cpu == -1) {
5892
			load = weighted_cpuload(cpu_rq(i));
5893
			if (load < min_load) {
5894 5895 5896
				min_load = load;
				least_loaded_cpu = i;
			}
5897 5898 5899
		}
	}

5900
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5901
}
5902

5903 5904 5905
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5906
	int new_cpu = cpu;
5907

5908 5909 5910
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5911
	/*
5912 5913
	 * We need task's util for capacity_spare_without, sync it up to
	 * prev_cpu's last_update_time.
5914 5915 5916 5917
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5935
		if (new_cpu == cpu) {
5936
			/* Now try balancing at a lower domain level of 'cpu': */
5937 5938 5939 5940
			sd = sd->child;
			continue;
		}

5941
		/* Now try balancing at a lower domain level of 'new_cpu': */
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5956
#ifdef CONFIG_SCHED_SMT
5957
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5958
EXPORT_SYMBOL_GPL(sched_smt_present);
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5987
void __update_idle_core(struct rq *rq)
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

6000
		if (!available_idle_cpu(cpu))
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6017
	int core, cpu;
6018

P
Peter Zijlstra 已提交
6019 6020 6021
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6022 6023 6024
	if (!test_idle_cores(target, false))
		return -1;

6025
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6026

6027
	for_each_cpu_wrap(core, cpus, target) {
6028 6029 6030 6031
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
6032
			if (!available_idle_cpu(cpu))
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6055 6056 6057
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6058
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6059
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6060
			continue;
6061
		if (available_idle_cpu(cpu))
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6086
 */
6087 6088
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6089
	struct sched_domain *this_sd;
6090
	u64 avg_cost, avg_idle;
6091 6092
	u64 time, cost;
	s64 delta;
6093
	int cpu, nr = INT_MAX;
6094

6095 6096 6097 6098
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6099 6100 6101 6102
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6103 6104 6105 6106
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6107 6108
		return -1;

6109 6110 6111 6112 6113 6114 6115 6116
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6117 6118
	time = local_clock();

6119
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6120 6121
		if (!--nr)
			return -1;
6122
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6123
			continue;
6124
		if (available_idle_cpu(cpu))
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6138
 */
6139
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6140
{
6141
	struct sched_domain *sd;
6142
	int i, recent_used_cpu;
6143

6144
	if (available_idle_cpu(target))
6145
		return target;
6146 6147

	/*
6148
	 * If the previous CPU is cache affine and idle, don't be stupid:
6149
	 */
6150
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6151
		return prev;
6152

6153
	/* Check a recently used CPU as a potential idle candidate: */
6154 6155 6156 6157
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6158
	    available_idle_cpu(recent_used_cpu) &&
6159 6160 6161
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6162
		 * candidate for the next wake:
6163 6164 6165 6166 6167
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6168
	sd = rcu_dereference(per_cpu(sd_llc, target));
6169 6170
	if (!sd)
		return target;
6171

6172 6173 6174
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6175

6176 6177 6178 6179 6180 6181 6182
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6183

6184 6185
	return target;
}
6186

6187 6188 6189 6190 6191 6192 6193
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6204 6205 6206 6207 6208 6209 6210 6211
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6222 6223
 *
 * Return: the (estimated) utilization for the specified CPU
6224
 */
6225
static inline unsigned long cpu_util(int cpu)
6226
{
6227 6228 6229 6230 6231 6232 6233 6234
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6235

6236
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6237
}
6238

6239
/*
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
 * cpu_util_without: compute cpu utilization without any contributions from *p
 * @cpu: the CPU which utilization is requested
 * @p: the task which utilization should be discounted
 *
 * The utilization of a CPU is defined by the utilization of tasks currently
 * enqueued on that CPU as well as tasks which are currently sleeping after an
 * execution on that CPU.
 *
 * This method returns the utilization of the specified CPU by discounting the
 * utilization of the specified task, whenever the task is currently
 * contributing to the CPU utilization.
6251
 */
6252
static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6253
{
6254 6255
	struct cfs_rq *cfs_rq;
	unsigned int util;
6256 6257

	/* Task has no contribution or is new */
6258
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6259 6260
		return cpu_util(cpu);

6261 6262 6263
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

6264
	/* Discount task's util from CPU's util */
6265
	util -= min_t(unsigned int, util, task_util(p));
6266

6267 6268 6269 6270 6271 6272
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
6273
	 *      cpu_util_without = (cpu_util - task_util) = 0
6274 6275 6276 6277 6278 6279
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
6280
	 *      cpu_util_without = (cpu_util - task_util) >= 0
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319
	if (sched_feat(UTIL_EST)) {
		unsigned int estimated =
			READ_ONCE(cfs_rq->avg.util_est.enqueued);

		/*
		 * Despite the following checks we still have a small window
		 * for a possible race, when an execl's select_task_rq_fair()
		 * races with LB's detach_task():
		 *
		 *   detach_task()
		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
		 *     ---------------------------------- A
		 *     deactivate_task()                   \
		 *       dequeue_task()                     + RaceTime
		 *         util_est_dequeue()              /
		 *     ---------------------------------- B
		 *
		 * The additional check on "current == p" it's required to
		 * properly fix the execl regression and it helps in further
		 * reducing the chances for the above race.
		 */
		if (unlikely(task_on_rq_queued(p) || current == p)) {
			estimated -= min_t(unsigned int, estimated,
					   (_task_util_est(p) | UTIL_AVG_UNCHANGED));
		}
		util = max(util, estimated);
	}
6320 6321 6322 6323 6324 6325 6326

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6327 6328
}

6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6347 6348 6349
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6350 6351 6352
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6353
/*
6354 6355 6356
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6357
 *
6358 6359
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6360
 *
6361
 * Returns the target CPU number.
6362 6363 6364
 *
 * preempt must be disabled.
 */
6365
static int
6366
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6367
{
6368
	struct sched_domain *tmp, *sd = NULL;
6369
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6370
	int new_cpu = prev_cpu;
6371
	int want_affine = 0;
6372
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6373

P
Peter Zijlstra 已提交
6374 6375
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6376
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6377
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6378
	}
6379

6380
	rcu_read_lock();
6381
	for_each_domain(cpu, tmp) {
6382
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6383
			break;
6384

6385
		/*
6386
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6387
		 * cpu is a valid SD_WAKE_AFFINE target.
6388
		 */
6389 6390
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6391 6392 6393 6394
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6395
			break;
6396
		}
6397

6398
		if (tmp->flags & sd_flag)
6399
			sd = tmp;
M
Mike Galbraith 已提交
6400 6401
		else if (!want_affine)
			break;
6402 6403
	}

6404 6405
	if (unlikely(sd)) {
		/* Slow path */
6406
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6407 6408 6409 6410 6411 6412 6413
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6414
	}
6415
	rcu_read_unlock();
6416

6417
	return new_cpu;
6418
}
6419

6420 6421
static void detach_entity_cfs_rq(struct sched_entity *se);

6422
/*
6423
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6424
 * cfs_rq_of(p) references at time of call are still valid and identify the
6425
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6426
 */
6427
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6428
{
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6474 6475 6476

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6477 6478

	/* We have migrated, no longer consider this task hot */
6479
	p->se.exec_start = 0;
6480 6481

	update_scan_period(p, new_cpu);
6482
}
6483 6484 6485 6486 6487

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6488 6489
#endif /* CONFIG_SMP */

6490
static unsigned long wakeup_gran(struct sched_entity *se)
6491 6492 6493 6494
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6495 6496
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6497 6498 6499 6500 6501 6502 6503 6504 6505
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6506
	 */
6507
	return calc_delta_fair(gran, se);
6508 6509
}

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6532
	gran = wakeup_gran(se);
6533 6534 6535 6536 6537 6538
	if (vdiff > gran)
		return 1;

	return 0;
}

6539 6540
static void set_last_buddy(struct sched_entity *se)
{
6541 6542 6543
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6544 6545 6546
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6547
		cfs_rq_of(se)->last = se;
6548
	}
6549 6550 6551 6552
}

static void set_next_buddy(struct sched_entity *se)
{
6553 6554 6555
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6556 6557 6558
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6559
		cfs_rq_of(se)->next = se;
6560
	}
6561 6562
}

6563 6564
static void set_skip_buddy(struct sched_entity *se)
{
6565 6566
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6567 6568
}

6569 6570 6571
/*
 * Preempt the current task with a newly woken task if needed:
 */
6572
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6573 6574
{
	struct task_struct *curr = rq->curr;
6575
	struct sched_entity *se = &curr->se, *pse = &p->se;
6576
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6577
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6578
	int next_buddy_marked = 0;
6579

I
Ingo Molnar 已提交
6580 6581 6582
	if (unlikely(se == pse))
		return;

6583
	/*
6584
	 * This is possible from callers such as attach_tasks(), in which we
6585 6586 6587 6588 6589 6590 6591
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6592
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6593
		set_next_buddy(pse);
6594 6595
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6596

6597 6598 6599
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6600 6601 6602 6603 6604 6605
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6606 6607 6608 6609
	 */
	if (test_tsk_need_resched(curr))
		return;

6610 6611 6612 6613 6614
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6615
	/*
6616 6617
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6618
	 */
6619
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6620
		return;
6621

6622
	find_matching_se(&se, &pse);
6623
	update_curr(cfs_rq_of(se));
6624
	BUG_ON(!pse);
6625 6626 6627 6628 6629 6630 6631
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6632
		goto preempt;
6633
	}
6634

6635
	return;
6636

6637
preempt:
6638
	resched_curr(rq);
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6653 6654
}

6655
static struct task_struct *
6656
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6657 6658 6659
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6660
	struct task_struct *p;
6661
	int new_tasks;
6662

6663
again:
6664
	if (!cfs_rq->nr_running)
6665
		goto idle;
6666

6667
#ifdef CONFIG_FAIR_GROUP_SCHED
6668
	if (prev->sched_class != &fair_sched_class)
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6688 6689 6690 6691 6692
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6693

6694 6695 6696
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6697
			 * Therefore the nr_running test will indeed
6698 6699
			 * be correct.
			 */
6700 6701 6702 6703 6704 6705
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6706
				goto simple;
6707
			}
6708
		}
6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6742
	goto done;
6743 6744
simple:
#endif
6745

6746
	put_prev_task(rq, prev);
6747

6748
	do {
6749
		se = pick_next_entity(cfs_rq, NULL);
6750
		set_next_entity(cfs_rq, se);
6751 6752 6753
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6754
	p = task_of(se);
6755

6756
done: __maybe_unused;
6757 6758 6759 6760 6761 6762 6763 6764 6765
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6766 6767
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6768 6769

	return p;
6770 6771

idle:
6772 6773
	new_tasks = idle_balance(rq, rf);

6774 6775 6776 6777 6778
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6779
	if (new_tasks < 0)
6780 6781
		return RETRY_TASK;

6782
	if (new_tasks > 0)
6783 6784 6785
		goto again;

	return NULL;
6786 6787 6788 6789 6790
}

/*
 * Account for a descheduled task:
 */
6791
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6792 6793 6794 6795 6796 6797
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6798
		put_prev_entity(cfs_rq, se);
6799 6800 6801
	}
}

6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6827 6828 6829 6830 6831
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6832
		rq_clock_skip_update(rq);
6833 6834 6835 6836 6837
	}

	set_skip_buddy(se);
}

6838 6839 6840 6841
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6842 6843
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6854
#ifdef CONFIG_SMP
6855
/**************************************************
P
Peter Zijlstra 已提交
6856 6857 6858 6859 6860
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6861
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6862 6863 6864 6865
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6866
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6867 6868 6869 6870
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6871
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6872
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6873 6874 6875 6876 6877 6878
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6879
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6880 6881 6882 6883 6884 6885
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6886
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6900
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6901
 * topology where each level pairs two lower groups (or better). This results
6902
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6903
 * tree to only the first of the previous level and we decrease the frequency
6904
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6905 6906 6907 6908 6909 6910 6911 6912
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6913
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6914 6915 6916 6917 6918 6919 6920
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6921
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6922 6923 6924
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6925
 *             log_2 n
P
Peter Zijlstra 已提交
6926 6927 6928 6929 6930 6931 6932
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6933
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6943
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6964
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6965 6966 6967 6968 6969 6970
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6971
 */
6972

6973 6974
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6975 6976
enum fbq_type { regular, remote, all };

6977
#define LBF_ALL_PINNED	0x01
6978
#define LBF_NEED_BREAK	0x02
6979 6980
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6981
#define LBF_NOHZ_STATS	0x10
6982
#define LBF_NOHZ_AGAIN	0x20
6983 6984 6985 6986 6987

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6988
	int			src_cpu;
6989 6990 6991 6992

	int			dst_cpu;
	struct rq		*dst_rq;

6993 6994
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6995
	enum cpu_idle_type	idle;
6996
	long			imbalance;
6997 6998 6999
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

7000
	unsigned int		flags;
7001 7002 7003 7004

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
7005 7006

	enum fbq_type		fbq_type;
7007
	struct list_head	tasks;
7008 7009
};

7010 7011 7012
/*
 * Is this task likely cache-hot:
 */
7013
static int task_hot(struct task_struct *p, struct lb_env *env)
7014 7015 7016
{
	s64 delta;

7017 7018
	lockdep_assert_held(&env->src_rq->lock);

7019 7020 7021 7022 7023 7024 7025 7026 7027
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
7028
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7029 7030 7031 7032 7033 7034 7035 7036 7037
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

7038
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7039 7040 7041 7042

	return delta < (s64)sysctl_sched_migration_cost;
}

7043
#ifdef CONFIG_NUMA_BALANCING
7044
/*
7045 7046 7047
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
7048
 */
7049
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7050
{
7051
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7052 7053
	unsigned long src_weight, dst_weight;
	int src_nid, dst_nid, dist;
7054

7055
	if (!static_branch_likely(&sched_numa_balancing))
7056 7057
		return -1;

7058
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7059
		return -1;
7060 7061 7062 7063

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

7064
	if (src_nid == dst_nid)
7065
		return -1;
7066

7067 7068 7069 7070 7071 7072 7073
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
7074

7075 7076
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
7077
		return 0;
7078

7079
	/* Leaving a core idle is often worse than degrading locality. */
7080
	if (env->idle == CPU_IDLE)
7081 7082
		return -1;

7083
	dist = node_distance(src_nid, dst_nid);
7084
	if (numa_group) {
7085 7086
		src_weight = group_weight(p, src_nid, dist);
		dst_weight = group_weight(p, dst_nid, dist);
7087
	} else {
7088 7089
		src_weight = task_weight(p, src_nid, dist);
		dst_weight = task_weight(p, dst_nid, dist);
7090 7091
	}

7092
	return dst_weight < src_weight;
7093 7094
}

7095
#else
7096
static inline int migrate_degrades_locality(struct task_struct *p,
7097 7098
					     struct lb_env *env)
{
7099
	return -1;
7100
}
7101 7102
#endif

7103 7104 7105 7106
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7107
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7108
{
7109
	int tsk_cache_hot;
7110 7111 7112

	lockdep_assert_held(&env->src_rq->lock);

7113 7114
	/*
	 * We do not migrate tasks that are:
7115
	 * 1) throttled_lb_pair, or
7116
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7117 7118
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7119
	 */
7120 7121 7122
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7123
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7124
		int cpu;
7125

7126
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7127

7128 7129
		env->flags |= LBF_SOME_PINNED;

7130
		/*
7131
		 * Remember if this task can be migrated to any other CPU in
7132 7133 7134
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7135 7136
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7137
		 */
7138
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7139 7140
			return 0;

7141
		/* Prevent to re-select dst_cpu via env's CPUs: */
7142
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7143
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7144
				env->flags |= LBF_DST_PINNED;
7145 7146 7147
				env->new_dst_cpu = cpu;
				break;
			}
7148
		}
7149

7150 7151
		return 0;
	}
7152 7153

	/* Record that we found atleast one task that could run on dst_cpu */
7154
	env->flags &= ~LBF_ALL_PINNED;
7155

7156
	if (task_running(env->src_rq, p)) {
7157
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7158 7159 7160 7161 7162
		return 0;
	}

	/*
	 * Aggressive migration if:
7163 7164 7165
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7166
	 */
7167 7168 7169
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7170

7171
	if (tsk_cache_hot <= 0 ||
7172
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7173
		if (tsk_cache_hot == 1) {
7174 7175
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7176
		}
7177 7178 7179
		return 1;
	}

7180
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7181
	return 0;
7182 7183
}

7184
/*
7185 7186 7187 7188 7189 7190 7191
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7192
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7193 7194 7195
	set_task_cpu(p, env->dst_cpu);
}

7196
/*
7197
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7198 7199
 * part of active balancing operations within "domain".
 *
7200
 * Returns a task if successful and NULL otherwise.
7201
 */
7202
static struct task_struct *detach_one_task(struct lb_env *env)
7203
{
7204
	struct task_struct *p;
7205

7206 7207
	lockdep_assert_held(&env->src_rq->lock);

7208 7209
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7210 7211
		if (!can_migrate_task(p, env))
			continue;
7212

7213
		detach_task(p, env);
7214

7215
		/*
7216
		 * Right now, this is only the second place where
7217
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7218
		 * so we can safely collect stats here rather than
7219
		 * inside detach_tasks().
7220
		 */
7221
		schedstat_inc(env->sd->lb_gained[env->idle]);
7222
		return p;
7223
	}
7224
	return NULL;
7225 7226
}

7227 7228
static const unsigned int sched_nr_migrate_break = 32;

7229
/*
7230 7231
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7232
 *
7233
 * Returns number of detached tasks if successful and 0 otherwise.
7234
 */
7235
static int detach_tasks(struct lb_env *env)
7236
{
7237 7238
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7239
	unsigned long load;
7240 7241 7242
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7243

7244
	if (env->imbalance <= 0)
7245
		return 0;
7246

7247
	while (!list_empty(tasks)) {
7248 7249 7250 7251 7252 7253 7254
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7255
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7256

7257 7258
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7259
		if (env->loop > env->loop_max)
7260
			break;
7261 7262

		/* take a breather every nr_migrate tasks */
7263
		if (env->loop > env->loop_break) {
7264
			env->loop_break += sched_nr_migrate_break;
7265
			env->flags |= LBF_NEED_BREAK;
7266
			break;
7267
		}
7268

7269
		if (!can_migrate_task(p, env))
7270 7271 7272
			goto next;

		load = task_h_load(p);
7273

7274
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7275 7276
			goto next;

7277
		if ((load / 2) > env->imbalance)
7278
			goto next;
7279

7280 7281 7282 7283
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7284
		env->imbalance -= load;
7285 7286

#ifdef CONFIG_PREEMPT
7287 7288
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7289
		 * kernels will stop after the first task is detached to minimize
7290 7291
		 * the critical section.
		 */
7292
		if (env->idle == CPU_NEWLY_IDLE)
7293
			break;
7294 7295
#endif

7296 7297 7298 7299
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7300
		if (env->imbalance <= 0)
7301
			break;
7302 7303 7304

		continue;
next:
7305
		list_move(&p->se.group_node, tasks);
7306
	}
7307

7308
	/*
7309 7310 7311
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7312
	 */
7313
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7314

7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7326
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7327
	p->on_rq = TASK_ON_RQ_QUEUED;
7328 7329 7330 7331 7332 7333 7334 7335 7336
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7337 7338 7339
	struct rq_flags rf;

	rq_lock(rq, &rf);
7340
	update_rq_clock(rq);
7341
	attach_task(rq, p);
7342
	rq_unlock(rq, &rf);
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7353
	struct rq_flags rf;
7354

7355
	rq_lock(env->dst_rq, &rf);
7356
	update_rq_clock(env->dst_rq);
7357 7358 7359 7360

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7361

7362 7363 7364
		attach_task(env->dst_rq, p);
	}

7365
	rq_unlock(env->dst_rq, &rf);
7366 7367
}

7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7379
static inline bool others_have_blocked(struct rq *rq)
7380 7381 7382 7383
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7384 7385 7386
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7387
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7388 7389 7390 7391
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7392 7393 7394
	return false;
}

7395 7396
#ifdef CONFIG_FAIR_GROUP_SCHED

7397
static void update_blocked_averages(int cpu)
7398 7399
{
	struct rq *rq = cpu_rq(cpu);
7400
	struct cfs_rq *cfs_rq;
7401
	const struct sched_class *curr_class;
7402
	struct rq_flags rf;
7403
	bool done = true;
7404

7405
	rq_lock_irqsave(rq, &rf);
7406
	update_rq_clock(rq);
7407

7408 7409 7410 7411
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7412
	for_each_leaf_cfs_rq(rq, cfs_rq) {
7413 7414
		struct sched_entity *se;

7415 7416 7417
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7418

7419
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7420
			update_tg_load_avg(cfs_rq, 0);
7421

7422 7423 7424
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7425
			update_load_avg(cfs_rq_of(se), se, 0);
7426

7427 7428
		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7429
			done = false;
7430
	}
7431 7432 7433 7434

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7435
	update_irq_load_avg(rq, 0);
7436
	/* Don't need periodic decay once load/util_avg are null */
7437
	if (others_have_blocked(rq))
7438
		done = false;
7439 7440 7441

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7442 7443
	if (done)
		rq->has_blocked_load = 0;
7444
#endif
7445
	rq_unlock_irqrestore(rq, &rf);
7446 7447
}

7448
/*
7449
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7450 7451 7452
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7453
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7454
{
7455 7456
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7457
	unsigned long now = jiffies;
7458
	unsigned long load;
7459

7460
	if (cfs_rq->last_h_load_update == now)
7461 7462
		return;

7463
	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7464 7465
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
7466
		WRITE_ONCE(cfs_rq->h_load_next, se);
7467 7468 7469
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7470

7471
	if (!se) {
7472
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7473 7474 7475
		cfs_rq->last_h_load_update = now;
	}

7476
	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7477
		load = cfs_rq->h_load;
7478 7479
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7480 7481 7482 7483
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7484 7485
}

7486
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7487
{
7488
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7489

7490
	update_cfs_rq_h_load(cfs_rq);
7491
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7492
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7493 7494
}
#else
7495
static inline void update_blocked_averages(int cpu)
7496
{
7497 7498
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7499
	const struct sched_class *curr_class;
7500
	struct rq_flags rf;
7501

7502
	rq_lock_irqsave(rq, &rf);
7503
	update_rq_clock(rq);
7504
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7505 7506 7507 7508

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7509
	update_irq_load_avg(rq, 0);
7510 7511
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7512
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7513
		rq->has_blocked_load = 0;
7514
#endif
7515
	rq_unlock_irqrestore(rq, &rf);
7516 7517
}

7518
static unsigned long task_h_load(struct task_struct *p)
7519
{
7520
	return p->se.avg.load_avg;
7521
}
P
Peter Zijlstra 已提交
7522
#endif
7523 7524

/********** Helpers for find_busiest_group ************************/
7525 7526 7527 7528 7529 7530 7531

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7532 7533 7534 7535 7536 7537 7538
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7539
	unsigned long load_per_task;
7540
	unsigned long group_capacity;
7541
	unsigned long group_util; /* Total utilization of the group */
7542 7543 7544
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7545
	enum group_type group_type;
7546
	int group_no_capacity;
7547 7548 7549 7550
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7551 7552
};

J
Joonsoo Kim 已提交
7553 7554 7555 7556 7557 7558 7559
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7560
	unsigned long total_running;
J
Joonsoo Kim 已提交
7561
	unsigned long total_load;	/* Total load of all groups in sd */
7562
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7563 7564 7565
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7566
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7567 7568
};

7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7580
		.total_running = 0UL,
7581
		.total_load = 0UL,
7582
		.total_capacity = 0UL,
7583 7584
		.busiest_stat = {
			.avg_load = 0UL,
7585 7586
			.sum_nr_running = 0,
			.group_type = group_other,
7587 7588 7589 7590
		},
	};
}

7591 7592 7593
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7594
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7595 7596
 *
 * Return: The load index.
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7619
static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7620 7621
{
	struct rq *rq = cpu_rq(cpu);
7622
	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7623 7624
	unsigned long used, free;
	unsigned long irq;
7625

7626
	irq = cpu_util_irq(rq);
7627

7628 7629
	if (unlikely(irq >= max))
		return 1;
7630

7631 7632
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7633

7634 7635
	if (unlikely(used >= max))
		return 1;
7636

7637
	free = max - used;
7638 7639

	return scale_irq_capacity(free, irq, max);
7640 7641
}

7642
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7643
{
7644
	unsigned long capacity = scale_rt_capacity(sd, cpu);
7645 7646
	struct sched_group *sdg = sd->groups;

7647
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7648

7649 7650
	if (!capacity)
		capacity = 1;
7651

7652 7653
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7654
	sdg->sgc->min_capacity = capacity;
7655 7656
}

7657
void update_group_capacity(struct sched_domain *sd, int cpu)
7658 7659 7660
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7661
	unsigned long capacity, min_capacity;
7662 7663 7664 7665
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7666
	sdg->sgc->next_update = jiffies + interval;
7667 7668

	if (!child) {
7669
		update_cpu_capacity(sd, cpu);
7670 7671 7672
		return;
	}

7673
	capacity = 0;
7674
	min_capacity = ULONG_MAX;
7675

P
Peter Zijlstra 已提交
7676 7677 7678 7679 7680 7681
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7682
		for_each_cpu(cpu, sched_group_span(sdg)) {
7683
			struct sched_group_capacity *sgc;
7684
			struct rq *rq = cpu_rq(cpu);
7685

7686
			/*
7687
			 * build_sched_domains() -> init_sched_groups_capacity()
7688 7689 7690
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7691 7692
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7693
			 *
7694
			 * This avoids capacity from being 0 and
7695 7696 7697
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7698
				capacity += capacity_of(cpu);
7699 7700 7701
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7702
			}
7703

7704
			min_capacity = min(capacity, min_capacity);
7705
		}
P
Peter Zijlstra 已提交
7706 7707 7708 7709
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7710
		 */
P
Peter Zijlstra 已提交
7711 7712 7713

		group = child->groups;
		do {
7714 7715 7716 7717
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7718 7719 7720
			group = group->next;
		} while (group != child->groups);
	}
7721

7722
	sdg->sgc->capacity = capacity;
7723
	sdg->sgc->min_capacity = min_capacity;
7724 7725
}

7726
/*
7727 7728 7729
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7730 7731
 */
static inline int
7732
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7733
{
7734 7735
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7736 7737
}

7738 7739
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7740
 * groups is inadequate due to ->cpus_allowed constraints.
7741
 *
7742 7743
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7744 7745
 * Something like:
 *
7746 7747
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7748 7749 7750
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7751
 * cpu 3 and leave one of the CPUs in the second group unused.
7752 7753
 *
 * The current solution to this issue is detecting the skew in the first group
7754 7755
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7756 7757
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7758
 * update_sd_pick_busiest(). And calculate_imbalance() and
7759
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7760 7761 7762 7763 7764 7765 7766
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7767
static inline int sg_imbalanced(struct sched_group *group)
7768
{
7769
	return group->sgc->imbalance;
7770 7771
}

7772
/*
7773 7774 7775
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7776 7777
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7778 7779 7780 7781 7782
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7783
 */
7784 7785
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7786
{
7787 7788
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7789

7790
	if ((sgs->group_capacity * 100) >
7791
			(sgs->group_util * env->sd->imbalance_pct))
7792
		return true;
7793

7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7810

7811
	if ((sgs->group_capacity * 100) <
7812
			(sgs->group_util * env->sd->imbalance_pct))
7813
		return true;
7814

7815
	return false;
7816 7817
}

7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7829 7830 7831
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7832
{
7833
	if (sgs->group_no_capacity)
7834 7835 7836 7837 7838 7839 7840 7841
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7842
static bool update_nohz_stats(struct rq *rq, bool force)
7843 7844 7845 7846
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7847 7848 7849
	if (!rq->has_blocked_load)
		return false;

7850
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7851
		return false;
7852

7853
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7854
		return true;
7855 7856

	update_blocked_averages(cpu);
7857 7858 7859 7860

	return rq->has_blocked_load;
#else
	return false;
7861 7862 7863
#endif
}

7864 7865
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7866
 * @env: The load balancing environment.
7867 7868 7869 7870
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7871
 * @overload: Indicate more than one runnable task for any CPU.
7872
 */
7873 7874
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7875 7876
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7877
{
7878
	unsigned long load;
7879
	int i, nr_running;
7880

7881 7882
	memset(sgs, 0, sizeof(*sgs));

7883
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7884 7885
		struct rq *rq = cpu_rq(i);

7886
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7887
			env->flags |= LBF_NOHZ_AGAIN;
7888

7889
		/* Bias balancing toward CPUs of our domain: */
7890
		if (local_group)
7891
			load = target_load(i, load_idx);
7892
		else
7893 7894 7895
			load = source_load(i, load_idx);

		sgs->group_load += load;
7896
		sgs->group_util += cpu_util(i);
7897
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7898

7899 7900
		nr_running = rq->nr_running;
		if (nr_running > 1)
7901 7902
			*overload = true;

7903 7904 7905 7906
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7907
		sgs->sum_weighted_load += weighted_cpuload(rq);
7908 7909 7910 7911
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7912
			sgs->idle_cpus++;
7913 7914
	}

7915 7916
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7917
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7918

7919
	if (sgs->sum_nr_running)
7920
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7921

7922
	sgs->group_weight = group->group_weight;
7923

7924
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7925
	sgs->group_type = group_classify(group, sgs);
7926 7927
}

7928 7929
/**
 * update_sd_pick_busiest - return 1 on busiest group
7930
 * @env: The load balancing environment.
7931 7932
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7933
 * @sgs: sched_group statistics
7934 7935 7936
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7937 7938 7939
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7940
 */
7941
static bool update_sd_pick_busiest(struct lb_env *env,
7942 7943
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7944
				   struct sg_lb_stats *sgs)
7945
{
7946
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7947

7948
	if (sgs->group_type > busiest->group_type)
7949 7950
		return true;

7951 7952 7953 7954 7955 7956
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7971 7972
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7973 7974
		return true;

7975
	/* No ASYM_PACKING if target CPU is already busy */
7976 7977
	if (env->idle == CPU_NOT_IDLE)
		return true;
7978
	/*
T
Tim Chen 已提交
7979 7980 7981
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7982
	 */
T
Tim Chen 已提交
7983 7984
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7985 7986 7987
		if (!sds->busiest)
			return true;

7988
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7989 7990
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7991 7992 7993 7994 7995 7996
			return true;
	}

	return false;
}

7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

8027
/**
8028
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8029
 * @env: The load balancing environment.
8030 8031
 * @sds: variable to hold the statistics for this sched_domain.
 */
8032
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8033
{
8034 8035
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
8036
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
8037
	struct sg_lb_stats tmp_sgs;
8038
	int load_idx, prefer_sibling = 0;
8039
	bool overload = false;
8040 8041 8042 8043

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

8044
#ifdef CONFIG_NO_HZ_COMMON
8045
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8046 8047 8048
		env->flags |= LBF_NOHZ_STATS;
#endif

8049
	load_idx = get_sd_load_idx(env->sd, env->idle);
8050 8051

	do {
J
Joonsoo Kim 已提交
8052
		struct sg_lb_stats *sgs = &tmp_sgs;
8053 8054
		int local_group;

8055
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
8056 8057
		if (local_group) {
			sds->local = sg;
8058
			sgs = local;
8059 8060

			if (env->idle != CPU_NEWLY_IDLE ||
8061 8062
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
8063
		}
8064

8065 8066
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
8067

8068 8069 8070
		if (local_group)
			goto next_group;

8071 8072
		/*
		 * In case the child domain prefers tasks go to siblings
8073
		 * first, lower the sg capacity so that we'll try
8074 8075
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
8076 8077 8078 8079
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
8080
		 */
8081
		if (prefer_sibling && sds->local &&
8082 8083
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8084
			sgs->group_no_capacity = 1;
8085
			sgs->group_type = group_classify(sg, sgs);
8086
		}
8087

8088
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8089
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8090
			sds->busiest_stat = *sgs;
8091 8092
		}

8093 8094
next_group:
		/* Now, start updating sd_lb_stats */
8095
		sds->total_running += sgs->sum_nr_running;
8096
		sds->total_load += sgs->group_load;
8097
		sds->total_capacity += sgs->group_capacity;
8098

8099
		sg = sg->next;
8100
	} while (sg != env->sd->groups);
8101

8102 8103 8104 8105 8106 8107 8108 8109 8110
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8111 8112
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8113 8114 8115 8116 8117 8118

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8119 8120 8121 8122
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8123
 *			sched domain.
8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8138
 * Return: 1 when packing is required and a task should be moved to
8139
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8140
 *
8141
 * @env: The load balancing environment.
8142 8143
 * @sds: Statistics of the sched_domain which is to be packed
 */
8144
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8145 8146 8147
{
	int busiest_cpu;

8148
	if (!(env->sd->flags & SD_ASYM_PACKING))
8149 8150
		return 0;

8151 8152 8153
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8154 8155 8156
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8157 8158
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8159 8160
		return 0;

8161
	env->imbalance = DIV_ROUND_CLOSEST(
8162
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8163
		SCHED_CAPACITY_SCALE);
8164

8165
	return 1;
8166 8167 8168 8169 8170 8171
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8172
 * @env: The load balancing environment.
8173 8174
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8175 8176
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8177
{
8178
	unsigned long tmp, capa_now = 0, capa_move = 0;
8179
	unsigned int imbn = 2;
8180
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8181
	struct sg_lb_stats *local, *busiest;
8182

J
Joonsoo Kim 已提交
8183 8184
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8185

J
Joonsoo Kim 已提交
8186 8187 8188 8189
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8190

J
Joonsoo Kim 已提交
8191
	scaled_busy_load_per_task =
8192
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8193
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8194

8195 8196
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8197
		env->imbalance = busiest->load_per_task;
8198 8199 8200 8201 8202
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8203
	 * however we may be able to increase total CPU capacity used by
8204 8205 8206
	 * moving them.
	 */

8207
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8208
			min(busiest->load_per_task, busiest->avg_load);
8209
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8210
			min(local->load_per_task, local->avg_load);
8211
	capa_now /= SCHED_CAPACITY_SCALE;
8212 8213

	/* Amount of load we'd subtract */
8214
	if (busiest->avg_load > scaled_busy_load_per_task) {
8215
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8216
			    min(busiest->load_per_task,
8217
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8218
	}
8219 8220

	/* Amount of load we'd add */
8221
	if (busiest->avg_load * busiest->group_capacity <
8222
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8223 8224
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8225
	} else {
8226
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8227
		      local->group_capacity;
J
Joonsoo Kim 已提交
8228
	}
8229
	capa_move += local->group_capacity *
8230
		    min(local->load_per_task, local->avg_load + tmp);
8231
	capa_move /= SCHED_CAPACITY_SCALE;
8232 8233

	/* Move if we gain throughput */
8234
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8235
		env->imbalance = busiest->load_per_task;
8236 8237 8238 8239 8240
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8241
 * @env: load balance environment
8242 8243
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8244
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8245
{
8246
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8247 8248 8249 8250
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8251

8252
	if (busiest->group_type == group_imbalanced) {
8253 8254
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8255
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8256
		 */
J
Joonsoo Kim 已提交
8257 8258
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8259 8260
	}

8261
	/*
8262 8263 8264 8265
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8266
	 */
8267 8268
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8269 8270
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8271 8272
	}

8273
	/*
8274
	 * If there aren't any idle CPUs, avoid creating some.
8275 8276 8277
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8278
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8279
		if (load_above_capacity > busiest->group_capacity) {
8280
			load_above_capacity -= busiest->group_capacity;
8281
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8282 8283
			load_above_capacity /= busiest->group_capacity;
		} else
8284
			load_above_capacity = ~0UL;
8285 8286 8287
	}

	/*
8288
	 * We're trying to get all the CPUs to the average_load, so we don't
8289
	 * want to push ourselves above the average load, nor do we wish to
8290
	 * reduce the max loaded CPU below the average load. At the same time,
8291 8292
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8293
	 */
8294
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8295 8296

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8297
	env->imbalance = min(
8298 8299
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8300
	) / SCHED_CAPACITY_SCALE;
8301 8302 8303

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8304
	 * there is no guarantee that any tasks will be moved so we'll have
8305 8306 8307
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8308
	if (env->imbalance < busiest->load_per_task)
8309
		return fix_small_imbalance(env, sds);
8310
}
8311

8312 8313 8314 8315
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8316
 * if there is an imbalance.
8317 8318 8319 8320
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8321
 * @env: The load balancing environment.
8322
 *
8323
 * Return:	- The busiest group if imbalance exists.
8324
 */
J
Joonsoo Kim 已提交
8325
static struct sched_group *find_busiest_group(struct lb_env *env)
8326
{
J
Joonsoo Kim 已提交
8327
	struct sg_lb_stats *local, *busiest;
8328 8329
	struct sd_lb_stats sds;

8330
	init_sd_lb_stats(&sds);
8331 8332 8333 8334 8335

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8336
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8337 8338
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8339

8340
	/* ASYM feature bypasses nice load balance check */
8341
	if (check_asym_packing(env, &sds))
8342 8343
		return sds.busiest;

8344
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8345
	if (!sds.busiest || busiest->sum_nr_running == 0)
8346 8347
		goto out_balanced;

8348
	/* XXX broken for overlapping NUMA groups */
8349 8350
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8351

P
Peter Zijlstra 已提交
8352 8353
	/*
	 * If the busiest group is imbalanced the below checks don't
8354
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8355 8356
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8357
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8358 8359
		goto force_balance;

8360 8361 8362 8363 8364
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8365
	    busiest->group_no_capacity)
8366 8367
		goto force_balance;

8368
	/*
8369
	 * If the local group is busier than the selected busiest group
8370 8371
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8372
	if (local->avg_load >= busiest->avg_load)
8373 8374
		goto out_balanced;

8375 8376 8377 8378
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8379
	if (local->avg_load >= sds.avg_load)
8380 8381
		goto out_balanced;

8382
	if (env->idle == CPU_IDLE) {
8383
		/*
8384
		 * This CPU is idle. If the busiest group is not overloaded
8385
		 * and there is no imbalance between this and busiest group
8386
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8387 8388
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8389
		 */
8390 8391
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8392
			goto out_balanced;
8393 8394 8395 8396 8397
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8398 8399
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8400
			goto out_balanced;
8401
	}
8402

8403
force_balance:
8404
	/* Looks like there is an imbalance. Compute it */
8405
	calculate_imbalance(env, &sds);
8406
	return env->imbalance ? sds.busiest : NULL;
8407 8408

out_balanced:
8409
	env->imbalance = 0;
8410 8411 8412 8413
	return NULL;
}

/*
8414
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8415
 */
8416
static struct rq *find_busiest_queue(struct lb_env *env,
8417
				     struct sched_group *group)
8418 8419
{
	struct rq *busiest = NULL, *rq;
8420
	unsigned long busiest_load = 0, busiest_capacity = 1;
8421 8422
	int i;

8423
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8424
		unsigned long capacity, wl;
8425 8426 8427 8428
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8429

8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8452
		capacity = capacity_of(i);
8453

8454
		wl = weighted_cpuload(rq);
8455

8456 8457
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8458
		 * which is not scaled with the CPU capacity.
8459
		 */
8460 8461 8462

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8463 8464
			continue;

8465
		/*
8466 8467 8468
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8469
		 * potentially running at a lower capacity.
8470
		 *
8471
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8472
		 * multiplication to rid ourselves of the division works out
8473 8474
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8475
		 */
8476
		if (wl * busiest_capacity > busiest_load * capacity) {
8477
			busiest_load = wl;
8478
			busiest_capacity = capacity;
8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8492
static int need_active_balance(struct lb_env *env)
8493
{
8494 8495 8496
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8497 8498 8499

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8500 8501
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8502
		 */
T
Tim Chen 已提交
8503 8504
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8505
			return 1;
8506 8507
	}

8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8521 8522 8523
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8524 8525
static int active_load_balance_cpu_stop(void *data);

8526 8527 8528 8529 8530
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8531 8532 8533 8534 8535 8536 8537
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8538
	/*
8539
	 * In the newly idle case, we will allow all the CPUs
8540 8541 8542 8543 8544
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8545
	/* Try to find first idle CPU */
8546
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8547
		if (!idle_cpu(cpu))
8548 8549 8550 8551 8552 8553 8554 8555 8556 8557
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8558
	 * First idle CPU or the first CPU(busiest) in this sched group
8559 8560
	 * is eligible for doing load balancing at this and above domains.
	 */
8561
	return balance_cpu == env->dst_cpu;
8562 8563
}

8564 8565 8566 8567 8568 8569
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8570
			int *continue_balancing)
8571
{
8572
	int ld_moved, cur_ld_moved, active_balance = 0;
8573
	struct sched_domain *sd_parent = sd->parent;
8574 8575
	struct sched_group *group;
	struct rq *busiest;
8576
	struct rq_flags rf;
8577
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8578

8579 8580
	struct lb_env env = {
		.sd		= sd,
8581 8582
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8583
		.dst_grpmask    = sched_group_span(sd->groups),
8584
		.idle		= idle,
8585
		.loop_break	= sched_nr_migrate_break,
8586
		.cpus		= cpus,
8587
		.fbq_type	= all,
8588
		.tasks		= LIST_HEAD_INIT(env.tasks),
8589 8590
	};

8591
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8592

8593
	schedstat_inc(sd->lb_count[idle]);
8594 8595

redo:
8596 8597
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8598
		goto out_balanced;
8599
	}
8600

8601
	group = find_busiest_group(&env);
8602
	if (!group) {
8603
		schedstat_inc(sd->lb_nobusyg[idle]);
8604 8605 8606
		goto out_balanced;
	}

8607
	busiest = find_busiest_queue(&env, group);
8608
	if (!busiest) {
8609
		schedstat_inc(sd->lb_nobusyq[idle]);
8610 8611 8612
		goto out_balanced;
	}

8613
	BUG_ON(busiest == env.dst_rq);
8614

8615
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8616

8617 8618 8619
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8620 8621 8622 8623 8624 8625 8626 8627
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8628
		env.flags |= LBF_ALL_PINNED;
8629
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8630

8631
more_balance:
8632
		rq_lock_irqsave(busiest, &rf);
8633
		update_rq_clock(busiest);
8634 8635 8636 8637 8638

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8639
		cur_ld_moved = detach_tasks(&env);
8640 8641

		/*
8642 8643 8644 8645 8646
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8647
		 */
8648

8649
		rq_unlock(busiest, &rf);
8650 8651 8652 8653 8654 8655

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8656
		local_irq_restore(rf.flags);
8657

8658 8659 8660 8661 8662
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8663 8664 8665 8666
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8667
		 * iterate on same src_cpu is dependent on number of CPUs in our
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8682
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8683

8684
			/* Prevent to re-select dst_cpu via env's CPUs */
8685 8686
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8687
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8688
			env.dst_cpu	 = env.new_dst_cpu;
8689
			env.flags	&= ~LBF_DST_PINNED;
8690 8691
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8692

8693 8694 8695 8696 8697 8698
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8699

8700 8701 8702 8703
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8704
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8705

8706
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8707 8708 8709
				*group_imbalance = 1;
		}

8710
		/* All tasks on this runqueue were pinned by CPU affinity */
8711
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8712
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8713 8714 8715 8716 8717 8718 8719 8720 8721
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8722 8723
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8724
				goto redo;
8725
			}
8726
			goto out_all_pinned;
8727 8728 8729 8730
		}
	}

	if (!ld_moved) {
8731
		schedstat_inc(sd->lb_failed[idle]);
8732 8733 8734 8735 8736 8737 8738 8739
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8740

8741
		if (need_active_balance(&env)) {
8742 8743
			unsigned long flags;

8744 8745
			raw_spin_lock_irqsave(&busiest->lock, flags);

8746 8747 8748 8749
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8750
			 */
8751
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8752 8753
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8754
				env.flags |= LBF_ALL_PINNED;
8755 8756 8757
				goto out_one_pinned;
			}

8758 8759 8760 8761 8762
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8763 8764 8765 8766 8767 8768
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8769

8770
			if (active_balance) {
8771 8772 8773
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8774
			}
8775

8776
			/* We've kicked active balancing, force task migration. */
8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8790
		 * detach_tasks).
8791 8792 8793 8794 8795 8796 8797 8798
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8799 8800
	/*
	 * We reach balance although we may have faced some affinity
8801 8802
	 * constraints. Clear the imbalance flag only if other tasks got
	 * a chance to move and fix the imbalance.
8803
	 */
8804
	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8817
	schedstat_inc(sd->lb_balanced[idle]);
8818 8819 8820 8821 8822

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8823
	if (((env.flags & LBF_ALL_PINNED) &&
8824
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8825 8826 8827
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8828
	ld_moved = 0;
8829 8830 8831 8832
out:
	return ld_moved;
}

8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8849
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8850 8851 8852
{
	unsigned long interval, next;

8853 8854
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8855 8856 8857 8858 8859 8860
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8861
/*
8862
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8863 8864 8865
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8866
 */
8867
static int active_load_balance_cpu_stop(void *data)
8868
{
8869 8870
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8871
	int target_cpu = busiest_rq->push_cpu;
8872
	struct rq *target_rq = cpu_rq(target_cpu);
8873
	struct sched_domain *sd;
8874
	struct task_struct *p = NULL;
8875
	struct rq_flags rf;
8876

8877
	rq_lock_irq(busiest_rq, &rf);
8878 8879 8880 8881 8882 8883 8884
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8885

8886
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8887 8888 8889
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8890 8891 8892

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8893
		goto out_unlock;
8894 8895 8896 8897

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8898
	 * Bjorn Helgaas on a 128-CPU setup.
8899 8900 8901 8902
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8903
	rcu_read_lock();
8904 8905 8906 8907 8908 8909 8910
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8911 8912
		struct lb_env env = {
			.sd		= sd,
8913 8914 8915 8916
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8917
			.idle		= CPU_IDLE,
8918 8919 8920 8921 8922 8923 8924
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8925 8926
		};

8927
		schedstat_inc(sd->alb_count);
8928
		update_rq_clock(busiest_rq);
8929

8930
		p = detach_one_task(&env);
8931
		if (p) {
8932
			schedstat_inc(sd->alb_pushed);
8933 8934 8935
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8936
			schedstat_inc(sd->alb_failed);
8937
		}
8938
	}
8939
	rcu_read_unlock();
8940 8941
out_unlock:
	busiest_rq->active_balance = 0;
8942
	rq_unlock(busiest_rq, &rf);
8943 8944 8945 8946 8947 8948

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8949
	return 0;
8950 8951
}

8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

9070 9071 9072 9073 9074
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

9075
#ifdef CONFIG_NO_HZ_COMMON
9076 9077 9078 9079 9080
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
9081 9082
 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
 *   anywhere yet.
9083
 */
9084

9085
static inline int find_new_ilb(void)
9086
{
9087
	int ilb;
9088

9089 9090 9091 9092 9093
	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
			      housekeeping_cpumask(HK_FLAG_MISC)) {
		if (idle_cpu(ilb))
			return ilb;
	}
9094 9095

	return nr_cpu_ids;
9096 9097
}

9098
/*
9099 9100
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
9101
 */
9102
static void kick_ilb(unsigned int flags)
9103 9104 9105 9106 9107
{
	int ilb_cpu;

	nohz.next_balance++;

9108
	ilb_cpu = find_new_ilb();
9109

9110 9111
	if (ilb_cpu >= nr_cpu_ids)
		return;
9112

9113
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9114
	if (flags & NOHZ_KICK_MASK)
9115
		return;
9116

9117 9118
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9119
	 * This way we generate a sched IPI on the target CPU which
9120 9121 9122 9123
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9143
	unsigned int flags = 0;
9144 9145 9146 9147 9148 9149 9150 9151

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9152
	nohz_balance_exit_idle(rq);
9153 9154 9155 9156 9157 9158 9159 9160

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9161 9162
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9163 9164
		flags = NOHZ_STATS_KICK;

9165
	if (time_before(now, nohz.next_balance))
9166
		goto out;
9167 9168

	if (rq->nr_running >= 2) {
9169
		flags = NOHZ_KICK_MASK;
9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9182
			flags = NOHZ_KICK_MASK;
9183 9184 9185 9186 9187 9188 9189 9190 9191
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9192
			flags = NOHZ_KICK_MASK;
9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9205
				flags = NOHZ_KICK_MASK;
9206 9207 9208 9209 9210 9211 9212
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9213 9214
	if (flags)
		kick_ilb(flags);
9215 9216
}

9217
static void set_cpu_sd_state_busy(int cpu)
9218
{
9219
	struct sched_domain *sd;
9220

9221 9222
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9223

9224 9225 9226 9227 9228 9229 9230
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9231 9232
}

9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9248 9249 9250 9251
{
	struct sched_domain *sd;

	rcu_read_lock();
9252
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9253 9254 9255 9256 9257

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9258
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9259
unlock:
9260 9261 9262
	rcu_read_unlock();
}

9263
/*
9264
 * This routine will record that the CPU is going idle with tick stopped.
9265
 * This info will be used in performing idle load balancing in the future.
9266
 */
9267
void nohz_balance_enter_idle(int cpu)
9268
{
9269 9270 9271 9272
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9273
	/* If this CPU is going down, then nothing needs to be done: */
9274 9275 9276
	if (!cpu_active(cpu))
		return;

9277
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9278
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9279 9280
		return;

9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9294
	if (rq->nohz_tick_stopped)
9295
		goto out;
9296

9297
	/* If we're a completely isolated CPU, we don't play: */
9298
	if (on_null_domain(rq))
9299 9300
		return;

9301 9302
	rq->nohz_tick_stopped = 1;

9303 9304
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9305

9306 9307 9308 9309 9310 9311 9312
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9313
	set_cpu_sd_state_idle(cpu);
9314 9315 9316 9317 9318 9319 9320

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9321 9322 9323
}

/*
9324 9325 9326 9327 9328
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9329
 */
9330 9331
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9332
{
9333
	/* Earliest time when we have to do rebalance again */
9334 9335
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9336
	bool has_blocked_load = false;
9337
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9338 9339
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9340
	int ret = false;
P
Peter Zijlstra 已提交
9341
	struct rq *rq;
9342

P
Peter Zijlstra 已提交
9343
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9344

9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9361
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9362
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9363 9364 9365
			continue;

		/*
9366 9367
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9368 9369
		 * balancing owner will pick it up.
		 */
9370 9371 9372 9373
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9374

V
Vincent Guittot 已提交
9375 9376
		rq = cpu_rq(balance_cpu);

9377
		has_blocked_load |= update_nohz_stats(rq, true);
9378

9379 9380 9381 9382 9383
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9384 9385
			struct rq_flags rf;

9386
			rq_lock_irqsave(rq, &rf);
9387
			update_rq_clock(rq);
9388
			cpu_load_update_idle(rq);
9389
			rq_unlock_irqrestore(rq, &rf);
9390

P
Peter Zijlstra 已提交
9391 9392
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9393
		}
9394

9395 9396 9397 9398
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9399
	}
9400

9401 9402 9403 9404 9405 9406
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9407 9408 9409
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9410 9411 9412
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9413 9414 9415
	/* The full idle balance loop has been done */
	ret = true;

9416 9417 9418 9419
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9420

9421 9422 9423 9424 9425 9426 9427
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9428

9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9458
	return true;
9459
}
9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9493 9494 9495
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9496
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9497 9498 9499
{
	return false;
}
9500 9501

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9502
#endif /* CONFIG_NO_HZ_COMMON */
9503

P
Peter Zijlstra 已提交
9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9538

P
Peter Zijlstra 已提交
9539 9540 9541 9542 9543 9544
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9545 9546
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9596
out:
P
Peter Zijlstra 已提交
9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9621 9622 9623 9624
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9625
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9626
{
9627
	struct rq *this_rq = this_rq();
9628
	enum cpu_idle_type idle = this_rq->idle_balance ?
9629 9630 9631
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9632 9633
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9634
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9635
	 * give the idle CPUs a chance to load balance. Else we may
9636 9637
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9638
	 */
P
Peter Zijlstra 已提交
9639 9640 9641 9642 9643
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9644
	rebalance_domains(this_rq, idle);
9645 9646 9647 9648 9649
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9650
void trigger_load_balance(struct rq *rq)
9651 9652
{
	/* Don't need to rebalance while attached to NULL domain */
9653 9654 9655 9656
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9657
		raise_softirq(SCHED_SOFTIRQ);
9658 9659

	nohz_balancer_kick(rq);
9660 9661
}

9662 9663 9664
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9665 9666

	update_runtime_enabled(rq);
9667 9668 9669 9670 9671
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9672 9673 9674

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9675 9676
}

9677
#endif /* CONFIG_SMP */
9678

9679
/*
9680 9681 9682 9683 9684 9685
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9686
 */
P
Peter Zijlstra 已提交
9687
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9688 9689 9690 9691 9692 9693
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9694
		entity_tick(cfs_rq, se, queued);
9695
	}
9696

9697
	if (static_branch_unlikely(&sched_numa_balancing))
9698
		task_tick_numa(rq, curr);
9699 9700 9701
}

/*
P
Peter Zijlstra 已提交
9702 9703 9704
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9705
 */
P
Peter Zijlstra 已提交
9706
static void task_fork_fair(struct task_struct *p)
9707
{
9708 9709
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9710
	struct rq *rq = this_rq();
9711
	struct rq_flags rf;
9712

9713
	rq_lock(rq, &rf);
9714 9715
	update_rq_clock(rq);

9716 9717
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9718 9719
	if (curr) {
		update_curr(cfs_rq);
9720
		se->vruntime = curr->vruntime;
9721
	}
9722
	place_entity(cfs_rq, se, 1);
9723

P
Peter Zijlstra 已提交
9724
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9725
		/*
9726 9727 9728
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9729
		swap(curr->vruntime, se->vruntime);
9730
		resched_curr(rq);
9731
	}
9732

9733
	se->vruntime -= cfs_rq->min_vruntime;
9734
	rq_unlock(rq, &rf);
9735 9736
}

9737 9738 9739 9740
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9741 9742
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9743
{
9744
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9745 9746
		return;

9747 9748 9749 9750 9751
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9752
	if (rq->curr == p) {
9753
		if (p->prio > oldprio)
9754
			resched_curr(rq);
9755
	} else
9756
		check_preempt_curr(rq, p, 0);
9757 9758
}

9759
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9760 9761 9762 9763
{
	struct sched_entity *se = &p->se;

	/*
9764 9765 9766 9767 9768 9769 9770 9771 9772 9773
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9774
	 *
9775 9776 9777 9778
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9779
	 */
9780 9781
	if (!se->sum_exec_runtime ||
	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9782 9783 9784 9785 9786
		return true;

	return false;
}

9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9805
		update_load_avg(cfs_rq, se, UPDATE_TG);
9806 9807 9808 9809 9810 9811
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9812
static void detach_entity_cfs_rq(struct sched_entity *se)
9813 9814 9815
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9816
	/* Catch up with the cfs_rq and remove our load when we leave */
9817
	update_load_avg(cfs_rq, se, 0);
9818
	detach_entity_load_avg(cfs_rq, se);
9819
	update_tg_load_avg(cfs_rq, false);
9820
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9821 9822
}

9823
static void attach_entity_cfs_rq(struct sched_entity *se)
9824
{
9825
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9826 9827

#ifdef CONFIG_FAIR_GROUP_SCHED
9828 9829 9830 9831 9832 9833
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9834

9835
	/* Synchronize entity with its cfs_rq */
9836
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9837
	attach_entity_load_avg(cfs_rq, se, 0);
9838
	update_tg_load_avg(cfs_rq, false);
9839
	propagate_entity_cfs_rq(se);
9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9865 9866 9867 9868

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9869

9870 9871 9872 9873 9874 9875 9876 9877
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9878

9879
	if (task_on_rq_queued(p)) {
9880
		/*
9881 9882 9883
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9884
		 */
9885 9886 9887 9888
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9889
	}
9890 9891
}

9892 9893 9894 9895 9896 9897 9898 9899 9900
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9901 9902 9903 9904 9905 9906 9907
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9908 9909
}

9910 9911
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9912
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9913 9914 9915 9916
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9917
#ifdef CONFIG_SMP
9918
	raw_spin_lock_init(&cfs_rq->removed.lock);
9919
#endif
9920 9921
}

P
Peter Zijlstra 已提交
9922
#ifdef CONFIG_FAIR_GROUP_SCHED
9923 9924 9925 9926 9927 9928 9929 9930
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9931
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9932
{
9933
	detach_task_cfs_rq(p);
9934
	set_task_rq(p, task_cpu(p));
9935 9936 9937 9938 9939

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9940
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9941
}
9942

9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9956 9957 9958 9959 9960 9961 9962 9963 9964
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9965
		if (tg->se)
9966 9967 9968 9969 9970 9971 9972 9973 9974 9975
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9976
	struct cfs_rq *cfs_rq;
9977 9978
	int i;

K
Kees Cook 已提交
9979
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9980 9981
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9982
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10003
		init_entity_runnable_average(se);
10004 10005 10006 10007 10008 10009 10010 10011 10012 10013
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

10014 10015 10016
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
10017
	struct rq_flags rf;
10018 10019 10020 10021 10022 10023
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];
10024
		rq_lock_irq(rq, &rf);
10025
		update_rq_clock(rq);
10026
		attach_entity_cfs_rq(se);
10027
		sync_throttle(tg, i);
10028
		rq_unlock_irq(rq, &rf);
10029 10030 10031
	}
}

10032
void unregister_fair_sched_group(struct task_group *tg)
10033 10034
{
	unsigned long flags;
10035 10036
	struct rq *rq;
	int cpu;
10037

10038 10039 10040
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
10041

10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
10074
	if (!parent) {
10075
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
10076 10077
		se->depth = 0;
	} else {
10078
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
10079 10080
		se->depth = parent->depth + 1;
	}
10081 10082

	se->my_q = cfs_rq;
10083 10084
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
10109 10110
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10111 10112

		/* Propagate contribution to hierarchy */
10113
		rq_lock_irqsave(rq, &rf);
10114
		update_rq_clock(rq);
10115
		for_each_sched_entity(se) {
10116
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10117
			update_cfs_group(se);
10118
		}
10119
		rq_unlock_irqrestore(rq, &rf);
10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10135 10136
void online_fair_sched_group(struct task_group *tg) { }

10137
void unregister_fair_sched_group(struct task_group *tg) { }
10138 10139 10140

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10141

10142
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10143 10144 10145 10146 10147 10148 10149 10150 10151
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10152
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10153 10154 10155 10156

	return rr_interval;
}

10157 10158 10159
/*
 * All the scheduling class methods:
 */
10160
const struct sched_class fair_sched_class = {
10161
	.next			= &idle_sched_class,
10162 10163 10164
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10165
	.yield_to_task		= yield_to_task_fair,
10166

I
Ingo Molnar 已提交
10167
	.check_preempt_curr	= check_preempt_wakeup,
10168 10169 10170 10171

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10172
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10173
	.select_task_rq		= select_task_rq_fair,
10174
	.migrate_task_rq	= migrate_task_rq_fair,
10175

10176 10177
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10178

10179
	.task_dead		= task_dead_fair,
10180
	.set_cpus_allowed	= set_cpus_allowed_common,
10181
#endif
10182

10183
	.set_curr_task          = set_curr_task_fair,
10184
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10185
	.task_fork		= task_fork_fair,
10186 10187

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10188
	.switched_from		= switched_from_fair,
10189
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10190

10191 10192
	.get_rr_interval	= get_rr_interval_fair,

10193 10194
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10195
#ifdef CONFIG_FAIR_GROUP_SCHED
10196
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10197
#endif
10198 10199 10200
};

#ifdef CONFIG_SCHED_DEBUG
10201
void print_cfs_stats(struct seq_file *m, int cpu)
10202
{
10203
	struct cfs_rq *cfs_rq;
10204

10205
	rcu_read_lock();
10206
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
10207
		print_cfs_rq(m, cpu, cfs_rq);
10208
	rcu_read_unlock();
10209
}
10210 10211 10212 10213 10214 10215

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10216
	struct numa_group *ng;
10217

10218 10219
	rcu_read_lock();
	ng = rcu_dereference(p->numa_group);
10220 10221 10222 10223 10224
	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
10225 10226 10227
		if (ng) {
			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
10228 10229 10230
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
10231
	rcu_read_unlock();
10232 10233 10234
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10235 10236 10237 10238 10239 10240

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10241
#ifdef CONFIG_NO_HZ_COMMON
10242
	nohz.next_balance = jiffies;
10243
	nohz.next_blocked = jiffies;
10244 10245 10246 10247 10248
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}