fair.c 266.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
355
/* Iterate thr' all leaf cfs_rq's on a runqueue */
356 357 358
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
359 360

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
361
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
362 363 364
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
365
		return se->cfs_rq;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	return NULL;
P
Peter Zijlstra 已提交
368 369 370 371 372 373 374
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

375 376 377 378 379 380 381 382 383 384 385 386 387
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
388 389
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

407 408 409 410 411 412
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
413

414 415 416
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
417 418 419
}


P
Peter Zijlstra 已提交
420 421
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
422

P
Peter Zijlstra 已提交
423
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424
{
P
Peter Zijlstra 已提交
425
	return &task_rq(p)->cfs;
426 427
}

P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

442 443 444 445 446 447 448 449
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

450 451
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
452 453 454 455 456 457

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

458 459 460 461 462
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
463 464
#endif	/* CONFIG_FAIR_GROUP_SCHED */

465
static __always_inline
466
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 468 469 470 471

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

472
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473
{
474
	s64 delta = (s64)(vruntime - max_vruntime);
475
	if (delta > 0)
476
		max_vruntime = vruntime;
477

478
	return max_vruntime;
479 480
}

481
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

490 491 492 493 494 495
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

496 497
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
498
	struct sched_entity *curr = cfs_rq->curr;
499
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500

501 502
	u64 vruntime = cfs_rq->min_vruntime;

503 504 505 506 507 508
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
509

510 511 512
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
513

514
		if (!curr)
515 516 517 518 519
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

520
	/* ensure we never gain time by being placed backwards. */
521
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 523 524 525
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
526 527
}

528 529 530
/*
 * Enqueue an entity into the rb-tree:
 */
531
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532
{
533
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 535
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
536
	bool leftmost = true;
537 538 539 540 541 542 543 544 545 546 547

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
548
		if (entity_before(se, entry)) {
549 550 551
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
552
			leftmost = false;
553 554 555 556
		}
	}

	rb_link_node(&se->run_node, parent, link);
557 558
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
559 560
}

561
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562
{
563
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 565
}

566
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567
{
568
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 570 571 572 573

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
574 575
}

576 577 578 579 580 581 582 583 584 585 586
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
587
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588
{
589
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590

591 592
	if (!last)
		return NULL;
593 594

	return rb_entry(last, struct sched_entity, run_node);
595 596
}

597 598 599 600
/**************************************************************
 * Scheduling class statistics methods:
 */

601
int sched_proc_update_handler(struct ctl_table *table, int write,
602
		void __user *buffer, size_t *lenp,
603 604
		loff_t *ppos)
{
605
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606
	unsigned int factor = get_update_sysctl_factor();
607 608 609 610 611 612 613

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

614 615 616 617 618 619 620
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

621 622 623
	return 0;
}
#endif
624

625
/*
626
 * delta /= w
627
 */
628
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629
{
630
	if (unlikely(se->load.weight != NICE_0_LOAD))
631
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 633 634 635

	return delta;
}

636 637 638
/*
 * The idea is to set a period in which each task runs once.
 *
639
 * When there are too many tasks (sched_nr_latency) we have to stretch
640 641 642 643
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
644 645
static u64 __sched_period(unsigned long nr_running)
{
646 647 648 649
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
650 651
}

652 653 654 655
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
656
 * s = p*P[w/rw]
657
 */
P
Peter Zijlstra 已提交
658
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659
{
M
Mike Galbraith 已提交
660
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661

M
Mike Galbraith 已提交
662
	for_each_sched_entity(se) {
L
Lin Ming 已提交
663
		struct load_weight *load;
664
		struct load_weight lw;
L
Lin Ming 已提交
665 666 667

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
668

M
Mike Galbraith 已提交
669
		if (unlikely(!se->on_rq)) {
670
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
671 672 673 674

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
675
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
676 677
	}
	return slice;
678 679
}

680
/*
A
Andrei Epure 已提交
681
 * We calculate the vruntime slice of a to-be-inserted task.
682
 *
683
 * vs = s/w
684
 */
685
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
686
{
687
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 689
}

690
#ifdef CONFIG_SMP
691
#include "pelt.h"
692 693
#include "sched-pelt.h"

694
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 696
static unsigned long task_h_load(struct task_struct *p);

697 698
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
699
{
700
	struct sched_avg *sa = &se->avg;
701

702 703
	memset(sa, 0, sizeof(*sa));

704 705 706 707 708 709 710
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
711 712
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

713 714
	se->runnable_weight = se->load.weight;

715
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716
}
717

718
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719
static void attach_entity_cfs_rq(struct sched_entity *se);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
734
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735
 *
736
 * where n denotes the nth task and cpu_scale the CPU capacity.
737
 *
738 739
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
740 741 742 743 744 745 746 747 748 749 750
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
751 752
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 754 755 756 757 758 759 760 761 762 763 764

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
765 766 767 768 769 770 771

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
772
			update_cfs_rq_load_avg(now, cfs_rq);
773
			attach_entity_load_avg(cfs_rq, se, 0);
774 775 776 777 778
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
779
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 781 782 783
			return;
		}
	}

784
	attach_entity_cfs_rq(se);
785 786
}

787
#else /* !CONFIG_SMP */
788
void init_entity_runnable_average(struct sched_entity *se)
789 790
{
}
791 792 793
void post_init_entity_util_avg(struct sched_entity *se)
{
}
794 795 796
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
797
#endif /* CONFIG_SMP */
798

799
/*
800
 * Update the current task's runtime statistics.
801
 */
802
static void update_curr(struct cfs_rq *cfs_rq)
803
{
804
	struct sched_entity *curr = cfs_rq->curr;
805
	u64 now = rq_clock_task(rq_of(cfs_rq));
806
	u64 delta_exec;
807 808 809 810

	if (unlikely(!curr))
		return;

811 812
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
813
		return;
814

I
Ingo Molnar 已提交
815
	curr->exec_start = now;
816

817 818 819 820
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
821
	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 823 824 825

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

826 827 828
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

829
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830
		cgroup_account_cputime(curtask, delta_exec);
831
		account_group_exec_runtime(curtask, delta_exec);
832
	}
833 834

	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 836
}

837 838 839 840 841
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

842
static inline void
843
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844
{
845 846 847 848 849 850 851
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 853

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 855
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
856

857
	__schedstat_set(se->statistics.wait_start, wait_start);
858 859
}

860
static inline void
861 862 863
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
864 865
	u64 delta;

866 867 868 869
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 871 872 873 874 875 876 877 878

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
879
			__schedstat_set(se->statistics.wait_start, delta);
880 881 882 883 884
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

885
	__schedstat_set(se->statistics.wait_max,
886
		      max(schedstat_val(se->statistics.wait_max), delta));
887 888 889
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
890 891
}

892
static inline void
893 894 895
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
896 897 898 899 900 901 902
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
903 904 905 906

	if (entity_is_task(se))
		tsk = task_of(se);

907 908
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 910 911 912

		if ((s64)delta < 0)
			delta = 0;

913
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914
			__schedstat_set(se->statistics.sleep_max, delta);
915

916 917
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 919 920 921 922 923

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
924 925
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931
			__schedstat_set(se->statistics.block_max, delta);
932

933 934
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937

		if (tsk) {
			if (tsk->in_iowait) {
938 939
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
958 959
}

960 961 962
/*
 * Task is being enqueued - update stats:
 */
963
static inline void
964
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965
{
966 967 968
	if (!schedstat_enabled())
		return;

969 970 971 972
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
973
	if (se != cfs_rq->curr)
974
		update_stats_wait_start(cfs_rq, se);
975 976 977

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
978 979 980
}

static inline void
981
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985 986

	if (!schedstat_enabled())
		return;

987 988 989 990
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
991
	if (se != cfs_rq->curr)
992
		update_stats_wait_end(cfs_rq, se);
993

994 995
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
996

997
		if (tsk->state & TASK_INTERRUPTIBLE)
998
			__schedstat_set(se->statistics.sleep_start,
999 1000
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001
			__schedstat_set(se->statistics.block_start,
1002
				      rq_clock(rq_of(cfs_rq)));
1003 1004 1005
	}
}

1006 1007 1008 1009
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1010
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 1012 1013 1014
{
	/*
	 * We are starting a new run period:
	 */
1015
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 1017 1018 1019 1020 1021
}

/**************************************************
 * Scheduling class queueing methods:
 */

1022 1023
#ifdef CONFIG_NUMA_BALANCING
/*
1024 1025 1026
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1027
 */
1028 1029
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 1031 1032

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1033

1034 1035 1036
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1084
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 1086 1087
	unsigned int scan, floor;
	unsigned int windows = 1;

1088 1089
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1090 1091 1092 1093 1094 1095
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1115 1116
static unsigned int task_scan_max(struct task_struct *p)
{
1117 1118
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1119 1120 1121

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1137 1138 1139
	return max(smin, smax);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1202 1203 1204 1205 1206
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1207
/*
1208
 * The averaged statistics, shared & private, memory & CPU,
1209 1210 1211 1212 1213
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214
{
1215
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 1217 1218 1219
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1220
	if (!p->numa_faults)
1221 1222
		return 0;

1223 1224
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 1226
}

1227 1228 1229 1230 1231
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1232 1233
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 1235
}

1236 1237
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1238 1239
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1343 1344 1345 1346 1347 1348
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1349 1350
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1351
{
1352
	unsigned long faults, total_faults;
1353

1354
	if (!p->numa_faults)
1355 1356 1357 1358 1359 1360 1361
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1362
	faults = task_faults(p, nid);
1363 1364
	faults += score_nearby_nodes(p, nid, dist, true);

1365
	return 1000 * faults / total_faults;
1366 1367
}

1368 1369
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1370
{
1371 1372 1373 1374 1375 1376 1377 1378
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1379 1380
		return 0;

1381
	faults = group_faults(p, nid);
1382 1383
	faults += score_nearby_nodes(p, nid, dist, false);

1384
	return 1000 * faults / total_faults;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1427 1428
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1429
	 */
1430 1431
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1432 1433 1434
		return true;

	/*
1435 1436 1437 1438 1439 1440
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1441
	 */
1442 1443
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 1445
}

1446
static unsigned long weighted_cpuload(struct rq *rq);
1447 1448
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1449
static unsigned long capacity_of(int cpu);
1450

1451
/* Cached statistics for all CPUs within a node */
1452
struct numa_stats {
1453
	unsigned long nr_running;
1454
	unsigned long load;
1455 1456

	/* Total compute capacity of CPUs on a node */
1457
	unsigned long compute_capacity;
1458 1459

	/* Approximate capacity in terms of runnable tasks on a node */
1460
	unsigned long task_capacity;
1461
	int has_free_capacity;
1462
};
1463

1464 1465 1466 1467 1468
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1469 1470
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1471 1472 1473 1474 1475 1476

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1477
		ns->load += weighted_cpuload(rq);
1478
		ns->compute_capacity += capacity_of(cpu);
1479 1480

		cpus++;
1481 1482
	}

1483 1484 1485 1486 1487
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1488 1489
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1490 1491 1492 1493
	 */
	if (!cpus)
		return;

1494 1495 1496 1497 1498 1499
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1500
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1501 1502
}

1503 1504
struct task_numa_env {
	struct task_struct *p;
1505

1506 1507
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1508

1509
	struct numa_stats src_stats, dst_stats;
1510

1511
	int imbalance_pct;
1512
	int dist;
1513 1514 1515

	struct task_struct *best_task;
	long best_imp;
1516 1517 1518
	int best_cpu;
};

1519 1520 1521 1522 1523
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1524 1525
	if (p)
		get_task_struct(p);
1526 1527 1528 1529 1530 1531

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1532
static bool load_too_imbalanced(long src_load, long dst_load,
1533 1534
				struct task_numa_env *env)
{
1535 1536
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1548 1549

	/* We care about the slope of the imbalance, not the direction. */
1550 1551
	if (dst_load < src_load)
		swap(dst_load, src_load);
1552 1553

	/* Is the difference below the threshold? */
1554 1555
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1556 1557 1558 1559 1560
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1561
	 * Compare it with the old imbalance.
1562
	 */
1563
	orig_src_load = env->src_stats.load;
1564
	orig_dst_load = env->dst_stats.load;
1565

1566 1567
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1568

1569 1570 1571 1572 1573
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1574 1575
}

1576 1577 1578 1579 1580 1581
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1582
static void task_numa_compare(struct task_numa_env *env,
1583
			      long taskimp, long groupimp, bool maymove)
1584 1585 1586
{
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1587
	long src_load, dst_load;
1588
	long load;
1589
	long imp = env->p->numa_group ? groupimp : taskimp;
1590
	long moveimp = imp;
1591
	int dist = env->dist;
1592 1593

	rcu_read_lock();
1594 1595
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1596 1597
		cur = NULL;

1598 1599 1600 1601 1602 1603 1604
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1605 1606 1607 1608 1609 1610 1611
	if (!cur) {
		if (maymove || imp > env->best_imp)
			goto assign;
		else
			goto unlock;
	}

1612 1613 1614 1615
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1616
	 * the value is, the more remote accesses that would be expected to
1617 1618
	 * be incurred if the tasks were swapped.
	 */
1619 1620 1621
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1622

1623 1624 1625 1626 1627 1628 1629
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
	if (cur->numa_group == env->p->numa_group) {
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1630
		/*
1631 1632
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1633
		 */
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		if (cur->numa_group)
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
		if (cur->numa_group && env->p->numa_group)
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1647 1648
	}

1649
	if (imp <= env->best_imp)
1650 1651
		goto unlock;

1652 1653 1654
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
		imp = moveimp - 1;
		cur = NULL;
1655
		goto assign;
1656
	}
1657 1658 1659 1660

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1661 1662 1663 1664
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1665 1666
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1667

1668
	if (load_too_imbalanced(src_load, dst_load, env))
1669 1670
		goto unlock;

1671
assign:
1672 1673 1674 1675
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1676 1677
	if (!cur) {
		/*
1678
		 * select_idle_siblings() uses an per-CPU cpumask that
1679 1680 1681
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1682 1683
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1684 1685
		local_irq_enable();
	}
1686

1687 1688 1689 1690 1691
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1692 1693
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1694
{
1695 1696
	long src_load, dst_load, load;
	bool maymove = false;
1697 1698
	int cpu;

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1709 1710
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1711
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1712 1713 1714
			continue;

		env->dst_cpu = cpu;
1715
		task_numa_compare(env, taskimp, groupimp, maymove);
1716 1717 1718
	}
}

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1736 1737 1738
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1739 1740 1741 1742 1743
		return true;

	return false;
}

1744 1745 1746 1747
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1748

1749
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1750
		.src_nid = task_node(p),
1751 1752 1753 1754 1755

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1756
		.best_cpu = -1,
1757 1758
	};
	struct sched_domain *sd;
1759
	unsigned long taskweight, groupweight;
1760
	int nid, ret, dist;
1761
	long taskimp, groupimp;
1762

1763
	/*
1764 1765 1766 1767 1768 1769
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1770 1771
	 */
	rcu_read_lock();
1772
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1773 1774
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1775 1776
	rcu_read_unlock();

1777 1778 1779 1780 1781 1782 1783
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1784
		p->numa_preferred_nid = task_node(p);
1785 1786 1787
		return -EINVAL;
	}

1788
	env.dst_nid = p->numa_preferred_nid;
1789 1790 1791 1792 1793 1794
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1795
	update_numa_stats(&env.dst_stats, env.dst_nid);
1796

1797
	/* Try to find a spot on the preferred nid. */
1798 1799
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1800

1801 1802 1803 1804 1805 1806 1807
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1808
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1809 1810 1811
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1812

1813
			dist = node_distance(env.src_nid, env.dst_nid);
1814 1815 1816 1817 1818
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1819

1820
			/* Only consider nodes where both task and groups benefit */
1821 1822
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1823
			if (taskimp < 0 && groupimp < 0)
1824 1825
				continue;

1826
			env.dist = dist;
1827 1828
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1829 1830
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1831 1832 1833
		}
	}

1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1842
	if (p->numa_group) {
1843 1844
		struct numa_group *ng = p->numa_group;

1845 1846 1847 1848 1849
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1850
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1851 1852 1853 1854 1855 1856
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1857

1858 1859 1860 1861
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1862
	p->numa_scan_period = task_scan_start(p);
1863

1864
	if (env.best_task == NULL) {
1865 1866 1867
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1868 1869 1870 1871
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1872 1873
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1874 1875
	put_task_struct(env.best_task);
	return ret;
1876 1877
}

1878 1879 1880
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1881 1882
	unsigned long interval = HZ;

1883
	/* This task has no NUMA fault statistics yet */
1884
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1885 1886
		return;

1887
	/* Periodically retry migrating the task to the preferred node */
1888
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1889
	p->numa_migrate_retry = jiffies + interval;
1890 1891

	/* Success if task is already running on preferred CPU */
1892
	if (task_node(p) == p->numa_preferred_nid)
1893 1894 1895
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1896
	task_numa_migrate(p);
1897 1898
}

1899
/*
1900
 * Find out how many nodes on the workload is actively running on. Do this by
1901 1902 1903 1904
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1905
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1906 1907
{
	unsigned long faults, max_faults = 0;
1908
	int nid, active_nodes = 0;
1909 1910 1911 1912 1913 1914 1915 1916 1917

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1918 1919
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1920
	}
1921 1922 1923

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1924 1925
}

1926 1927 1928
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1929 1930 1931
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1932 1933
 */
#define NUMA_PERIOD_SLOTS 10
1934
#define NUMA_PERIOD_THRESHOLD 7
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1946
	int lr_ratio, ps_ratio;
1947 1948 1949 1950 1951 1952 1953 1954
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1955 1956 1957
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1958
	 */
1959
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1995 1996 1997 1998 1999
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2000 2001 2002
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2003
		 */
2004 2005
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2006 2007 2008 2009 2010 2011 2012
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2031
		delta = p->se.avg.load_sum;
2032
		*period = LOAD_AVG_MAX;
2033 2034 2035 2036 2037 2038 2039 2040
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2088
		nodemask_t max_group = NODE_MASK_NONE;
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2122 2123
		if (!max_faults)
			break;
2124 2125 2126 2127 2128
		nodes = max_group;
	}
	return nid;
}

2129 2130
static void task_numa_placement(struct task_struct *p)
{
2131 2132
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2133
	unsigned long fault_types[2] = { 0, 0 };
2134 2135
	unsigned long total_faults;
	u64 runtime, period;
2136
	spinlock_t *group_lock = NULL;
2137

2138 2139 2140 2141 2142
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2143
	seq = READ_ONCE(p->mm->numa_scan_seq);
2144 2145 2146
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2147
	p->numa_scan_period_max = task_scan_max(p);
2148

2149 2150 2151 2152
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2153 2154 2155
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2156
		spin_lock_irq(group_lock);
2157 2158
	}

2159 2160
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2161 2162
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2163
		unsigned long faults = 0, group_faults = 0;
2164
		int priv;
2165

2166
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2167
			long diff, f_diff, f_weight;
2168

2169 2170 2171 2172
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2173

2174
			/* Decay existing window, copy faults since last scan */
2175 2176 2177
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2178

2179 2180 2181 2182 2183 2184 2185 2186
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2187
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2188
				   (total_faults + 1);
2189 2190
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2191

2192 2193 2194
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2195
			p->total_numa_faults += diff;
2196
			if (p->numa_group) {
2197 2198 2199 2200 2201 2202 2203 2204 2205
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2206
				p->numa_group->total_faults += diff;
2207
				group_faults += p->numa_group->faults[mem_idx];
2208
			}
2209 2210
		}

2211 2212 2213 2214
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2215 2216 2217 2218 2219 2220 2221

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2222 2223
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2224
	if (p->numa_group) {
2225
		numa_group_count_active_nodes(p->numa_group);
2226
		spin_unlock_irq(group_lock);
2227
		max_nid = preferred_group_nid(p, max_group_nid);
2228 2229
	}

2230 2231 2232 2233 2234 2235 2236
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2237
	}
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2251 2252
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2253 2254 2255 2256 2257 2258 2259 2260 2261
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2262
				    4*nr_node_ids*sizeof(unsigned long);
2263 2264 2265 2266 2267 2268

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2269 2270
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2271
		spin_lock_init(&grp->lock);
2272
		grp->gid = p->pid;
2273
		/* Second half of the array tracks nids where faults happen */
2274 2275
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2276

2277
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2278
			grp->faults[i] = p->numa_faults[i];
2279

2280
		grp->total_faults = p->total_numa_faults;
2281

2282 2283 2284 2285 2286
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2287
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2288 2289

	if (!cpupid_match_pid(tsk, cpupid))
2290
		goto no_join;
2291 2292 2293

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2294
		goto no_join;
2295 2296 2297

	my_grp = p->numa_group;
	if (grp == my_grp)
2298
		goto no_join;
2299 2300 2301 2302 2303 2304

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2305
		goto no_join;
2306 2307 2308 2309 2310

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2311
		goto no_join;
2312

2313 2314 2315 2316 2317 2318 2319
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2320

2321 2322 2323
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2324
	if (join && !get_numa_group(grp))
2325
		goto no_join;
2326 2327 2328 2329 2330 2331

	rcu_read_unlock();

	if (!join)
		return;

2332 2333
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2334

2335
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2336 2337
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2338
	}
2339 2340
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2341 2342 2343 2344 2345

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2346
	spin_unlock_irq(&grp->lock);
2347 2348 2349 2350

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2351 2352 2353 2354 2355
	return;

no_join:
	rcu_read_unlock();
	return;
2356 2357 2358 2359 2360
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2361
	void *numa_faults = p->numa_faults;
2362 2363
	unsigned long flags;
	int i;
2364 2365

	if (grp) {
2366
		spin_lock_irqsave(&grp->lock, flags);
2367
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2368
			grp->faults[i] -= p->numa_faults[i];
2369
		grp->total_faults -= p->total_numa_faults;
2370

2371
		grp->nr_tasks--;
2372
		spin_unlock_irqrestore(&grp->lock, flags);
2373
		RCU_INIT_POINTER(p->numa_group, NULL);
2374 2375 2376
		put_numa_group(grp);
	}

2377
	p->numa_faults = NULL;
2378
	kfree(numa_faults);
2379 2380
}

2381 2382 2383
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2384
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2385 2386
{
	struct task_struct *p = current;
2387
	bool migrated = flags & TNF_MIGRATED;
2388
	int cpu_node = task_node(current);
2389
	int local = !!(flags & TNF_FAULT_LOCAL);
2390
	struct numa_group *ng;
2391
	int priv;
2392

2393
	if (!static_branch_likely(&sched_numa_balancing))
2394 2395
		return;

2396 2397 2398 2399
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2400
	/* Allocate buffer to track faults on a per-node basis */
2401 2402
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2403
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2404

2405 2406
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2407
			return;
2408

2409
		p->total_numa_faults = 0;
2410
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2411
	}
2412

2413 2414 2415 2416 2417 2418 2419 2420
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2421
		if (!priv && !(flags & TNF_NO_GROUP))
2422
			task_numa_group(p, last_cpupid, flags, &priv);
2423 2424
	}

2425 2426 2427 2428 2429 2430
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2431 2432 2433 2434
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2435 2436
		local = 1;

2437
	task_numa_placement(p);
2438

2439 2440 2441 2442 2443
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2444 2445
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2446 2447
	if (migrated)
		p->numa_pages_migrated += pages;
2448 2449
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2450

2451 2452
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2453
	p->numa_faults_locality[local] += pages;
2454 2455
}

2456 2457
static void reset_ptenuma_scan(struct task_struct *p)
{
2458 2459 2460 2461 2462 2463 2464 2465
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2466
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2467 2468 2469
	p->mm->numa_scan_offset = 0;
}

2470 2471 2472 2473 2474 2475 2476 2477 2478
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2479
	u64 runtime = p->se.sum_exec_runtime;
2480
	struct vm_area_struct *vma;
2481
	unsigned long start, end;
2482
	unsigned long nr_pte_updates = 0;
2483
	long pages, virtpages;
2484

2485
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2499
	if (!mm->numa_next_scan) {
2500 2501
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2502 2503
	}

2504 2505 2506 2507 2508 2509 2510
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2511 2512
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2513
		p->numa_scan_period = task_scan_start(p);
2514
	}
2515

2516
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2517 2518 2519
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2520 2521 2522 2523 2524 2525
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2526 2527 2528
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2529
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2530 2531
	if (!pages)
		return;
2532

2533

2534 2535
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2536
	vma = find_vma(mm, start);
2537 2538
	if (!vma) {
		reset_ptenuma_scan(p);
2539
		start = 0;
2540 2541
		vma = mm->mmap;
	}
2542
	for (; vma; vma = vma->vm_next) {
2543
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2544
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2545
			continue;
2546
		}
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2558 2559 2560 2561 2562 2563
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2564

2565 2566 2567 2568
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2569
			nr_pte_updates = change_prot_numa(vma, start, end);
2570 2571

			/*
2572 2573 2574 2575 2576 2577
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2578 2579 2580
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2581
			virtpages -= (end - start) >> PAGE_SHIFT;
2582

2583
			start = end;
2584
			if (pages <= 0 || virtpages <= 0)
2585
				goto out;
2586 2587

			cond_resched();
2588
		} while (end != vma->vm_end);
2589
	}
2590

2591
out:
2592
	/*
P
Peter Zijlstra 已提交
2593 2594 2595 2596
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2597 2598
	 */
	if (vma)
2599
		mm->numa_scan_offset = start;
2600 2601 2602
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2639
	if (now > curr->node_stamp + period) {
2640
		if (!curr->node_stamp)
2641
			curr->numa_scan_period = task_scan_start(curr);
2642
		curr->node_stamp += period;
2643 2644 2645 2646 2647 2648 2649

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2650

2651 2652 2653 2654
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2655 2656 2657 2658 2659 2660 2661 2662

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2663

2664 2665
#endif /* CONFIG_NUMA_BALANCING */

2666 2667 2668 2669
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2670
	if (!parent_entity(se))
2671
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2672
#ifdef CONFIG_SMP
2673 2674 2675 2676 2677 2678
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2679
#endif
2680 2681 2682 2683 2684 2685 2686
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2687
	if (!parent_entity(se))
2688
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2689
#ifdef CONFIG_SMP
2690 2691
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2692
		list_del_init(&se->group_node);
2693
	}
2694
#endif
2695 2696 2697
	cfs_rq->nr_running--;
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2739 2740 2741 2742
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2743 2744 2745 2746 2747
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2748 2749 2750 2751 2752
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2779
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2780
			    unsigned long weight, unsigned long runnable)
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2791
	se->runnable_weight = runnable;
2792 2793 2794
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2795 2796 2797 2798 2799 2800 2801
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2818
	reweight_entity(cfs_rq, se, weight, weight);
2819 2820 2821
	load->inv_weight = sched_prio_to_wmult[prio];
}

2822
#ifdef CONFIG_FAIR_GROUP_SCHED
2823
#ifdef CONFIG_SMP
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2862
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2888 2889 2890 2891 2892 2893 2894 2895 2896
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2897
static long calc_group_shares(struct cfs_rq *cfs_rq)
2898
{
2899 2900 2901 2902
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2903

2904
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2905

2906
	tg_weight = atomic_long_read(&tg->load_avg);
2907

2908 2909 2910
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2911

2912
	shares = (tg_shares * load);
2913 2914
	if (tg_weight)
		shares /= tg_weight;
2915

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2928
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2929
}
2930 2931

/*
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2957 2958 2959
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2960 2961 2962 2963 2964 2965 2966
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2967 2968 2969 2970

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2971

2972 2973
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2974
#endif /* CONFIG_SMP */
2975

2976 2977
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2978 2979 2980 2981 2982
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2983
{
2984 2985
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
2986

2987
	if (!gcfs_rq)
2988 2989
		return;

2990
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
2991
		return;
2992

2993
#ifndef CONFIG_SMP
2994
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2995 2996

	if (likely(se->load.weight == shares))
2997
		return;
2998
#else
2999 3000
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3001
#endif
P
Peter Zijlstra 已提交
3002

3003
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3004
}
3005

P
Peter Zijlstra 已提交
3006
#else /* CONFIG_FAIR_GROUP_SCHED */
3007
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3008 3009 3010 3011
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3012
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3013
{
3014 3015
	struct rq *rq = rq_of(cfs_rq);

3016
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3017 3018 3019
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3020
		 * a real problem.
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3031
		cpufreq_update_util(rq, flags);
3032 3033 3034
	}
}

3035
#ifdef CONFIG_SMP
3036
#ifdef CONFIG_FAIR_GROUP_SCHED
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3050
 * Updating tg's load_avg is necessary before update_cfs_share().
3051
 */
3052
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3053
{
3054
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3055

3056 3057 3058 3059 3060 3061
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3062 3063 3064
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3065
	}
3066
}
3067

3068
/*
3069
 * Called within set_task_rq() right before setting a task's CPU. The
3070 3071 3072 3073 3074 3075
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3076 3077 3078
	u64 p_last_update_time;
	u64 n_last_update_time;

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3089 3090
	if (!(se->avg.last_update_time && prev))
		return;
3091 3092

#ifndef CONFIG_64BIT
3093
	{
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3108
	}
3109
#else
3110 3111
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3112
#endif
3113 3114
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3115
}
3116

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3128 3129 3130
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3131 3132 3133 3134 3135 3136 3137 3138
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3139
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3140 3141 3142
 *
 * And per (1) we have:
 *
3143
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3162 3163 3164 3165 3166 3167
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3168
 *
3169
 * So we'll have to approximate.. :/
3170
 *
3171
 * Given the constraint:
3172
 *
3173
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3174
 *
3175 3176
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3177
 *
3178
 * On removal, we'll assume each task is equally runnable; which yields:
3179
 *
3180
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3181
 *
3182
 * XXX: only do this for the part of runnable > running ?
3183 3184 3185
 *
 */

3186
static inline void
3187
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3188 3189 3190 3191 3192 3193 3194
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3195 3196 3197 3198 3199 3200 3201 3202
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3213
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3214
{
3215 3216 3217 3218
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3219

3220 3221
	if (!runnable_sum)
		return;
3222

3223
	gcfs_rq->prop_runnable_sum = 0;
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3248
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3249 3250 3251 3252 3253 3254
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3255 3256
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3257

3258 3259
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3260

3261 3262 3263 3264
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3265

3266 3267
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3268 3269
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3270

3271 3272
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3273

3274
	if (se->on_rq) {
3275 3276
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3277 3278 3279
	}
}

3280
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3281
{
3282 3283
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3284 3285 3286 3287 3288
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3289
	struct cfs_rq *cfs_rq, *gcfs_rq;
3290 3291 3292 3293

	if (entity_is_task(se))
		return 0;

3294 3295
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3296 3297
		return 0;

3298 3299
	gcfs_rq->propagate = 0;

3300 3301
	cfs_rq = cfs_rq_of(se);

3302
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3303

3304 3305
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3306 3307 3308 3309

	return 1;
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3329
	if (gcfs_rq->propagate)
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3340
#else /* CONFIG_FAIR_GROUP_SCHED */
3341

3342
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3343 3344 3345 3346 3347 3348

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3349
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3350

3351
#endif /* CONFIG_FAIR_GROUP_SCHED */
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3364 3365 3366 3367
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3368
 */
3369
static inline int
3370
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3371
{
3372
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3373
	struct sched_avg *sa = &cfs_rq->avg;
3374
	int decayed = 0;
3375

3376 3377
	if (cfs_rq->removed.nr) {
		unsigned long r;
3378
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3379 3380 3381 3382

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3383
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3384 3385 3386 3387
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3388
		sub_positive(&sa->load_avg, r);
3389
		sub_positive(&sa->load_sum, r * divider);
3390

3391
		r = removed_util;
3392
		sub_positive(&sa->util_avg, r);
3393
		sub_positive(&sa->util_sum, r * divider);
3394

3395
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3396 3397

		decayed = 1;
3398
	}
3399

3400
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3401

3402 3403 3404 3405
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3406

3407
	if (decayed)
3408
		cfs_rq_util_change(cfs_rq, 0);
3409

3410
	return decayed;
3411 3412
}

3413 3414 3415 3416 3417 3418 3419 3420
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3421
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3422
{
3423 3424 3425 3426 3427 3428 3429 3430 3431
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3432
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3451
	enqueue_load_avg(cfs_rq, se);
3452 3453
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3454 3455

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3456

3457
	cfs_rq_util_change(cfs_rq, flags);
3458 3459
}

3460 3461 3462 3463 3464 3465 3466 3467
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3468 3469
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3470
	dequeue_load_avg(cfs_rq, se);
3471 3472
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3473 3474

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3475

3476
	cfs_rq_util_change(cfs_rq, 0);
3477 3478
}

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3506 3507 3508 3509 3510 3511 3512 3513
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3514 3515 3516 3517 3518 3519
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3520
#ifndef CONFIG_64BIT
3521 3522
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3523
	u64 last_update_time_copy;
3524
	u64 last_update_time;
3525

3526 3527 3528 3529 3530
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3531 3532 3533

	return last_update_time;
}
3534
#else
3535 3536 3537 3538
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3539 3540
#endif

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3551
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3552 3553
}

3554 3555 3556 3557 3558 3559 3560
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3561
	unsigned long flags;
3562 3563

	/*
3564 3565 3566 3567 3568 3569 3570
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3571 3572
	 */

3573
	sync_entity_load_avg(se);
3574 3575 3576 3577 3578

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3579
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3580
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3581
}
3582

3583 3584
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3585
	return cfs_rq->avg.runnable_load_avg;
3586 3587 3588 3589 3590 3591 3592
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3593
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3594

3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3622
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3648 3649 3650 3651
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3652 3653 3654 3655 3656 3657 3658 3659 3660
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3661 3662 3663 3664 3665 3666 3667 3668
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3669 3670 3671 3672
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3673
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3701 3702
#else /* CONFIG_SMP */

3703 3704
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3705
#define DO_ATTACH	0x0
3706

3707
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3708
{
3709
	cfs_rq_util_change(cfs_rq, 0);
3710 3711
}

3712
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3713

3714
static inline void
3715
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3716 3717 3718
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3719
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3720 3721 3722 3723
{
	return 0;
}

3724 3725 3726 3727 3728 3729 3730
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3731
#endif /* CONFIG_SMP */
3732

P
Peter Zijlstra 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3742
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3743 3744 3745
#endif
}

3746 3747 3748
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3749
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3750

3751 3752 3753 3754 3755 3756
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3757
	if (initial && sched_feat(START_DEBIT))
3758
		vruntime += sched_vslice(cfs_rq, se);
3759

3760
	/* sleeps up to a single latency don't count. */
3761
	if (!initial) {
3762
		unsigned long thresh = sysctl_sched_latency;
3763

3764 3765 3766 3767 3768 3769
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3770

3771
		vruntime -= thresh;
3772 3773
	}

3774
	/* ensure we never gain time by being placed backwards. */
3775
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3776 3777
}

3778 3779
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3792
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3793
			     "stat_blocked and stat_runtime require the "
3794
			     "kernel parameter schedstats=enable or "
3795 3796 3797 3798 3799
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3819
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3831
static void
3832
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3833
{
3834 3835 3836
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3837
	/*
3838 3839
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3840
	 */
3841
	if (renorm && curr)
3842 3843
		se->vruntime += cfs_rq->min_vruntime;

3844 3845
	update_curr(cfs_rq);

3846
	/*
3847 3848 3849 3850
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3851
	 */
3852 3853 3854
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3855 3856 3857 3858 3859 3860 3861 3862
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3863
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3864
	update_cfs_group(se);
3865
	enqueue_runnable_load_avg(cfs_rq, se);
3866
	account_entity_enqueue(cfs_rq, se);
3867

3868
	if (flags & ENQUEUE_WAKEUP)
3869
		place_entity(cfs_rq, se, 0);
3870

3871
	check_schedstat_required();
3872 3873
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3874
	if (!curr)
3875
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3876
	se->on_rq = 1;
3877

3878
	if (cfs_rq->nr_running == 1) {
3879
		list_add_leaf_cfs_rq(cfs_rq);
3880 3881
		check_enqueue_throttle(cfs_rq);
	}
3882 3883
}

3884
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3885
{
3886 3887
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3888
		if (cfs_rq->last != se)
3889
			break;
3890 3891

		cfs_rq->last = NULL;
3892 3893
	}
}
P
Peter Zijlstra 已提交
3894

3895 3896 3897 3898
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3899
		if (cfs_rq->next != se)
3900
			break;
3901 3902

		cfs_rq->next = NULL;
3903
	}
P
Peter Zijlstra 已提交
3904 3905
}

3906 3907 3908 3909
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3910
		if (cfs_rq->skip != se)
3911
			break;
3912 3913

		cfs_rq->skip = NULL;
3914 3915 3916
	}
}

P
Peter Zijlstra 已提交
3917 3918
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3919 3920 3921 3922 3923
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3924 3925 3926

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3927 3928
}

3929
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3930

3931
static void
3932
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3933
{
3934 3935 3936 3937
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3938 3939 3940 3941 3942 3943 3944 3945 3946

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3947
	update_load_avg(cfs_rq, se, UPDATE_TG);
3948
	dequeue_runnable_load_avg(cfs_rq, se);
3949

3950
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3951

P
Peter Zijlstra 已提交
3952
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3953

3954
	if (se != cfs_rq->curr)
3955
		__dequeue_entity(cfs_rq, se);
3956
	se->on_rq = 0;
3957
	account_entity_dequeue(cfs_rq, se);
3958 3959

	/*
3960 3961 3962 3963
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3964
	 */
3965
	if (!(flags & DEQUEUE_SLEEP))
3966
		se->vruntime -= cfs_rq->min_vruntime;
3967

3968 3969 3970
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3971
	update_cfs_group(se);
3972 3973 3974 3975 3976 3977 3978 3979 3980

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3981 3982 3983 3984 3985
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3986
static void
I
Ingo Molnar 已提交
3987
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3988
{
3989
	unsigned long ideal_runtime, delta_exec;
3990 3991
	struct sched_entity *se;
	s64 delta;
3992

P
Peter Zijlstra 已提交
3993
	ideal_runtime = sched_slice(cfs_rq, curr);
3994
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3995
	if (delta_exec > ideal_runtime) {
3996
		resched_curr(rq_of(cfs_rq));
3997 3998 3999 4000 4001
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4013 4014
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4015

4016 4017
	if (delta < 0)
		return;
4018

4019
	if (delta > ideal_runtime)
4020
		resched_curr(rq_of(cfs_rq));
4021 4022
}

4023
static void
4024
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4025
{
4026 4027 4028 4029 4030 4031 4032
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4033
		update_stats_wait_end(cfs_rq, se);
4034
		__dequeue_entity(cfs_rq, se);
4035
		update_load_avg(cfs_rq, se, UPDATE_TG);
4036 4037
	}

4038
	update_stats_curr_start(cfs_rq, se);
4039
	cfs_rq->curr = se;
4040

I
Ingo Molnar 已提交
4041 4042 4043 4044 4045
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4046
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4047 4048 4049
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4050
	}
4051

4052
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4053 4054
}

4055 4056 4057
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4058 4059 4060 4061 4062 4063 4064
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4065 4066
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4067
{
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4079

4080 4081 4082 4083 4084
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4095 4096 4097
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4098

4099 4100 4101 4102 4103 4104
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4105 4106 4107 4108 4109 4110
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4111
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4112 4113

	return se;
4114 4115
}

4116
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4117

4118
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4119 4120 4121 4122 4123 4124
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4125
		update_curr(cfs_rq);
4126

4127 4128 4129
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4130
	check_spread(cfs_rq, prev);
4131

4132
	if (prev->on_rq) {
4133
		update_stats_wait_start(cfs_rq, prev);
4134 4135
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4136
		/* in !on_rq case, update occurred at dequeue */
4137
		update_load_avg(cfs_rq, prev, 0);
4138
	}
4139
	cfs_rq->curr = NULL;
4140 4141
}

P
Peter Zijlstra 已提交
4142 4143
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4144 4145
{
	/*
4146
	 * Update run-time statistics of the 'current'.
4147
	 */
4148
	update_curr(cfs_rq);
4149

4150 4151 4152
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4153
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4154
	update_cfs_group(curr);
4155

P
Peter Zijlstra 已提交
4156 4157 4158 4159 4160
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4161
	if (queued) {
4162
		resched_curr(rq_of(cfs_rq));
4163 4164
		return;
	}
P
Peter Zijlstra 已提交
4165 4166 4167 4168 4169 4170 4171 4172
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4173
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4174
		check_preempt_tick(cfs_rq, curr);
4175 4176
}

4177 4178 4179 4180 4181 4182

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4183 4184

#ifdef HAVE_JUMP_LABEL
4185
static struct static_key __cfs_bandwidth_used;
4186 4187 4188

static inline bool cfs_bandwidth_used(void)
{
4189
	return static_key_false(&__cfs_bandwidth_used);
4190 4191
}

4192
void cfs_bandwidth_usage_inc(void)
4193
{
4194
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4195 4196 4197 4198
}

void cfs_bandwidth_usage_dec(void)
{
4199
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4200 4201 4202 4203 4204 4205 4206
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4207 4208
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4209 4210
#endif /* HAVE_JUMP_LABEL */

4211 4212 4213 4214 4215 4216 4217 4218
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4219 4220 4221 4222 4223 4224

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4225 4226 4227 4228 4229 4230 4231
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4232
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4242
	cfs_b->expires_seq++;
P
Paul Turner 已提交
4243 4244
}

4245 4246 4247 4248 4249
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4250 4251 4252 4253
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4254
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4255

4256
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4257 4258
}

4259 4260
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4261 4262 4263
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4264
	u64 amount = 0, min_amount, expires;
4265
	int expires_seq;
4266 4267 4268 4269 4270 4271 4272

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4273
	else {
P
Peter Zijlstra 已提交
4274
		start_cfs_bandwidth(cfs_b);
4275 4276 4277 4278 4279 4280

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4281
	}
4282
	expires_seq = cfs_b->expires_seq;
P
Paul Turner 已提交
4283
	expires = cfs_b->runtime_expires;
4284 4285 4286
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4287 4288 4289 4290 4291
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
4292 4293
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
P
Paul Turner 已提交
4294
		cfs_rq->runtime_expires = expires;
4295
	}
4296 4297

	return cfs_rq->runtime_remaining > 0;
4298 4299
}

P
Paul Turner 已提交
4300 4301 4302 4303 4304
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4305
{
P
Paul Turner 已提交
4306 4307 4308
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4309
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4310 4311
		return;

P
Paul Turner 已提交
4312 4313 4314 4315 4316 4317 4318 4319 4320
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4321
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
P
Paul Turner 已提交
4322
	 */
4323
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
P
Paul Turner 已提交
4324 4325 4326 4327 4328 4329 4330 4331
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4332
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4333 4334
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4335
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4336 4337 4338
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4339 4340
		return;

4341 4342 4343 4344 4345
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4346
		resched_curr(rq_of(cfs_rq));
4347 4348
}

4349
static __always_inline
4350
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4351
{
4352
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4353 4354 4355 4356 4357
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4358 4359
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4360
	return cfs_bandwidth_used() && cfs_rq->throttled;
4361 4362
}

4363 4364 4365
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4366
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4393
		/* adjust cfs_rq_clock_task() */
4394
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4395
					     cfs_rq->throttled_clock_task;
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4406 4407
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4408
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4409 4410 4411 4412 4413
	cfs_rq->throttle_count++;

	return 0;
}

4414
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4415 4416 4417 4418 4419
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4420
	bool empty;
4421 4422 4423

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4424
	/* freeze hierarchy runnable averages while throttled */
4425 4426 4427
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4445
		sub_nr_running(rq, task_delta);
4446 4447

	cfs_rq->throttled = 1;
4448
	cfs_rq->throttled_clock = rq_clock(rq);
4449
	raw_spin_lock(&cfs_b->lock);
4450
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4451

4452 4453 4454 4455 4456
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4457 4458 4459 4460 4461 4462 4463 4464

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4465 4466 4467
	raw_spin_unlock(&cfs_b->lock);
}

4468
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4469 4470 4471 4472 4473 4474 4475
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4476
	se = cfs_rq->tg->se[cpu_of(rq)];
4477 4478

	cfs_rq->throttled = 0;
4479 4480 4481

	update_rq_clock(rq);

4482
	raw_spin_lock(&cfs_b->lock);
4483
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4484 4485 4486
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4487 4488 4489
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4508
		add_nr_running(rq, task_delta);
4509

4510
	/* Determine whether we need to wake up potentially idle CPU: */
4511
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4512
		resched_curr(rq);
4513 4514 4515 4516 4517 4518
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4519 4520
	u64 runtime;
	u64 starting_runtime = remaining;
4521 4522 4523 4524 4525

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4526
		struct rq_flags rf;
4527

4528
		rq_lock(rq, &rf);
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4545
		rq_unlock(rq, &rf);
4546 4547 4548 4549 4550 4551

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4552
	return starting_runtime - remaining;
4553 4554
}

4555 4556 4557 4558 4559 4560 4561 4562
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4563
	u64 runtime, runtime_expires;
4564
	int throttled;
4565 4566 4567

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4568
		goto out_deactivate;
4569

4570
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4571
	cfs_b->nr_periods += overrun;
4572

4573 4574 4575 4576 4577 4578
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4579 4580 4581

	__refill_cfs_bandwidth_runtime(cfs_b);

4582 4583 4584
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4585
		return 0;
4586 4587
	}

4588 4589 4590
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4591 4592 4593
	runtime_expires = cfs_b->runtime_expires;

	/*
4594 4595 4596 4597 4598
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4599
	 */
4600 4601
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4602 4603 4604 4605 4606 4607 4608
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4609 4610

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4611
	}
4612

4613 4614 4615 4616 4617 4618 4619
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4620

4621 4622 4623 4624
	return 0;

out_deactivate:
	return 1;
4625
}
4626

4627 4628 4629 4630 4631 4632 4633
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4634 4635 4636 4637
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4638
 * hrtimer base being cleared by hrtimer_start. In the case of
4639 4640
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4666 4667 4668
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4698 4699 4700
	if (!cfs_bandwidth_used())
		return;

4701
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4717 4718 4719
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4720
		return;
4721
	}
4722

4723
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4724
		runtime = cfs_b->runtime;
4725

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4736
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4737 4738 4739
	raw_spin_unlock(&cfs_b->lock);
}

4740 4741 4742 4743 4744 4745 4746
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4747 4748 4749
	if (!cfs_bandwidth_used())
		return;

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4778
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4779 4780
}

4781
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4782
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4783
{
4784
	if (!cfs_bandwidth_used())
4785
		return false;
4786

4787
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4788
		return false;
4789 4790 4791 4792 4793 4794

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4795
		return true;
4796 4797

	throttle_cfs_rq(cfs_rq);
4798
	return true;
4799
}
4800 4801 4802 4803 4804

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4805

4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4818
	raw_spin_lock(&cfs_b->lock);
4819
	for (;;) {
P
Peter Zijlstra 已提交
4820
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4821 4822 4823 4824 4825
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4826 4827
	if (idle)
		cfs_b->period_active = 0;
4828
	raw_spin_unlock(&cfs_b->lock);
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4841
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4853
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4854
{
4855 4856
	u64 overrun;

P
Peter Zijlstra 已提交
4857
	lockdep_assert_held(&cfs_b->lock);
4858

4859 4860 4861 4862 4863 4864 4865 4866
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4867 4868 4869 4870
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4871 4872 4873 4874
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4875 4876 4877 4878
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4879
/*
4880
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4881 4882 4883 4884 4885 4886
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4887 4888
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4889
	struct task_group *tg;
4890

4891 4892 4893 4894 4895 4896
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4897 4898 4899 4900 4901

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4902
	rcu_read_unlock();
4903 4904
}

4905
/* cpu offline callback */
4906
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4907
{
4908 4909 4910 4911 4912 4913 4914
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4915 4916 4917 4918 4919 4920 4921 4922

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4923
		cfs_rq->runtime_remaining = 1;
4924
		/*
4925
		 * Offline rq is schedulable till CPU is completely disabled
4926 4927 4928 4929
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4930 4931 4932
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4933
	rcu_read_unlock();
4934 4935 4936
}

#else /* CONFIG_CFS_BANDWIDTH */
4937 4938
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4939
	return rq_clock_task(rq_of(cfs_rq));
4940 4941
}

4942
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4943
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4944
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4945
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4946
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4947 4948 4949 4950 4951

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4963 4964 4965 4966 4967

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4968 4969
#endif

4970 4971 4972 4973 4974
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4975
static inline void update_runtime_enabled(struct rq *rq) {}
4976
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4977 4978 4979

#endif /* CONFIG_CFS_BANDWIDTH */

4980 4981 4982 4983
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4984 4985 4986 4987 4988 4989
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4990
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4991

4992
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4993 4994 4995 4996 4997 4998
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4999
				resched_curr(rq);
P
Peter Zijlstra 已提交
5000 5001
			return;
		}
5002
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5003 5004
	}
}
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5015
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5016 5017 5018 5019 5020
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5021
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5022 5023 5024 5025
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5026 5027 5028 5029

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5030 5031
#endif

5032 5033 5034 5035 5036
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5037
static void
5038
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5039 5040
{
	struct cfs_rq *cfs_rq;
5041
	struct sched_entity *se = &p->se;
5042

5043 5044 5045 5046 5047 5048 5049 5050
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5051 5052 5053 5054 5055 5056
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5057
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5058

5059
	for_each_sched_entity(se) {
5060
		if (se->on_rq)
5061 5062
			break;
		cfs_rq = cfs_rq_of(se);
5063
		enqueue_entity(cfs_rq, se, flags);
5064 5065 5066 5067 5068 5069

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5070
		 */
5071 5072
		if (cfs_rq_throttled(cfs_rq))
			break;
5073
		cfs_rq->h_nr_running++;
5074

5075
		flags = ENQUEUE_WAKEUP;
5076
	}
P
Peter Zijlstra 已提交
5077

P
Peter Zijlstra 已提交
5078
	for_each_sched_entity(se) {
5079
		cfs_rq = cfs_rq_of(se);
5080
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5081

5082 5083 5084
		if (cfs_rq_throttled(cfs_rq))
			break;

5085
		update_load_avg(cfs_rq, se, UPDATE_TG);
5086
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5087 5088
	}

Y
Yuyang Du 已提交
5089
	if (!se)
5090
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5091

5092
	hrtick_update(rq);
5093 5094
}

5095 5096
static void set_next_buddy(struct sched_entity *se);

5097 5098 5099 5100 5101
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5102
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5103 5104
{
	struct cfs_rq *cfs_rq;
5105
	struct sched_entity *se = &p->se;
5106
	int task_sleep = flags & DEQUEUE_SLEEP;
5107 5108 5109

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5110
		dequeue_entity(cfs_rq, se, flags);
5111 5112 5113 5114 5115 5116 5117 5118 5119

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5120
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5121

5122
		/* Don't dequeue parent if it has other entities besides us */
5123
		if (cfs_rq->load.weight) {
5124 5125
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5126 5127 5128 5129
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5130 5131
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5132
			break;
5133
		}
5134
		flags |= DEQUEUE_SLEEP;
5135
	}
P
Peter Zijlstra 已提交
5136

P
Peter Zijlstra 已提交
5137
	for_each_sched_entity(se) {
5138
		cfs_rq = cfs_rq_of(se);
5139
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5140

5141 5142 5143
		if (cfs_rq_throttled(cfs_rq))
			break;

5144
		update_load_avg(cfs_rq, se, UPDATE_TG);
5145
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5146 5147
	}

Y
Yuyang Du 已提交
5148
	if (!se)
5149
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5150

5151
	util_est_dequeue(&rq->cfs, p, task_sleep);
5152
	hrtick_update(rq);
5153 5154
}

5155
#ifdef CONFIG_SMP
5156 5157 5158 5159 5160

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5161
#ifdef CONFIG_NO_HZ_COMMON
5162 5163 5164 5165 5166
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5167
 * The exact cpuload calculated at every tick would be:
5168
 *
5169 5170
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5171 5172
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5173 5174 5175
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5176 5177 5178
 *
 * decay_load_missed() below does efficient calculation of
 *
5179 5180 5181 5182 5183 5184
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5185
 *
5186
 * The calculation is approximated on a 128 point scale.
5187 5188
 */
#define DEGRADE_SHIFT		7
5189 5190 5191 5192 5193 5194 5195 5196 5197

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5227 5228 5229 5230

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5231
	int has_blocked;		/* Idle CPUS has blocked load */
5232
	unsigned long next_balance;     /* in jiffy units */
5233
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5234 5235
} nohz ____cacheline_aligned;

5236
#endif /* CONFIG_NO_HZ_COMMON */
5237

5238
/**
5239
 * __cpu_load_update - update the rq->cpu_load[] statistics
5240 5241 5242 5243
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5244
 * Update rq->cpu_load[] statistics. This function is usually called every
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5271
 * term.
5272
 */
5273 5274
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5275
{
5276
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5288
		old_load = this_rq->cpu_load[i];
5289
#ifdef CONFIG_NO_HZ_COMMON
5290
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5291 5292 5293 5294 5295 5296 5297 5298 5299
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5300
#endif
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5314
/* Used instead of source_load when we know the type == 0 */
5315
static unsigned long weighted_cpuload(struct rq *rq)
5316
{
5317
	return cfs_rq_runnable_load_avg(&rq->cfs);
5318 5319
}

5320
#ifdef CONFIG_NO_HZ_COMMON
5321 5322
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5323
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5349
		cpu_load_update(this_rq, load, pending_updates);
5350 5351 5352
	}
}

5353 5354 5355 5356
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5357
static void cpu_load_update_idle(struct rq *this_rq)
5358 5359 5360 5361
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5362
	if (weighted_cpuload(this_rq))
5363 5364
		return;

5365
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5366 5367 5368
}

/*
5369 5370 5371 5372
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5373
 */
5374
void cpu_load_update_nohz_start(void)
5375 5376
{
	struct rq *this_rq = this_rq();
5377 5378 5379 5380 5381 5382

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5383
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5384 5385 5386 5387 5388 5389 5390
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5391
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5392 5393
	struct rq *this_rq = this_rq();
	unsigned long load;
5394
	struct rq_flags rf;
5395 5396 5397 5398

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5399
	load = weighted_cpuload(this_rq);
5400
	rq_lock(this_rq, &rf);
5401
	update_rq_clock(this_rq);
5402
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5403
	rq_unlock(this_rq, &rf);
5404
}
5405 5406 5407 5408 5409 5410 5411 5412
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5413
#ifdef CONFIG_NO_HZ_COMMON
5414 5415
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5416
#endif
5417 5418
	cpu_load_update(this_rq, load, 1);
}
5419 5420 5421 5422

/*
 * Called from scheduler_tick()
 */
5423
void cpu_load_update_active(struct rq *this_rq)
5424
{
5425
	unsigned long load = weighted_cpuload(this_rq);
5426 5427 5428 5429 5430

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5431 5432
}

5433
/*
5434
 * Return a low guess at the load of a migration-source CPU weighted
5435 5436 5437 5438 5439 5440 5441 5442
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5443
	unsigned long total = weighted_cpuload(rq);
5444 5445 5446 5447 5448 5449 5450 5451

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5452
 * Return a high guess at the load of a migration-target CPU weighted
5453 5454 5455 5456 5457
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5458
	unsigned long total = weighted_cpuload(rq);
5459 5460 5461 5462 5463 5464 5465

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5466
static unsigned long capacity_of(int cpu)
5467
{
5468
	return cpu_rq(cpu)->cpu_capacity;
5469 5470
}

5471 5472 5473 5474 5475
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5476 5477 5478
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5479
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5480
	unsigned long load_avg = weighted_cpuload(rq);
5481 5482

	if (nr_running)
5483
		return load_avg / nr_running;
5484 5485 5486 5487

	return 0;
}

P
Peter Zijlstra 已提交
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5505 5506
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5507
 *
M
Mike Galbraith 已提交
5508
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5521
 */
5522 5523
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5524 5525
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5526
	int factor = this_cpu_read(sd_llc_size);
5527

M
Mike Galbraith 已提交
5528 5529 5530 5531 5532
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5533 5534
}

5535
/*
5536 5537 5538
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5539
 *
5540 5541
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5542 5543 5544 5545
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5546
 */
5547
static int
5548
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5549
{
5550 5551 5552 5553 5554
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5555 5556 5557 5558 5559 5560
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5561
	 */
5562 5563
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5564

5565
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5566
		return this_cpu;
5567

5568
	return nr_cpumask_bits;
5569 5570
}

5571
static int
5572 5573
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5574 5575 5576 5577
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5578
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5579 5580 5581 5582

	if (sync) {
		unsigned long current_load = task_h_load(current);

5583
		if (current_load > this_eff_load)
5584
			return this_cpu;
5585

5586
		this_eff_load -= current_load;
5587 5588 5589 5590
	}

	task_load = task_h_load(p);

5591 5592 5593 5594
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5595

5596
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5597 5598 5599 5600
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5601

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5612 5613
}

5614
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5615
		       int this_cpu, int prev_cpu, int sync)
5616
{
5617
	int target = nr_cpumask_bits;
5618

5619
	if (sched_feat(WA_IDLE))
5620
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5621

5622 5623
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5624

5625
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5626 5627
	if (target == nr_cpumask_bits)
		return prev_cpu;
5628

5629 5630 5631
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5632 5633
}

5634
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5635 5636 5637

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5638
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5639 5640
}

5641 5642 5643
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5644 5645
 *
 * Assumes p is allowed on at least one CPU in sd.
5646 5647
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5648
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5649
		  int this_cpu, int sd_flag)
5650
{
5651
	struct sched_group *idlest = NULL, *group = sd->groups;
5652
	struct sched_group *most_spare_sg = NULL;
5653 5654 5655
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5656
	unsigned long most_spare = 0, this_spare = 0;
5657
	int load_idx = sd->forkexec_idx;
5658 5659 5660
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5661

5662 5663 5664
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5665
	do {
5666 5667
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5668 5669
		int local_group;
		int i;
5670

5671
		/* Skip over this group if it has no CPUs allowed */
5672
		if (!cpumask_intersects(sched_group_span(group),
5673
					&p->cpus_allowed))
5674 5675 5676
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5677
					       sched_group_span(group));
5678

5679 5680 5681 5682
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5683
		avg_load = 0;
5684
		runnable_load = 0;
5685
		max_spare_cap = 0;
5686

5687
		for_each_cpu(i, sched_group_span(group)) {
5688
			/* Bias balancing toward CPUs of our domain */
5689 5690 5691 5692 5693
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5694 5695 5696
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5697 5698 5699 5700 5701

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5702 5703
		}

5704
		/* Adjust by relative CPU capacity of the group */
5705 5706 5707 5708
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5709 5710

		if (local_group) {
5711 5712
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5713 5714
			this_spare = max_spare_cap;
		} else {
5715 5716 5717
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5718
				 * so we can pick this new CPU:
5719 5720 5721 5722 5723 5724 5725 5726
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5727
				 * blocked load into account through avg_load:
5728 5729
				 */
				min_avg_load = avg_load;
5730 5731 5732 5733 5734 5735 5736
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5737 5738 5739
		}
	} while (group = group->next, group != sd->groups);

5740 5741 5742 5743 5744 5745
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5746 5747 5748 5749
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5750
	 */
5751 5752 5753
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5754
	if (this_spare > task_util(p) / 2 &&
5755
	    imbalance_scale*this_spare > 100*most_spare)
5756
		return NULL;
5757 5758

	if (most_spare > task_util(p) / 2)
5759 5760
		return most_spare_sg;

5761
skip_spare:
5762 5763 5764
	if (!idlest)
		return NULL;

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5777
	if (min_runnable_load > (this_runnable_load + imbalance))
5778
		return NULL;
5779 5780 5781 5782 5783

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5784 5785 5786 5787
	return idlest;
}

/*
5788
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5789 5790
 */
static int
5791
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5792 5793
{
	unsigned long load, min_load = ULONG_MAX;
5794 5795 5796 5797
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5798 5799
	int i;

5800 5801
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5802
		return cpumask_first(sched_group_span(group));
5803

5804
	/* Traverse only the allowed CPUs */
5805
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5806
		if (available_idle_cpu(i)) {
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5828
		} else if (shallowest_idle_cpu == -1) {
5829
			load = weighted_cpuload(cpu_rq(i));
5830
			if (load < min_load) {
5831 5832 5833
				min_load = load;
				least_loaded_cpu = i;
			}
5834 5835 5836
		}
	}

5837
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5838
}
5839

5840 5841 5842
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5843
	int new_cpu = cpu;
5844

5845 5846 5847
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5848 5849 5850 5851 5852 5853 5854
	/*
	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
	 * last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5872
		if (new_cpu == cpu) {
5873
			/* Now try balancing at a lower domain level of 'cpu': */
5874 5875 5876 5877
			sd = sd->child;
			continue;
		}

5878
		/* Now try balancing at a lower domain level of 'new_cpu': */
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5922
void __update_idle_core(struct rq *rq)
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5935
		if (!available_idle_cpu(cpu))
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5952
	int core, cpu;
5953

P
Peter Zijlstra 已提交
5954 5955 5956
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5957 5958 5959
	if (!test_idle_cores(target, false))
		return -1;

5960
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5961

5962
	for_each_cpu_wrap(core, cpus, target) {
5963 5964 5965 5966
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
5967
			if (!available_idle_cpu(cpu))
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5990 5991 5992
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5993
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5994
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5995
			continue;
5996
		if (available_idle_cpu(cpu))
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6021
 */
6022 6023
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6024
	struct sched_domain *this_sd;
6025
	u64 avg_cost, avg_idle;
6026 6027
	u64 time, cost;
	s64 delta;
6028
	int cpu, nr = INT_MAX;
6029

6030 6031 6032 6033
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6034 6035 6036 6037
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6038 6039 6040 6041
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6042 6043
		return -1;

6044 6045 6046 6047 6048 6049 6050 6051
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6052 6053
	time = local_clock();

6054
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6055 6056
		if (!--nr)
			return -1;
6057
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6058
			continue;
6059
		if (available_idle_cpu(cpu))
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6073
 */
6074
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6075
{
6076
	struct sched_domain *sd;
6077
	int i, recent_used_cpu;
6078

6079
	if (available_idle_cpu(target))
6080
		return target;
6081 6082

	/*
6083
	 * If the previous CPU is cache affine and idle, don't be stupid:
6084
	 */
6085
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6086
		return prev;
6087

6088
	/* Check a recently used CPU as a potential idle candidate: */
6089 6090 6091 6092
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6093
	    available_idle_cpu(recent_used_cpu) &&
6094 6095 6096
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6097
		 * candidate for the next wake:
6098 6099 6100 6101 6102
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6103
	sd = rcu_dereference(per_cpu(sd_llc, target));
6104 6105
	if (!sd)
		return target;
6106

6107 6108 6109
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6110

6111 6112 6113 6114 6115 6116 6117
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6118

6119 6120
	return target;
}
6121

6122 6123 6124 6125 6126 6127 6128
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6139 6140 6141 6142 6143 6144 6145 6146
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6157 6158
 *
 * Return: the (estimated) utilization for the specified CPU
6159
 */
6160
static inline unsigned long cpu_util(int cpu)
6161
{
6162 6163 6164 6165 6166 6167 6168 6169
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6170

6171
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6172
}
6173

6174
/*
6175
 * cpu_util_wake: Compute CPU utilization with any contributions from
6176 6177
 * the waking task p removed.
 */
6178
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6179
{
6180 6181
	struct cfs_rq *cfs_rq;
	unsigned int util;
6182 6183

	/* Task has no contribution or is new */
6184
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6185 6186
		return cpu_util(cpu);

6187 6188 6189 6190 6191
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's blocked util from CPU's util */
	util -= min_t(unsigned int, util, task_util(p));
6192

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_wake = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_wake = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6228 6229
}

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6248 6249 6250
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6251 6252 6253
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6254
/*
6255 6256 6257
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6258
 *
6259 6260
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6261
 *
6262
 * Returns the target CPU number.
6263 6264 6265
 *
 * preempt must be disabled.
 */
6266
static int
6267
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6268
{
6269
	struct sched_domain *tmp, *sd = NULL;
6270
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6271
	int new_cpu = prev_cpu;
6272
	int want_affine = 0;
6273
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6274

P
Peter Zijlstra 已提交
6275 6276
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6277
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6278
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6279
	}
6280

6281
	rcu_read_lock();
6282
	for_each_domain(cpu, tmp) {
6283
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6284
			break;
6285

6286
		/*
6287
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6288
		 * cpu is a valid SD_WAKE_AFFINE target.
6289
		 */
6290 6291
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6292 6293 6294 6295
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6296
			break;
6297
		}
6298

6299
		if (tmp->flags & sd_flag)
6300
			sd = tmp;
M
Mike Galbraith 已提交
6301 6302
		else if (!want_affine)
			break;
6303 6304
	}

6305 6306
	if (unlikely(sd)) {
		/* Slow path */
6307
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6308 6309 6310 6311 6312 6313 6314
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6315
	}
6316
	rcu_read_unlock();
6317

6318
	return new_cpu;
6319
}
6320

6321 6322
static void detach_entity_cfs_rq(struct sched_entity *se);

6323
/*
6324
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6325
 * cfs_rq_of(p) references at time of call are still valid and identify the
6326
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6327
 */
6328
static void migrate_task_rq_fair(struct task_struct *p)
6329
{
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6375 6376 6377

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6378 6379

	/* We have migrated, no longer consider this task hot */
6380
	p->se.exec_start = 0;
6381
}
6382 6383 6384 6385 6386

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6387 6388
#endif /* CONFIG_SMP */

6389
static unsigned long wakeup_gran(struct sched_entity *se)
6390 6391 6392 6393
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6394 6395
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6396 6397 6398 6399 6400 6401 6402 6403 6404
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6405
	 */
6406
	return calc_delta_fair(gran, se);
6407 6408
}

6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6431
	gran = wakeup_gran(se);
6432 6433 6434 6435 6436 6437
	if (vdiff > gran)
		return 1;

	return 0;
}

6438 6439
static void set_last_buddy(struct sched_entity *se)
{
6440 6441 6442
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6443 6444 6445
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6446
		cfs_rq_of(se)->last = se;
6447
	}
6448 6449 6450 6451
}

static void set_next_buddy(struct sched_entity *se)
{
6452 6453 6454
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6455 6456 6457
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6458
		cfs_rq_of(se)->next = se;
6459
	}
6460 6461
}

6462 6463
static void set_skip_buddy(struct sched_entity *se)
{
6464 6465
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6466 6467
}

6468 6469 6470
/*
 * Preempt the current task with a newly woken task if needed:
 */
6471
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6472 6473
{
	struct task_struct *curr = rq->curr;
6474
	struct sched_entity *se = &curr->se, *pse = &p->se;
6475
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6476
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6477
	int next_buddy_marked = 0;
6478

I
Ingo Molnar 已提交
6479 6480 6481
	if (unlikely(se == pse))
		return;

6482
	/*
6483
	 * This is possible from callers such as attach_tasks(), in which we
6484 6485 6486 6487 6488 6489 6490
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6491
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6492
		set_next_buddy(pse);
6493 6494
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6495

6496 6497 6498
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6499 6500 6501 6502 6503 6504
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6505 6506 6507 6508
	 */
	if (test_tsk_need_resched(curr))
		return;

6509 6510 6511 6512 6513
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6514
	/*
6515 6516
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6517
	 */
6518
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6519
		return;
6520

6521
	find_matching_se(&se, &pse);
6522
	update_curr(cfs_rq_of(se));
6523
	BUG_ON(!pse);
6524 6525 6526 6527 6528 6529 6530
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6531
		goto preempt;
6532
	}
6533

6534
	return;
6535

6536
preempt:
6537
	resched_curr(rq);
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6552 6553
}

6554
static struct task_struct *
6555
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6556 6557 6558
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6559
	struct task_struct *p;
6560
	int new_tasks;
6561

6562
again:
6563
	if (!cfs_rq->nr_running)
6564
		goto idle;
6565

6566
#ifdef CONFIG_FAIR_GROUP_SCHED
6567
	if (prev->sched_class != &fair_sched_class)
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6587 6588 6589 6590 6591
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6592

6593 6594 6595
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6596
			 * Therefore the nr_running test will indeed
6597 6598
			 * be correct.
			 */
6599 6600 6601 6602 6603 6604
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6605
				goto simple;
6606
			}
6607
		}
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6641
	goto done;
6642 6643
simple:
#endif
6644

6645
	put_prev_task(rq, prev);
6646

6647
	do {
6648
		se = pick_next_entity(cfs_rq, NULL);
6649
		set_next_entity(cfs_rq, se);
6650 6651 6652
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6653
	p = task_of(se);
6654

6655
done: __maybe_unused;
6656 6657 6658 6659 6660 6661 6662 6663 6664
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6665 6666
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6667 6668

	return p;
6669 6670

idle:
6671 6672
	new_tasks = idle_balance(rq, rf);

6673 6674 6675 6676 6677
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6678
	if (new_tasks < 0)
6679 6680
		return RETRY_TASK;

6681
	if (new_tasks > 0)
6682 6683 6684
		goto again;

	return NULL;
6685 6686 6687 6688 6689
}

/*
 * Account for a descheduled task:
 */
6690
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6691 6692 6693 6694 6695 6696
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6697
		put_prev_entity(cfs_rq, se);
6698 6699 6700
	}
}

6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6726 6727 6728 6729 6730
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6731
		rq_clock_skip_update(rq);
6732 6733 6734 6735 6736
	}

	set_skip_buddy(se);
}

6737 6738 6739 6740
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6741 6742
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6753
#ifdef CONFIG_SMP
6754
/**************************************************
P
Peter Zijlstra 已提交
6755 6756 6757 6758 6759
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6760
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6761 6762 6763 6764
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6765
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6766 6767 6768 6769
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6770
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6771
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6772 6773 6774 6775 6776 6777
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6778
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6779 6780 6781 6782 6783 6784
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6785
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6799
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6800
 * topology where each level pairs two lower groups (or better). This results
6801
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6802
 * tree to only the first of the previous level and we decrease the frequency
6803
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6804 6805 6806 6807 6808 6809 6810 6811
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6812
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6813 6814 6815 6816 6817 6818 6819
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6820
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6821 6822 6823
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6824
 *             log_2 n
P
Peter Zijlstra 已提交
6825 6826 6827 6828 6829 6830 6831
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6832
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6833 6834 6835 6836 6837 6838 6839 6840 6841
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6842
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6863
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6864 6865 6866 6867 6868 6869
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6870
 */
6871

6872 6873
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6874 6875
enum fbq_type { regular, remote, all };

6876
#define LBF_ALL_PINNED	0x01
6877
#define LBF_NEED_BREAK	0x02
6878 6879
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6880
#define LBF_NOHZ_STATS	0x10
6881
#define LBF_NOHZ_AGAIN	0x20
6882 6883 6884 6885 6886

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6887
	int			src_cpu;
6888 6889 6890 6891

	int			dst_cpu;
	struct rq		*dst_rq;

6892 6893
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6894
	enum cpu_idle_type	idle;
6895
	long			imbalance;
6896 6897 6898
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6899
	unsigned int		flags;
6900 6901 6902 6903

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6904 6905

	enum fbq_type		fbq_type;
6906
	struct list_head	tasks;
6907 6908
};

6909 6910 6911
/*
 * Is this task likely cache-hot:
 */
6912
static int task_hot(struct task_struct *p, struct lb_env *env)
6913 6914 6915
{
	s64 delta;

6916 6917
	lockdep_assert_held(&env->src_rq->lock);

6918 6919 6920 6921 6922 6923 6924 6925 6926
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6927
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6928 6929 6930 6931 6932 6933 6934 6935 6936
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6937
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6938 6939 6940 6941

	return delta < (s64)sysctl_sched_migration_cost;
}

6942
#ifdef CONFIG_NUMA_BALANCING
6943
/*
6944 6945 6946
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6947
 */
6948
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6949
{
6950
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6951
	unsigned long src_faults, dst_faults;
6952 6953
	int src_nid, dst_nid;

6954
	if (!static_branch_likely(&sched_numa_balancing))
6955 6956
		return -1;

6957
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6958
		return -1;
6959 6960 6961 6962

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6963
	if (src_nid == dst_nid)
6964
		return -1;
6965

6966 6967 6968 6969 6970 6971 6972
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6973

6974 6975
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6976
		return 0;
6977

6978 6979 6980 6981
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6982 6983 6984 6985 6986 6987
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6988 6989
	}

6990
	return dst_faults < src_faults;
6991 6992
}

6993
#else
6994
static inline int migrate_degrades_locality(struct task_struct *p,
6995 6996
					     struct lb_env *env)
{
6997
	return -1;
6998
}
6999 7000
#endif

7001 7002 7003 7004
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7005
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7006
{
7007
	int tsk_cache_hot;
7008 7009 7010

	lockdep_assert_held(&env->src_rq->lock);

7011 7012
	/*
	 * We do not migrate tasks that are:
7013
	 * 1) throttled_lb_pair, or
7014
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7015 7016
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7017
	 */
7018 7019 7020
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7021
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7022
		int cpu;
7023

7024
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7025

7026 7027
		env->flags |= LBF_SOME_PINNED;

7028
		/*
7029
		 * Remember if this task can be migrated to any other CPU in
7030 7031 7032
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7033 7034
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7035
		 */
7036
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7037 7038
			return 0;

7039
		/* Prevent to re-select dst_cpu via env's CPUs: */
7040
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7041
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7042
				env->flags |= LBF_DST_PINNED;
7043 7044 7045
				env->new_dst_cpu = cpu;
				break;
			}
7046
		}
7047

7048 7049
		return 0;
	}
7050 7051

	/* Record that we found atleast one task that could run on dst_cpu */
7052
	env->flags &= ~LBF_ALL_PINNED;
7053

7054
	if (task_running(env->src_rq, p)) {
7055
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7056 7057 7058 7059 7060
		return 0;
	}

	/*
	 * Aggressive migration if:
7061 7062 7063
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7064
	 */
7065 7066 7067
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7068

7069
	if (tsk_cache_hot <= 0 ||
7070
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7071
		if (tsk_cache_hot == 1) {
7072 7073
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7074
		}
7075 7076 7077
		return 1;
	}

7078
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7079
	return 0;
7080 7081
}

7082
/*
7083 7084 7085 7086 7087 7088 7089
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7090
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7091 7092 7093
	set_task_cpu(p, env->dst_cpu);
}

7094
/*
7095
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7096 7097
 * part of active balancing operations within "domain".
 *
7098
 * Returns a task if successful and NULL otherwise.
7099
 */
7100
static struct task_struct *detach_one_task(struct lb_env *env)
7101
{
7102
	struct task_struct *p;
7103

7104 7105
	lockdep_assert_held(&env->src_rq->lock);

7106 7107
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7108 7109
		if (!can_migrate_task(p, env))
			continue;
7110

7111
		detach_task(p, env);
7112

7113
		/*
7114
		 * Right now, this is only the second place where
7115
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7116
		 * so we can safely collect stats here rather than
7117
		 * inside detach_tasks().
7118
		 */
7119
		schedstat_inc(env->sd->lb_gained[env->idle]);
7120
		return p;
7121
	}
7122
	return NULL;
7123 7124
}

7125 7126
static const unsigned int sched_nr_migrate_break = 32;

7127
/*
7128 7129
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7130
 *
7131
 * Returns number of detached tasks if successful and 0 otherwise.
7132
 */
7133
static int detach_tasks(struct lb_env *env)
7134
{
7135 7136
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7137
	unsigned long load;
7138 7139 7140
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7141

7142
	if (env->imbalance <= 0)
7143
		return 0;
7144

7145
	while (!list_empty(tasks)) {
7146 7147 7148 7149 7150 7151 7152
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7153
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7154

7155 7156
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7157
		if (env->loop > env->loop_max)
7158
			break;
7159 7160

		/* take a breather every nr_migrate tasks */
7161
		if (env->loop > env->loop_break) {
7162
			env->loop_break += sched_nr_migrate_break;
7163
			env->flags |= LBF_NEED_BREAK;
7164
			break;
7165
		}
7166

7167
		if (!can_migrate_task(p, env))
7168 7169 7170
			goto next;

		load = task_h_load(p);
7171

7172
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7173 7174
			goto next;

7175
		if ((load / 2) > env->imbalance)
7176
			goto next;
7177

7178 7179 7180 7181
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7182
		env->imbalance -= load;
7183 7184

#ifdef CONFIG_PREEMPT
7185 7186
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7187
		 * kernels will stop after the first task is detached to minimize
7188 7189
		 * the critical section.
		 */
7190
		if (env->idle == CPU_NEWLY_IDLE)
7191
			break;
7192 7193
#endif

7194 7195 7196 7197
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7198
		if (env->imbalance <= 0)
7199
			break;
7200 7201 7202

		continue;
next:
7203
		list_move(&p->se.group_node, tasks);
7204
	}
7205

7206
	/*
7207 7208 7209
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7210
	 */
7211
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7212

7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7224
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7225
	p->on_rq = TASK_ON_RQ_QUEUED;
7226 7227 7228 7229 7230 7231 7232 7233 7234
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7235 7236 7237
	struct rq_flags rf;

	rq_lock(rq, &rf);
7238
	update_rq_clock(rq);
7239
	attach_task(rq, p);
7240
	rq_unlock(rq, &rf);
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7251
	struct rq_flags rf;
7252

7253
	rq_lock(env->dst_rq, &rf);
7254
	update_rq_clock(env->dst_rq);
7255 7256 7257 7258

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7259

7260 7261 7262
		attach_task(env->dst_rq, p);
	}

7263
	rq_unlock(env->dst_rq, &rf);
7264 7265
}

7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7277
static inline bool others_have_blocked(struct rq *rq)
7278 7279 7280 7281
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7282 7283 7284
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7285 7286 7287 7288 7289
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7290 7291 7292
	return false;
}

7293 7294
#ifdef CONFIG_FAIR_GROUP_SCHED

7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7306
	if (cfs_rq->avg.runnable_load_sum)
7307 7308 7309 7310 7311
		return false;

	return true;
}

7312
static void update_blocked_averages(int cpu)
7313 7314
{
	struct rq *rq = cpu_rq(cpu);
7315
	struct cfs_rq *cfs_rq, *pos;
7316
	struct rq_flags rf;
7317
	bool done = true;
7318

7319
	rq_lock_irqsave(rq, &rf);
7320
	update_rq_clock(rq);
7321

7322 7323 7324 7325
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7326
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7327 7328
		struct sched_entity *se;

7329 7330 7331
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7332

7333
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7334
			update_tg_load_avg(cfs_rq, 0);
7335

7336 7337 7338
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7339
			update_load_avg(cfs_rq_of(se), se, 0);
7340 7341 7342 7343 7344 7345 7346

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7347 7348 7349

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7350
			done = false;
7351
	}
7352
	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7353
	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7354
	update_irq_load_avg(rq, 0);
7355
	/* Don't need periodic decay once load/util_avg are null */
7356
	if (others_have_blocked(rq))
7357
		done = false;
7358 7359 7360

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7361 7362
	if (done)
		rq->has_blocked_load = 0;
7363
#endif
7364
	rq_unlock_irqrestore(rq, &rf);
7365 7366
}

7367
/*
7368
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7369 7370 7371
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7372
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7373
{
7374 7375
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7376
	unsigned long now = jiffies;
7377
	unsigned long load;
7378

7379
	if (cfs_rq->last_h_load_update == now)
7380 7381
		return;

7382 7383 7384 7385 7386 7387 7388
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7389

7390
	if (!se) {
7391
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7392 7393 7394 7395 7396
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7397 7398
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7399 7400 7401 7402
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7403 7404
}

7405
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7406
{
7407
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7408

7409
	update_cfs_rq_h_load(cfs_rq);
7410
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7411
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7412 7413
}
#else
7414
static inline void update_blocked_averages(int cpu)
7415
{
7416 7417
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7418
	struct rq_flags rf;
7419

7420
	rq_lock_irqsave(rq, &rf);
7421
	update_rq_clock(rq);
7422
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7423
	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7424
	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7425
	update_irq_load_avg(rq, 0);
7426 7427
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7428
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7429
		rq->has_blocked_load = 0;
7430
#endif
7431
	rq_unlock_irqrestore(rq, &rf);
7432 7433
}

7434
static unsigned long task_h_load(struct task_struct *p)
7435
{
7436
	return p->se.avg.load_avg;
7437
}
P
Peter Zijlstra 已提交
7438
#endif
7439 7440

/********** Helpers for find_busiest_group ************************/
7441 7442 7443 7444 7445 7446 7447

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7448 7449 7450 7451 7452 7453 7454
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7455
	unsigned long load_per_task;
7456
	unsigned long group_capacity;
7457
	unsigned long group_util; /* Total utilization of the group */
7458 7459 7460
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7461
	enum group_type group_type;
7462
	int group_no_capacity;
7463 7464 7465 7466
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7467 7468
};

J
Joonsoo Kim 已提交
7469 7470 7471 7472 7473 7474 7475
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7476
	unsigned long total_running;
J
Joonsoo Kim 已提交
7477
	unsigned long total_load;	/* Total load of all groups in sd */
7478
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7479 7480 7481
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7482
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7483 7484
};

7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7496
		.total_running = 0UL,
7497
		.total_load = 0UL,
7498
		.total_capacity = 0UL,
7499 7500
		.busiest_stat = {
			.avg_load = 0UL,
7501 7502
			.sum_nr_running = 0,
			.group_type = group_other,
7503 7504 7505 7506
		},
	};
}

7507 7508 7509
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7510
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7511 7512
 *
 * Return: The load index.
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7535
static unsigned long scale_rt_capacity(int cpu)
7536 7537
{
	struct rq *rq = cpu_rq(cpu);
7538 7539 7540
	unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
	unsigned long used, free;
	unsigned long irq;
7541

7542
	irq = cpu_util_irq(rq);
7543

7544 7545
	if (unlikely(irq >= max))
		return 1;
7546

7547 7548
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7549

7550 7551
	if (unlikely(used >= max))
		return 1;
7552

7553
	free = max - used;
7554 7555

	return scale_irq_capacity(free, irq, max);
7556 7557
}

7558
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7559
{
7560
	unsigned long capacity = scale_rt_capacity(cpu);
7561 7562
	struct sched_group *sdg = sd->groups;

7563
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7564

7565 7566
	if (!capacity)
		capacity = 1;
7567

7568 7569
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7570
	sdg->sgc->min_capacity = capacity;
7571 7572
}

7573
void update_group_capacity(struct sched_domain *sd, int cpu)
7574 7575 7576
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7577
	unsigned long capacity, min_capacity;
7578 7579 7580 7581
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7582
	sdg->sgc->next_update = jiffies + interval;
7583 7584

	if (!child) {
7585
		update_cpu_capacity(sd, cpu);
7586 7587 7588
		return;
	}

7589
	capacity = 0;
7590
	min_capacity = ULONG_MAX;
7591

P
Peter Zijlstra 已提交
7592 7593 7594 7595 7596 7597
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7598
		for_each_cpu(cpu, sched_group_span(sdg)) {
7599
			struct sched_group_capacity *sgc;
7600
			struct rq *rq = cpu_rq(cpu);
7601

7602
			/*
7603
			 * build_sched_domains() -> init_sched_groups_capacity()
7604 7605 7606
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7607 7608
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7609
			 *
7610
			 * This avoids capacity from being 0 and
7611 7612 7613
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7614
				capacity += capacity_of(cpu);
7615 7616 7617
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7618
			}
7619

7620
			min_capacity = min(capacity, min_capacity);
7621
		}
P
Peter Zijlstra 已提交
7622 7623 7624 7625
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7626
		 */
P
Peter Zijlstra 已提交
7627 7628 7629

		group = child->groups;
		do {
7630 7631 7632 7633
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7634 7635 7636
			group = group->next;
		} while (group != child->groups);
	}
7637

7638
	sdg->sgc->capacity = capacity;
7639
	sdg->sgc->min_capacity = min_capacity;
7640 7641
}

7642
/*
7643 7644 7645
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7646 7647
 */
static inline int
7648
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7649
{
7650 7651
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7652 7653
}

7654 7655
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7656
 * groups is inadequate due to ->cpus_allowed constraints.
7657
 *
7658 7659
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7660 7661
 * Something like:
 *
7662 7663
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7664 7665 7666
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7667
 * cpu 3 and leave one of the CPUs in the second group unused.
7668 7669
 *
 * The current solution to this issue is detecting the skew in the first group
7670 7671
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7672 7673
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7674
 * update_sd_pick_busiest(). And calculate_imbalance() and
7675
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7676 7677 7678 7679 7680 7681 7682
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7683
static inline int sg_imbalanced(struct sched_group *group)
7684
{
7685
	return group->sgc->imbalance;
7686 7687
}

7688
/*
7689 7690 7691
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7692 7693
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7694 7695 7696 7697 7698
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7699
 */
7700 7701
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7702
{
7703 7704
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7705

7706
	if ((sgs->group_capacity * 100) >
7707
			(sgs->group_util * env->sd->imbalance_pct))
7708
		return true;
7709

7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7726

7727
	if ((sgs->group_capacity * 100) <
7728
			(sgs->group_util * env->sd->imbalance_pct))
7729
		return true;
7730

7731
	return false;
7732 7733
}

7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7745 7746 7747
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7748
{
7749
	if (sgs->group_no_capacity)
7750 7751 7752 7753 7754 7755 7756 7757
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7758
static bool update_nohz_stats(struct rq *rq, bool force)
7759 7760 7761 7762
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7763 7764 7765
	if (!rq->has_blocked_load)
		return false;

7766
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7767
		return false;
7768

7769
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7770
		return true;
7771 7772

	update_blocked_averages(cpu);
7773 7774 7775 7776

	return rq->has_blocked_load;
#else
	return false;
7777 7778 7779
#endif
}

7780 7781
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7782
 * @env: The load balancing environment.
7783 7784 7785 7786
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7787
 * @overload: Indicate more than one runnable task for any CPU.
7788
 */
7789 7790
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7791 7792
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7793
{
7794
	unsigned long load;
7795
	int i, nr_running;
7796

7797 7798
	memset(sgs, 0, sizeof(*sgs));

7799
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7800 7801
		struct rq *rq = cpu_rq(i);

7802
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7803
			env->flags |= LBF_NOHZ_AGAIN;
7804

7805
		/* Bias balancing toward CPUs of our domain: */
7806
		if (local_group)
7807
			load = target_load(i, load_idx);
7808
		else
7809 7810 7811
			load = source_load(i, load_idx);

		sgs->group_load += load;
7812
		sgs->group_util += cpu_util(i);
7813
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7814

7815 7816
		nr_running = rq->nr_running;
		if (nr_running > 1)
7817 7818
			*overload = true;

7819 7820 7821 7822
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7823
		sgs->sum_weighted_load += weighted_cpuload(rq);
7824 7825 7826 7827
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7828
			sgs->idle_cpus++;
7829 7830
	}

7831 7832
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7833
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7834

7835
	if (sgs->sum_nr_running)
7836
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7837

7838
	sgs->group_weight = group->group_weight;
7839

7840
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7841
	sgs->group_type = group_classify(group, sgs);
7842 7843
}

7844 7845
/**
 * update_sd_pick_busiest - return 1 on busiest group
7846
 * @env: The load balancing environment.
7847 7848
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7849
 * @sgs: sched_group statistics
7850 7851 7852
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7853 7854 7855
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7856
 */
7857
static bool update_sd_pick_busiest(struct lb_env *env,
7858 7859
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7860
				   struct sg_lb_stats *sgs)
7861
{
7862
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7863

7864
	if (sgs->group_type > busiest->group_type)
7865 7866
		return true;

7867 7868 7869 7870 7871 7872
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7887 7888
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7889 7890
		return true;

7891
	/* No ASYM_PACKING if target CPU is already busy */
7892 7893
	if (env->idle == CPU_NOT_IDLE)
		return true;
7894
	/*
T
Tim Chen 已提交
7895 7896 7897
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7898
	 */
T
Tim Chen 已提交
7899 7900
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7901 7902 7903
		if (!sds->busiest)
			return true;

7904
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7905 7906
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7907 7908 7909 7910 7911 7912
			return true;
	}

	return false;
}

7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7943
/**
7944
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7945
 * @env: The load balancing environment.
7946 7947
 * @sds: variable to hold the statistics for this sched_domain.
 */
7948
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7949
{
7950 7951
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7952
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7953
	struct sg_lb_stats tmp_sgs;
7954
	int load_idx, prefer_sibling = 0;
7955
	bool overload = false;
7956 7957 7958 7959

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7960
#ifdef CONFIG_NO_HZ_COMMON
7961
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7962 7963 7964
		env->flags |= LBF_NOHZ_STATS;
#endif

7965
	load_idx = get_sd_load_idx(env->sd, env->idle);
7966 7967

	do {
J
Joonsoo Kim 已提交
7968
		struct sg_lb_stats *sgs = &tmp_sgs;
7969 7970
		int local_group;

7971
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7972 7973
		if (local_group) {
			sds->local = sg;
7974
			sgs = local;
7975 7976

			if (env->idle != CPU_NEWLY_IDLE ||
7977 7978
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7979
		}
7980

7981 7982
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7983

7984 7985 7986
		if (local_group)
			goto next_group;

7987 7988
		/*
		 * In case the child domain prefers tasks go to siblings
7989
		 * first, lower the sg capacity so that we'll try
7990 7991
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7992 7993 7994 7995
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7996
		 */
7997
		if (prefer_sibling && sds->local &&
7998 7999
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8000
			sgs->group_no_capacity = 1;
8001
			sgs->group_type = group_classify(sg, sgs);
8002
		}
8003

8004
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8005
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8006
			sds->busiest_stat = *sgs;
8007 8008
		}

8009 8010
next_group:
		/* Now, start updating sd_lb_stats */
8011
		sds->total_running += sgs->sum_nr_running;
8012
		sds->total_load += sgs->group_load;
8013
		sds->total_capacity += sgs->group_capacity;
8014

8015
		sg = sg->next;
8016
	} while (sg != env->sd->groups);
8017

8018 8019 8020 8021 8022 8023 8024 8025 8026
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8027 8028
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8029 8030 8031 8032 8033 8034

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8035 8036 8037 8038
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8039
 *			sched domain.
8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8054
 * Return: 1 when packing is required and a task should be moved to
8055
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8056
 *
8057
 * @env: The load balancing environment.
8058 8059
 * @sds: Statistics of the sched_domain which is to be packed
 */
8060
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8061 8062 8063
{
	int busiest_cpu;

8064
	if (!(env->sd->flags & SD_ASYM_PACKING))
8065 8066
		return 0;

8067 8068 8069
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8070 8071 8072
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8073 8074
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8075 8076
		return 0;

8077
	env->imbalance = DIV_ROUND_CLOSEST(
8078
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8079
		SCHED_CAPACITY_SCALE);
8080

8081
	return 1;
8082 8083 8084 8085 8086 8087
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8088
 * @env: The load balancing environment.
8089 8090
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8091 8092
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8093
{
8094
	unsigned long tmp, capa_now = 0, capa_move = 0;
8095
	unsigned int imbn = 2;
8096
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8097
	struct sg_lb_stats *local, *busiest;
8098

J
Joonsoo Kim 已提交
8099 8100
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8101

J
Joonsoo Kim 已提交
8102 8103 8104 8105
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8106

J
Joonsoo Kim 已提交
8107
	scaled_busy_load_per_task =
8108
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8109
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8110

8111 8112
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8113
		env->imbalance = busiest->load_per_task;
8114 8115 8116 8117 8118
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8119
	 * however we may be able to increase total CPU capacity used by
8120 8121 8122
	 * moving them.
	 */

8123
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8124
			min(busiest->load_per_task, busiest->avg_load);
8125
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8126
			min(local->load_per_task, local->avg_load);
8127
	capa_now /= SCHED_CAPACITY_SCALE;
8128 8129

	/* Amount of load we'd subtract */
8130
	if (busiest->avg_load > scaled_busy_load_per_task) {
8131
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8132
			    min(busiest->load_per_task,
8133
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8134
	}
8135 8136

	/* Amount of load we'd add */
8137
	if (busiest->avg_load * busiest->group_capacity <
8138
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8139 8140
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8141
	} else {
8142
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8143
		      local->group_capacity;
J
Joonsoo Kim 已提交
8144
	}
8145
	capa_move += local->group_capacity *
8146
		    min(local->load_per_task, local->avg_load + tmp);
8147
	capa_move /= SCHED_CAPACITY_SCALE;
8148 8149

	/* Move if we gain throughput */
8150
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8151
		env->imbalance = busiest->load_per_task;
8152 8153 8154 8155 8156
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8157
 * @env: load balance environment
8158 8159
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8160
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8161
{
8162
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8163 8164 8165 8166
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8167

8168
	if (busiest->group_type == group_imbalanced) {
8169 8170
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8171
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8172
		 */
J
Joonsoo Kim 已提交
8173 8174
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8175 8176
	}

8177
	/*
8178 8179 8180 8181
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8182
	 */
8183 8184
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8185 8186
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8187 8188
	}

8189
	/*
8190
	 * If there aren't any idle CPUs, avoid creating some.
8191 8192 8193
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8194
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8195
		if (load_above_capacity > busiest->group_capacity) {
8196
			load_above_capacity -= busiest->group_capacity;
8197
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8198 8199
			load_above_capacity /= busiest->group_capacity;
		} else
8200
			load_above_capacity = ~0UL;
8201 8202 8203
	}

	/*
8204
	 * We're trying to get all the CPUs to the average_load, so we don't
8205
	 * want to push ourselves above the average load, nor do we wish to
8206
	 * reduce the max loaded CPU below the average load. At the same time,
8207 8208
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8209
	 */
8210
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8211 8212

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8213
	env->imbalance = min(
8214 8215
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8216
	) / SCHED_CAPACITY_SCALE;
8217 8218 8219

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8220
	 * there is no guarantee that any tasks will be moved so we'll have
8221 8222 8223
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8224
	if (env->imbalance < busiest->load_per_task)
8225
		return fix_small_imbalance(env, sds);
8226
}
8227

8228 8229 8230 8231
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8232
 * if there is an imbalance.
8233 8234 8235 8236
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8237
 * @env: The load balancing environment.
8238
 *
8239
 * Return:	- The busiest group if imbalance exists.
8240
 */
J
Joonsoo Kim 已提交
8241
static struct sched_group *find_busiest_group(struct lb_env *env)
8242
{
J
Joonsoo Kim 已提交
8243
	struct sg_lb_stats *local, *busiest;
8244 8245
	struct sd_lb_stats sds;

8246
	init_sd_lb_stats(&sds);
8247 8248 8249 8250 8251

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8252
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8253 8254
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8255

8256
	/* ASYM feature bypasses nice load balance check */
8257
	if (check_asym_packing(env, &sds))
8258 8259
		return sds.busiest;

8260
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8261
	if (!sds.busiest || busiest->sum_nr_running == 0)
8262 8263
		goto out_balanced;

8264
	/* XXX broken for overlapping NUMA groups */
8265 8266
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8267

P
Peter Zijlstra 已提交
8268 8269
	/*
	 * If the busiest group is imbalanced the below checks don't
8270
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8271 8272
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8273
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8274 8275
		goto force_balance;

8276 8277 8278 8279 8280
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8281
	    busiest->group_no_capacity)
8282 8283
		goto force_balance;

8284
	/*
8285
	 * If the local group is busier than the selected busiest group
8286 8287
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8288
	if (local->avg_load >= busiest->avg_load)
8289 8290
		goto out_balanced;

8291 8292 8293 8294
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8295
	if (local->avg_load >= sds.avg_load)
8296 8297
		goto out_balanced;

8298
	if (env->idle == CPU_IDLE) {
8299
		/*
8300
		 * This CPU is idle. If the busiest group is not overloaded
8301
		 * and there is no imbalance between this and busiest group
8302
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8303 8304
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8305
		 */
8306 8307
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8308
			goto out_balanced;
8309 8310 8311 8312 8313
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8314 8315
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8316
			goto out_balanced;
8317
	}
8318

8319
force_balance:
8320
	/* Looks like there is an imbalance. Compute it */
8321
	calculate_imbalance(env, &sds);
8322 8323 8324
	return sds.busiest;

out_balanced:
8325
	env->imbalance = 0;
8326 8327 8328 8329
	return NULL;
}

/*
8330
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8331
 */
8332
static struct rq *find_busiest_queue(struct lb_env *env,
8333
				     struct sched_group *group)
8334 8335
{
	struct rq *busiest = NULL, *rq;
8336
	unsigned long busiest_load = 0, busiest_capacity = 1;
8337 8338
	int i;

8339
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8340
		unsigned long capacity, wl;
8341 8342 8343 8344
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8345

8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8368
		capacity = capacity_of(i);
8369

8370
		wl = weighted_cpuload(rq);
8371

8372 8373
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8374
		 * which is not scaled with the CPU capacity.
8375
		 */
8376 8377 8378

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8379 8380
			continue;

8381
		/*
8382 8383 8384
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8385
		 * potentially running at a lower capacity.
8386
		 *
8387
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8388
		 * multiplication to rid ourselves of the division works out
8389 8390
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8391
		 */
8392
		if (wl * busiest_capacity > busiest_load * capacity) {
8393
			busiest_load = wl;
8394
			busiest_capacity = capacity;
8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8408
static int need_active_balance(struct lb_env *env)
8409
{
8410 8411 8412
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8413 8414 8415

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8416 8417
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8418
		 */
T
Tim Chen 已提交
8419 8420
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8421
			return 1;
8422 8423
	}

8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8437 8438 8439
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8440 8441
static int active_load_balance_cpu_stop(void *data);

8442 8443 8444 8445 8446
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8447 8448 8449 8450 8451 8452 8453
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8454
	/*
8455
	 * In the newly idle case, we will allow all the CPUs
8456 8457 8458 8459 8460
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8461
	/* Try to find first idle CPU */
8462
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8463
		if (!idle_cpu(cpu))
8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8474
	 * First idle CPU or the first CPU(busiest) in this sched group
8475 8476
	 * is eligible for doing load balancing at this and above domains.
	 */
8477
	return balance_cpu == env->dst_cpu;
8478 8479
}

8480 8481 8482 8483 8484 8485
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8486
			int *continue_balancing)
8487
{
8488
	int ld_moved, cur_ld_moved, active_balance = 0;
8489
	struct sched_domain *sd_parent = sd->parent;
8490 8491
	struct sched_group *group;
	struct rq *busiest;
8492
	struct rq_flags rf;
8493
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8494

8495 8496
	struct lb_env env = {
		.sd		= sd,
8497 8498
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8499
		.dst_grpmask    = sched_group_span(sd->groups),
8500
		.idle		= idle,
8501
		.loop_break	= sched_nr_migrate_break,
8502
		.cpus		= cpus,
8503
		.fbq_type	= all,
8504
		.tasks		= LIST_HEAD_INIT(env.tasks),
8505 8506
	};

8507
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8508

8509
	schedstat_inc(sd->lb_count[idle]);
8510 8511

redo:
8512 8513
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8514
		goto out_balanced;
8515
	}
8516

8517
	group = find_busiest_group(&env);
8518
	if (!group) {
8519
		schedstat_inc(sd->lb_nobusyg[idle]);
8520 8521 8522
		goto out_balanced;
	}

8523
	busiest = find_busiest_queue(&env, group);
8524
	if (!busiest) {
8525
		schedstat_inc(sd->lb_nobusyq[idle]);
8526 8527 8528
		goto out_balanced;
	}

8529
	BUG_ON(busiest == env.dst_rq);
8530

8531
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8532

8533 8534 8535
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8536 8537 8538 8539 8540 8541 8542 8543
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8544
		env.flags |= LBF_ALL_PINNED;
8545
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8546

8547
more_balance:
8548
		rq_lock_irqsave(busiest, &rf);
8549
		update_rq_clock(busiest);
8550 8551 8552 8553 8554

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8555
		cur_ld_moved = detach_tasks(&env);
8556 8557

		/*
8558 8559 8560 8561 8562
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8563
		 */
8564

8565
		rq_unlock(busiest, &rf);
8566 8567 8568 8569 8570 8571

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8572
		local_irq_restore(rf.flags);
8573

8574 8575 8576 8577 8578
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8579 8580 8581 8582
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8583
		 * iterate on same src_cpu is dependent on number of CPUs in our
8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8598
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8599

8600
			/* Prevent to re-select dst_cpu via env's CPUs */
8601 8602
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8603
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8604
			env.dst_cpu	 = env.new_dst_cpu;
8605
			env.flags	&= ~LBF_DST_PINNED;
8606 8607
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8608

8609 8610 8611 8612 8613 8614
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8615

8616 8617 8618 8619
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8620
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8621

8622
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8623 8624 8625
				*group_imbalance = 1;
		}

8626
		/* All tasks on this runqueue were pinned by CPU affinity */
8627
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8628
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8629 8630 8631 8632 8633 8634 8635 8636 8637
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8638 8639
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8640
				goto redo;
8641
			}
8642
			goto out_all_pinned;
8643 8644 8645 8646
		}
	}

	if (!ld_moved) {
8647
		schedstat_inc(sd->lb_failed[idle]);
8648 8649 8650 8651 8652 8653 8654 8655
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8656

8657
		if (need_active_balance(&env)) {
8658 8659
			unsigned long flags;

8660 8661
			raw_spin_lock_irqsave(&busiest->lock, flags);

8662 8663 8664 8665
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8666
			 */
8667
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8668 8669
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8670
				env.flags |= LBF_ALL_PINNED;
8671 8672 8673
				goto out_one_pinned;
			}

8674 8675 8676 8677 8678
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8679 8680 8681 8682 8683 8684
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8685

8686
			if (active_balance) {
8687 8688 8689
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8690
			}
8691

8692
			/* We've kicked active balancing, force task migration. */
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8706
		 * detach_tasks).
8707 8708 8709 8710 8711 8712 8713 8714
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8732
	schedstat_inc(sd->lb_balanced[idle]);
8733 8734 8735 8736 8737

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8738
	if (((env.flags & LBF_ALL_PINNED) &&
8739
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8740 8741 8742
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8743
	ld_moved = 0;
8744 8745 8746 8747
out:
	return ld_moved;
}

8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8764
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8765 8766 8767
{
	unsigned long interval, next;

8768 8769
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8770 8771 8772 8773 8774 8775
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8776
/*
8777
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8778 8779 8780
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8781
 */
8782
static int active_load_balance_cpu_stop(void *data)
8783
{
8784 8785
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8786
	int target_cpu = busiest_rq->push_cpu;
8787
	struct rq *target_rq = cpu_rq(target_cpu);
8788
	struct sched_domain *sd;
8789
	struct task_struct *p = NULL;
8790
	struct rq_flags rf;
8791

8792
	rq_lock_irq(busiest_rq, &rf);
8793 8794 8795 8796 8797 8798 8799
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8800

8801
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8802 8803 8804
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8805 8806 8807

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8808
		goto out_unlock;
8809 8810 8811 8812

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8813
	 * Bjorn Helgaas on a 128-CPU setup.
8814 8815 8816 8817
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8818
	rcu_read_lock();
8819 8820 8821 8822 8823 8824 8825
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8826 8827
		struct lb_env env = {
			.sd		= sd,
8828 8829 8830 8831
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8832
			.idle		= CPU_IDLE,
8833 8834 8835 8836 8837 8838 8839
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8840 8841
		};

8842
		schedstat_inc(sd->alb_count);
8843
		update_rq_clock(busiest_rq);
8844

8845
		p = detach_one_task(&env);
8846
		if (p) {
8847
			schedstat_inc(sd->alb_pushed);
8848 8849 8850
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8851
			schedstat_inc(sd->alb_failed);
8852
		}
8853
	}
8854
	rcu_read_unlock();
8855 8856
out_unlock:
	busiest_rq->active_balance = 0;
8857
	rq_unlock(busiest_rq, &rf);
8858 8859 8860 8861 8862 8863

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8864
	return 0;
8865 8866
}

8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

8985 8986 8987 8988 8989
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8990
#ifdef CONFIG_NO_HZ_COMMON
8991 8992 8993 8994 8995 8996
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8997

8998
static inline int find_new_ilb(void)
8999
{
9000
	int ilb = cpumask_first(nohz.idle_cpus_mask);
9001

9002 9003 9004 9005
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
9006 9007
}

9008 9009 9010 9011 9012
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
9013
static void kick_ilb(unsigned int flags)
9014 9015 9016 9017 9018
{
	int ilb_cpu;

	nohz.next_balance++;

9019
	ilb_cpu = find_new_ilb();
9020

9021 9022
	if (ilb_cpu >= nr_cpu_ids)
		return;
9023

9024
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9025
	if (flags & NOHZ_KICK_MASK)
9026
		return;
9027

9028 9029
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9030
	 * This way we generate a sched IPI on the target CPU which
9031 9032 9033 9034
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9054
	unsigned int flags = 0;
9055 9056 9057 9058 9059 9060 9061 9062

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9063
	nohz_balance_exit_idle(rq);
9064 9065 9066 9067 9068 9069 9070 9071

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9072 9073
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9074 9075
		flags = NOHZ_STATS_KICK;

9076
	if (time_before(now, nohz.next_balance))
9077
		goto out;
9078 9079

	if (rq->nr_running >= 2) {
9080
		flags = NOHZ_KICK_MASK;
9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9093
			flags = NOHZ_KICK_MASK;
9094 9095 9096 9097 9098 9099 9100 9101 9102
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9103
			flags = NOHZ_KICK_MASK;
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9116
				flags = NOHZ_KICK_MASK;
9117 9118 9119 9120 9121 9122 9123
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9124 9125
	if (flags)
		kick_ilb(flags);
9126 9127
}

9128
static void set_cpu_sd_state_busy(int cpu)
9129
{
9130
	struct sched_domain *sd;
9131

9132 9133
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9134

9135 9136 9137 9138 9139 9140 9141
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9142 9143
}

9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9159 9160 9161 9162
{
	struct sched_domain *sd;

	rcu_read_lock();
9163
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9164 9165 9166 9167 9168

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9169
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9170
unlock:
9171 9172 9173
	rcu_read_unlock();
}

9174
/*
9175
 * This routine will record that the CPU is going idle with tick stopped.
9176
 * This info will be used in performing idle load balancing in the future.
9177
 */
9178
void nohz_balance_enter_idle(int cpu)
9179
{
9180 9181 9182 9183
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9184
	/* If this CPU is going down, then nothing needs to be done: */
9185 9186 9187
	if (!cpu_active(cpu))
		return;

9188
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9189
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9190 9191
		return;

9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9205
	if (rq->nohz_tick_stopped)
9206
		goto out;
9207

9208
	/* If we're a completely isolated CPU, we don't play: */
9209
	if (on_null_domain(rq))
9210 9211
		return;

9212 9213
	rq->nohz_tick_stopped = 1;

9214 9215
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9216

9217 9218 9219 9220 9221 9222 9223
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9224
	set_cpu_sd_state_idle(cpu);
9225 9226 9227 9228 9229 9230 9231

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9232 9233 9234
}

/*
9235 9236 9237 9238 9239
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9240
 */
9241 9242
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9243
{
9244
	/* Earliest time when we have to do rebalance again */
9245 9246
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9247
	bool has_blocked_load = false;
9248
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9249 9250
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9251
	int ret = false;
P
Peter Zijlstra 已提交
9252
	struct rq *rq;
9253

P
Peter Zijlstra 已提交
9254
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9255

9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9272
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9273
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9274 9275 9276
			continue;

		/*
9277 9278
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9279 9280
		 * balancing owner will pick it up.
		 */
9281 9282 9283 9284
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9285

V
Vincent Guittot 已提交
9286 9287
		rq = cpu_rq(balance_cpu);

9288
		has_blocked_load |= update_nohz_stats(rq, true);
9289

9290 9291 9292 9293 9294
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9295 9296
			struct rq_flags rf;

9297
			rq_lock_irqsave(rq, &rf);
9298
			update_rq_clock(rq);
9299
			cpu_load_update_idle(rq);
9300
			rq_unlock_irqrestore(rq, &rf);
9301

P
Peter Zijlstra 已提交
9302 9303
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9304
		}
9305

9306 9307 9308 9309
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9310
	}
9311

9312 9313 9314 9315 9316 9317
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9318 9319 9320
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9321 9322 9323
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9324 9325 9326
	/* The full idle balance loop has been done */
	ret = true;

9327 9328 9329 9330
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9331

9332 9333 9334 9335 9336 9337 9338
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9339

9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9369
	return true;
9370
}
9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9404 9405 9406
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9407
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9408 9409 9410
{
	return false;
}
9411 9412

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9413
#endif /* CONFIG_NO_HZ_COMMON */
9414

P
Peter Zijlstra 已提交
9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9449

P
Peter Zijlstra 已提交
9450 9451 9452 9453 9454 9455
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9456 9457
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9507
out:
P
Peter Zijlstra 已提交
9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9532 9533 9534 9535
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9536
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9537
{
9538
	struct rq *this_rq = this_rq();
9539
	enum cpu_idle_type idle = this_rq->idle_balance ?
9540 9541 9542
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9543 9544
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9545
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9546
	 * give the idle CPUs a chance to load balance. Else we may
9547 9548
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9549
	 */
P
Peter Zijlstra 已提交
9550 9551 9552 9553 9554
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9555
	rebalance_domains(this_rq, idle);
9556 9557 9558 9559 9560
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9561
void trigger_load_balance(struct rq *rq)
9562 9563
{
	/* Don't need to rebalance while attached to NULL domain */
9564 9565 9566 9567
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9568
		raise_softirq(SCHED_SOFTIRQ);
9569 9570

	nohz_balancer_kick(rq);
9571 9572
}

9573 9574 9575
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9576 9577

	update_runtime_enabled(rq);
9578 9579 9580 9581 9582
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9583 9584 9585

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9586 9587
}

9588
#endif /* CONFIG_SMP */
9589

9590
/*
9591 9592 9593 9594 9595 9596
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9597
 */
P
Peter Zijlstra 已提交
9598
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9599 9600 9601 9602 9603 9604
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9605
		entity_tick(cfs_rq, se, queued);
9606
	}
9607

9608
	if (static_branch_unlikely(&sched_numa_balancing))
9609
		task_tick_numa(rq, curr);
9610 9611 9612
}

/*
P
Peter Zijlstra 已提交
9613 9614 9615
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9616
 */
P
Peter Zijlstra 已提交
9617
static void task_fork_fair(struct task_struct *p)
9618
{
9619 9620
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9621
	struct rq *rq = this_rq();
9622
	struct rq_flags rf;
9623

9624
	rq_lock(rq, &rf);
9625 9626
	update_rq_clock(rq);

9627 9628
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9629 9630
	if (curr) {
		update_curr(cfs_rq);
9631
		se->vruntime = curr->vruntime;
9632
	}
9633
	place_entity(cfs_rq, se, 1);
9634

P
Peter Zijlstra 已提交
9635
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9636
		/*
9637 9638 9639
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9640
		swap(curr->vruntime, se->vruntime);
9641
		resched_curr(rq);
9642
	}
9643

9644
	se->vruntime -= cfs_rq->min_vruntime;
9645
	rq_unlock(rq, &rf);
9646 9647
}

9648 9649 9650 9651
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9652 9653
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9654
{
9655
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9656 9657
		return;

9658 9659 9660 9661 9662
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9663
	if (rq->curr == p) {
9664
		if (p->prio > oldprio)
9665
			resched_curr(rq);
9666
	} else
9667
		check_preempt_curr(rq, p, 0);
9668 9669
}

9670
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9671 9672 9673 9674
{
	struct sched_entity *se = &p->se;

	/*
9675 9676 9677 9678 9679 9680 9681 9682 9683 9684
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9685
	 *
9686 9687 9688 9689
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9690
	 */
9691 9692 9693 9694 9695 9696
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9715
		update_load_avg(cfs_rq, se, UPDATE_TG);
9716 9717 9718 9719 9720 9721
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9722
static void detach_entity_cfs_rq(struct sched_entity *se)
9723 9724 9725
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9726
	/* Catch up with the cfs_rq and remove our load when we leave */
9727
	update_load_avg(cfs_rq, se, 0);
9728
	detach_entity_load_avg(cfs_rq, se);
9729
	update_tg_load_avg(cfs_rq, false);
9730
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9731 9732
}

9733
static void attach_entity_cfs_rq(struct sched_entity *se)
9734
{
9735
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9736 9737

#ifdef CONFIG_FAIR_GROUP_SCHED
9738 9739 9740 9741 9742 9743
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9744

9745
	/* Synchronize entity with its cfs_rq */
9746
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9747
	attach_entity_load_avg(cfs_rq, se, 0);
9748
	update_tg_load_avg(cfs_rq, false);
9749
	propagate_entity_cfs_rq(se);
9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9775 9776 9777 9778

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9779

9780 9781 9782 9783 9784 9785 9786 9787
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9788

9789
	if (task_on_rq_queued(p)) {
9790
		/*
9791 9792 9793
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9794
		 */
9795 9796 9797 9798
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9799
	}
9800 9801
}

9802 9803 9804 9805 9806 9807 9808 9809 9810
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9811 9812 9813 9814 9815 9816 9817
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9818 9819
}

9820 9821
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9822
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9823 9824 9825 9826
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9827
#ifdef CONFIG_SMP
9828
	raw_spin_lock_init(&cfs_rq->removed.lock);
9829
#endif
9830 9831
}

P
Peter Zijlstra 已提交
9832
#ifdef CONFIG_FAIR_GROUP_SCHED
9833 9834 9835 9836 9837 9838 9839 9840
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9841
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9842
{
9843
	detach_task_cfs_rq(p);
9844
	set_task_rq(p, task_cpu(p));
9845 9846 9847 9848 9849

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9850
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9851
}
9852

9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9866 9867 9868 9869 9870 9871 9872 9873 9874
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9875
		if (tg->se)
9876 9877 9878 9879 9880 9881 9882 9883 9884 9885
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9886
	struct cfs_rq *cfs_rq;
9887 9888
	int i;

K
Kees Cook 已提交
9889
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9890 9891
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9892
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9913
		init_entity_runnable_average(se);
9914 9915 9916 9917 9918 9919 9920 9921 9922 9923
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9935
		update_rq_clock(rq);
9936
		attach_entity_cfs_rq(se);
9937
		sync_throttle(tg, i);
9938 9939 9940 9941
		raw_spin_unlock_irq(&rq->lock);
	}
}

9942
void unregister_fair_sched_group(struct task_group *tg)
9943 9944
{
	unsigned long flags;
9945 9946
	struct rq *rq;
	int cpu;
9947

9948 9949 9950
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9951

9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9984
	if (!parent) {
9985
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9986 9987
		se->depth = 0;
	} else {
9988
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9989 9990
		se->depth = parent->depth + 1;
	}
9991 9992

	se->my_q = cfs_rq;
9993 9994
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
10019 10020
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10021 10022

		/* Propagate contribution to hierarchy */
10023
		rq_lock_irqsave(rq, &rf);
10024
		update_rq_clock(rq);
10025
		for_each_sched_entity(se) {
10026
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10027
			update_cfs_group(se);
10028
		}
10029
		rq_unlock_irqrestore(rq, &rf);
10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10045 10046
void online_fair_sched_group(struct task_group *tg) { }

10047
void unregister_fair_sched_group(struct task_group *tg) { }
10048 10049 10050

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10051

10052
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10053 10054 10055 10056 10057 10058 10059 10060 10061
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10062
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10063 10064 10065 10066

	return rr_interval;
}

10067 10068 10069
/*
 * All the scheduling class methods:
 */
10070
const struct sched_class fair_sched_class = {
10071
	.next			= &idle_sched_class,
10072 10073 10074
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10075
	.yield_to_task		= yield_to_task_fair,
10076

I
Ingo Molnar 已提交
10077
	.check_preempt_curr	= check_preempt_wakeup,
10078 10079 10080 10081

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10082
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10083
	.select_task_rq		= select_task_rq_fair,
10084
	.migrate_task_rq	= migrate_task_rq_fair,
10085

10086 10087
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10088

10089
	.task_dead		= task_dead_fair,
10090
	.set_cpus_allowed	= set_cpus_allowed_common,
10091
#endif
10092

10093
	.set_curr_task          = set_curr_task_fair,
10094
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10095
	.task_fork		= task_fork_fair,
10096 10097

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10098
	.switched_from		= switched_from_fair,
10099
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10100

10101 10102
	.get_rr_interval	= get_rr_interval_fair,

10103 10104
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10105
#ifdef CONFIG_FAIR_GROUP_SCHED
10106
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10107
#endif
10108 10109 10110
};

#ifdef CONFIG_SCHED_DEBUG
10111
void print_cfs_stats(struct seq_file *m, int cpu)
10112
{
10113
	struct cfs_rq *cfs_rq, *pos;
10114

10115
	rcu_read_lock();
10116
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10117
		print_cfs_rq(m, cpu, cfs_rq);
10118
	rcu_read_unlock();
10119
}
10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10141 10142 10143 10144 10145 10146

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10147
#ifdef CONFIG_NO_HZ_COMMON
10148
	nohz.next_balance = jiffies;
10149
	nohz.next_blocked = jiffies;
10150 10151 10152 10153 10154
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}