fair.c 254.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371
/* Iterate thr' all leaf cfs_rq's on a runqueue */
372 373 374
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
375 376

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
377
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
378 379 380
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
381
		return se->cfs_rq;
P
Peter Zijlstra 已提交
382

P
Peter Zijlstra 已提交
383
	return NULL;
P
Peter Zijlstra 已提交
384 385 386 387 388 389 390
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

391 392 393 394 395 396 397 398 399 400 401 402 403
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
404 405
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

423 424 425 426 427 428
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
429

430 431 432
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
433 434 435 436
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
437 438
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
439

P
Peter Zijlstra 已提交
440
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441
{
P
Peter Zijlstra 已提交
442
	return &task_rq(p)->cfs;
443 444
}

P
Peter Zijlstra 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

459 460 461 462 463 464 465 466
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

467 468
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
469 470 471 472 473 474

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

475 476 477 478 479
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
480 481
#endif	/* CONFIG_FAIR_GROUP_SCHED */

482
static __always_inline
483
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484 485 486 487 488

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

489
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490
{
491
	s64 delta = (s64)(vruntime - max_vruntime);
492
	if (delta > 0)
493
		max_vruntime = vruntime;
494

495
	return max_vruntime;
496 497
}

498
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
499 500 501 502 503 504 505 506
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

507 508 509 510 511 512
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

513 514
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
515
	struct sched_entity *curr = cfs_rq->curr;
516
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
517

518 519
	u64 vruntime = cfs_rq->min_vruntime;

520 521 522 523 524 525
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
526

527 528 529
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
530

531
		if (!curr)
532 533 534 535 536
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

537
	/* ensure we never gain time by being placed backwards. */
538
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 540 541 542
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
543 544
}

545 546 547
/*
 * Enqueue an entity into the rb-tree:
 */
548
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549
{
550
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
551 552
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
553
	bool leftmost = true;
554 555 556 557 558 559 560 561 562 563 564

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
565
		if (entity_before(se, entry)) {
566 567 568
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
569
			leftmost = false;
570 571 572 573
		}
	}

	rb_link_node(&se->run_node, parent, link);
574 575
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
576 577
}

578
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
579
{
580
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
581 582
}

583
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
584
{
585
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
586 587 588 589 590

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
591 592
}

593 594 595 596 597 598 599 600 601 602 603
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
604
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
605
{
606
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
607

608 609
	if (!last)
		return NULL;
610 611

	return rb_entry(last, struct sched_entity, run_node);
612 613
}

614 615 616 617
/**************************************************************
 * Scheduling class statistics methods:
 */

618
int sched_proc_update_handler(struct ctl_table *table, int write,
619
		void __user *buffer, size_t *lenp,
620 621
		loff_t *ppos)
{
622
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
623
	unsigned int factor = get_update_sysctl_factor();
624 625 626 627 628 629 630

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

631 632 633 634 635 636 637
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

638 639 640
	return 0;
}
#endif
641

642
/*
643
 * delta /= w
644
 */
645
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
646
{
647
	if (unlikely(se->load.weight != NICE_0_LOAD))
648
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
649 650 651 652

	return delta;
}

653 654 655
/*
 * The idea is to set a period in which each task runs once.
 *
656
 * When there are too many tasks (sched_nr_latency) we have to stretch
657 658 659 660
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
661 662
static u64 __sched_period(unsigned long nr_running)
{
663 664 665 666
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
667 668
}

669 670 671 672
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
673
 * s = p*P[w/rw]
674
 */
P
Peter Zijlstra 已提交
675
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
676
{
M
Mike Galbraith 已提交
677
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
678

M
Mike Galbraith 已提交
679
	for_each_sched_entity(se) {
L
Lin Ming 已提交
680
		struct load_weight *load;
681
		struct load_weight lw;
L
Lin Ming 已提交
682 683 684

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
685

M
Mike Galbraith 已提交
686
		if (unlikely(!se->on_rq)) {
687
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
688 689 690 691

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
692
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
693 694
	}
	return slice;
695 696
}

697
/*
A
Andrei Epure 已提交
698
 * We calculate the vruntime slice of a to-be-inserted task.
699
 *
700
 * vs = s/w
701
 */
702
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
703
{
704
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
705 706
}

707
#ifdef CONFIG_SMP
708 709 710

#include "sched-pelt.h"

711
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
712 713
static unsigned long task_h_load(struct task_struct *p);

714 715
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
716
{
717
	struct sched_avg *sa = &se->avg;
718

719 720 721 722 723 724 725
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
726 727 728 729 730 731 732 733
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
734
	sa->load_sum = LOAD_AVG_MAX;
735 736 737 738 739
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
740
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
741
}
742

743
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
744
static void attach_entity_cfs_rq(struct sched_entity *se);
745

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
775
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
776 777 778 779 780 781 782 783 784 785 786 787 788

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
789 790 791 792 793 794 795

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
796
			update_cfs_rq_load_avg(now, cfs_rq);
797 798 799 800 801 802
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
803
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
804 805 806 807
			return;
		}
	}

808
	attach_entity_cfs_rq(se);
809 810
}

811
#else /* !CONFIG_SMP */
812
void init_entity_runnable_average(struct sched_entity *se)
813 814
{
}
815 816 817
void post_init_entity_util_avg(struct sched_entity *se)
{
}
818 819 820
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
821
#endif /* CONFIG_SMP */
822

823
/*
824
 * Update the current task's runtime statistics.
825
 */
826
static void update_curr(struct cfs_rq *cfs_rq)
827
{
828
	struct sched_entity *curr = cfs_rq->curr;
829
	u64 now = rq_clock_task(rq_of(cfs_rq));
830
	u64 delta_exec;
831 832 833 834

	if (unlikely(!curr))
		return;

835 836
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
837
		return;
838

I
Ingo Molnar 已提交
839
	curr->exec_start = now;
840

841 842 843 844
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
845
	schedstat_add(cfs_rq->exec_clock, delta_exec);
846 847 848 849

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

850 851 852
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

853
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
854
		cpuacct_charge(curtask, delta_exec);
855
		account_group_exec_runtime(curtask, delta_exec);
856
	}
857 858

	account_cfs_rq_runtime(cfs_rq, delta_exec);
859 860
}

861 862 863 864 865
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

866
static inline void
867
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
868
{
869 870 871 872 873 874 875
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
876 877

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
878 879
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
880

881
	schedstat_set(se->statistics.wait_start, wait_start);
882 883
}

884
static inline void
885 886 887
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
888 889
	u64 delta;

890 891 892 893
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
894 895 896 897 898 899 900 901 902

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
903
			schedstat_set(se->statistics.wait_start, delta);
904 905 906 907 908
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

909 910 911 912 913
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
914 915
}

916
static inline void
917 918 919
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
920 921 922 923 924 925 926
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
927 928 929 930

	if (entity_is_task(se))
		tsk = task_of(se);

931 932
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
933 934 935 936

		if ((s64)delta < 0)
			delta = 0;

937 938
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
939

940 941
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
942 943 944 945 946 947

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
948 949
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
950 951 952 953

		if ((s64)delta < 0)
			delta = 0;

954 955
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
956

957 958
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
959 960 961

		if (tsk) {
			if (tsk->in_iowait) {
962 963
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
982 983
}

984 985 986
/*
 * Task is being enqueued - update stats:
 */
987
static inline void
988
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
989
{
990 991 992
	if (!schedstat_enabled())
		return;

993 994 995 996
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
997
	if (se != cfs_rq->curr)
998
		update_stats_wait_start(cfs_rq, se);
999 1000 1001

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1002 1003 1004
}

static inline void
1005
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1006
{
1007 1008 1009 1010

	if (!schedstat_enabled())
		return;

1011 1012 1013 1014
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1015
	if (se != cfs_rq->curr)
1016
		update_stats_wait_end(cfs_rq, se);
1017

1018 1019
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1020

1021 1022 1023 1024 1025 1026
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1027 1028 1029
	}
}

1030 1031 1032 1033
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1034
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1035 1036 1037 1038
{
	/*
	 * We are starting a new run period:
	 */
1039
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1040 1041 1042 1043 1044 1045
}

/**************************************************
 * Scheduling class queueing methods:
 */

1046 1047
#ifdef CONFIG_NUMA_BALANCING
/*
1048 1049 1050
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1051
 */
1052 1053
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1054 1055 1056

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1057

1058 1059 1060
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1108
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1109 1110 1111
	unsigned int scan, floor;
	unsigned int windows = 1;

1112 1113
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1114 1115 1116 1117 1118 1119
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1139 1140
static unsigned int task_scan_max(struct task_struct *p)
{
1141 1142
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1143 1144 1145

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1161 1162 1163
	return max(smin, smax);
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1176 1177 1178 1179 1180 1181 1182 1183 1184
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1185 1186 1187 1188 1189
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1190 1191 1192 1193 1194 1195 1196
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1197
{
1198
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1199 1200 1201 1202
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1203
	if (!p->numa_faults)
1204 1205
		return 0;

1206 1207
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1208 1209
}

1210 1211 1212 1213 1214
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1215 1216
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1217 1218
}

1219 1220
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1221 1222
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1223 1224
}

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1326 1327 1328 1329 1330 1331
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1332 1333
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1334
{
1335
	unsigned long faults, total_faults;
1336

1337
	if (!p->numa_faults)
1338 1339 1340 1341 1342 1343 1344
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1345
	faults = task_faults(p, nid);
1346 1347
	faults += score_nearby_nodes(p, nid, dist, true);

1348
	return 1000 * faults / total_faults;
1349 1350
}

1351 1352
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1353
{
1354 1355 1356 1357 1358 1359 1360 1361
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1362 1363
		return 0;

1364
	faults = group_faults(p, nid);
1365 1366
	faults += score_nearby_nodes(p, nid, dist, false);

1367
	return 1000 * faults / total_faults;
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1410 1411
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1412
	 */
1413 1414
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1415 1416 1417
		return true;

	/*
1418 1419 1420 1421 1422 1423
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1424
	 */
1425 1426
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1427 1428
}

1429
static unsigned long weighted_cpuload(struct rq *rq);
1430 1431
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1432
static unsigned long capacity_of(int cpu);
1433

1434
/* Cached statistics for all CPUs within a node */
1435
struct numa_stats {
1436
	unsigned long nr_running;
1437
	unsigned long load;
1438 1439

	/* Total compute capacity of CPUs on a node */
1440
	unsigned long compute_capacity;
1441 1442

	/* Approximate capacity in terms of runnable tasks on a node */
1443
	unsigned long task_capacity;
1444
	int has_free_capacity;
1445
};
1446

1447 1448 1449 1450 1451
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1452 1453
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1454 1455 1456 1457 1458 1459

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1460
		ns->load += weighted_cpuload(rq);
1461
		ns->compute_capacity += capacity_of(cpu);
1462 1463

		cpus++;
1464 1465
	}

1466 1467 1468 1469 1470
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1471 1472
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1473 1474 1475 1476
	 */
	if (!cpus)
		return;

1477 1478 1479 1480 1481 1482
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1483
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1484 1485
}

1486 1487
struct task_numa_env {
	struct task_struct *p;
1488

1489 1490
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1491

1492
	struct numa_stats src_stats, dst_stats;
1493

1494
	int imbalance_pct;
1495
	int dist;
1496 1497 1498

	struct task_struct *best_task;
	long best_imp;
1499 1500 1501
	int best_cpu;
};

1502 1503 1504 1505 1506
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1507 1508
	if (p)
		get_task_struct(p);
1509 1510 1511 1512 1513 1514

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1515
static bool load_too_imbalanced(long src_load, long dst_load,
1516 1517
				struct task_numa_env *env)
{
1518 1519
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1531 1532

	/* We care about the slope of the imbalance, not the direction. */
1533 1534
	if (dst_load < src_load)
		swap(dst_load, src_load);
1535 1536

	/* Is the difference below the threshold? */
1537 1538
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1539 1540 1541 1542 1543
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1544
	 * Compare it with the old imbalance.
1545
	 */
1546
	orig_src_load = env->src_stats.load;
1547
	orig_dst_load = env->dst_stats.load;
1548

1549 1550
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1551

1552 1553 1554 1555 1556
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1557 1558
}

1559 1560 1561 1562 1563 1564
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1565 1566
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1567 1568 1569 1570
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1571
	long src_load, dst_load;
1572
	long load;
1573
	long imp = env->p->numa_group ? groupimp : taskimp;
1574
	long moveimp = imp;
1575
	int dist = env->dist;
1576 1577

	rcu_read_lock();
1578 1579
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1580 1581
		cur = NULL;

1582 1583 1584 1585 1586 1587 1588
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1589 1590 1591 1592 1593 1594 1595 1596 1597
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1598
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1599 1600
			goto unlock;

1601 1602
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1603
		 * in any group then look only at task weights.
1604
		 */
1605
		if (cur->numa_group == env->p->numa_group) {
1606 1607
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1608 1609 1610 1611 1612 1613
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1614
		} else {
1615 1616 1617 1618 1619 1620
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1621 1622
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1623
			else
1624 1625
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1626
		}
1627 1628
	}

1629
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1630 1631 1632 1633
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1634
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1635
		    !env->dst_stats.has_free_capacity)
1636 1637 1638 1639 1640 1641
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1642 1643
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1644 1645 1646 1647 1648 1649
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1650 1651 1652
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1653

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1671
	if (cur) {
1672 1673 1674
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1675 1676
	}

1677
	if (load_too_imbalanced(src_load, dst_load, env))
1678 1679
		goto unlock;

1680 1681 1682 1683
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1684 1685 1686 1687 1688 1689
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1690 1691
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1692 1693
		local_irq_enable();
	}
1694

1695 1696 1697 1698 1699 1700
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1701 1702
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1703 1704 1705 1706 1707
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1708
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1709 1710 1711
			continue;

		env->dst_cpu = cpu;
1712
		task_numa_compare(env, taskimp, groupimp);
1713 1714 1715
	}
}

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1733 1734 1735
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1736 1737 1738 1739 1740
		return true;

	return false;
}

1741 1742 1743 1744
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1745

1746
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1747
		.src_nid = task_node(p),
1748 1749 1750 1751 1752

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1753
		.best_cpu = -1,
1754 1755
	};
	struct sched_domain *sd;
1756
	unsigned long taskweight, groupweight;
1757
	int nid, ret, dist;
1758
	long taskimp, groupimp;
1759

1760
	/*
1761 1762 1763 1764 1765 1766
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1767 1768
	 */
	rcu_read_lock();
1769
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1770 1771
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1772 1773
	rcu_read_unlock();

1774 1775 1776 1777 1778 1779 1780
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1781
		p->numa_preferred_nid = task_node(p);
1782 1783 1784
		return -EINVAL;
	}

1785
	env.dst_nid = p->numa_preferred_nid;
1786 1787 1788 1789 1790 1791
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1792
	update_numa_stats(&env.dst_stats, env.dst_nid);
1793

1794
	/* Try to find a spot on the preferred nid. */
1795 1796
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1797

1798 1799 1800 1801 1802 1803 1804
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1805
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1806 1807 1808
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1809

1810
			dist = node_distance(env.src_nid, env.dst_nid);
1811 1812 1813 1814 1815
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1816

1817
			/* Only consider nodes where both task and groups benefit */
1818 1819
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1820
			if (taskimp < 0 && groupimp < 0)
1821 1822
				continue;

1823
			env.dist = dist;
1824 1825
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1826 1827
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1828 1829 1830
		}
	}

1831 1832 1833 1834 1835 1836 1837 1838
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1839
	if (p->numa_group) {
1840 1841
		struct numa_group *ng = p->numa_group;

1842 1843 1844 1845 1846
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1847
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1848 1849 1850 1851 1852 1853
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1854

1855 1856 1857 1858
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1859
	p->numa_scan_period = task_scan_start(p);
1860

1861
	if (env.best_task == NULL) {
1862 1863 1864
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1865 1866 1867 1868
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1869 1870
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1871 1872
	put_task_struct(env.best_task);
	return ret;
1873 1874
}

1875 1876 1877
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1878 1879
	unsigned long interval = HZ;

1880
	/* This task has no NUMA fault statistics yet */
1881
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1882 1883
		return;

1884
	/* Periodically retry migrating the task to the preferred node */
1885 1886
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1887 1888

	/* Success if task is already running on preferred CPU */
1889
	if (task_node(p) == p->numa_preferred_nid)
1890 1891 1892
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1893
	task_numa_migrate(p);
1894 1895
}

1896
/*
1897
 * Find out how many nodes on the workload is actively running on. Do this by
1898 1899 1900 1901
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1902
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1903 1904
{
	unsigned long faults, max_faults = 0;
1905
	int nid, active_nodes = 0;
1906 1907 1908 1909 1910 1911 1912 1913 1914

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1915 1916
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1917
	}
1918 1919 1920

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1921 1922
}

1923 1924 1925
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1926 1927 1928
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1929 1930
 */
#define NUMA_PERIOD_SLOTS 10
1931
#define NUMA_PERIOD_THRESHOLD 7
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1943
	int lr_ratio, ps_ratio;
1944 1945 1946 1947 1948 1949 1950 1951
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1952 1953 1954
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1955
	 */
1956
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1992 1993 1994 1995 1996
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1997 1998 1999
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2000
		 */
2001 2002
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2003 2004 2005 2006 2007 2008 2009
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2028
		delta = p->se.avg.load_sum;
2029
		*period = LOAD_AVG_MAX;
2030 2031 2032 2033 2034 2035 2036 2037
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2085
		nodemask_t max_group = NODE_MASK_NONE;
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2119 2120
		if (!max_faults)
			break;
2121 2122 2123 2124 2125
		nodes = max_group;
	}
	return nid;
}

2126 2127
static void task_numa_placement(struct task_struct *p)
{
2128 2129
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2130
	unsigned long fault_types[2] = { 0, 0 };
2131 2132
	unsigned long total_faults;
	u64 runtime, period;
2133
	spinlock_t *group_lock = NULL;
2134

2135 2136 2137 2138 2139
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2140
	seq = READ_ONCE(p->mm->numa_scan_seq);
2141 2142 2143
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2144
	p->numa_scan_period_max = task_scan_max(p);
2145

2146 2147 2148 2149
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2150 2151 2152
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2153
		spin_lock_irq(group_lock);
2154 2155
	}

2156 2157
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2158 2159
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2160
		unsigned long faults = 0, group_faults = 0;
2161
		int priv;
2162

2163
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2164
			long diff, f_diff, f_weight;
2165

2166 2167 2168 2169
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2170

2171
			/* Decay existing window, copy faults since last scan */
2172 2173 2174
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2175

2176 2177 2178 2179 2180 2181 2182 2183
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2184
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2185
				   (total_faults + 1);
2186 2187
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2188

2189 2190 2191
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2192
			p->total_numa_faults += diff;
2193
			if (p->numa_group) {
2194 2195 2196 2197 2198 2199 2200 2201 2202
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2203
				p->numa_group->total_faults += diff;
2204
				group_faults += p->numa_group->faults[mem_idx];
2205
			}
2206 2207
		}

2208 2209 2210 2211
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2212 2213 2214 2215 2216 2217 2218

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2219 2220
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2221
	if (p->numa_group) {
2222
		numa_group_count_active_nodes(p->numa_group);
2223
		spin_unlock_irq(group_lock);
2224
		max_nid = preferred_group_nid(p, max_group_nid);
2225 2226
	}

2227 2228 2229 2230 2231 2232 2233
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2234
	}
2235 2236
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2248 2249
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2250 2251 2252 2253 2254 2255 2256 2257 2258
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2259
				    4*nr_node_ids*sizeof(unsigned long);
2260 2261 2262 2263 2264 2265

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2266 2267
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2268
		spin_lock_init(&grp->lock);
2269
		grp->gid = p->pid;
2270
		/* Second half of the array tracks nids where faults happen */
2271 2272
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2273

2274
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2275
			grp->faults[i] = p->numa_faults[i];
2276

2277
		grp->total_faults = p->total_numa_faults;
2278

2279 2280 2281 2282 2283
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2284
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2285 2286

	if (!cpupid_match_pid(tsk, cpupid))
2287
		goto no_join;
2288 2289 2290

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2291
		goto no_join;
2292 2293 2294

	my_grp = p->numa_group;
	if (grp == my_grp)
2295
		goto no_join;
2296 2297 2298 2299 2300 2301

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2302
		goto no_join;
2303 2304 2305 2306 2307

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2308
		goto no_join;
2309

2310 2311 2312 2313 2314 2315 2316
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2317

2318 2319 2320
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2321
	if (join && !get_numa_group(grp))
2322
		goto no_join;
2323 2324 2325 2326 2327 2328

	rcu_read_unlock();

	if (!join)
		return;

2329 2330
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2331

2332
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2333 2334
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2335
	}
2336 2337
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2338 2339 2340 2341 2342

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2343
	spin_unlock_irq(&grp->lock);
2344 2345 2346 2347

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2348 2349 2350 2351 2352
	return;

no_join:
	rcu_read_unlock();
	return;
2353 2354 2355 2356 2357
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2358
	void *numa_faults = p->numa_faults;
2359 2360
	unsigned long flags;
	int i;
2361 2362

	if (grp) {
2363
		spin_lock_irqsave(&grp->lock, flags);
2364
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2365
			grp->faults[i] -= p->numa_faults[i];
2366
		grp->total_faults -= p->total_numa_faults;
2367

2368
		grp->nr_tasks--;
2369
		spin_unlock_irqrestore(&grp->lock, flags);
2370
		RCU_INIT_POINTER(p->numa_group, NULL);
2371 2372 2373
		put_numa_group(grp);
	}

2374
	p->numa_faults = NULL;
2375
	kfree(numa_faults);
2376 2377
}

2378 2379 2380
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2381
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2382 2383
{
	struct task_struct *p = current;
2384
	bool migrated = flags & TNF_MIGRATED;
2385
	int cpu_node = task_node(current);
2386
	int local = !!(flags & TNF_FAULT_LOCAL);
2387
	struct numa_group *ng;
2388
	int priv;
2389

2390
	if (!static_branch_likely(&sched_numa_balancing))
2391 2392
		return;

2393 2394 2395 2396
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2397
	/* Allocate buffer to track faults on a per-node basis */
2398 2399
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2400
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2401

2402 2403
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2404
			return;
2405

2406
		p->total_numa_faults = 0;
2407
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2408
	}
2409

2410 2411 2412 2413 2414 2415 2416 2417
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2418
		if (!priv && !(flags & TNF_NO_GROUP))
2419
			task_numa_group(p, last_cpupid, flags, &priv);
2420 2421
	}

2422 2423 2424 2425 2426 2427
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2428 2429 2430 2431
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2432 2433
		local = 1;

2434
	task_numa_placement(p);
2435

2436 2437 2438 2439 2440
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2441 2442
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2443 2444
	if (migrated)
		p->numa_pages_migrated += pages;
2445 2446
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2447

2448 2449
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2450
	p->numa_faults_locality[local] += pages;
2451 2452
}

2453 2454
static void reset_ptenuma_scan(struct task_struct *p)
{
2455 2456 2457 2458 2459 2460 2461 2462
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2463
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2464 2465 2466
	p->mm->numa_scan_offset = 0;
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2476
	u64 runtime = p->se.sum_exec_runtime;
2477
	struct vm_area_struct *vma;
2478
	unsigned long start, end;
2479
	unsigned long nr_pte_updates = 0;
2480
	long pages, virtpages;
2481

2482
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2496
	if (!mm->numa_next_scan) {
2497 2498
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2499 2500
	}

2501 2502 2503 2504 2505 2506 2507
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2508 2509
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2510
		p->numa_scan_period = task_scan_start(p);
2511
	}
2512

2513
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2514 2515 2516
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2517 2518 2519 2520 2521 2522
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2523 2524 2525
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2526
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2527 2528
	if (!pages)
		return;
2529

2530

2531 2532
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2533
	vma = find_vma(mm, start);
2534 2535
	if (!vma) {
		reset_ptenuma_scan(p);
2536
		start = 0;
2537 2538
		vma = mm->mmap;
	}
2539
	for (; vma; vma = vma->vm_next) {
2540
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2541
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2542
			continue;
2543
		}
2544

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2555 2556 2557 2558 2559 2560
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2561

2562 2563 2564 2565
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2566
			nr_pte_updates = change_prot_numa(vma, start, end);
2567 2568

			/*
2569 2570 2571 2572 2573 2574
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2575 2576 2577
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2578
			virtpages -= (end - start) >> PAGE_SHIFT;
2579

2580
			start = end;
2581
			if (pages <= 0 || virtpages <= 0)
2582
				goto out;
2583 2584

			cond_resched();
2585
		} while (end != vma->vm_end);
2586
	}
2587

2588
out:
2589
	/*
P
Peter Zijlstra 已提交
2590 2591 2592 2593
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2594 2595
	 */
	if (vma)
2596
		mm->numa_scan_offset = start;
2597 2598 2599
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2636
	if (now > curr->node_stamp + period) {
2637
		if (!curr->node_stamp)
2638
			curr->numa_scan_period = task_scan_start(curr);
2639
		curr->node_stamp += period;
2640 2641 2642 2643 2644 2645 2646

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2647

2648 2649 2650 2651
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2652 2653 2654 2655 2656 2657 2658 2659

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2660

2661 2662
#endif /* CONFIG_NUMA_BALANCING */

2663 2664 2665 2666
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2667
	if (!parent_entity(se))
2668
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2669
#ifdef CONFIG_SMP
2670 2671 2672 2673 2674 2675
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2676
#endif
2677 2678 2679 2680 2681 2682 2683
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2684
	if (!parent_entity(se))
2685
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2686
#ifdef CONFIG_SMP
2687 2688
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2689
		list_del_init(&se->group_node);
2690
	}
2691
#endif
2692 2693 2694
	cfs_rq->nr_running--;
}

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
/*
 * XXX we want to get rid of this helper and use the full load resolution.
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg += se->avg.load_avg;
	cfs_rq->runnable_load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->runnable_load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->runnable_load_sum, se_weight(se) * se->avg.load_sum);
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
	se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum,
				   LOAD_AVG_MAX - 1024 + se->avg.period_contrib);
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

	reweight_entity(cfs_rq, se, weight);
	load->inv_weight = sched_prio_to_wmult[prio];
}

2816 2817
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = ----------------------------- = tg>weight   (4)
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2879
static long calc_cfs_shares(struct cfs_rq *cfs_rq)
2880
{
2881 2882 2883 2884
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2885 2886

	/*
2887 2888
	 * Because (5) drops to 0 when the cfs_rq is idle, we need to use (3)
	 * as a lower bound.
2889
	 */
2890
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2891

2892
	tg_weight = atomic_long_read(&tg->load_avg);
2893

2894 2895 2896
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2897

2898
	shares = (tg_shares * load);
2899 2900
	if (tg_weight)
		shares /= tg_weight;
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2914
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2915 2916
}
# endif /* CONFIG_SMP */
2917

2918 2919
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2920
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2921
{
2922
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2923
	long shares;
P
Peter Zijlstra 已提交
2924

2925 2926 2927 2928
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2929
		return;
2930

2931
#ifndef CONFIG_SMP
2932 2933 2934
	shares = READ_ONCE(cfs_rq->tg->shares);

	if (likely(se->load.weight == shares))
2935
		return;
2936 2937
#else
	shares = calc_cfs_shares(cfs_rq);
2938
#endif
P
Peter Zijlstra 已提交
2939 2940 2941

	reweight_entity(cfs_rq_of(se), se, shares);
}
2942

P
Peter Zijlstra 已提交
2943
#else /* CONFIG_FAIR_GROUP_SCHED */
2944
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2945 2946 2947 2948
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2949 2950
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
2951 2952 2953
	struct rq *rq = rq_of(cfs_rq);

	if (&rq->cfs == cfs_rq) {
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
2970
		cpufreq_update_util(rq, 0);
2971 2972 2973
	}
}

2974
#ifdef CONFIG_SMP
2975 2976 2977 2978
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2979
static u64 decay_load(u64 val, u64 n)
2980
{
2981 2982
	unsigned int local_n;

2983
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2984 2985 2986 2987 2988 2989 2990
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2991 2992
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2993 2994 2995 2996 2997 2998
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2999 3000
	}

3001 3002
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
3003 3004
}

3005
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3006
{
3007
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3008

3009
	/*
P
Peter Zijlstra 已提交
3010
	 * c1 = d1 y^p
3011
	 */
3012
	c1 = decay_load((u64)d1, periods);
3013 3014

	/*
P
Peter Zijlstra 已提交
3015
	 *            p-1
3016 3017
	 * c2 = 1024 \Sum y^n
	 *            n=1
3018
	 *
3019 3020
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
3021
	 *              n=0        n=p
3022
	 */
3023
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3024 3025

	return c1 + c2 + c3;
3026 3027
}

3028
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
3029

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
3041 3042 3043
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
3044
 *
P
Peter Zijlstra 已提交
3045
 *    = u y^p +					(Step 1)
3046
 *
P
Peter Zijlstra 已提交
3047 3048 3049
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
3050 3051 3052 3053 3054 3055
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
3056
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

3076 3077 3078 3079 3080 3081 3082
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
3125
static __always_inline int
3126 3127
___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
		   unsigned long weight, int running, struct cfs_rq *cfs_rq)
3128
{
3129
	u64 delta;
3130

3131
	delta = now - sa->last_update_time;
3132 3133 3134 3135 3136
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
3137
		sa->last_update_time = now;
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3148 3149

	sa->last_update_time += delta << 10;
3150

3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
	if (!weight)
		running = 0;

3163 3164 3165 3166 3167 3168 3169 3170 3171
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
3172

3173 3174 3175 3176 3177 3178 3179 3180
	return 1;
}

static __always_inline void
___update_load_avg(struct sched_avg *sa, unsigned long weight, struct cfs_rq *cfs_rq)
{
	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

3181 3182 3183
	/*
	 * Step 2: update *_avg.
	 */
3184
	sa->load_avg = div_u64(weight * sa->load_sum, divider);
3185 3186
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
3187
			div_u64(cfs_rq->runnable_load_sum, divider);
3188
	}
3189 3190
	sa->util_avg = sa->util_sum / divider;
}
3191

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/*
 * sched_entity:
 *
 *   load_sum := runnable_sum
 *   load_avg = se_weight(se) * runnable_avg
 *
 * cfq_rs:
 *
 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 *   load_avg = \Sum se->avg.load_avg
 */

3204 3205 3206
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
3207 3208 3209 3210 3211 3212
	if (___update_load_sum(now, cpu, &se->avg, 0, 0, NULL)) {
		___update_load_avg(&se->avg, se_weight(se), NULL);
		return 1;
	}

	return 0;
3213 3214 3215 3216 3217
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3218 3219 3220 3221 3222 3223 3224 3225
	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq,
				cfs_rq->curr == se, NULL)) {

		___update_load_avg(&se->avg, se_weight(se), NULL);
		return 1;
	}

	return 0;
3226 3227 3228 3229 3230
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
3231 3232 3233 3234 3235 3236 3237 3238
	if (___update_load_sum(now, cpu, &cfs_rq->avg,
				scale_load_down(cfs_rq->load.weight),
				cfs_rq->curr != NULL, cfs_rq)) {
		___update_load_avg(&cfs_rq->avg, 1, cfs_rq);
		return 1;
	}

	return 0;
3239 3240
}

3241
#ifdef CONFIG_FAIR_GROUP_SCHED
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3255
 * Updating tg's load_avg is necessary before update_cfs_share().
3256
 */
3257
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3258
{
3259
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3260

3261 3262 3263 3264 3265 3266
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3267 3268 3269
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3270
	}
3271
}
3272

3273 3274 3275 3276 3277 3278 3279 3280
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3281 3282 3283
	u64 p_last_update_time;
	u64 n_last_update_time;

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3294 3295
	if (!(se->avg.last_update_time && prev))
		return;
3296 3297

#ifndef CONFIG_64BIT
3298
	{
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3313
	}
3314
#else
3315 3316
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3317
#endif
3318 3319
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3320
}
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
3388
	se->avg.load_sum = LOAD_AVG_MAX;
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3472
#else /* CONFIG_FAIR_GROUP_SCHED */
3473

3474
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3475 3476 3477 3478 3479 3480 3481 3482

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3483
#endif /* CONFIG_FAIR_GROUP_SCHED */
3484

3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3496 3497 3498 3499
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3500
 */
3501
static inline int
3502
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3503
{
3504
	unsigned long removed_load = 0, removed_util = 0;
3505
	struct sched_avg *sa = &cfs_rq->avg;
3506
	int decayed = 0;
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	if (cfs_rq->removed.nr) {
		unsigned long r;

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		/*
		 * The LOAD_AVG_MAX for _sum is a slight over-estimate,
		 * which is safe due to sub_positive() clipping at 0.
		 */
		r = removed_load;
3522 3523
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3524

3525
		r = removed_util;
3526 3527
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3528

3529
		set_tg_cfs_propagate(cfs_rq);
3530 3531

		decayed = 1;
3532
	}
3533

3534
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3535

3536 3537 3538 3539
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3540

3541
	if (decayed)
3542
		cfs_rq_util_change(cfs_rq);
3543

3544
	return decayed;
3545 3546
}

3547 3548 3549 3550 3551 3552 3553 3554
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3555 3556 3557
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3558
	enqueue_load_avg(cfs_rq, se);
3559 3560
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3561
	set_tg_cfs_propagate(cfs_rq);
3562 3563

	cfs_rq_util_change(cfs_rq);
3564 3565
}

3566 3567 3568 3569 3570 3571 3572 3573
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3574 3575
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3576
	dequeue_load_avg(cfs_rq, se);
3577 3578
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3579
	set_tg_cfs_propagate(cfs_rq);
3580 3581

	cfs_rq_util_change(cfs_rq);
3582 3583
}

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

		attach_entity_load_avg(cfs_rq, se);
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3618
#ifndef CONFIG_64BIT
3619 3620
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3621
	u64 last_update_time_copy;
3622
	u64 last_update_time;
3623

3624 3625 3626 3627 3628
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3629 3630 3631

	return last_update_time;
}
3632
#else
3633 3634 3635 3636
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3637 3638
#endif

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3649
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3650 3651
}

3652 3653 3654 3655 3656 3657 3658
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3659
	unsigned long flags;
3660 3661

	/*
3662 3663 3664 3665 3666 3667 3668
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3669 3670 3671 3672
	 *
	 * XXX in case entity_is_task(se) && task_of(se)->on_rq == MIGRATING
	 * we could actually get the right time, since we're called with
	 * rq->lock held, see detach_task().
3673 3674
	 */

3675
	sync_entity_load_avg(se);
3676 3677 3678 3679 3680 3681

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3682
}
3683

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3694
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3695

3696 3697
#else /* CONFIG_SMP */

3698
static inline int
3699
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3700 3701 3702 3703
{
	return 0;
}

3704 3705
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3706
#define DO_ATTACH	0x0
3707

3708
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3709
{
3710
	cfs_rq_util_change(cfs_rq);
3711 3712
}

3713
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3714

3715 3716 3717 3718 3719
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3720
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3721 3722 3723 3724
{
	return 0;
}

3725
#endif /* CONFIG_SMP */
3726

P
Peter Zijlstra 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3736
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3737 3738 3739
#endif
}

3740 3741 3742
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3743
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3744

3745 3746 3747 3748 3749 3750
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3751
	if (initial && sched_feat(START_DEBIT))
3752
		vruntime += sched_vslice(cfs_rq, se);
3753

3754
	/* sleeps up to a single latency don't count. */
3755
	if (!initial) {
3756
		unsigned long thresh = sysctl_sched_latency;
3757

3758 3759 3760 3761 3762 3763
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3764

3765
		vruntime -= thresh;
3766 3767
	}

3768
	/* ensure we never gain time by being placed backwards. */
3769
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3770 3771
}

3772 3773
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3786
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3787
			     "stat_blocked and stat_runtime require the "
3788
			     "kernel parameter schedstats=enable or "
3789 3790 3791 3792 3793
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3813
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3825
static void
3826
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3827
{
3828 3829 3830
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3831
	/*
3832 3833
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3834
	 */
3835
	if (renorm && curr)
3836 3837
		se->vruntime += cfs_rq->min_vruntime;

3838 3839
	update_curr(cfs_rq);

3840
	/*
3841 3842 3843 3844
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3845
	 */
3846 3847 3848
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3849 3850 3851 3852 3853 3854 3855 3856
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3857
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3858
	enqueue_runnable_load_avg(cfs_rq, se);
3859
	update_cfs_shares(se);
3860
	account_entity_enqueue(cfs_rq, se);
3861

3862
	if (flags & ENQUEUE_WAKEUP)
3863
		place_entity(cfs_rq, se, 0);
3864

3865
	check_schedstat_required();
3866 3867
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3868
	if (!curr)
3869
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3870
	se->on_rq = 1;
3871

3872
	if (cfs_rq->nr_running == 1) {
3873
		list_add_leaf_cfs_rq(cfs_rq);
3874 3875
		check_enqueue_throttle(cfs_rq);
	}
3876 3877
}

3878
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3879
{
3880 3881
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3882
		if (cfs_rq->last != se)
3883
			break;
3884 3885

		cfs_rq->last = NULL;
3886 3887
	}
}
P
Peter Zijlstra 已提交
3888

3889 3890 3891 3892
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3893
		if (cfs_rq->next != se)
3894
			break;
3895 3896

		cfs_rq->next = NULL;
3897
	}
P
Peter Zijlstra 已提交
3898 3899
}

3900 3901 3902 3903
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3904
		if (cfs_rq->skip != se)
3905
			break;
3906 3907

		cfs_rq->skip = NULL;
3908 3909 3910
	}
}

P
Peter Zijlstra 已提交
3911 3912
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3913 3914 3915 3916 3917
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3918 3919 3920

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3921 3922
}

3923
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3924

3925
static void
3926
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3927
{
3928 3929 3930 3931
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3932 3933 3934 3935 3936 3937 3938 3939 3940

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3941
	update_load_avg(cfs_rq, se, UPDATE_TG);
3942
	dequeue_runnable_load_avg(cfs_rq, se);
3943

3944
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3945

P
Peter Zijlstra 已提交
3946
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3947

3948
	if (se != cfs_rq->curr)
3949
		__dequeue_entity(cfs_rq, se);
3950
	se->on_rq = 0;
3951
	account_entity_dequeue(cfs_rq, se);
3952 3953

	/*
3954 3955 3956 3957
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3958
	 */
3959
	if (!(flags & DEQUEUE_SLEEP))
3960
		se->vruntime -= cfs_rq->min_vruntime;
3961

3962 3963 3964
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3965
	update_cfs_shares(se);
3966 3967 3968 3969 3970 3971 3972 3973 3974

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3975 3976 3977 3978 3979
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3980
static void
I
Ingo Molnar 已提交
3981
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3982
{
3983
	unsigned long ideal_runtime, delta_exec;
3984 3985
	struct sched_entity *se;
	s64 delta;
3986

P
Peter Zijlstra 已提交
3987
	ideal_runtime = sched_slice(cfs_rq, curr);
3988
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3989
	if (delta_exec > ideal_runtime) {
3990
		resched_curr(rq_of(cfs_rq));
3991 3992 3993 3994 3995
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4007 4008
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4009

4010 4011
	if (delta < 0)
		return;
4012

4013
	if (delta > ideal_runtime)
4014
		resched_curr(rq_of(cfs_rq));
4015 4016
}

4017
static void
4018
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4019
{
4020 4021 4022 4023 4024 4025 4026
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4027
		update_stats_wait_end(cfs_rq, se);
4028
		__dequeue_entity(cfs_rq, se);
4029
		update_load_avg(cfs_rq, se, UPDATE_TG);
4030 4031
	}

4032
	update_stats_curr_start(cfs_rq, se);
4033
	cfs_rq->curr = se;
4034

I
Ingo Molnar 已提交
4035 4036 4037 4038 4039
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4040
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4041 4042 4043
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4044
	}
4045

4046
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4047 4048
}

4049 4050 4051
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4052 4053 4054 4055 4056 4057 4058
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4059 4060
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4061
{
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4073

4074 4075 4076 4077 4078
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4089 4090 4091
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4092

4093 4094 4095 4096 4097 4098
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4099 4100 4101 4102 4103 4104
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4105
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4106 4107

	return se;
4108 4109
}

4110
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4111

4112
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4113 4114 4115 4116 4117 4118
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4119
		update_curr(cfs_rq);
4120

4121 4122 4123
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4124
	check_spread(cfs_rq, prev);
4125

4126
	if (prev->on_rq) {
4127
		update_stats_wait_start(cfs_rq, prev);
4128 4129
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4130
		/* in !on_rq case, update occurred at dequeue */
4131
		update_load_avg(cfs_rq, prev, 0);
4132
	}
4133
	cfs_rq->curr = NULL;
4134 4135
}

P
Peter Zijlstra 已提交
4136 4137
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4138 4139
{
	/*
4140
	 * Update run-time statistics of the 'current'.
4141
	 */
4142
	update_curr(cfs_rq);
4143

4144 4145 4146
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4147
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4148
	update_cfs_shares(curr);
4149

P
Peter Zijlstra 已提交
4150 4151 4152 4153 4154
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4155
	if (queued) {
4156
		resched_curr(rq_of(cfs_rq));
4157 4158
		return;
	}
P
Peter Zijlstra 已提交
4159 4160 4161 4162 4163 4164 4165 4166
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4167
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4168
		check_preempt_tick(cfs_rq, curr);
4169 4170
}

4171 4172 4173 4174 4175 4176

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4177 4178

#ifdef HAVE_JUMP_LABEL
4179
static struct static_key __cfs_bandwidth_used;
4180 4181 4182

static inline bool cfs_bandwidth_used(void)
{
4183
	return static_key_false(&__cfs_bandwidth_used);
4184 4185
}

4186
void cfs_bandwidth_usage_inc(void)
4187
{
4188 4189 4190 4191 4192 4193
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
4194 4195 4196 4197 4198 4199 4200
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4201 4202
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4203 4204
#endif /* HAVE_JUMP_LABEL */

4205 4206 4207 4208 4209 4210 4211 4212
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4213 4214 4215 4216 4217 4218

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4219 4220 4221 4222 4223 4224 4225
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4226
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4238 4239 4240 4241 4242
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4243 4244 4245 4246
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4247
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4248

4249
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4250 4251
}

4252 4253
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4254 4255 4256
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4257
	u64 amount = 0, min_amount, expires;
4258 4259 4260 4261 4262 4263 4264

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4265
	else {
P
Peter Zijlstra 已提交
4266
		start_cfs_bandwidth(cfs_b);
4267 4268 4269 4270 4271 4272

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4273
	}
P
Paul Turner 已提交
4274
	expires = cfs_b->runtime_expires;
4275 4276 4277
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4278 4279 4280 4281 4282 4283 4284
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4285 4286

	return cfs_rq->runtime_remaining > 0;
4287 4288
}

P
Paul Turner 已提交
4289 4290 4291 4292 4293
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4294
{
P
Paul Turner 已提交
4295 4296 4297
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4298
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4299 4300
		return;

P
Paul Turner 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4310 4311 4312
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4313 4314
	 */

4315
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4316 4317 4318 4319 4320 4321 4322 4323
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4324
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4325 4326
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4327
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4328 4329 4330
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4331 4332
		return;

4333 4334 4335 4336 4337
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4338
		resched_curr(rq_of(cfs_rq));
4339 4340
}

4341
static __always_inline
4342
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4343
{
4344
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4345 4346 4347 4348 4349
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4350 4351
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4352
	return cfs_bandwidth_used() && cfs_rq->throttled;
4353 4354
}

4355 4356 4357
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4358
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4386
		/* adjust cfs_rq_clock_task() */
4387
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4388
					     cfs_rq->throttled_clock_task;
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4399 4400
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4401
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4402 4403 4404 4405 4406
	cfs_rq->throttle_count++;

	return 0;
}

4407
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4408 4409 4410 4411 4412
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4413
	bool empty;
4414 4415 4416

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4417
	/* freeze hierarchy runnable averages while throttled */
4418 4419 4420
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4438
		sub_nr_running(rq, task_delta);
4439 4440

	cfs_rq->throttled = 1;
4441
	cfs_rq->throttled_clock = rq_clock(rq);
4442
	raw_spin_lock(&cfs_b->lock);
4443
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4444

4445 4446 4447 4448 4449
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4450 4451 4452 4453 4454 4455 4456 4457

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4458 4459 4460
	raw_spin_unlock(&cfs_b->lock);
}

4461
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4462 4463 4464 4465 4466 4467 4468
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4469
	se = cfs_rq->tg->se[cpu_of(rq)];
4470 4471

	cfs_rq->throttled = 0;
4472 4473 4474

	update_rq_clock(rq);

4475
	raw_spin_lock(&cfs_b->lock);
4476
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4477 4478 4479
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4480 4481 4482
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4501
		add_nr_running(rq, task_delta);
4502 4503 4504

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4505
		resched_curr(rq);
4506 4507 4508 4509 4510 4511
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4512 4513
	u64 runtime;
	u64 starting_runtime = remaining;
4514 4515 4516 4517 4518

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4519
		struct rq_flags rf;
4520

4521
		rq_lock(rq, &rf);
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4538
		rq_unlock(rq, &rf);
4539 4540 4541 4542 4543 4544

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4545
	return starting_runtime - remaining;
4546 4547
}

4548 4549 4550 4551 4552 4553 4554 4555
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4556
	u64 runtime, runtime_expires;
4557
	int throttled;
4558 4559 4560

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4561
		goto out_deactivate;
4562

4563
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4564
	cfs_b->nr_periods += overrun;
4565

4566 4567 4568 4569 4570 4571
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4572 4573 4574

	__refill_cfs_bandwidth_runtime(cfs_b);

4575 4576 4577
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4578
		return 0;
4579 4580
	}

4581 4582 4583
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4584 4585 4586
	runtime_expires = cfs_b->runtime_expires;

	/*
4587 4588 4589 4590 4591
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4592
	 */
4593 4594
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4595 4596 4597 4598 4599 4600 4601
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4602 4603

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4604
	}
4605

4606 4607 4608 4609 4610 4611 4612
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4613

4614 4615 4616 4617
	return 0;

out_deactivate:
	return 1;
4618
}
4619

4620 4621 4622 4623 4624 4625 4626
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4627 4628 4629 4630
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4631
 * hrtimer base being cleared by hrtimer_start. In the case of
4632 4633
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4659 4660 4661
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4691 4692 4693
	if (!cfs_bandwidth_used())
		return;

4694
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4710 4711 4712
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4713
		return;
4714
	}
4715

4716
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4717
		runtime = cfs_b->runtime;
4718

4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4729
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4730 4731 4732
	raw_spin_unlock(&cfs_b->lock);
}

4733 4734 4735 4736 4737 4738 4739
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4740 4741 4742
	if (!cfs_bandwidth_used())
		return;

4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4771
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4772 4773
}

4774
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4775
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4776
{
4777
	if (!cfs_bandwidth_used())
4778
		return false;
4779

4780
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4781
		return false;
4782 4783 4784 4785 4786 4787

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4788
		return true;
4789 4790

	throttle_cfs_rq(cfs_rq);
4791
	return true;
4792
}
4793 4794 4795 4796 4797

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4798

4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4811
	raw_spin_lock(&cfs_b->lock);
4812
	for (;;) {
P
Peter Zijlstra 已提交
4813
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4814 4815 4816 4817 4818
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4819 4820
	if (idle)
		cfs_b->period_active = 0;
4821
	raw_spin_unlock(&cfs_b->lock);
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4834
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4846
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4847
{
P
Peter Zijlstra 已提交
4848
	lockdep_assert_held(&cfs_b->lock);
4849

P
Peter Zijlstra 已提交
4850 4851 4852 4853 4854
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4855 4856 4857 4858
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4859 4860 4861 4862
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4863 4864 4865 4866
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4867 4868 4869 4870 4871 4872 4873 4874
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4875 4876
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4877
	struct task_group *tg;
4878

4879 4880 4881 4882 4883 4884
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4885 4886 4887 4888 4889

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4890
	rcu_read_unlock();
4891 4892
}

4893
/* cpu offline callback */
4894
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4895
{
4896 4897 4898 4899 4900 4901 4902
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4903 4904 4905 4906 4907 4908 4909 4910

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4911
		cfs_rq->runtime_remaining = 1;
4912 4913 4914 4915 4916 4917
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4918 4919 4920
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4921
	rcu_read_unlock();
4922 4923 4924
}

#else /* CONFIG_CFS_BANDWIDTH */
4925 4926
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4927
	return rq_clock_task(rq_of(cfs_rq));
4928 4929
}

4930
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4931
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4932
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4933
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4934
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4935 4936 4937 4938 4939

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4951 4952 4953 4954 4955

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4956 4957
#endif

4958 4959 4960 4961 4962
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4963
static inline void update_runtime_enabled(struct rq *rq) {}
4964
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4965 4966 4967

#endif /* CONFIG_CFS_BANDWIDTH */

4968 4969 4970 4971
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4972 4973 4974 4975 4976 4977
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4978
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4979

4980
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4981 4982 4983 4984 4985 4986
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4987
				resched_curr(rq);
P
Peter Zijlstra 已提交
4988 4989
			return;
		}
4990
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4991 4992
	}
}
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5003
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5004 5005 5006 5007 5008
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5009
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5010 5011 5012 5013
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5014 5015 5016 5017

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5018 5019
#endif

5020 5021 5022 5023 5024
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5025
static void
5026
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5027 5028
{
	struct cfs_rq *cfs_rq;
5029
	struct sched_entity *se = &p->se;
5030

5031 5032 5033 5034 5035 5036
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5037
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5038

5039
	for_each_sched_entity(se) {
5040
		if (se->on_rq)
5041 5042
			break;
		cfs_rq = cfs_rq_of(se);
5043
		enqueue_entity(cfs_rq, se, flags);
5044 5045 5046 5047 5048 5049

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5050
		 */
5051 5052
		if (cfs_rq_throttled(cfs_rq))
			break;
5053
		cfs_rq->h_nr_running++;
5054

5055
		flags = ENQUEUE_WAKEUP;
5056
	}
P
Peter Zijlstra 已提交
5057

P
Peter Zijlstra 已提交
5058
	for_each_sched_entity(se) {
5059
		cfs_rq = cfs_rq_of(se);
5060
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5061

5062 5063 5064
		if (cfs_rq_throttled(cfs_rq))
			break;

5065
		update_load_avg(cfs_rq, se, UPDATE_TG);
5066
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
5067 5068
	}

Y
Yuyang Du 已提交
5069
	if (!se)
5070
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5071

5072
	hrtick_update(rq);
5073 5074
}

5075 5076
static void set_next_buddy(struct sched_entity *se);

5077 5078 5079 5080 5081
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5082
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5083 5084
{
	struct cfs_rq *cfs_rq;
5085
	struct sched_entity *se = &p->se;
5086
	int task_sleep = flags & DEQUEUE_SLEEP;
5087 5088 5089

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5090
		dequeue_entity(cfs_rq, se, flags);
5091 5092 5093 5094 5095 5096 5097 5098 5099

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5100
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5101

5102
		/* Don't dequeue parent if it has other entities besides us */
5103
		if (cfs_rq->load.weight) {
5104 5105
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5106 5107 5108 5109
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5110 5111
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5112
			break;
5113
		}
5114
		flags |= DEQUEUE_SLEEP;
5115
	}
P
Peter Zijlstra 已提交
5116

P
Peter Zijlstra 已提交
5117
	for_each_sched_entity(se) {
5118
		cfs_rq = cfs_rq_of(se);
5119
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5120

5121 5122 5123
		if (cfs_rq_throttled(cfs_rq))
			break;

5124
		update_load_avg(cfs_rq, se, UPDATE_TG);
5125
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
5126 5127
	}

Y
Yuyang Du 已提交
5128
	if (!se)
5129
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5130

5131
	hrtick_update(rq);
5132 5133
}

5134
#ifdef CONFIG_SMP
5135 5136 5137 5138 5139

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5140
#ifdef CONFIG_NO_HZ_COMMON
5141 5142 5143 5144 5145
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5146
 * The exact cpuload calculated at every tick would be:
5147
 *
5148 5149 5150 5151 5152 5153 5154
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5155 5156 5157
 *
 * decay_load_missed() below does efficient calculation of
 *
5158 5159 5160 5161 5162 5163
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5164
 *
5165
 * The calculation is approximated on a 128 point scale.
5166 5167
 */
#define DEGRADE_SHIFT		7
5168 5169 5170 5171 5172 5173 5174 5175 5176

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5206
#endif /* CONFIG_NO_HZ_COMMON */
5207

5208
/**
5209
 * __cpu_load_update - update the rq->cpu_load[] statistics
5210 5211 5212 5213
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5214
 * Update rq->cpu_load[] statistics. This function is usually called every
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5241
 * term.
5242
 */
5243 5244
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5245
{
5246
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5258
		old_load = this_rq->cpu_load[i];
5259
#ifdef CONFIG_NO_HZ_COMMON
5260
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5261 5262 5263 5264 5265 5266 5267 5268 5269
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5270
#endif
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5286
/* Used instead of source_load when we know the type == 0 */
5287
static unsigned long weighted_cpuload(struct rq *rq)
5288
{
5289
	return cfs_rq_runnable_load_avg(&rq->cfs);
5290 5291
}

5292
#ifdef CONFIG_NO_HZ_COMMON
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5321
		cpu_load_update(this_rq, load, pending_updates);
5322 5323 5324
	}
}

5325 5326 5327 5328
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5329
static void cpu_load_update_idle(struct rq *this_rq)
5330 5331 5332 5333
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5334
	if (weighted_cpuload(this_rq))
5335 5336
		return;

5337
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5338 5339 5340
}

/*
5341 5342 5343 5344
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5345
 */
5346
void cpu_load_update_nohz_start(void)
5347 5348
{
	struct rq *this_rq = this_rq();
5349 5350 5351 5352 5353 5354

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5355
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5356 5357 5358 5359 5360 5361 5362
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5363
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5364 5365
	struct rq *this_rq = this_rq();
	unsigned long load;
5366
	struct rq_flags rf;
5367 5368 5369 5370

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5371
	load = weighted_cpuload(this_rq);
5372
	rq_lock(this_rq, &rf);
5373
	update_rq_clock(this_rq);
5374
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5375
	rq_unlock(this_rq, &rf);
5376
}
5377 5378 5379 5380 5381 5382 5383 5384
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5385
#ifdef CONFIG_NO_HZ_COMMON
5386 5387
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5388
#endif
5389 5390
	cpu_load_update(this_rq, load, 1);
}
5391 5392 5393 5394

/*
 * Called from scheduler_tick()
 */
5395
void cpu_load_update_active(struct rq *this_rq)
5396
{
5397
	unsigned long load = weighted_cpuload(this_rq);
5398 5399 5400 5401 5402

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5403 5404
}

5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5415
	unsigned long total = weighted_cpuload(rq);
5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5430
	unsigned long total = weighted_cpuload(rq);
5431 5432 5433 5434 5435 5436 5437

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5438
static unsigned long capacity_of(int cpu)
5439
{
5440
	return cpu_rq(cpu)->cpu_capacity;
5441 5442
}

5443 5444 5445 5446 5447
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5448 5449 5450
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5451
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5452
	unsigned long load_avg = weighted_cpuload(rq);
5453 5454

	if (nr_running)
5455
		return load_avg / nr_running;
5456 5457 5458 5459

	return 0;
}

P
Peter Zijlstra 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5477 5478
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5479
 *
M
Mike Galbraith 已提交
5480
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5493
 */
5494 5495
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5496 5497
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5498
	int factor = this_cpu_read(sd_llc_size);
5499

M
Mike Galbraith 已提交
5500 5501 5502 5503 5504
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5505 5506
}

5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
struct llc_stats {
	unsigned long	nr_running;
	unsigned long	load;
	unsigned long	capacity;
	int		has_capacity;
};

static bool get_llc_stats(struct llc_stats *stats, int cpu)
{
	struct sched_domain_shared *sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));

	if (!sds)
		return false;

	stats->nr_running	= READ_ONCE(sds->nr_running);
	stats->load		= READ_ONCE(sds->load);
	stats->capacity		= READ_ONCE(sds->capacity);
	stats->has_capacity	= stats->nr_running < per_cpu(sd_llc_size, cpu);

	return true;
}

/*
 * Can a task be moved from prev_cpu to this_cpu without causing a load
 * imbalance that would trigger the load balancer?
 *
 * Since we're running on 'stale' values, we might in fact create an imbalance
 * but recomputing these values is expensive, as that'd mean iteration 2 cache
 * domains worth of CPUs.
 */
static bool
wake_affine_llc(struct sched_domain *sd, struct task_struct *p,
		int this_cpu, int prev_cpu, int sync)
{
	struct llc_stats prev_stats, this_stats;
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

	if (!get_llc_stats(&prev_stats, prev_cpu) ||
	    !get_llc_stats(&this_stats, this_cpu))
		return false;

	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current LLC.
	 */
	if (sync) {
		unsigned long current_load = task_h_load(current);

		/* in this case load hits 0 and this LLC is considered 'idle' */
		if (current_load > this_stats.load)
			return true;

		this_stats.load -= current_load;
	}

	/*
	 * The has_capacity stuff is not SMT aware, but by trying to balance
	 * the nr_running on both ends we try and fill the domain at equal
	 * rates, thereby first consuming cores before siblings.
	 */

	/* if the old cache has capacity, stay there */
	if (prev_stats.has_capacity && prev_stats.nr_running < this_stats.nr_running+1)
		return false;

	/* if this cache has capacity, come here */
5575
	if (this_stats.has_capacity && this_stats.nr_running+1 < prev_stats.nr_running)
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
		return true;

	/*
	 * Check to see if we can move the load without causing too much
	 * imbalance.
	 */
	task_load = task_h_load(p);

	this_eff_load = 100;
	this_eff_load *= prev_stats.capacity;

	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= this_stats.capacity;

	this_eff_load *= this_stats.load + task_load;
	prev_eff_load *= prev_stats.load - task_load;

	return this_eff_load <= prev_eff_load;
}

5596 5597
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5598
{
5599
	int this_cpu = smp_processor_id();
5600
	bool affine;
5601

5602
	/*
5603 5604 5605
	 * Default to no affine wakeups; wake_affine() should not effect a task
	 * placement the load-balancer feels inclined to undo. The conservative
	 * option is therefore to not move tasks when they wake up.
5606
	 */
5607 5608 5609 5610 5611 5612 5613 5614 5615
	affine = false;

	/*
	 * If the wakeup is across cache domains, try to evaluate if movement
	 * makes sense, otherwise rely on select_idle_siblings() to do
	 * placement inside the cache domain.
	 */
	if (!cpus_share_cache(prev_cpu, this_cpu))
		affine = wake_affine_llc(sd, p, this_cpu, prev_cpu, sync);
5616

5617
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5618 5619 5620 5621
	if (affine) {
		schedstat_inc(sd->ttwu_move_affine);
		schedstat_inc(p->se.statistics.nr_wakeups_affine);
	}
5622

5623
	return affine;
5624 5625
}

5626 5627 5628 5629 5630 5631 5632 5633
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5634 5635 5636 5637 5638
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5639
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5640
		  int this_cpu, int sd_flag)
5641
{
5642
	struct sched_group *idlest = NULL, *group = sd->groups;
5643
	struct sched_group *most_spare_sg = NULL;
5644 5645
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5646
	unsigned long most_spare = 0, this_spare = 0;
5647
	int load_idx = sd->forkexec_idx;
5648 5649 5650
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5651

5652 5653 5654
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5655
	do {
5656 5657
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5658 5659
		int local_group;
		int i;
5660

5661
		/* Skip over this group if it has no CPUs allowed */
5662
		if (!cpumask_intersects(sched_group_span(group),
5663
					&p->cpus_allowed))
5664 5665 5666
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5667
					       sched_group_span(group));
5668

5669 5670 5671 5672
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5673
		avg_load = 0;
5674
		runnable_load = 0;
5675
		max_spare_cap = 0;
5676

5677
		for_each_cpu(i, sched_group_span(group)) {
5678 5679 5680 5681 5682 5683
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5684 5685 5686
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5687 5688 5689 5690 5691

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5692 5693
		}

5694
		/* Adjust by relative CPU capacity of the group */
5695 5696 5697 5698
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5699 5700

		if (local_group) {
5701 5702
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5703 5704
			this_spare = max_spare_cap;
		} else {
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5720 5721 5722 5723 5724 5725 5726
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5727 5728 5729
		}
	} while (group = group->next, group != sd->groups);

5730 5731 5732 5733 5734 5735
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5736 5737 5738 5739
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5740
	 */
5741 5742 5743
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5744
	if (this_spare > task_util(p) / 2 &&
5745
	    imbalance_scale*this_spare > 100*most_spare)
5746
		return NULL;
5747 5748

	if (most_spare > task_util(p) / 2)
5749 5750
		return most_spare_sg;

5751
skip_spare:
5752 5753 5754 5755
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5756
		return NULL;
5757 5758 5759 5760 5761

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5772 5773 5774 5775
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5776 5777
	int i;

5778 5779
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5780
		return cpumask_first(sched_group_span(group));
5781

5782
	/* Traverse only the allowed CPUs */
5783
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5806
		} else if (shallowest_idle_cpu == -1) {
5807
			load = weighted_cpuload(cpu_rq(i));
5808 5809 5810 5811
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5812 5813 5814
		}
	}

5815
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5816
}
5817

5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5847
void __update_idle_core(struct rq *rq)
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5877
	int core, cpu;
5878

P
Peter Zijlstra 已提交
5879 5880 5881
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5882 5883 5884
	if (!test_idle_cores(target, false))
		return -1;

5885
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5886

5887
	for_each_cpu_wrap(core, cpus, target) {
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5915 5916 5917
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5918
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5919
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5946
 */
5947 5948
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5949
	struct sched_domain *this_sd;
5950
	u64 avg_cost, avg_idle;
5951 5952
	u64 time, cost;
	s64 delta;
5953
	int cpu, nr = INT_MAX;
5954

5955 5956 5957 5958
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

5959 5960 5961 5962
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5963 5964 5965 5966
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5967 5968
		return -1;

5969 5970 5971 5972 5973 5974 5975 5976
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

5977 5978
	time = local_clock();

5979
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5980 5981
		if (!--nr)
			return -1;
5982
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5998
 */
5999
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6000
{
6001
	struct sched_domain *sd;
6002
	int i;
6003

6004 6005
	if (idle_cpu(target))
		return target;
6006 6007

	/*
6008
	 * If the previous cpu is cache affine and idle, don't be stupid.
6009
	 */
6010 6011
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
6012

6013
	sd = rcu_dereference(per_cpu(sd_llc, target));
6014 6015
	if (!sd)
		return target;
6016

6017 6018 6019
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6020

6021 6022 6023 6024 6025 6026 6027
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6028

6029 6030
	return target;
}
6031

6032
/*
6033
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6034
 * tasks. The unit of the return value must be the one of capacity so we can
6035 6036
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6057
 */
6058
static int cpu_util(int cpu)
6059
{
6060
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6061 6062
	unsigned long capacity = capacity_orig_of(cpu);

6063
	return (util >= capacity) ? capacity : util;
6064
}
6065

6066 6067 6068 6069 6070
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6107 6108 6109
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6110 6111 6112
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6113
/*
6114 6115 6116
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6117
 *
6118 6119
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6120
 *
6121
 * Returns the target cpu number.
6122 6123 6124
 *
 * preempt must be disabled.
 */
6125
static int
6126
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6127
{
6128
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6129
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6130
	int new_cpu = prev_cpu;
6131
	int want_affine = 0;
6132
	int sync = wake_flags & WF_SYNC;
6133

P
Peter Zijlstra 已提交
6134 6135
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6136
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6137
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6138
	}
6139

6140
	rcu_read_lock();
6141
	for_each_domain(cpu, tmp) {
6142
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6143
			break;
6144

6145
		/*
6146 6147
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6148
		 */
6149 6150 6151
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6152
			break;
6153
		}
6154

6155
		if (tmp->flags & sd_flag)
6156
			sd = tmp;
M
Mike Galbraith 已提交
6157 6158
		else if (!want_affine)
			break;
6159 6160
	}

M
Mike Galbraith 已提交
6161 6162
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6163 6164 6165 6166
		if (cpu == prev_cpu)
			goto pick_cpu;

		if (wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6167
			new_cpu = cpu;
6168
	}
6169

M
Mike Galbraith 已提交
6170
	if (!sd) {
6171
 pick_cpu:
M
Mike Galbraith 已提交
6172
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6173
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6174 6175

	} else while (sd) {
6176
		struct sched_group *group;
6177
		int weight;
6178

6179
		if (!(sd->flags & sd_flag)) {
6180 6181 6182
			sd = sd->child;
			continue;
		}
6183

6184
		group = find_idlest_group(sd, p, cpu, sd_flag);
6185 6186 6187 6188
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6189

6190
		new_cpu = find_idlest_cpu(group, p, cpu);
6191 6192 6193 6194
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6195
		}
6196 6197 6198

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6199
		weight = sd->span_weight;
6200 6201
		sd = NULL;
		for_each_domain(cpu, tmp) {
6202
			if (weight <= tmp->span_weight)
6203
				break;
6204
			if (tmp->flags & sd_flag)
6205 6206 6207
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6208
	}
6209
	rcu_read_unlock();
6210

6211
	return new_cpu;
6212
}
6213 6214 6215 6216

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6217
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6218
 */
6219
static void migrate_task_rq_fair(struct task_struct *p)
6220
{
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6247
	/*
6248 6249 6250 6251 6252
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6253
	 */
6254 6255 6256 6257
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6258 6259

	/* We have migrated, no longer consider this task hot */
6260
	p->se.exec_start = 0;
6261
}
6262 6263 6264 6265 6266

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6267 6268
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6269 6270
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6271 6272 6273 6274
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6275 6276
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6277 6278 6279 6280 6281 6282 6283 6284 6285
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6286
	 */
6287
	return calc_delta_fair(gran, se);
6288 6289
}

6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6312
	gran = wakeup_gran(curr, se);
6313 6314 6315 6316 6317 6318
	if (vdiff > gran)
		return 1;

	return 0;
}

6319 6320
static void set_last_buddy(struct sched_entity *se)
{
6321 6322 6323
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6324 6325 6326
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6327
		cfs_rq_of(se)->last = se;
6328
	}
6329 6330 6331 6332
}

static void set_next_buddy(struct sched_entity *se)
{
6333 6334 6335
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6336 6337 6338
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6339
		cfs_rq_of(se)->next = se;
6340
	}
6341 6342
}

6343 6344
static void set_skip_buddy(struct sched_entity *se)
{
6345 6346
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6347 6348
}

6349 6350 6351
/*
 * Preempt the current task with a newly woken task if needed:
 */
6352
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6353 6354
{
	struct task_struct *curr = rq->curr;
6355
	struct sched_entity *se = &curr->se, *pse = &p->se;
6356
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6357
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6358
	int next_buddy_marked = 0;
6359

I
Ingo Molnar 已提交
6360 6361 6362
	if (unlikely(se == pse))
		return;

6363
	/*
6364
	 * This is possible from callers such as attach_tasks(), in which we
6365 6366 6367 6368 6369 6370 6371
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6372
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6373
		set_next_buddy(pse);
6374 6375
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6376

6377 6378 6379
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6380 6381 6382 6383 6384 6385
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6386 6387 6388 6389
	 */
	if (test_tsk_need_resched(curr))
		return;

6390 6391 6392 6393 6394
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6395
	/*
6396 6397
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6398
	 */
6399
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6400
		return;
6401

6402
	find_matching_se(&se, &pse);
6403
	update_curr(cfs_rq_of(se));
6404
	BUG_ON(!pse);
6405 6406 6407 6408 6409 6410 6411
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6412
		goto preempt;
6413
	}
6414

6415
	return;
6416

6417
preempt:
6418
	resched_curr(rq);
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6433 6434
}

6435
static struct task_struct *
6436
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6437 6438 6439
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6440
	struct task_struct *p;
6441
	int new_tasks;
6442

6443
again:
6444
	if (!cfs_rq->nr_running)
6445
		goto idle;
6446

6447
#ifdef CONFIG_FAIR_GROUP_SCHED
6448
	if (prev->sched_class != &fair_sched_class)
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6468 6469 6470 6471 6472
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6473

6474 6475 6476
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6477
			 * Therefore the nr_running test will indeed
6478 6479
			 * be correct.
			 */
6480 6481 6482 6483 6484 6485
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6486
				goto simple;
6487
			}
6488
		}
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
#endif
6528

6529
	put_prev_task(rq, prev);
6530

6531
	do {
6532
		se = pick_next_entity(cfs_rq, NULL);
6533
		set_next_entity(cfs_rq, se);
6534 6535 6536
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6537
	p = task_of(se);
6538

6539 6540
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6541 6542

	return p;
6543 6544

idle:
6545 6546
	new_tasks = idle_balance(rq, rf);

6547 6548 6549 6550 6551
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6552
	if (new_tasks < 0)
6553 6554
		return RETRY_TASK;

6555
	if (new_tasks > 0)
6556 6557 6558
		goto again;

	return NULL;
6559 6560 6561 6562 6563
}

/*
 * Account for a descheduled task:
 */
6564
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6565 6566 6567 6568 6569 6570
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6571
		put_prev_entity(cfs_rq, se);
6572 6573 6574
	}
}

6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6600 6601 6602 6603 6604
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6605
		rq_clock_skip_update(rq, true);
6606 6607 6608 6609 6610
	}

	set_skip_buddy(se);
}

6611 6612 6613 6614
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6615 6616
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6627
#ifdef CONFIG_SMP
6628
/**************************************************
P
Peter Zijlstra 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6645
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6646 6647 6648 6649 6650 6651
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6652
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6653 6654 6655 6656 6657 6658
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6659
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6698
 *             log_2 n
P
Peter Zijlstra 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6744
 */
6745

6746 6747
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6748 6749
enum fbq_type { regular, remote, all };

6750
#define LBF_ALL_PINNED	0x01
6751
#define LBF_NEED_BREAK	0x02
6752 6753
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6754 6755 6756 6757 6758

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6759
	int			src_cpu;
6760 6761 6762 6763

	int			dst_cpu;
	struct rq		*dst_rq;

6764 6765
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6766
	enum cpu_idle_type	idle;
6767
	long			imbalance;
6768 6769 6770
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6771
	unsigned int		flags;
6772 6773 6774 6775

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6776 6777

	enum fbq_type		fbq_type;
6778
	struct list_head	tasks;
6779 6780
};

6781 6782 6783
/*
 * Is this task likely cache-hot:
 */
6784
static int task_hot(struct task_struct *p, struct lb_env *env)
6785 6786 6787
{
	s64 delta;

6788 6789
	lockdep_assert_held(&env->src_rq->lock);

6790 6791 6792 6793 6794 6795 6796 6797 6798
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6799
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6800 6801 6802 6803 6804 6805 6806 6807 6808
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6809
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6810 6811 6812 6813

	return delta < (s64)sysctl_sched_migration_cost;
}

6814
#ifdef CONFIG_NUMA_BALANCING
6815
/*
6816 6817 6818
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6819
 */
6820
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6821
{
6822
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6823
	unsigned long src_faults, dst_faults;
6824 6825
	int src_nid, dst_nid;

6826
	if (!static_branch_likely(&sched_numa_balancing))
6827 6828
		return -1;

6829
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6830
		return -1;
6831 6832 6833 6834

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6835
	if (src_nid == dst_nid)
6836
		return -1;
6837

6838 6839 6840 6841 6842 6843 6844
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6845

6846 6847
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6848
		return 0;
6849

6850 6851 6852 6853
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6854 6855 6856 6857 6858 6859
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6860 6861
	}

6862
	return dst_faults < src_faults;
6863 6864
}

6865
#else
6866
static inline int migrate_degrades_locality(struct task_struct *p,
6867 6868
					     struct lb_env *env)
{
6869
	return -1;
6870
}
6871 6872
#endif

6873 6874 6875 6876
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6877
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6878
{
6879
	int tsk_cache_hot;
6880 6881 6882

	lockdep_assert_held(&env->src_rq->lock);

6883 6884
	/*
	 * We do not migrate tasks that are:
6885
	 * 1) throttled_lb_pair, or
6886
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6887 6888
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6889
	 */
6890 6891 6892
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6893
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6894
		int cpu;
6895

6896
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6897

6898 6899
		env->flags |= LBF_SOME_PINNED;

6900 6901 6902 6903 6904
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
6905 6906
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
6907
		 */
6908
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6909 6910
			return 0;

6911 6912
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6913
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6914
				env->flags |= LBF_DST_PINNED;
6915 6916 6917
				env->new_dst_cpu = cpu;
				break;
			}
6918
		}
6919

6920 6921
		return 0;
	}
6922 6923

	/* Record that we found atleast one task that could run on dst_cpu */
6924
	env->flags &= ~LBF_ALL_PINNED;
6925

6926
	if (task_running(env->src_rq, p)) {
6927
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6928 6929 6930 6931 6932
		return 0;
	}

	/*
	 * Aggressive migration if:
6933 6934 6935
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6936
	 */
6937 6938 6939
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6940

6941
	if (tsk_cache_hot <= 0 ||
6942
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6943
		if (tsk_cache_hot == 1) {
6944 6945
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6946
		}
6947 6948 6949
		return 1;
	}

6950
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6951
	return 0;
6952 6953
}

6954
/*
6955 6956 6957 6958 6959 6960 6961
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6962
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6963 6964 6965
	set_task_cpu(p, env->dst_cpu);
}

6966
/*
6967
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6968 6969
 * part of active balancing operations within "domain".
 *
6970
 * Returns a task if successful and NULL otherwise.
6971
 */
6972
static struct task_struct *detach_one_task(struct lb_env *env)
6973 6974 6975
{
	struct task_struct *p, *n;

6976 6977
	lockdep_assert_held(&env->src_rq->lock);

6978 6979 6980
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6981

6982
		detach_task(p, env);
6983

6984
		/*
6985
		 * Right now, this is only the second place where
6986
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6987
		 * so we can safely collect stats here rather than
6988
		 * inside detach_tasks().
6989
		 */
6990
		schedstat_inc(env->sd->lb_gained[env->idle]);
6991
		return p;
6992
	}
6993
	return NULL;
6994 6995
}

6996 6997
static const unsigned int sched_nr_migrate_break = 32;

6998
/*
6999 7000
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7001
 *
7002
 * Returns number of detached tasks if successful and 0 otherwise.
7003
 */
7004
static int detach_tasks(struct lb_env *env)
7005
{
7006 7007
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7008
	unsigned long load;
7009 7010 7011
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7012

7013
	if (env->imbalance <= 0)
7014
		return 0;
7015

7016
	while (!list_empty(tasks)) {
7017 7018 7019 7020 7021 7022 7023
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7024
		p = list_first_entry(tasks, struct task_struct, se.group_node);
7025

7026 7027
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7028
		if (env->loop > env->loop_max)
7029
			break;
7030 7031

		/* take a breather every nr_migrate tasks */
7032
		if (env->loop > env->loop_break) {
7033
			env->loop_break += sched_nr_migrate_break;
7034
			env->flags |= LBF_NEED_BREAK;
7035
			break;
7036
		}
7037

7038
		if (!can_migrate_task(p, env))
7039 7040 7041
			goto next;

		load = task_h_load(p);
7042

7043
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7044 7045
			goto next;

7046
		if ((load / 2) > env->imbalance)
7047
			goto next;
7048

7049 7050 7051 7052
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7053
		env->imbalance -= load;
7054 7055

#ifdef CONFIG_PREEMPT
7056 7057
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7058
		 * kernels will stop after the first task is detached to minimize
7059 7060
		 * the critical section.
		 */
7061
		if (env->idle == CPU_NEWLY_IDLE)
7062
			break;
7063 7064
#endif

7065 7066 7067 7068
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7069
		if (env->imbalance <= 0)
7070
			break;
7071 7072 7073

		continue;
next:
7074
		list_move_tail(&p->se.group_node, tasks);
7075
	}
7076

7077
	/*
7078 7079 7080
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7081
	 */
7082
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7083

7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7095
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7096
	p->on_rq = TASK_ON_RQ_QUEUED;
7097 7098 7099 7100 7101 7102 7103 7104 7105
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7106 7107 7108
	struct rq_flags rf;

	rq_lock(rq, &rf);
7109
	update_rq_clock(rq);
7110
	attach_task(rq, p);
7111
	rq_unlock(rq, &rf);
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7122
	struct rq_flags rf;
7123

7124
	rq_lock(env->dst_rq, &rf);
7125
	update_rq_clock(env->dst_rq);
7126 7127 7128 7129

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7130

7131 7132 7133
		attach_task(env->dst_rq, p);
	}

7134
	rq_unlock(env->dst_rq, &rf);
7135 7136
}

P
Peter Zijlstra 已提交
7137
#ifdef CONFIG_FAIR_GROUP_SCHED
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

	if (cfs_rq->runnable_load_sum)
		return false;

	return true;
}

7156
static void update_blocked_averages(int cpu)
7157 7158
{
	struct rq *rq = cpu_rq(cpu);
7159
	struct cfs_rq *cfs_rq, *pos;
7160
	struct rq_flags rf;
7161

7162
	rq_lock_irqsave(rq, &rf);
7163
	update_rq_clock(rq);
7164

7165 7166 7167 7168
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7169
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7170 7171
		struct sched_entity *se;

7172 7173 7174
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7175

7176
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7177
			update_tg_load_avg(cfs_rq, 0);
7178

7179 7180 7181
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7182
			update_load_avg(cfs_rq_of(se), se, 0);
7183 7184 7185 7186 7187 7188 7189

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7190
	}
7191
	rq_unlock_irqrestore(rq, &rf);
7192 7193
}

7194
/*
7195
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7196 7197 7198
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7199
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7200
{
7201 7202
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7203
	unsigned long now = jiffies;
7204
	unsigned long load;
7205

7206
	if (cfs_rq->last_h_load_update == now)
7207 7208
		return;

7209 7210 7211 7212 7213 7214 7215
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7216

7217
	if (!se) {
7218
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7219 7220 7221 7222 7223
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7224 7225
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7226 7227 7228 7229
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7230 7231
}

7232
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7233
{
7234
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7235

7236
	update_cfs_rq_h_load(cfs_rq);
7237
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7238
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7239 7240
}
#else
7241
static inline void update_blocked_averages(int cpu)
7242
{
7243 7244
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7245
	struct rq_flags rf;
7246

7247
	rq_lock_irqsave(rq, &rf);
7248
	update_rq_clock(rq);
7249
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7250
	rq_unlock_irqrestore(rq, &rf);
7251 7252
}

7253
static unsigned long task_h_load(struct task_struct *p)
7254
{
7255
	return p->se.avg.load_avg;
7256
}
P
Peter Zijlstra 已提交
7257
#endif
7258 7259

/********** Helpers for find_busiest_group ************************/
7260 7261 7262 7263 7264 7265 7266

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7267 7268 7269 7270 7271 7272 7273
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7274
	unsigned long load_per_task;
7275
	unsigned long group_capacity;
7276
	unsigned long group_util; /* Total utilization of the group */
7277 7278 7279
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7280
	enum group_type group_type;
7281
	int group_no_capacity;
7282 7283 7284 7285
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7286 7287
};

J
Joonsoo Kim 已提交
7288 7289 7290 7291 7292 7293 7294
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7295
	unsigned long total_running;
J
Joonsoo Kim 已提交
7296
	unsigned long total_load;	/* Total load of all groups in sd */
7297
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7298 7299 7300
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7301
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7302 7303
};

7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7315
		.total_running = 0UL,
7316
		.total_load = 0UL,
7317
		.total_capacity = 0UL,
7318 7319
		.busiest_stat = {
			.avg_load = 0UL,
7320 7321
			.sum_nr_running = 0,
			.group_type = group_other,
7322 7323 7324 7325
		},
	};
}

7326 7327 7328
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7329
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7330 7331
 *
 * Return: The load index.
7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7354
static unsigned long scale_rt_capacity(int cpu)
7355 7356
{
	struct rq *rq = cpu_rq(cpu);
7357
	u64 total, used, age_stamp, avg;
7358
	s64 delta;
7359

7360 7361 7362 7363
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7364 7365
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7366
	delta = __rq_clock_broken(rq) - age_stamp;
7367

7368 7369 7370 7371
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7372

7373
	used = div_u64(avg, total);
7374

7375 7376
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7377

7378
	return 1;
7379 7380
}

7381
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7382
{
7383
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7384 7385
	struct sched_group *sdg = sd->groups;

7386
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7387

7388
	capacity *= scale_rt_capacity(cpu);
7389
	capacity >>= SCHED_CAPACITY_SHIFT;
7390

7391 7392
	if (!capacity)
		capacity = 1;
7393

7394 7395
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7396
	sdg->sgc->min_capacity = capacity;
7397 7398
}

7399
void update_group_capacity(struct sched_domain *sd, int cpu)
7400 7401 7402
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7403
	unsigned long capacity, min_capacity;
7404 7405 7406 7407
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7408
	sdg->sgc->next_update = jiffies + interval;
7409 7410

	if (!child) {
7411
		update_cpu_capacity(sd, cpu);
7412 7413 7414
		return;
	}

7415
	capacity = 0;
7416
	min_capacity = ULONG_MAX;
7417

P
Peter Zijlstra 已提交
7418 7419 7420 7421 7422 7423
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7424
		for_each_cpu(cpu, sched_group_span(sdg)) {
7425
			struct sched_group_capacity *sgc;
7426
			struct rq *rq = cpu_rq(cpu);
7427

7428
			/*
7429
			 * build_sched_domains() -> init_sched_groups_capacity()
7430 7431 7432
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7433 7434
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7435
			 *
7436
			 * This avoids capacity from being 0 and
7437 7438 7439
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7440
				capacity += capacity_of(cpu);
7441 7442 7443
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7444
			}
7445

7446
			min_capacity = min(capacity, min_capacity);
7447
		}
P
Peter Zijlstra 已提交
7448 7449 7450 7451
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7452
		 */
P
Peter Zijlstra 已提交
7453 7454 7455

		group = child->groups;
		do {
7456 7457 7458 7459
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7460 7461 7462
			group = group->next;
		} while (group != child->groups);
	}
7463

7464
	sdg->sgc->capacity = capacity;
7465
	sdg->sgc->min_capacity = min_capacity;
7466 7467
}

7468
/*
7469 7470 7471
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7472 7473
 */
static inline int
7474
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7475
{
7476 7477
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7478 7479
}

7480 7481
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7482
 * groups is inadequate due to ->cpus_allowed constraints.
7483 7484 7485 7486 7487
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7488 7489
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7490 7491 7492 7493 7494 7495
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7496 7497
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7498 7499
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7500
 * update_sd_pick_busiest(). And calculate_imbalance() and
7501
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7502 7503 7504 7505 7506 7507 7508
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7509
static inline int sg_imbalanced(struct sched_group *group)
7510
{
7511
	return group->sgc->imbalance;
7512 7513
}

7514
/*
7515 7516 7517
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7518 7519
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7520 7521 7522 7523 7524
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7525
 */
7526 7527
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7528
{
7529 7530
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7531

7532
	if ((sgs->group_capacity * 100) >
7533
			(sgs->group_util * env->sd->imbalance_pct))
7534
		return true;
7535

7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7552

7553
	if ((sgs->group_capacity * 100) <
7554
			(sgs->group_util * env->sd->imbalance_pct))
7555
		return true;
7556

7557
	return false;
7558 7559
}

7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7571 7572 7573
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7574
{
7575
	if (sgs->group_no_capacity)
7576 7577 7578 7579 7580 7581 7582 7583
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7584 7585
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7586
 * @env: The load balancing environment.
7587 7588 7589 7590
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7591
 * @overload: Indicate more than one runnable task for any CPU.
7592
 */
7593 7594
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7595 7596
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7597
{
7598
	unsigned long load;
7599
	int i, nr_running;
7600

7601 7602
	memset(sgs, 0, sizeof(*sgs));

7603
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7604 7605 7606
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7607
		if (local_group)
7608
			load = target_load(i, load_idx);
7609
		else
7610 7611 7612
			load = source_load(i, load_idx);

		sgs->group_load += load;
7613
		sgs->group_util += cpu_util(i);
7614
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7615

7616 7617
		nr_running = rq->nr_running;
		if (nr_running > 1)
7618 7619
			*overload = true;

7620 7621 7622 7623
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7624
		sgs->sum_weighted_load += weighted_cpuload(rq);
7625 7626 7627 7628
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7629
			sgs->idle_cpus++;
7630 7631
	}

7632 7633
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7634
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7635

7636
	if (sgs->sum_nr_running)
7637
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7638

7639
	sgs->group_weight = group->group_weight;
7640

7641
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7642
	sgs->group_type = group_classify(group, sgs);
7643 7644
}

7645 7646
/**
 * update_sd_pick_busiest - return 1 on busiest group
7647
 * @env: The load balancing environment.
7648 7649
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7650
 * @sgs: sched_group statistics
7651 7652 7653
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7654 7655 7656
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7657
 */
7658
static bool update_sd_pick_busiest(struct lb_env *env,
7659 7660
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7661
				   struct sg_lb_stats *sgs)
7662
{
7663
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7664

7665
	if (sgs->group_type > busiest->group_type)
7666 7667
		return true;

7668 7669 7670 7671 7672 7673
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7688 7689
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7690 7691
		return true;

7692 7693 7694
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7695
	/*
T
Tim Chen 已提交
7696 7697 7698
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7699
	 */
T
Tim Chen 已提交
7700 7701
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7702 7703 7704
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7705 7706 7707
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7708 7709 7710 7711 7712 7713
			return true;
	}

	return false;
}

7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7744
/**
7745
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7746
 * @env: The load balancing environment.
7747 7748
 * @sds: variable to hold the statistics for this sched_domain.
 */
7749
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7750
{
7751
	struct sched_domain_shared *shared = env->sd->shared;
7752 7753
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7754
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7755
	struct sg_lb_stats tmp_sgs;
7756
	int load_idx, prefer_sibling = 0;
7757
	bool overload = false;
7758 7759 7760 7761

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7762
	load_idx = get_sd_load_idx(env->sd, env->idle);
7763 7764

	do {
J
Joonsoo Kim 已提交
7765
		struct sg_lb_stats *sgs = &tmp_sgs;
7766 7767
		int local_group;

7768
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7769 7770
		if (local_group) {
			sds->local = sg;
7771
			sgs = local;
7772 7773

			if (env->idle != CPU_NEWLY_IDLE ||
7774 7775
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7776
		}
7777

7778 7779
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7780

7781 7782 7783
		if (local_group)
			goto next_group;

7784 7785
		/*
		 * In case the child domain prefers tasks go to siblings
7786
		 * first, lower the sg capacity so that we'll try
7787 7788
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7789 7790 7791 7792
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7793
		 */
7794
		if (prefer_sibling && sds->local &&
7795 7796
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7797
			sgs->group_no_capacity = 1;
7798
			sgs->group_type = group_classify(sg, sgs);
7799
		}
7800

7801
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7802
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7803
			sds->busiest_stat = *sgs;
7804 7805
		}

7806 7807
next_group:
		/* Now, start updating sd_lb_stats */
7808
		sds->total_running += sgs->sum_nr_running;
7809
		sds->total_load += sgs->group_load;
7810
		sds->total_capacity += sgs->group_capacity;
7811

7812
		sg = sg->next;
7813
	} while (sg != env->sd->groups);
7814 7815 7816

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7817 7818 7819 7820 7821 7822 7823

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838
	if (!shared)
		return;

	/*
	 * Since these are sums over groups they can contain some CPUs
	 * multiple times for the NUMA domains.
	 *
	 * Currently only wake_affine_llc() and find_busiest_group()
	 * uses these numbers, only the last is affected by this problem.
	 *
	 * XXX fix that.
	 */
	WRITE_ONCE(shared->nr_running,	sds->total_running);
	WRITE_ONCE(shared->load,	sds->total_load);
	WRITE_ONCE(shared->capacity,	sds->total_capacity);
7839 7840 7841 7842
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7843
 *			sched domain.
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7858
 * Return: 1 when packing is required and a task should be moved to
7859
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
7860
 *
7861
 * @env: The load balancing environment.
7862 7863
 * @sds: Statistics of the sched_domain which is to be packed
 */
7864
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7865 7866 7867
{
	int busiest_cpu;

7868
	if (!(env->sd->flags & SD_ASYM_PACKING))
7869 7870
		return 0;

7871 7872 7873
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7874 7875 7876
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7877 7878
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7879 7880
		return 0;

7881
	env->imbalance = DIV_ROUND_CLOSEST(
7882
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7883
		SCHED_CAPACITY_SCALE);
7884

7885
	return 1;
7886 7887 7888 7889 7890 7891
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7892
 * @env: The load balancing environment.
7893 7894
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7895 7896
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7897
{
7898
	unsigned long tmp, capa_now = 0, capa_move = 0;
7899
	unsigned int imbn = 2;
7900
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7901
	struct sg_lb_stats *local, *busiest;
7902

J
Joonsoo Kim 已提交
7903 7904
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7905

J
Joonsoo Kim 已提交
7906 7907 7908 7909
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7910

J
Joonsoo Kim 已提交
7911
	scaled_busy_load_per_task =
7912
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7913
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7914

7915 7916
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7917
		env->imbalance = busiest->load_per_task;
7918 7919 7920 7921 7922
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7923
	 * however we may be able to increase total CPU capacity used by
7924 7925 7926
	 * moving them.
	 */

7927
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7928
			min(busiest->load_per_task, busiest->avg_load);
7929
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7930
			min(local->load_per_task, local->avg_load);
7931
	capa_now /= SCHED_CAPACITY_SCALE;
7932 7933

	/* Amount of load we'd subtract */
7934
	if (busiest->avg_load > scaled_busy_load_per_task) {
7935
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7936
			    min(busiest->load_per_task,
7937
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7938
	}
7939 7940

	/* Amount of load we'd add */
7941
	if (busiest->avg_load * busiest->group_capacity <
7942
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7943 7944
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7945
	} else {
7946
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7947
		      local->group_capacity;
J
Joonsoo Kim 已提交
7948
	}
7949
	capa_move += local->group_capacity *
7950
		    min(local->load_per_task, local->avg_load + tmp);
7951
	capa_move /= SCHED_CAPACITY_SCALE;
7952 7953

	/* Move if we gain throughput */
7954
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7955
		env->imbalance = busiest->load_per_task;
7956 7957 7958 7959 7960
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7961
 * @env: load balance environment
7962 7963
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7964
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7965
{
7966
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7967 7968 7969 7970
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7971

7972
	if (busiest->group_type == group_imbalanced) {
7973 7974 7975 7976
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7977 7978
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7979 7980
	}

7981
	/*
7982 7983 7984 7985
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7986
	 */
7987 7988
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7989 7990
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7991 7992
	}

7993 7994 7995 7996 7997
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7998
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7999
		if (load_above_capacity > busiest->group_capacity) {
8000
			load_above_capacity -= busiest->group_capacity;
8001
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8002 8003
			load_above_capacity /= busiest->group_capacity;
		} else
8004
			load_above_capacity = ~0UL;
8005 8006 8007 8008 8009 8010
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
8011 8012
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8013
	 */
8014
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8015 8016

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8017
	env->imbalance = min(
8018 8019
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8020
	) / SCHED_CAPACITY_SCALE;
8021 8022 8023

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8024
	 * there is no guarantee that any tasks will be moved so we'll have
8025 8026 8027
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8028
	if (env->imbalance < busiest->load_per_task)
8029
		return fix_small_imbalance(env, sds);
8030
}
8031

8032 8033 8034 8035
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8036
 * if there is an imbalance.
8037 8038 8039 8040
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8041
 * @env: The load balancing environment.
8042
 *
8043
 * Return:	- The busiest group if imbalance exists.
8044
 */
J
Joonsoo Kim 已提交
8045
static struct sched_group *find_busiest_group(struct lb_env *env)
8046
{
J
Joonsoo Kim 已提交
8047
	struct sg_lb_stats *local, *busiest;
8048 8049
	struct sd_lb_stats sds;

8050
	init_sd_lb_stats(&sds);
8051 8052 8053 8054 8055

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8056
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8057 8058
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8059

8060
	/* ASYM feature bypasses nice load balance check */
8061
	if (check_asym_packing(env, &sds))
8062 8063
		return sds.busiest;

8064
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8065
	if (!sds.busiest || busiest->sum_nr_running == 0)
8066 8067
		goto out_balanced;

8068
	/* XXX broken for overlapping NUMA groups */
8069 8070
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8071

P
Peter Zijlstra 已提交
8072 8073
	/*
	 * If the busiest group is imbalanced the below checks don't
8074
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8075 8076
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8077
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8078 8079
		goto force_balance;

8080
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
8081 8082
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
8083 8084
		goto force_balance;

8085
	/*
8086
	 * If the local group is busier than the selected busiest group
8087 8088
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8089
	if (local->avg_load >= busiest->avg_load)
8090 8091
		goto out_balanced;

8092 8093 8094 8095
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8096
	if (local->avg_load >= sds.avg_load)
8097 8098
		goto out_balanced;

8099
	if (env->idle == CPU_IDLE) {
8100
		/*
8101 8102 8103 8104 8105
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8106
		 */
8107 8108
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8109
			goto out_balanced;
8110 8111 8112 8113 8114
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8115 8116
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8117
			goto out_balanced;
8118
	}
8119

8120
force_balance:
8121
	/* Looks like there is an imbalance. Compute it */
8122
	calculate_imbalance(env, &sds);
8123 8124 8125
	return sds.busiest;

out_balanced:
8126
	env->imbalance = 0;
8127 8128 8129 8130 8131 8132
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
8133
static struct rq *find_busiest_queue(struct lb_env *env,
8134
				     struct sched_group *group)
8135 8136
{
	struct rq *busiest = NULL, *rq;
8137
	unsigned long busiest_load = 0, busiest_capacity = 1;
8138 8139
	int i;

8140
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8141
		unsigned long capacity, wl;
8142 8143 8144 8145
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8146

8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8169
		capacity = capacity_of(i);
8170

8171
		wl = weighted_cpuload(rq);
8172

8173 8174
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8175
		 * which is not scaled with the cpu capacity.
8176
		 */
8177 8178 8179

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8180 8181
			continue;

8182 8183
		/*
		 * For the load comparisons with the other cpu's, consider
8184 8185 8186
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
8187
		 *
8188
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8189
		 * multiplication to rid ourselves of the division works out
8190 8191
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8192
		 */
8193
		if (wl * busiest_capacity > busiest_load * capacity) {
8194
			busiest_load = wl;
8195
			busiest_capacity = capacity;
8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8209
static int need_active_balance(struct lb_env *env)
8210
{
8211 8212 8213
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8214 8215 8216

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8217 8218
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8219
		 */
T
Tim Chen 已提交
8220 8221
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8222
			return 1;
8223 8224
	}

8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8238 8239 8240
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8241 8242
static int active_load_balance_cpu_stop(void *data);

8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
8256
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8257
		if (!idle_cpu(cpu))
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8271
	return balance_cpu == env->dst_cpu;
8272 8273
}

8274 8275 8276 8277 8278 8279
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8280
			int *continue_balancing)
8281
{
8282
	int ld_moved, cur_ld_moved, active_balance = 0;
8283
	struct sched_domain *sd_parent = sd->parent;
8284 8285
	struct sched_group *group;
	struct rq *busiest;
8286
	struct rq_flags rf;
8287
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8288

8289 8290
	struct lb_env env = {
		.sd		= sd,
8291 8292
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8293
		.dst_grpmask    = sched_group_span(sd->groups),
8294
		.idle		= idle,
8295
		.loop_break	= sched_nr_migrate_break,
8296
		.cpus		= cpus,
8297
		.fbq_type	= all,
8298
		.tasks		= LIST_HEAD_INIT(env.tasks),
8299 8300
	};

8301
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8302

8303
	schedstat_inc(sd->lb_count[idle]);
8304 8305

redo:
8306 8307
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8308
		goto out_balanced;
8309
	}
8310

8311
	group = find_busiest_group(&env);
8312
	if (!group) {
8313
		schedstat_inc(sd->lb_nobusyg[idle]);
8314 8315 8316
		goto out_balanced;
	}

8317
	busiest = find_busiest_queue(&env, group);
8318
	if (!busiest) {
8319
		schedstat_inc(sd->lb_nobusyq[idle]);
8320 8321 8322
		goto out_balanced;
	}

8323
	BUG_ON(busiest == env.dst_rq);
8324

8325
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8326

8327 8328 8329
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8330 8331 8332 8333 8334 8335 8336 8337
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8338
		env.flags |= LBF_ALL_PINNED;
8339
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8340

8341
more_balance:
8342
		rq_lock_irqsave(busiest, &rf);
8343
		update_rq_clock(busiest);
8344 8345 8346 8347 8348

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8349
		cur_ld_moved = detach_tasks(&env);
8350 8351

		/*
8352 8353 8354 8355 8356
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8357
		 */
8358

8359
		rq_unlock(busiest, &rf);
8360 8361 8362 8363 8364 8365

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8366
		local_irq_restore(rf.flags);
8367

8368 8369 8370 8371 8372
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8392
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8393

8394 8395 8396
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8397
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8398
			env.dst_cpu	 = env.new_dst_cpu;
8399
			env.flags	&= ~LBF_DST_PINNED;
8400 8401
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8402

8403 8404 8405 8406 8407 8408
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8409

8410 8411 8412 8413
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8414
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8415

8416
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8417 8418 8419
				*group_imbalance = 1;
		}

8420
		/* All tasks on this runqueue were pinned by CPU affinity */
8421
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8422
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8423 8424 8425 8426 8427 8428 8429 8430 8431
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8432 8433
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8434
				goto redo;
8435
			}
8436
			goto out_all_pinned;
8437 8438 8439 8440
		}
	}

	if (!ld_moved) {
8441
		schedstat_inc(sd->lb_failed[idle]);
8442 8443 8444 8445 8446 8447 8448 8449
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8450

8451
		if (need_active_balance(&env)) {
8452 8453
			unsigned long flags;

8454 8455
			raw_spin_lock_irqsave(&busiest->lock, flags);

8456 8457 8458
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8459
			 */
8460
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8461 8462
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8463
				env.flags |= LBF_ALL_PINNED;
8464 8465 8466
				goto out_one_pinned;
			}

8467 8468 8469 8470 8471
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8472 8473 8474 8475 8476 8477
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8478

8479
			if (active_balance) {
8480 8481 8482
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8483
			}
8484

8485
			/* We've kicked active balancing, force task migration. */
8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8499
		 * detach_tasks).
8500 8501 8502 8503 8504 8505 8506 8507
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8525
	schedstat_inc(sd->lb_balanced[idle]);
8526 8527 8528 8529 8530

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8531
	if (((env.flags & LBF_ALL_PINNED) &&
8532
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8533 8534 8535
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8536
	ld_moved = 0;
8537 8538 8539 8540
out:
	return ld_moved;
}

8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8557
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8558 8559 8560
{
	unsigned long interval, next;

8561 8562
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8563 8564 8565 8566 8567 8568
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8569 8570 8571 8572
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8573
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8574
{
8575 8576
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8577 8578
	struct sched_domain *sd;
	int pulled_task = 0;
8579
	u64 curr_cost = 0;
8580

8581 8582 8583 8584 8585 8586
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8587 8588 8589 8590 8591 8592
	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

8593 8594 8595 8596 8597 8598 8599 8600
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8601 8602
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8603 8604 8605
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8606
			update_next_balance(sd, &next_balance);
8607 8608
		rcu_read_unlock();

8609
		goto out;
8610
	}
8611

8612 8613
	raw_spin_unlock(&this_rq->lock);

8614
	update_blocked_averages(this_cpu);
8615
	rcu_read_lock();
8616
	for_each_domain(this_cpu, sd) {
8617
		int continue_balancing = 1;
8618
		u64 t0, domain_cost;
8619 8620 8621 8622

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8623
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8624
			update_next_balance(sd, &next_balance);
8625
			break;
8626
		}
8627

8628
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8629 8630
			t0 = sched_clock_cpu(this_cpu);

8631
			pulled_task = load_balance(this_cpu, this_rq,
8632 8633
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8634 8635 8636 8637 8638 8639

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8640
		}
8641

8642
		update_next_balance(sd, &next_balance);
8643 8644 8645 8646 8647 8648

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8649 8650
			break;
	}
8651
	rcu_read_unlock();
8652 8653 8654

	raw_spin_lock(&this_rq->lock);

8655 8656 8657
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8658
	/*
8659 8660 8661
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8662
	 */
8663
	if (this_rq->cfs.h_nr_running && !pulled_task)
8664
		pulled_task = 1;
8665

8666 8667 8668
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8669
		this_rq->next_balance = next_balance;
8670

8671
	/* Is there a task of a high priority class? */
8672
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8673 8674
		pulled_task = -1;

8675
	if (pulled_task)
8676 8677
		this_rq->idle_stamp = 0;

8678 8679
	rq_repin_lock(this_rq, rf);

8680
	return pulled_task;
8681 8682 8683
}

/*
8684 8685 8686 8687
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8688
 */
8689
static int active_load_balance_cpu_stop(void *data)
8690
{
8691 8692
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8693
	int target_cpu = busiest_rq->push_cpu;
8694
	struct rq *target_rq = cpu_rq(target_cpu);
8695
	struct sched_domain *sd;
8696
	struct task_struct *p = NULL;
8697
	struct rq_flags rf;
8698

8699
	rq_lock_irq(busiest_rq, &rf);
8700 8701 8702 8703 8704 8705 8706
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8707 8708 8709 8710 8711

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8712 8713 8714

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8715
		goto out_unlock;
8716 8717 8718 8719 8720 8721 8722 8723 8724

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8725
	rcu_read_lock();
8726 8727 8728 8729 8730 8731 8732
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8733 8734
		struct lb_env env = {
			.sd		= sd,
8735 8736 8737 8738
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8739
			.idle		= CPU_IDLE,
8740 8741 8742 8743 8744 8745 8746
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8747 8748
		};

8749
		schedstat_inc(sd->alb_count);
8750
		update_rq_clock(busiest_rq);
8751

8752
		p = detach_one_task(&env);
8753
		if (p) {
8754
			schedstat_inc(sd->alb_pushed);
8755 8756 8757
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8758
			schedstat_inc(sd->alb_failed);
8759
		}
8760
	}
8761
	rcu_read_unlock();
8762 8763
out_unlock:
	busiest_rq->active_balance = 0;
8764
	rq_unlock(busiest_rq, &rf);
8765 8766 8767 8768 8769 8770

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8771
	return 0;
8772 8773
}

8774 8775 8776 8777 8778
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8779
#ifdef CONFIG_NO_HZ_COMMON
8780 8781 8782 8783 8784 8785
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8786
static struct {
8787
	cpumask_var_t idle_cpus_mask;
8788
	atomic_t nr_cpus;
8789 8790
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8791

8792
static inline int find_new_ilb(void)
8793
{
8794
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8795

8796 8797 8798 8799
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8800 8801
}

8802 8803 8804 8805 8806
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8807
static void nohz_balancer_kick(void)
8808 8809 8810 8811 8812
{
	int ilb_cpu;

	nohz.next_balance++;

8813
	ilb_cpu = find_new_ilb();
8814

8815 8816
	if (ilb_cpu >= nr_cpu_ids)
		return;
8817

8818
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8819 8820 8821 8822 8823 8824 8825 8826
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8827 8828 8829
	return;
}

8830
void nohz_balance_exit_idle(unsigned int cpu)
8831 8832
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8833 8834 8835 8836 8837 8838 8839
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8840 8841 8842 8843
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8844 8845 8846
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8847
	int cpu = smp_processor_id();
8848 8849

	rcu_read_lock();
8850
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8851 8852 8853 8854 8855

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8856
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8857
unlock:
8858 8859 8860 8861 8862 8863
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8864
	int cpu = smp_processor_id();
8865 8866

	rcu_read_lock();
8867
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8868 8869 8870 8871 8872

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8873
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8874
unlock:
8875 8876 8877
	rcu_read_unlock();
}

8878
/*
8879
 * This routine will record that the cpu is going idle with tick stopped.
8880
 * This info will be used in performing idle load balancing in the future.
8881
 */
8882
void nohz_balance_enter_idle(int cpu)
8883
{
8884 8885 8886 8887 8888 8889
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8890 8891 8892 8893
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
	if (!is_housekeeping_cpu(cpu))
		return;

8894 8895
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8896

8897 8898 8899 8900 8901 8902
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8903 8904 8905
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8906 8907 8908 8909 8910
}
#endif

static DEFINE_SPINLOCK(balancing);

8911 8912 8913 8914
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8915
void update_max_interval(void)
8916 8917 8918 8919
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8920 8921 8922 8923
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8924
 * Balancing parameters are set up in init_sched_domains.
8925
 */
8926
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8927
{
8928
	int continue_balancing = 1;
8929
	int cpu = rq->cpu;
8930
	unsigned long interval;
8931
	struct sched_domain *sd;
8932 8933 8934
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8935 8936
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8937

8938
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8939

8940
	rcu_read_lock();
8941
	for_each_domain(cpu, sd) {
8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8954 8955 8956
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8968
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8969 8970 8971 8972 8973 8974 8975 8976

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8977
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8978
				/*
8979
				 * The LBF_DST_PINNED logic could have changed
8980 8981
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8982
				 */
8983
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8984 8985
			}
			sd->last_balance = jiffies;
8986
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8987 8988 8989 8990 8991 8992 8993 8994
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8995 8996
	}
	if (need_decay) {
8997
		/*
8998 8999
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
9000
		 */
9001 9002
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
9003
	}
9004
	rcu_read_unlock();
9005 9006 9007 9008 9009 9010

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
9011
	if (likely(update_next_balance)) {
9012
		rq->next_balance = next_balance;
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
9027 9028
}

9029
#ifdef CONFIG_NO_HZ_COMMON
9030
/*
9031
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9032 9033
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
9034
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9035
{
9036
	int this_cpu = this_rq->cpu;
9037 9038
	struct rq *rq;
	int balance_cpu;
9039 9040 9041
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9042

9043 9044 9045
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
9046 9047

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9048
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9049 9050 9051 9052 9053 9054 9055
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
9056
		if (need_resched())
9057 9058
			break;

V
Vincent Guittot 已提交
9059 9060
		rq = cpu_rq(balance_cpu);

9061 9062 9063 9064 9065
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9066 9067 9068
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
9069
			update_rq_clock(rq);
9070
			cpu_load_update_idle(rq);
9071 9072
			rq_unlock_irq(rq, &rf);

9073 9074
			rebalance_domains(rq, CPU_IDLE);
		}
9075

9076 9077 9078 9079
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9080
	}
9081 9082 9083 9084 9085 9086 9087 9088

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
9089 9090
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9091 9092 9093
}

/*
9094
 * Current heuristic for kicking the idle load balancer in the presence
9095
 * of an idle cpu in the system.
9096
 *   - This rq has more than one task.
9097 9098 9099 9100
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
9101 9102
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
9103
 */
9104
static inline bool nohz_kick_needed(struct rq *rq)
9105 9106
{
	unsigned long now = jiffies;
9107
	struct sched_domain_shared *sds;
9108
	struct sched_domain *sd;
T
Tim Chen 已提交
9109
	int nr_busy, i, cpu = rq->cpu;
9110
	bool kick = false;
9111

9112
	if (unlikely(rq->idle_balance))
9113
		return false;
9114

9115 9116 9117 9118
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
9119
	set_cpu_sd_state_busy();
9120
	nohz_balance_exit_idle(cpu);
9121 9122 9123 9124 9125 9126

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
9127
		return false;
9128 9129

	if (time_before(now, nohz.next_balance))
9130
		return false;
9131

9132
	if (rq->nr_running >= 2)
9133
		return true;
9134

9135
	rcu_read_lock();
9136 9137 9138 9139 9140 9141 9142
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
9143 9144 9145 9146 9147
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

9148
	}
9149

9150 9151 9152 9153 9154 9155 9156 9157
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
9158

9159
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
9160 9161 9162 9163 9164
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
9165

T
Tim Chen 已提交
9166 9167 9168 9169 9170 9171
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
9172
unlock:
9173
	rcu_read_unlock();
9174
	return kick;
9175 9176
}
#else
9177
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9178 9179 9180 9181 9182 9183
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9184
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9185
{
9186
	struct rq *this_rq = this_rq();
9187
	enum cpu_idle_type idle = this_rq->idle_balance ?
9188 9189 9190
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9191
	 * If this cpu has a pending nohz_balance_kick, then do the
9192
	 * balancing on behalf of the other idle cpus whose ticks are
9193 9194 9195 9196
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9197
	 */
9198
	nohz_idle_balance(this_rq, idle);
9199
	rebalance_domains(this_rq, idle);
9200 9201 9202 9203 9204
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9205
void trigger_load_balance(struct rq *rq)
9206 9207
{
	/* Don't need to rebalance while attached to NULL domain */
9208 9209 9210 9211
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9212
		raise_softirq(SCHED_SOFTIRQ);
9213
#ifdef CONFIG_NO_HZ_COMMON
9214
	if (nohz_kick_needed(rq))
9215
		nohz_balancer_kick();
9216
#endif
9217 9218
}

9219 9220 9221
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9222 9223

	update_runtime_enabled(rq);
9224 9225 9226 9227 9228
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9229 9230 9231

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9232 9233
}

9234
#endif /* CONFIG_SMP */
9235

9236 9237 9238
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9239
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9240 9241 9242 9243 9244 9245
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9246
		entity_tick(cfs_rq, se, queued);
9247
	}
9248

9249
	if (static_branch_unlikely(&sched_numa_balancing))
9250
		task_tick_numa(rq, curr);
9251 9252 9253
}

/*
P
Peter Zijlstra 已提交
9254 9255 9256
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9257
 */
P
Peter Zijlstra 已提交
9258
static void task_fork_fair(struct task_struct *p)
9259
{
9260 9261
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9262
	struct rq *rq = this_rq();
9263
	struct rq_flags rf;
9264

9265
	rq_lock(rq, &rf);
9266 9267
	update_rq_clock(rq);

9268 9269
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9270 9271
	if (curr) {
		update_curr(cfs_rq);
9272
		se->vruntime = curr->vruntime;
9273
	}
9274
	place_entity(cfs_rq, se, 1);
9275

P
Peter Zijlstra 已提交
9276
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9277
		/*
9278 9279 9280
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9281
		swap(curr->vruntime, se->vruntime);
9282
		resched_curr(rq);
9283
	}
9284

9285
	se->vruntime -= cfs_rq->min_vruntime;
9286
	rq_unlock(rq, &rf);
9287 9288
}

9289 9290 9291 9292
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9293 9294
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9295
{
9296
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9297 9298
		return;

9299 9300 9301 9302 9303
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9304
	if (rq->curr == p) {
9305
		if (p->prio > oldprio)
9306
			resched_curr(rq);
9307
	} else
9308
		check_preempt_curr(rq, p, 0);
9309 9310
}

9311
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9312 9313 9314 9315
{
	struct sched_entity *se = &p->se;

	/*
9316 9317 9318 9319 9320 9321 9322 9323 9324 9325
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9326
	 *
9327 9328 9329 9330
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9331
	 */
9332 9333 9334 9335 9336 9337
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9356
		update_load_avg(cfs_rq, se, UPDATE_TG);
9357 9358 9359 9360 9361 9362
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9363
static void detach_entity_cfs_rq(struct sched_entity *se)
9364 9365 9366
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9367
	/* Catch up with the cfs_rq and remove our load when we leave */
9368
	update_load_avg(cfs_rq, se, 0);
9369
	detach_entity_load_avg(cfs_rq, se);
9370
	update_tg_load_avg(cfs_rq, false);
9371
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9372 9373
}

9374
static void attach_entity_cfs_rq(struct sched_entity *se)
9375
{
9376
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9377 9378

#ifdef CONFIG_FAIR_GROUP_SCHED
9379 9380 9381 9382 9383 9384
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9385

9386
	/* Synchronize entity with its cfs_rq */
9387
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9388
	attach_entity_load_avg(cfs_rq, se);
9389
	update_tg_load_avg(cfs_rq, false);
9390
	propagate_entity_cfs_rq(se);
9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9416 9417 9418 9419

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9420

9421 9422 9423 9424 9425 9426 9427 9428
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9429

9430
	if (task_on_rq_queued(p)) {
9431
		/*
9432 9433 9434
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9435
		 */
9436 9437 9438 9439
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9440
	}
9441 9442
}

9443 9444 9445 9446 9447 9448 9449 9450 9451
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9452 9453 9454 9455 9456 9457 9458
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9459 9460
}

9461 9462
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9463
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9464 9465 9466 9467
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9468
#ifdef CONFIG_SMP
9469 9470 9471
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9472
	raw_spin_lock_init(&cfs_rq->removed.lock);
9473
#endif
9474 9475
}

P
Peter Zijlstra 已提交
9476
#ifdef CONFIG_FAIR_GROUP_SCHED
9477 9478 9479 9480 9481 9482 9483 9484
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9485
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9486
{
9487
	detach_task_cfs_rq(p);
9488
	set_task_rq(p, task_cpu(p));
9489 9490 9491 9492 9493

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9494
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9495
}
9496

9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9510 9511 9512 9513 9514 9515 9516 9517 9518
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9519
		if (tg->se)
9520 9521 9522 9523 9524 9525 9526 9527 9528 9529
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9530
	struct cfs_rq *cfs_rq;
9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9557
		init_entity_runnable_average(se);
9558 9559 9560 9561 9562 9563 9564 9565 9566 9567
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9579
		update_rq_clock(rq);
9580
		attach_entity_cfs_rq(se);
9581
		sync_throttle(tg, i);
9582 9583 9584 9585
		raw_spin_unlock_irq(&rq->lock);
	}
}

9586
void unregister_fair_sched_group(struct task_group *tg)
9587 9588
{
	unsigned long flags;
9589 9590
	struct rq *rq;
	int cpu;
9591

9592 9593 9594
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9595

9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9628
	if (!parent) {
9629
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9630 9631
		se->depth = 0;
	} else {
9632
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9633 9634
		se->depth = parent->depth + 1;
	}
9635 9636

	se->my_q = cfs_rq;
9637 9638
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9663 9664
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9665 9666

		/* Propagate contribution to hierarchy */
9667
		rq_lock_irqsave(rq, &rf);
9668
		update_rq_clock(rq);
9669
		for_each_sched_entity(se) {
9670
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9671 9672
			update_cfs_shares(se);
		}
9673
		rq_unlock_irqrestore(rq, &rf);
9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9689 9690
void online_fair_sched_group(struct task_group *tg) { }

9691
void unregister_fair_sched_group(struct task_group *tg) { }
9692 9693 9694

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9695

9696
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9697 9698 9699 9700 9701 9702 9703 9704 9705
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9706
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9707 9708 9709 9710

	return rr_interval;
}

9711 9712 9713
/*
 * All the scheduling class methods:
 */
9714
const struct sched_class fair_sched_class = {
9715
	.next			= &idle_sched_class,
9716 9717 9718
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9719
	.yield_to_task		= yield_to_task_fair,
9720

I
Ingo Molnar 已提交
9721
	.check_preempt_curr	= check_preempt_wakeup,
9722 9723 9724 9725

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9726
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9727
	.select_task_rq		= select_task_rq_fair,
9728
	.migrate_task_rq	= migrate_task_rq_fair,
9729

9730 9731
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9732

9733
	.task_dead		= task_dead_fair,
9734
	.set_cpus_allowed	= set_cpus_allowed_common,
9735
#endif
9736

9737
	.set_curr_task          = set_curr_task_fair,
9738
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9739
	.task_fork		= task_fork_fair,
9740 9741

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9742
	.switched_from		= switched_from_fair,
9743
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9744

9745 9746
	.get_rr_interval	= get_rr_interval_fair,

9747 9748
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9749
#ifdef CONFIG_FAIR_GROUP_SCHED
9750
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9751
#endif
9752 9753 9754
};

#ifdef CONFIG_SCHED_DEBUG
9755
void print_cfs_stats(struct seq_file *m, int cpu)
9756
{
9757
	struct cfs_rq *cfs_rq, *pos;
9758

9759
	rcu_read_lock();
9760
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9761
		print_cfs_rq(m, cpu, cfs_rq);
9762
	rcu_read_unlock();
9763
}
9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9785 9786 9787 9788 9789 9790

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9791
#ifdef CONFIG_NO_HZ_COMMON
9792
	nohz.next_balance = jiffies;
9793 9794 9795 9796 9797
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}