fair.c 221.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684 685
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686
	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688
}
689 690 691

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692
#else
693
void init_entity_runnable_average(struct sched_entity *se)
694 695 696 697
{
}
#endif

698
/*
699
 * Update the current task's runtime statistics.
700
 */
701
static void update_curr(struct cfs_rq *cfs_rq)
702
{
703
	struct sched_entity *curr = cfs_rq->curr;
704
	u64 now = rq_clock_task(rq_of(cfs_rq));
705
	u64 delta_exec;
706 707 708 709

	if (unlikely(!curr))
		return;

710 711
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
712
		return;
713

I
Ingo Molnar 已提交
714
	curr->exec_start = now;
715

716 717 718 719 720 721 722 723 724
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

725 726 727
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

728
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729
		cpuacct_charge(curtask, delta_exec);
730
		account_group_exec_runtime(curtask, delta_exec);
731
	}
732 733

	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 735
}

736 737 738 739 740
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

741
#ifdef CONFIG_SCHEDSTATS
742
static inline void
743
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744
{
745 746 747 748 749 750 751
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
752 753
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
	u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}
#endif

791 792 793
/*
 * Task is being enqueued - update stats:
 */
794
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
795 796 797 798 799
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
800
	if (se != cfs_rq->curr)
801
		update_stats_wait_start(cfs_rq, se);
802 803 804
}

static inline void
805
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
806 807 808 809 810
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
811
	if (se != cfs_rq->curr)
812
		update_stats_wait_end(cfs_rq, se);
813 814 815 816 817 818
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
819
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
820 821 822 823
{
	/*
	 * We are starting a new run period:
	 */
824
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
825 826 827 828 829 830
}

/**************************************************
 * Scheduling class queueing methods:
 */

831 832
#ifdef CONFIG_NUMA_BALANCING
/*
833 834 835
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
836
 */
837 838
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
839 840 841

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
842

843 844 845
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
870
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
871 872 873
	unsigned int scan, floor;
	unsigned int windows = 1;

874 875
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

892 893 894 895 896 897 898 899 900 901 902 903
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

904 905 906 907 908
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
909
	pid_t gid;
910 911

	struct rcu_head rcu;
912
	nodemask_t active_nodes;
913
	unsigned long total_faults;
914 915 916 917 918
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
919
	unsigned long *faults_cpu;
920
	unsigned long faults[0];
921 922
};

923 924 925 926 927 928 929 930 931
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

932 933 934 935 936
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

937 938 939 940 941 942 943
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
944
{
945
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
946 947 948 949
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
950
	if (!p->numa_faults)
951 952
		return 0;

953 954
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
955 956
}

957 958 959 960 961
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

962 963
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
964 965
}

966 967
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
968 969
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1037 1038 1039 1040 1041 1042
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1043 1044
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1045
{
1046
	unsigned long faults, total_faults;
1047

1048
	if (!p->numa_faults)
1049 1050 1051 1052 1053 1054 1055
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1056
	faults = task_faults(p, nid);
1057 1058
	faults += score_nearby_nodes(p, nid, dist, true);

1059
	return 1000 * faults / total_faults;
1060 1061
}

1062 1063
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1064
{
1065 1066 1067 1068 1069 1070 1071 1072
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1073 1074
		return 0;

1075
	faults = group_faults(p, nid);
1076 1077
	faults += score_nearby_nodes(p, nid, dist, false);

1078
	return 1000 * faults / total_faults;
1079 1080
}

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1144
static unsigned long weighted_cpuload(const int cpu);
1145 1146
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1147
static unsigned long capacity_of(int cpu);
1148 1149
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1150
/* Cached statistics for all CPUs within a node */
1151
struct numa_stats {
1152
	unsigned long nr_running;
1153
	unsigned long load;
1154 1155

	/* Total compute capacity of CPUs on a node */
1156
	unsigned long compute_capacity;
1157 1158

	/* Approximate capacity in terms of runnable tasks on a node */
1159
	unsigned long task_capacity;
1160
	int has_free_capacity;
1161
};
1162

1163 1164 1165 1166 1167
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1168 1169
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1170 1171 1172 1173 1174 1175 1176

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1177
		ns->compute_capacity += capacity_of(cpu);
1178 1179

		cpus++;
1180 1181
	}

1182 1183 1184 1185 1186
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1187 1188
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1189 1190 1191 1192
	 */
	if (!cpus)
		return;

1193 1194 1195 1196 1197 1198
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1199
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1200 1201
}

1202 1203
struct task_numa_env {
	struct task_struct *p;
1204

1205 1206
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1207

1208
	struct numa_stats src_stats, dst_stats;
1209

1210
	int imbalance_pct;
1211
	int dist;
1212 1213 1214

	struct task_struct *best_task;
	long best_imp;
1215 1216 1217
	int best_cpu;
};

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1229
static bool load_too_imbalanced(long src_load, long dst_load,
1230 1231
				struct task_numa_env *env)
{
1232 1233
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1245 1246

	/* We care about the slope of the imbalance, not the direction. */
1247 1248
	if (dst_load < src_load)
		swap(dst_load, src_load);
1249 1250

	/* Is the difference below the threshold? */
1251 1252
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1253 1254 1255 1256 1257
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1258
	 * Compare it with the old imbalance.
1259
	 */
1260
	orig_src_load = env->src_stats.load;
1261
	orig_dst_load = env->dst_stats.load;
1262

1263 1264
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1265

1266 1267 1268 1269 1270
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1271 1272
}

1273 1274 1275 1276 1277 1278
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1279 1280
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1281 1282 1283 1284
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1285
	long src_load, dst_load;
1286
	long load;
1287
	long imp = env->p->numa_group ? groupimp : taskimp;
1288
	long moveimp = imp;
1289
	int dist = env->dist;
1290
	bool assigned = false;
1291 1292

	rcu_read_lock();
1293 1294 1295 1296

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
1297
	 * No need to move the exiting task or idle task.
1298 1299
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1300
		cur = NULL;
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	else {
		/*
		 * The task_struct must be protected here to protect the
		 * p->numa_faults access in the task_weight since the
		 * numa_faults could already be freed in the following path:
		 * finish_task_switch()
		 *     --> put_task_struct()
		 *         --> __put_task_struct()
		 *             --> task_numa_free()
		 */
		get_task_struct(cur);
	}

1314
	raw_spin_unlock_irq(&dst_rq->lock);
1315

1316 1317 1318 1319 1320 1321 1322
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1335 1336
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1337
		 * in any group then look only at task weights.
1338
		 */
1339
		if (cur->numa_group == env->p->numa_group) {
1340 1341
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1342 1343 1344 1345 1346 1347
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1348
		} else {
1349 1350 1351 1352 1353 1354
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1355 1356
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1357
			else
1358 1359
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1360
		}
1361 1362
	}

1363
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1364 1365 1366 1367
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1368
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1369
		    !env->dst_stats.has_free_capacity)
1370 1371 1372 1373 1374 1375
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1376 1377
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1378 1379 1380 1381 1382 1383
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1384 1385 1386
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
1397
			put_task_struct(cur);
1398 1399 1400 1401 1402 1403 1404 1405
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1406
	if (cur) {
1407 1408 1409
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1410 1411
	}

1412
	if (load_too_imbalanced(src_load, dst_load, env))
1413 1414
		goto unlock;

1415 1416 1417 1418 1419 1420 1421
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1422
assign:
1423
	assigned = true;
1424 1425 1426
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
1427 1428 1429 1430 1431 1432
	/*
	 * The dst_rq->curr isn't assigned. The protection for task_struct is
	 * finished.
	 */
	if (cur && !assigned)
		put_task_struct(cur);
1433 1434
}

1435 1436
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1446
		task_numa_compare(env, taskimp, groupimp);
1447 1448 1449
	}
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1467 1468 1469
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1470 1471 1472 1473 1474
		return true;

	return false;
}

1475 1476 1477 1478
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1479

1480
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1481
		.src_nid = task_node(p),
1482 1483 1484 1485 1486 1487

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1488 1489
	};
	struct sched_domain *sd;
1490
	unsigned long taskweight, groupweight;
1491
	int nid, ret, dist;
1492
	long taskimp, groupimp;
1493

1494
	/*
1495 1496 1497 1498 1499 1500
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1501 1502
	 */
	rcu_read_lock();
1503
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1504 1505
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1506 1507
	rcu_read_unlock();

1508 1509 1510 1511 1512 1513 1514
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1515
		p->numa_preferred_nid = task_node(p);
1516 1517 1518
		return -EINVAL;
	}

1519
	env.dst_nid = p->numa_preferred_nid;
1520 1521 1522 1523 1524 1525
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1526
	update_numa_stats(&env.dst_stats, env.dst_nid);
1527

1528
	/* Try to find a spot on the preferred nid. */
1529 1530
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1531

1532 1533 1534 1535 1536 1537 1538 1539 1540
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
	if (env.best_cpu == -1 || (p->numa_group &&
			nodes_weight(p->numa_group->active_nodes) > 1)) {
1541 1542 1543
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1544

1545
			dist = node_distance(env.src_nid, env.dst_nid);
1546 1547 1548 1549 1550
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1551

1552
			/* Only consider nodes where both task and groups benefit */
1553 1554
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1555
			if (taskimp < 0 && groupimp < 0)
1556 1557
				continue;

1558
			env.dist = dist;
1559 1560
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1561 1562
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1563 1564 1565
		}
	}

1566 1567 1568 1569 1570 1571 1572 1573
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1587

1588 1589 1590 1591 1592 1593
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1594
	if (env.best_task == NULL) {
1595 1596 1597
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1598 1599 1600 1601
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1602 1603
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1604 1605
	put_task_struct(env.best_task);
	return ret;
1606 1607
}

1608 1609 1610
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1611 1612
	unsigned long interval = HZ;

1613
	/* This task has no NUMA fault statistics yet */
1614
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1615 1616
		return;

1617
	/* Periodically retry migrating the task to the preferred node */
1618 1619
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1620 1621

	/* Success if task is already running on preferred CPU */
1622
	if (task_node(p) == p->numa_preferred_nid)
1623 1624 1625
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1626
	task_numa_migrate(p);
1627 1628
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1661 1662 1663
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1664 1665 1666
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1667 1668
 */
#define NUMA_PERIOD_SLOTS 10
1669
#define NUMA_PERIOD_THRESHOLD 7
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1690 1691 1692
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1693
	 */
1694
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1728
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1729 1730 1731 1732 1733 1734 1735 1736
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1755 1756
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1757 1758 1759 1760 1761 1762 1763 1764
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1812
		nodemask_t max_group = NODE_MASK_NONE;
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1846 1847
		if (!max_faults)
			break;
1848 1849 1850 1851 1852
		nodes = max_group;
	}
	return nid;
}

1853 1854
static void task_numa_placement(struct task_struct *p)
{
1855 1856
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1857
	unsigned long fault_types[2] = { 0, 0 };
1858 1859
	unsigned long total_faults;
	u64 runtime, period;
1860
	spinlock_t *group_lock = NULL;
1861

1862 1863 1864 1865 1866
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1867
	seq = READ_ONCE(p->mm->numa_scan_seq);
1868 1869 1870
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1871
	p->numa_scan_period_max = task_scan_max(p);
1872

1873 1874 1875 1876
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1877 1878 1879
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1880
		spin_lock_irq(group_lock);
1881 1882
	}

1883 1884
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1885 1886
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1887
		unsigned long faults = 0, group_faults = 0;
1888
		int priv;
1889

1890
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1891
			long diff, f_diff, f_weight;
1892

1893 1894 1895 1896
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1897

1898
			/* Decay existing window, copy faults since last scan */
1899 1900 1901
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1902

1903 1904 1905 1906 1907 1908 1909 1910
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1911
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1912
				   (total_faults + 1);
1913 1914
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1915

1916 1917 1918
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1919
			p->total_numa_faults += diff;
1920
			if (p->numa_group) {
1921 1922 1923 1924 1925 1926 1927 1928 1929
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1930
				p->numa_group->total_faults += diff;
1931
				group_faults += p->numa_group->faults[mem_idx];
1932
			}
1933 1934
		}

1935 1936 1937 1938
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1939 1940 1941 1942 1943 1944 1945

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1946 1947
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1948
	if (p->numa_group) {
1949
		update_numa_active_node_mask(p->numa_group);
1950
		spin_unlock_irq(group_lock);
1951
		max_nid = preferred_group_nid(p, max_group_nid);
1952 1953
	}

1954 1955 1956 1957 1958 1959 1960
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1961
	}
1962 1963
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1975 1976
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1977 1978 1979 1980 1981 1982 1983 1984 1985
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1986
				    4*nr_node_ids*sizeof(unsigned long);
1987 1988 1989 1990 1991 1992 1993

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
1994
		grp->gid = p->pid;
1995
		/* Second half of the array tracks nids where faults happen */
1996 1997
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1998

1999 2000
		node_set(task_node(current), grp->active_nodes);

2001
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2002
			grp->faults[i] = p->numa_faults[i];
2003

2004
		grp->total_faults = p->total_numa_faults;
2005

2006 2007 2008 2009 2010
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2011
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2012 2013

	if (!cpupid_match_pid(tsk, cpupid))
2014
		goto no_join;
2015 2016 2017

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2018
		goto no_join;
2019 2020 2021

	my_grp = p->numa_group;
	if (grp == my_grp)
2022
		goto no_join;
2023 2024 2025 2026 2027 2028

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2029
		goto no_join;
2030 2031 2032 2033 2034

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2035
		goto no_join;
2036

2037 2038 2039 2040 2041 2042 2043
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2044

2045 2046 2047
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2048
	if (join && !get_numa_group(grp))
2049
		goto no_join;
2050 2051 2052 2053 2054 2055

	rcu_read_unlock();

	if (!join)
		return;

2056 2057
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2058

2059
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2060 2061
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2062
	}
2063 2064
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2065 2066 2067 2068 2069

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2070
	spin_unlock_irq(&grp->lock);
2071 2072 2073 2074

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2075 2076 2077 2078 2079
	return;

no_join:
	rcu_read_unlock();
	return;
2080 2081 2082 2083 2084
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2085
	void *numa_faults = p->numa_faults;
2086 2087
	unsigned long flags;
	int i;
2088 2089

	if (grp) {
2090
		spin_lock_irqsave(&grp->lock, flags);
2091
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2092
			grp->faults[i] -= p->numa_faults[i];
2093
		grp->total_faults -= p->total_numa_faults;
2094

2095
		grp->nr_tasks--;
2096
		spin_unlock_irqrestore(&grp->lock, flags);
2097
		RCU_INIT_POINTER(p->numa_group, NULL);
2098 2099 2100
		put_numa_group(grp);
	}

2101
	p->numa_faults = NULL;
2102
	kfree(numa_faults);
2103 2104
}

2105 2106 2107
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2108
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2109 2110
{
	struct task_struct *p = current;
2111
	bool migrated = flags & TNF_MIGRATED;
2112
	int cpu_node = task_node(current);
2113
	int local = !!(flags & TNF_FAULT_LOCAL);
2114
	int priv;
2115

2116
	if (!static_branch_likely(&sched_numa_balancing))
2117 2118
		return;

2119 2120 2121 2122
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2123
	/* Allocate buffer to track faults on a per-node basis */
2124 2125
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2126
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2127

2128 2129
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2130
			return;
2131

2132
		p->total_numa_faults = 0;
2133
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2134
	}
2135

2136 2137 2138 2139 2140 2141 2142 2143
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2144
		if (!priv && !(flags & TNF_NO_GROUP))
2145
			task_numa_group(p, last_cpupid, flags, &priv);
2146 2147
	}

2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

2159
	task_numa_placement(p);
2160

2161 2162 2163 2164 2165
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2166 2167
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2168 2169
	if (migrated)
		p->numa_pages_migrated += pages;
2170 2171
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2172

2173 2174
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2175
	p->numa_faults_locality[local] += pages;
2176 2177
}

2178 2179
static void reset_ptenuma_scan(struct task_struct *p)
{
2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2188
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2189 2190 2191
	p->mm->numa_scan_offset = 0;
}

2192 2193 2194 2195 2196 2197 2198 2199 2200
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2201
	u64 runtime = p->se.sum_exec_runtime;
2202
	struct vm_area_struct *vma;
2203
	unsigned long start, end;
2204
	unsigned long nr_pte_updates = 0;
2205
	long pages, virtpages;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2221
	if (!mm->numa_next_scan) {
2222 2223
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2224 2225
	}

2226 2227 2228 2229 2230 2231 2232
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2233 2234 2235 2236
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2237

2238
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2239 2240 2241
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2242 2243 2244 2245 2246 2247
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2248 2249 2250
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2251
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2252 2253
	if (!pages)
		return;
2254

2255

2256
	down_read(&mm->mmap_sem);
2257
	vma = find_vma(mm, start);
2258 2259
	if (!vma) {
		reset_ptenuma_scan(p);
2260
		start = 0;
2261 2262
		vma = mm->mmap;
	}
2263
	for (; vma; vma = vma->vm_next) {
2264
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2265
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2266
			continue;
2267
		}
2268

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2279 2280 2281 2282 2283 2284
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2285

2286 2287 2288 2289
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2290
			nr_pte_updates = change_prot_numa(vma, start, end);
2291 2292

			/*
2293 2294 2295 2296 2297 2298
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2299 2300 2301
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2302
			virtpages -= (end - start) >> PAGE_SHIFT;
2303

2304
			start = end;
2305
			if (pages <= 0 || virtpages <= 0)
2306
				goto out;
2307 2308

			cond_resched();
2309
		} while (end != vma->vm_end);
2310
	}
2311

2312
out:
2313
	/*
P
Peter Zijlstra 已提交
2314 2315 2316 2317
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2318 2319
	 */
	if (vma)
2320
		mm->numa_scan_offset = start;
2321 2322 2323
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2360
	if (now > curr->node_stamp + period) {
2361
		if (!curr->node_stamp)
2362
			curr->numa_scan_period = task_scan_min(curr);
2363
		curr->node_stamp += period;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2375 2376 2377 2378 2379 2380 2381 2382

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2383 2384
#endif /* CONFIG_NUMA_BALANCING */

2385 2386 2387 2388
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2389
	if (!parent_entity(se))
2390
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2391
#ifdef CONFIG_SMP
2392 2393 2394 2395 2396 2397
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2398
#endif
2399 2400 2401 2402 2403 2404 2405
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2406
	if (!parent_entity(se))
2407
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2408 2409
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2410
		list_del_init(&se->group_node);
2411
	}
2412 2413 2414
	cfs_rq->nr_running--;
}

2415 2416
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2417 2418 2419 2420 2421
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
2422 2423 2424
	 * Use this CPU's real-time load instead of the last load contribution
	 * as the updating of the contribution is delayed, and we will use the
	 * the real-time load to calc the share. See update_tg_load_avg().
2425
	 */
2426
	tg_weight = atomic_long_read(&tg->load_avg);
2427
	tg_weight -= cfs_rq->tg_load_avg_contrib;
2428
	tg_weight += cfs_rq->load.weight;
2429 2430 2431 2432

	return tg_weight;
}

2433
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2434
{
2435
	long tg_weight, load, shares;
2436

2437
	tg_weight = calc_tg_weight(tg, cfs_rq);
2438
	load = cfs_rq->load.weight;
2439 2440

	shares = (tg->shares * load);
2441 2442
	if (tg_weight)
		shares /= tg_weight;
2443 2444 2445 2446 2447 2448 2449 2450 2451

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2452
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2453 2454 2455 2456
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2457 2458 2459
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2460 2461 2462 2463
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2464
		account_entity_dequeue(cfs_rq, se);
2465
	}
P
Peter Zijlstra 已提交
2466 2467 2468 2469 2470 2471 2472

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2473 2474
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2475
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2476 2477 2478
{
	struct task_group *tg;
	struct sched_entity *se;
2479
	long shares;
P
Peter Zijlstra 已提交
2480 2481 2482

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2483
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2484
		return;
2485 2486 2487 2488
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2489
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2490 2491 2492 2493

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2494
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2495 2496 2497 2498
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2499
#ifdef CONFIG_SMP
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2520 2521 2522 2523 2524 2525
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2538 2539
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2540 2541 2542 2543 2544 2545
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2546 2547
	}

2548 2549
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2578 2579
}

2580 2581 2582 2583
#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
#error "load tracking assumes 2^10 as unit"
#endif

2584
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2585

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2614 2615
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2616
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2617
{
2618
	u64 delta, scaled_delta, periods;
2619
	u32 contrib;
2620
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2621
	unsigned long scale_freq, scale_cpu;
2622

2623
	delta = now - sa->last_update_time;
2624 2625 2626 2627 2628
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2629
		sa->last_update_time = now;
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2640
	sa->last_update_time = now;
2641

2642 2643 2644
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2645
	/* delta_w is the amount already accumulated against our next period */
2646
	delta_w = sa->period_contrib;
2647 2648 2649
	if (delta + delta_w >= 1024) {
		decayed = 1;

2650 2651 2652
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2653 2654 2655 2656 2657 2658
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2659
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2660
		if (weight) {
2661 2662 2663 2664 2665
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2666
		}
2667
		if (running)
2668
			sa->util_sum += scaled_delta_w * scale_cpu;
2669 2670 2671 2672 2673 2674 2675

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2676
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2677 2678 2679 2680
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2681
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2682 2683

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2684
		contrib = __compute_runnable_contrib(periods);
2685
		contrib = cap_scale(contrib, scale_freq);
2686
		if (weight) {
2687
			sa->load_sum += weight * contrib;
2688 2689 2690
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2691
		if (running)
2692
			sa->util_sum += contrib * scale_cpu;
2693 2694 2695
	}

	/* Remainder of delta accrued against u_0` */
2696
	scaled_delta = cap_scale(delta, scale_freq);
2697
	if (weight) {
2698
		sa->load_sum += weight * scaled_delta;
2699
		if (cfs_rq)
2700
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2701
	}
2702
	if (running)
2703
		sa->util_sum += scaled_delta * scale_cpu;
2704

2705
	sa->period_contrib += delta;
2706

2707 2708
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2709 2710 2711 2712
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2713
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2714
	}
2715

2716
	return decayed;
2717 2718
}

2719
#ifdef CONFIG_FAIR_GROUP_SCHED
2720
/*
2721 2722
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2723
 */
2724
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2725
{
2726
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2727

2728 2729 2730 2731 2732 2733
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2734 2735 2736
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2737
	}
2738
}
2739

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2786
#else /* CONFIG_FAIR_GROUP_SCHED */
2787
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2788
#endif /* CONFIG_FAIR_GROUP_SCHED */
2789

2790
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2791

2792 2793
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2794
{
2795
	struct sched_avg *sa = &cfs_rq->avg;
2796
	int decayed, removed = 0;
2797

2798
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2799
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2800 2801
		sa->load_avg = max_t(long, sa->load_avg - r, 0);
		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2802
		removed = 1;
2803
	}
2804

2805 2806 2807
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2808
		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2809
	}
2810

2811
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2812
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2813

2814 2815 2816 2817
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2818

2819
	return decayed || removed;
2820 2821
}

2822 2823
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
2824
{
2825
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2826
	u64 now = cfs_rq_clock_task(cfs_rq);
2827
	int cpu = cpu_of(rq_of(cfs_rq));
2828

2829
	/*
2830 2831
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
2832
	 */
2833
	__update_load_avg(now, cpu, &se->avg,
2834 2835
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
2836

2837 2838
	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
		update_tg_load_avg(cfs_rq, 0);
2839 2840
}

2841 2842
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2843 2844 2845
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2860
skip_aging:
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
}

2880 2881 2882
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883
{
2884 2885
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2886
	int migrated, decayed;
2887

2888 2889
	migrated = !sa->last_update_time;
	if (!migrated) {
2890
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2891 2892
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
2893
	}
2894

2895
	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2896

2897 2898 2899
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

2900 2901
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
2902

2903 2904
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
2916
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2917 2918
}

2919
#ifndef CONFIG_64BIT
2920 2921
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
2922
	u64 last_update_time_copy;
2923
	u64 last_update_time;
2924

2925 2926 2927 2928 2929
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
2930 2931 2932

	return last_update_time;
}
2933
#else
2934 2935 2936 2937
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
2938 2939
#endif

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
	 * Newly created task or never used group entity should not be removed
	 * from its (source) cfs_rq
	 */
	if (se->avg.last_update_time == 0)
		return;

	last_update_time = cfs_rq_last_update_time(cfs_rq);

2958
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2959 2960
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2961
}
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

2973 2974
static int idle_balance(struct rq *this_rq);

2975 2976
#else /* CONFIG_SMP */

2977 2978 2979
static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2980 2981
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2982
static inline void remove_entity_load_avg(struct sched_entity *se) {}
2983

2984 2985 2986 2987 2988
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

2989 2990 2991 2992 2993
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2994
#endif /* CONFIG_SMP */
2995

2996
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2997 2998
{
#ifdef CONFIG_SCHEDSTATS
2999 3000 3001 3002 3003
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

3004
	if (se->statistics.sleep_start) {
3005
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3006 3007 3008 3009

		if ((s64)delta < 0)
			delta = 0;

3010 3011
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
3012

3013
		se->statistics.sleep_start = 0;
3014
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
3015

3016
		if (tsk) {
3017
			account_scheduler_latency(tsk, delta >> 10, 1);
3018 3019
			trace_sched_stat_sleep(tsk, delta);
		}
3020
	}
3021
	if (se->statistics.block_start) {
3022
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3023 3024 3025 3026

		if ((s64)delta < 0)
			delta = 0;

3027 3028
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
3029

3030
		se->statistics.block_start = 0;
3031
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
3032

3033
		if (tsk) {
3034
			if (tsk->in_iowait) {
3035 3036
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3037
				trace_sched_stat_iowait(tsk, delta);
3038 3039
			}

3040 3041
			trace_sched_stat_blocked(tsk, delta);

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3053
		}
3054 3055 3056 3057
	}
#endif
}

P
Peter Zijlstra 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3071 3072 3073
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3074
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3075

3076 3077 3078 3079 3080 3081
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3082
	if (initial && sched_feat(START_DEBIT))
3083
		vruntime += sched_vslice(cfs_rq, se);
3084

3085
	/* sleeps up to a single latency don't count. */
3086
	if (!initial) {
3087
		unsigned long thresh = sysctl_sched_latency;
3088

3089 3090 3091 3092 3093 3094
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3095

3096
		vruntime -= thresh;
3097 3098
	}

3099
	/* ensure we never gain time by being placed backwards. */
3100
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3101 3102
}

3103 3104
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3105
static void
3106
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3107
{
3108 3109
	/*
	 * Update the normalized vruntime before updating min_vruntime
3110
	 * through calling update_curr().
3111
	 */
3112
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3113 3114
		se->vruntime += cfs_rq->min_vruntime;

3115
	/*
3116
	 * Update run-time statistics of the 'current'.
3117
	 */
3118
	update_curr(cfs_rq);
3119
	enqueue_entity_load_avg(cfs_rq, se);
3120 3121
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3122

3123
	if (flags & ENQUEUE_WAKEUP) {
3124
		place_entity(cfs_rq, se, 0);
3125
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3126
	}
3127

3128
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
3129
	check_spread(cfs_rq, se);
3130 3131
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3132
	se->on_rq = 1;
3133

3134
	if (cfs_rq->nr_running == 1) {
3135
		list_add_leaf_cfs_rq(cfs_rq);
3136 3137
		check_enqueue_throttle(cfs_rq);
	}
3138 3139
}

3140
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3141
{
3142 3143
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3144
		if (cfs_rq->last != se)
3145
			break;
3146 3147

		cfs_rq->last = NULL;
3148 3149
	}
}
P
Peter Zijlstra 已提交
3150

3151 3152 3153 3154
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3155
		if (cfs_rq->next != se)
3156
			break;
3157 3158

		cfs_rq->next = NULL;
3159
	}
P
Peter Zijlstra 已提交
3160 3161
}

3162 3163 3164 3165
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3166
		if (cfs_rq->skip != se)
3167
			break;
3168 3169

		cfs_rq->skip = NULL;
3170 3171 3172
	}
}

P
Peter Zijlstra 已提交
3173 3174
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3175 3176 3177 3178 3179
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3180 3181 3182

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3183 3184
}

3185
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3186

3187
static void
3188
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3189
{
3190 3191 3192 3193
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3194
	dequeue_entity_load_avg(cfs_rq, se);
3195

3196
	update_stats_dequeue(cfs_rq, se);
3197
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
3198
#ifdef CONFIG_SCHEDSTATS
3199 3200 3201 3202
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
3203
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3204
			if (tsk->state & TASK_UNINTERRUPTIBLE)
3205
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3206
		}
3207
#endif
P
Peter Zijlstra 已提交
3208 3209
	}

P
Peter Zijlstra 已提交
3210
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3211

3212
	if (se != cfs_rq->curr)
3213
		__dequeue_entity(cfs_rq, se);
3214
	se->on_rq = 0;
3215
	account_entity_dequeue(cfs_rq, se);
3216 3217 3218 3219 3220 3221

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3222
	if (!(flags & DEQUEUE_SLEEP))
3223
		se->vruntime -= cfs_rq->min_vruntime;
3224

3225 3226 3227
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3228
	update_min_vruntime(cfs_rq);
3229
	update_cfs_shares(cfs_rq);
3230 3231 3232 3233 3234
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3235
static void
I
Ingo Molnar 已提交
3236
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3237
{
3238
	unsigned long ideal_runtime, delta_exec;
3239 3240
	struct sched_entity *se;
	s64 delta;
3241

P
Peter Zijlstra 已提交
3242
	ideal_runtime = sched_slice(cfs_rq, curr);
3243
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3244
	if (delta_exec > ideal_runtime) {
3245
		resched_curr(rq_of(cfs_rq));
3246 3247 3248 3249 3250
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3262 3263
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3264

3265 3266
	if (delta < 0)
		return;
3267

3268
	if (delta > ideal_runtime)
3269
		resched_curr(rq_of(cfs_rq));
3270 3271
}

3272
static void
3273
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3274
{
3275 3276 3277 3278 3279 3280 3281 3282 3283
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
3284
		update_load_avg(se, 1);
3285 3286
	}

3287
	update_stats_curr_start(cfs_rq, se);
3288
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3289 3290 3291 3292 3293 3294
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3295
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3296
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3297 3298 3299
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3300
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3301 3302
}

3303 3304 3305
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3306 3307 3308 3309 3310 3311 3312
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3313 3314
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3315
{
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3327

3328 3329 3330 3331 3332
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3343 3344 3345
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3346

3347 3348 3349 3350 3351 3352
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3353 3354 3355 3356 3357 3358
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3359
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3360 3361

	return se;
3362 3363
}

3364
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3365

3366
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3367 3368 3369 3370 3371 3372
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3373
		update_curr(cfs_rq);
3374

3375 3376 3377
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3378
	check_spread(cfs_rq, prev);
3379
	if (prev->on_rq) {
3380
		update_stats_wait_start(cfs_rq, prev);
3381 3382
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3383
		/* in !on_rq case, update occurred at dequeue */
3384
		update_load_avg(prev, 0);
3385
	}
3386
	cfs_rq->curr = NULL;
3387 3388
}

P
Peter Zijlstra 已提交
3389 3390
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3391 3392
{
	/*
3393
	 * Update run-time statistics of the 'current'.
3394
	 */
3395
	update_curr(cfs_rq);
3396

3397 3398 3399
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3400
	update_load_avg(curr, 1);
3401
	update_cfs_shares(cfs_rq);
3402

P
Peter Zijlstra 已提交
3403 3404 3405 3406 3407
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3408
	if (queued) {
3409
		resched_curr(rq_of(cfs_rq));
3410 3411
		return;
	}
P
Peter Zijlstra 已提交
3412 3413 3414 3415 3416 3417 3418 3419
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3420
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3421
		check_preempt_tick(cfs_rq, curr);
3422 3423
}

3424 3425 3426 3427 3428 3429

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3430 3431

#ifdef HAVE_JUMP_LABEL
3432
static struct static_key __cfs_bandwidth_used;
3433 3434 3435

static inline bool cfs_bandwidth_used(void)
{
3436
	return static_key_false(&__cfs_bandwidth_used);
3437 3438
}

3439
void cfs_bandwidth_usage_inc(void)
3440
{
3441 3442 3443 3444 3445 3446
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3447 3448 3449 3450 3451 3452 3453
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3454 3455
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3456 3457
#endif /* HAVE_JUMP_LABEL */

3458 3459 3460 3461 3462 3463 3464 3465
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3466 3467 3468 3469 3470 3471

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3472 3473 3474 3475 3476 3477 3478
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3479
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3491 3492 3493 3494 3495
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3496 3497 3498 3499 3500 3501
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3502
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3503 3504
}

3505 3506
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3507 3508 3509
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3510
	u64 amount = 0, min_amount, expires;
3511 3512 3513 3514 3515 3516 3517

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3518
	else {
P
Peter Zijlstra 已提交
3519
		start_cfs_bandwidth(cfs_b);
3520 3521 3522 3523 3524 3525

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3526
	}
P
Paul Turner 已提交
3527
	expires = cfs_b->runtime_expires;
3528 3529 3530
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3531 3532 3533 3534 3535 3536 3537
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3538 3539

	return cfs_rq->runtime_remaining > 0;
3540 3541
}

P
Paul Turner 已提交
3542 3543 3544 3545 3546
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3547
{
P
Paul Turner 已提交
3548 3549 3550
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3551
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3552 3553
		return;

P
Paul Turner 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3563 3564 3565
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3566 3567
	 */

3568
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3569 3570 3571 3572 3573 3574 3575 3576
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3577
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3578 3579
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3580
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3581 3582 3583
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3584 3585
		return;

3586 3587 3588 3589 3590
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3591
		resched_curr(rq_of(cfs_rq));
3592 3593
}

3594
static __always_inline
3595
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3596
{
3597
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3598 3599 3600 3601 3602
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3603 3604
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3605
	return cfs_bandwidth_used() && cfs_rq->throttled;
3606 3607
}

3608 3609 3610
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3611
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3640
		/* adjust cfs_rq_clock_task() */
3641
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3642
					     cfs_rq->throttled_clock_task;
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3654 3655
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3656
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3657 3658 3659 3660 3661
	cfs_rq->throttle_count++;

	return 0;
}

3662
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3663 3664 3665 3666 3667
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3668
	bool empty;
3669 3670 3671

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3672
	/* freeze hierarchy runnable averages while throttled */
3673 3674 3675
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3693
		sub_nr_running(rq, task_delta);
3694 3695

	cfs_rq->throttled = 1;
3696
	cfs_rq->throttled_clock = rq_clock(rq);
3697
	raw_spin_lock(&cfs_b->lock);
3698
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3699

3700 3701 3702 3703 3704
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3705 3706 3707 3708 3709 3710 3711 3712

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3713 3714 3715
	raw_spin_unlock(&cfs_b->lock);
}

3716
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3717 3718 3719 3720 3721 3722 3723
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3724
	se = cfs_rq->tg->se[cpu_of(rq)];
3725 3726

	cfs_rq->throttled = 0;
3727 3728 3729

	update_rq_clock(rq);

3730
	raw_spin_lock(&cfs_b->lock);
3731
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3732 3733 3734
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3735 3736 3737
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3756
		add_nr_running(rq, task_delta);
3757 3758 3759

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3760
		resched_curr(rq);
3761 3762 3763 3764 3765 3766
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3767 3768
	u64 runtime;
	u64 starting_runtime = remaining;
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3799
	return starting_runtime - remaining;
3800 3801
}

3802 3803 3804 3805 3806 3807 3808 3809
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3810
	u64 runtime, runtime_expires;
3811
	int throttled;
3812 3813 3814

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3815
		goto out_deactivate;
3816

3817
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3818
	cfs_b->nr_periods += overrun;
3819

3820 3821 3822 3823 3824 3825
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3826 3827 3828

	__refill_cfs_bandwidth_runtime(cfs_b);

3829 3830 3831
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3832
		return 0;
3833 3834
	}

3835 3836 3837
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3838 3839 3840
	runtime_expires = cfs_b->runtime_expires;

	/*
3841 3842 3843 3844 3845
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3846
	 */
3847 3848
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3849 3850 3851 3852 3853 3854 3855
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3856 3857

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3858
	}
3859

3860 3861 3862 3863 3864 3865 3866
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3867

3868 3869 3870 3871
	return 0;

out_deactivate:
	return 1;
3872
}
3873

3874 3875 3876 3877 3878 3879 3880
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3881 3882 3883 3884
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3885
 * hrtimer base being cleared by hrtimer_start. In the case of
3886 3887
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
3913 3914 3915
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3945 3946 3947
	if (!cfs_bandwidth_used())
		return;

3948
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3964 3965 3966
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3967
		return;
3968
	}
3969

3970
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3971
		runtime = cfs_b->runtime;
3972

3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3983
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3984 3985 3986
	raw_spin_unlock(&cfs_b->lock);
}

3987 3988 3989 3990 3991 3992 3993
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3994 3995 3996
	if (!cfs_bandwidth_used())
		return;

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
4012
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4013
{
4014
	if (!cfs_bandwidth_used())
4015
		return false;
4016

4017
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4018
		return false;
4019 4020 4021 4022 4023 4024

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4025
		return true;
4026 4027

	throttle_cfs_rq(cfs_rq);
4028
	return true;
4029
}
4030 4031 4032 4033 4034

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4035

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4048
	raw_spin_lock(&cfs_b->lock);
4049
	for (;;) {
P
Peter Zijlstra 已提交
4050
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4051 4052 4053 4054 4055
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4056 4057
	if (idle)
		cfs_b->period_active = 0;
4058
	raw_spin_unlock(&cfs_b->lock);
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4071
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4083
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4084
{
P
Peter Zijlstra 已提交
4085
	lockdep_assert_held(&cfs_b->lock);
4086

P
Peter Zijlstra 已提交
4087 4088 4089 4090 4091
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4092 4093 4094 4095
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4096 4097 4098 4099
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4100 4101 4102 4103
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4117
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4129
		cfs_rq->runtime_remaining = 1;
4130 4131 4132 4133 4134 4135
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4136 4137 4138 4139 4140 4141
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4142 4143
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4144
	return rq_clock_task(rq_of(cfs_rq));
4145 4146
}

4147
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4148
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4149
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4150
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4151 4152 4153 4154 4155

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4167 4168 4169 4170 4171

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4172 4173
#endif

4174 4175 4176 4177 4178
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4179
static inline void update_runtime_enabled(struct rq *rq) {}
4180
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4181 4182 4183

#endif /* CONFIG_CFS_BANDWIDTH */

4184 4185 4186 4187
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4188 4189 4190 4191 4192 4193 4194 4195
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4196
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4197 4198 4199 4200 4201 4202
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4203
				resched_curr(rq);
P
Peter Zijlstra 已提交
4204 4205
			return;
		}
4206
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4207 4208
	}
}
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4219
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4220 4221 4222 4223 4224
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4225
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4226 4227 4228 4229
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4230 4231 4232 4233

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4234 4235
#endif

4236 4237 4238 4239 4240
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4241
static void
4242
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4243 4244
{
	struct cfs_rq *cfs_rq;
4245
	struct sched_entity *se = &p->se;
4246 4247

	for_each_sched_entity(se) {
4248
		if (se->on_rq)
4249 4250
			break;
		cfs_rq = cfs_rq_of(se);
4251
		enqueue_entity(cfs_rq, se, flags);
4252 4253 4254 4255 4256 4257 4258 4259 4260

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4261
		cfs_rq->h_nr_running++;
4262

4263
		flags = ENQUEUE_WAKEUP;
4264
	}
P
Peter Zijlstra 已提交
4265

P
Peter Zijlstra 已提交
4266
	for_each_sched_entity(se) {
4267
		cfs_rq = cfs_rq_of(se);
4268
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4269

4270 4271 4272
		if (cfs_rq_throttled(cfs_rq))
			break;

4273
		update_load_avg(se, 1);
4274
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4275 4276
	}

Y
Yuyang Du 已提交
4277
	if (!se)
4278
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4279

4280
	hrtick_update(rq);
4281 4282
}

4283 4284
static void set_next_buddy(struct sched_entity *se);

4285 4286 4287 4288 4289
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4290
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4291 4292
{
	struct cfs_rq *cfs_rq;
4293
	struct sched_entity *se = &p->se;
4294
	int task_sleep = flags & DEQUEUE_SLEEP;
4295 4296 4297

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4298
		dequeue_entity(cfs_rq, se, flags);
4299 4300 4301 4302 4303 4304 4305 4306 4307

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4308
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4309

4310
		/* Don't dequeue parent if it has other entities besides us */
4311 4312 4313 4314 4315 4316 4317
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4318 4319 4320

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4321
			break;
4322
		}
4323
		flags |= DEQUEUE_SLEEP;
4324
	}
P
Peter Zijlstra 已提交
4325

P
Peter Zijlstra 已提交
4326
	for_each_sched_entity(se) {
4327
		cfs_rq = cfs_rq_of(se);
4328
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4329

4330 4331 4332
		if (cfs_rq_throttled(cfs_rq))
			break;

4333
		update_load_avg(se, 1);
4334
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4335 4336
	}

Y
Yuyang Du 已提交
4337
	if (!se)
4338
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4339

4340
	hrtick_update(rq);
4341 4342
}

4343
#ifdef CONFIG_SMP
4344 4345 4346 4347 4348 4349

/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4350
 * The exact cpuload calculated at every tick would be:
4351
 *
4352 4353 4354 4355 4356 4357 4358
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4359 4360 4361
 *
 * decay_load_missed() below does efficient calculation of
 *
4362 4363 4364 4365 4366 4367
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4368
 *
4369
 * The calculation is approximated on a 128 point scale.
4370 4371
 */
#define DEGRADE_SHIFT		7
4372 4373 4374 4375 4376 4377 4378 4379 4380

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

4411 4412 4413 4414 4415 4416 4417
/**
 * __update_cpu_load - update the rq->cpu_load[] statistics
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 * @active: !0 for NOHZ_FULL
 *
4418
 * Update rq->cpu_load[] statistics. This function is usually called every
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
 * term. See the @active paramter.
4446 4447
 */
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4448
			      unsigned long pending_updates, int active)
4449
{
4450
	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4462
		old_load = this_rq->cpu_load[i] - tickless_load;
4463
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4464
		old_load += tickless_load;
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4480 4481 4482 4483 4484 4485
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
#ifdef CONFIG_NO_HZ_COMMON
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
static void update_idle_cpu_load(struct rq *this_rq)
{
4506
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4507
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
	unsigned long pending_updates;

	/*
	 * bail if there's load or we're actually up-to-date.
	 */
	if (load || curr_jiffies == this_rq->last_load_update_tick)
		return;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	this_rq->last_load_update_tick = curr_jiffies;

4519
	__update_cpu_load(this_rq, load, pending_updates, 0);
4520 4521 4522 4523 4524
}

/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
4525
void update_cpu_load_nohz(int active)
4526 4527
{
	struct rq *this_rq = this_rq();
4528
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4529
	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	unsigned long pending_updates;

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
4540 4541 4542
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
4543
		 */
4544
		__update_cpu_load(this_rq, load, pending_updates, active);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
	}
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

/*
 * Called from scheduler_tick()
 */
void update_cpu_load_active(struct rq *this_rq)
{
4555
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4556 4557 4558 4559
	/*
	 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
	 */
	this_rq->last_load_update_tick = jiffies;
4560
	__update_cpu_load(this_rq, load, 1, 1);
4561 4562
}

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4596
static unsigned long capacity_of(int cpu)
4597
{
4598
	return cpu_rq(cpu)->cpu_capacity;
4599 4600
}

4601 4602 4603 4604 4605
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4606 4607 4608
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4609
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4610
	unsigned long load_avg = weighted_cpuload(cpu);
4611 4612

	if (nr_running)
4613
		return load_avg / nr_running;
4614 4615 4616 4617

	return 0;
}

4618 4619 4620 4621 4622 4623 4624
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4625
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4626
		current->wakee_flips >>= 1;
4627 4628 4629 4630 4631 4632 4633 4634
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4635

4636
static void task_waking_fair(struct task_struct *p)
4637 4638 4639
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4640 4641 4642 4643
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4644

4645 4646 4647 4648 4649 4650 4651 4652
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4653

4654
	se->vruntime -= min_vruntime;
4655
	record_wakee(p);
4656 4657
}

4658
#ifdef CONFIG_FAIR_GROUP_SCHED
4659 4660 4661 4662 4663 4664
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4708
 */
P
Peter Zijlstra 已提交
4709
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4710
{
P
Peter Zijlstra 已提交
4711
	struct sched_entity *se = tg->se[cpu];
4712

4713
	if (!tg->parent)	/* the trivial, non-cgroup case */
4714 4715
		return wl;

P
Peter Zijlstra 已提交
4716
	for_each_sched_entity(se) {
4717
		long w, W;
P
Peter Zijlstra 已提交
4718

4719
		tg = se->my_q->tg;
4720

4721 4722 4723 4724
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4725

4726 4727 4728
		/*
		 * w = rw_i + @wl
		 */
4729
		w = cfs_rq_load_avg(se->my_q) + wl;
4730

4731 4732 4733 4734
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4735
			wl = (w * (long)tg->shares) / W;
4736 4737
		else
			wl = tg->shares;
4738

4739 4740 4741 4742 4743
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4744 4745
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4746 4747 4748 4749

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4750
		wl -= se->avg.load_avg;
4751 4752 4753 4754 4755 4756 4757 4758

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4759 4760
		wg = 0;
	}
4761

P
Peter Zijlstra 已提交
4762
	return wl;
4763 4764
}
#else
P
Peter Zijlstra 已提交
4765

4766
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4767
{
4768
	return wl;
4769
}
P
Peter Zijlstra 已提交
4770

4771 4772
#endif

M
Mike Galbraith 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.  In order
 * to determine whether we should let the load spread vs consolodating to
 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.  With
 * both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
 * being client/server, worker/dispatcher, interrupt source or whatever is
 * irrelevant, spread criteria is apparent partner count exceeds socket size.
 */
4785 4786
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
4787 4788
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
4789
	int factor = this_cpu_read(sd_llc_size);
4790

M
Mike Galbraith 已提交
4791 4792 4793 4794 4795
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
4796 4797
}

4798
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4799
{
4800
	s64 this_load, load;
4801
	s64 this_eff_load, prev_eff_load;
4802 4803
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4804
	unsigned long weight;
4805
	int balanced;
4806

4807 4808 4809 4810 4811
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4812

4813 4814 4815 4816 4817
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4818 4819
	if (sync) {
		tg = task_group(current);
4820
		weight = current->se.avg.load_avg;
4821

4822
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4823 4824
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4825

4826
	tg = task_group(p);
4827
	weight = p->se.avg.load_avg;
4828

4829 4830
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4831 4832 4833
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4834 4835 4836 4837
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4838 4839
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4840

4841 4842
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4843

4844
	if (this_load > 0) {
4845 4846 4847 4848
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4849
	}
4850

4851
	balanced = this_eff_load <= prev_eff_load;
4852

4853
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4854

4855 4856
	if (!balanced)
		return 0;
4857

4858 4859 4860 4861
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4862 4863
}

4864 4865 4866 4867 4868
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4869
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4870
		  int this_cpu, int sd_flag)
4871
{
4872
	struct sched_group *idlest = NULL, *group = sd->groups;
4873
	unsigned long min_load = ULONG_MAX, this_load = 0;
4874
	int load_idx = sd->forkexec_idx;
4875
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4876

4877 4878 4879
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4880 4881 4882 4883
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4884

4885 4886
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4887
					tsk_cpus_allowed(p)))
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4906
		/* Adjust by relative CPU capacity of the group */
4907
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
4929 4930 4931 4932
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
4933 4934 4935
	int i;

	/* Traverse only the allowed CPUs */
4936
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
4959
		} else if (shallowest_idle_cpu == -1) {
4960 4961 4962 4963 4964
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
4965 4966 4967
		}
	}

4968
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4969
}
4970

4971 4972 4973
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4974
static int select_idle_sibling(struct task_struct *p, int target)
4975
{
4976
	struct sched_domain *sd;
4977
	struct sched_group *sg;
4978
	int i = task_cpu(p);
4979

4980 4981
	if (idle_cpu(target))
		return target;
4982 4983

	/*
4984
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4985
	 */
4986 4987
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4988 4989

	/*
4990
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4991
	 */
4992
	sd = rcu_dereference(per_cpu(sd_llc, target));
4993
	for_each_lower_domain(sd) {
4994 4995 4996 4997 4998 4999 5000
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
5001
				if (i == target || !idle_cpu(i))
5002 5003
					goto next;
			}
5004

5005 5006 5007 5008 5009 5010 5011 5012
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5013 5014
	return target;
}
5015

5016
/*
5017
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5018
 * tasks. The unit of the return value must be the one of capacity so we can
5019 5020
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5041
 */
5042
static int cpu_util(int cpu)
5043
{
5044
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5045 5046
	unsigned long capacity = capacity_orig_of(cpu);

5047
	return (util >= capacity) ? capacity : util;
5048
}
5049

5050
/*
5051 5052 5053
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5054
 *
5055 5056
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5057
 *
5058
 * Returns the target cpu number.
5059 5060 5061
 *
 * preempt must be disabled.
 */
5062
static int
5063
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5064
{
5065
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5066
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5067
	int new_cpu = prev_cpu;
5068
	int want_affine = 0;
5069
	int sync = wake_flags & WF_SYNC;
5070

5071
	if (sd_flag & SD_BALANCE_WAKE)
M
Mike Galbraith 已提交
5072
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5073

5074
	rcu_read_lock();
5075
	for_each_domain(cpu, tmp) {
5076
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5077
			break;
5078

5079
		/*
5080 5081
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5082
		 */
5083 5084 5085
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5086
			break;
5087
		}
5088

5089
		if (tmp->flags & sd_flag)
5090
			sd = tmp;
M
Mike Galbraith 已提交
5091 5092
		else if (!want_affine)
			break;
5093 5094
	}

M
Mike Galbraith 已提交
5095 5096 5097 5098
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5099
	}
5100

M
Mike Galbraith 已提交
5101 5102 5103 5104 5105
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5106
		struct sched_group *group;
5107
		int weight;
5108

5109
		if (!(sd->flags & sd_flag)) {
5110 5111 5112
			sd = sd->child;
			continue;
		}
5113

5114
		group = find_idlest_group(sd, p, cpu, sd_flag);
5115 5116 5117 5118
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5119

5120
		new_cpu = find_idlest_cpu(group, p, cpu);
5121 5122 5123 5124
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5125
		}
5126 5127 5128

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5129
		weight = sd->span_weight;
5130 5131
		sd = NULL;
		for_each_domain(cpu, tmp) {
5132
			if (weight <= tmp->span_weight)
5133
				break;
5134
			if (tmp->flags & sd_flag)
5135 5136 5137
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5138
	}
5139
	rcu_read_unlock();
5140

5141
	return new_cpu;
5142
}
5143 5144 5145 5146

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5147
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5148
 */
5149
static void migrate_task_rq_fair(struct task_struct *p)
5150
{
5151
	/*
5152 5153 5154 5155 5156
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5157
	 */
5158 5159 5160 5161
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5162 5163

	/* We have migrated, no longer consider this task hot */
5164
	p->se.exec_start = 0;
5165
}
5166 5167 5168 5169 5170

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5171 5172
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5173 5174
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5175 5176 5177 5178
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5179 5180
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5181 5182 5183 5184 5185 5186 5187 5188 5189
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5190
	 */
5191
	return calc_delta_fair(gran, se);
5192 5193
}

5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5216
	gran = wakeup_gran(curr, se);
5217 5218 5219 5220 5221 5222
	if (vdiff > gran)
		return 1;

	return 0;
}

5223 5224
static void set_last_buddy(struct sched_entity *se)
{
5225 5226 5227 5228 5229
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5230 5231 5232 5233
}

static void set_next_buddy(struct sched_entity *se)
{
5234 5235 5236 5237 5238
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5239 5240
}

5241 5242
static void set_skip_buddy(struct sched_entity *se)
{
5243 5244
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5245 5246
}

5247 5248 5249
/*
 * Preempt the current task with a newly woken task if needed:
 */
5250
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5251 5252
{
	struct task_struct *curr = rq->curr;
5253
	struct sched_entity *se = &curr->se, *pse = &p->se;
5254
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5255
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5256
	int next_buddy_marked = 0;
5257

I
Ingo Molnar 已提交
5258 5259 5260
	if (unlikely(se == pse))
		return;

5261
	/*
5262
	 * This is possible from callers such as attach_tasks(), in which we
5263 5264 5265 5266 5267 5268 5269
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5270
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5271
		set_next_buddy(pse);
5272 5273
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5274

5275 5276 5277
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5278 5279 5280 5281 5282 5283
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5284 5285 5286 5287
	 */
	if (test_tsk_need_resched(curr))
		return;

5288 5289 5290 5291 5292
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5293
	/*
5294 5295
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5296
	 */
5297
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5298
		return;
5299

5300
	find_matching_se(&se, &pse);
5301
	update_curr(cfs_rq_of(se));
5302
	BUG_ON(!pse);
5303 5304 5305 5306 5307 5308 5309
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5310
		goto preempt;
5311
	}
5312

5313
	return;
5314

5315
preempt:
5316
	resched_curr(rq);
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5331 5332
}

5333 5334
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5335 5336 5337
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5338
	struct task_struct *p;
5339
	int new_tasks;
5340

5341
again:
5342 5343
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5344
		goto idle;
5345

5346
	if (prev->sched_class != &fair_sched_class)
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5366 5367 5368 5369 5370
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5371

5372 5373 5374 5375 5376 5377 5378 5379 5380
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5421

5422
	if (!cfs_rq->nr_running)
5423
		goto idle;
5424

5425
	put_prev_task(rq, prev);
5426

5427
	do {
5428
		se = pick_next_entity(cfs_rq, NULL);
5429
		set_next_entity(cfs_rq, se);
5430 5431 5432
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5433
	p = task_of(se);
5434

5435 5436
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5437 5438

	return p;
5439 5440

idle:
5441 5442 5443 5444 5445 5446 5447
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	lockdep_unpin_lock(&rq->lock);
5448
	new_tasks = idle_balance(rq);
5449
	lockdep_pin_lock(&rq->lock);
5450 5451 5452 5453 5454
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5455
	if (new_tasks < 0)
5456 5457
		return RETRY_TASK;

5458
	if (new_tasks > 0)
5459 5460 5461
		goto again;

	return NULL;
5462 5463 5464 5465 5466
}

/*
 * Account for a descheduled task:
 */
5467
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5468 5469 5470 5471 5472 5473
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5474
		put_prev_entity(cfs_rq, se);
5475 5476 5477
	}
}

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5503 5504 5505 5506 5507
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5508
		rq_clock_skip_update(rq, true);
5509 5510 5511 5512 5513
	}

	set_skip_buddy(se);
}

5514 5515 5516 5517
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5518 5519
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5530
#ifdef CONFIG_SMP
5531
/**************************************************
P
Peter Zijlstra 已提交
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5555
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5556 5557 5558 5559 5560 5561
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5562
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5648

5649 5650
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5651 5652
enum fbq_type { regular, remote, all };

5653
#define LBF_ALL_PINNED	0x01
5654
#define LBF_NEED_BREAK	0x02
5655 5656
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5657 5658 5659 5660 5661

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5662
	int			src_cpu;
5663 5664 5665 5666

	int			dst_cpu;
	struct rq		*dst_rq;

5667 5668
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5669
	enum cpu_idle_type	idle;
5670
	long			imbalance;
5671 5672 5673
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5674
	unsigned int		flags;
5675 5676 5677 5678

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5679 5680

	enum fbq_type		fbq_type;
5681
	struct list_head	tasks;
5682 5683
};

5684 5685 5686
/*
 * Is this task likely cache-hot:
 */
5687
static int task_hot(struct task_struct *p, struct lb_env *env)
5688 5689 5690
{
	s64 delta;

5691 5692
	lockdep_assert_held(&env->src_rq->lock);

5693 5694 5695 5696 5697 5698 5699 5700 5701
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5702
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5703 5704 5705 5706 5707 5708 5709 5710 5711
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5712
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5713 5714 5715 5716

	return delta < (s64)sysctl_sched_migration_cost;
}

5717
#ifdef CONFIG_NUMA_BALANCING
5718
/*
5719 5720 5721
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5722
 */
5723
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5724
{
5725
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5726
	unsigned long src_faults, dst_faults;
5727 5728
	int src_nid, dst_nid;

5729
	if (!static_branch_likely(&sched_numa_balancing))
5730 5731
		return -1;

5732
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5733
		return -1;
5734 5735 5736 5737

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5738
	if (src_nid == dst_nid)
5739
		return -1;
5740

5741 5742 5743 5744 5745 5746 5747
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
5748

5749 5750
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5751
		return 0;
5752

5753 5754 5755 5756 5757 5758
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
5759 5760
	}

5761
	return dst_faults < src_faults;
5762 5763
}

5764
#else
5765
static inline int migrate_degrades_locality(struct task_struct *p,
5766 5767
					     struct lb_env *env)
{
5768
	return -1;
5769
}
5770 5771
#endif

5772 5773 5774 5775
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5776
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5777
{
5778
	int tsk_cache_hot;
5779 5780 5781

	lockdep_assert_held(&env->src_rq->lock);

5782 5783
	/*
	 * We do not migrate tasks that are:
5784
	 * 1) throttled_lb_pair, or
5785
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5786 5787
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5788
	 */
5789 5790 5791
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5792
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5793
		int cpu;
5794

5795
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5796

5797 5798
		env->flags |= LBF_SOME_PINNED;

5799 5800 5801 5802 5803 5804 5805 5806
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5807
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5808 5809
			return 0;

5810 5811 5812
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5813
				env->flags |= LBF_DST_PINNED;
5814 5815 5816
				env->new_dst_cpu = cpu;
				break;
			}
5817
		}
5818

5819 5820
		return 0;
	}
5821 5822

	/* Record that we found atleast one task that could run on dst_cpu */
5823
	env->flags &= ~LBF_ALL_PINNED;
5824

5825
	if (task_running(env->src_rq, p)) {
5826
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5827 5828 5829 5830 5831
		return 0;
	}

	/*
	 * Aggressive migration if:
5832 5833 5834
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5835
	 */
5836 5837 5838
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
5839

5840
	if (tsk_cache_hot <= 0 ||
5841
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5842
		if (tsk_cache_hot == 1) {
5843 5844 5845
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5846 5847 5848
		return 1;
	}

Z
Zhang Hang 已提交
5849 5850
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5851 5852
}

5853
/*
5854 5855 5856 5857 5858 5859 5860
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
5861
	deactivate_task(env->src_rq, p, 0);
5862 5863 5864
	set_task_cpu(p, env->dst_cpu);
}

5865
/*
5866
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5867 5868
 * part of active balancing operations within "domain".
 *
5869
 * Returns a task if successful and NULL otherwise.
5870
 */
5871
static struct task_struct *detach_one_task(struct lb_env *env)
5872 5873 5874
{
	struct task_struct *p, *n;

5875 5876
	lockdep_assert_held(&env->src_rq->lock);

5877 5878 5879
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5880

5881
		detach_task(p, env);
5882

5883
		/*
5884
		 * Right now, this is only the second place where
5885
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5886
		 * so we can safely collect stats here rather than
5887
		 * inside detach_tasks().
5888 5889
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5890
		return p;
5891
	}
5892
	return NULL;
5893 5894
}

5895 5896
static const unsigned int sched_nr_migrate_break = 32;

5897
/*
5898 5899
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
5900
 *
5901
 * Returns number of detached tasks if successful and 0 otherwise.
5902
 */
5903
static int detach_tasks(struct lb_env *env)
5904
{
5905 5906
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5907
	unsigned long load;
5908 5909 5910
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
5911

5912
	if (env->imbalance <= 0)
5913
		return 0;
5914

5915
	while (!list_empty(tasks)) {
5916 5917 5918 5919 5920 5921 5922
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

5923
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5924

5925 5926
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5927
		if (env->loop > env->loop_max)
5928
			break;
5929 5930

		/* take a breather every nr_migrate tasks */
5931
		if (env->loop > env->loop_break) {
5932
			env->loop_break += sched_nr_migrate_break;
5933
			env->flags |= LBF_NEED_BREAK;
5934
			break;
5935
		}
5936

5937
		if (!can_migrate_task(p, env))
5938 5939 5940
			goto next;

		load = task_h_load(p);
5941

5942
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5943 5944
			goto next;

5945
		if ((load / 2) > env->imbalance)
5946
			goto next;
5947

5948 5949 5950 5951
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
5952
		env->imbalance -= load;
5953 5954

#ifdef CONFIG_PREEMPT
5955 5956
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
5957
		 * kernels will stop after the first task is detached to minimize
5958 5959
		 * the critical section.
		 */
5960
		if (env->idle == CPU_NEWLY_IDLE)
5961
			break;
5962 5963
#endif

5964 5965 5966 5967
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5968
		if (env->imbalance <= 0)
5969
			break;
5970 5971 5972

		continue;
next:
5973
		list_move_tail(&p->se.group_node, tasks);
5974
	}
5975

5976
	/*
5977 5978 5979
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
5980
	 */
5981
	schedstat_add(env->sd, lb_gained[env->idle], detached);
5982

5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
5995
	p->on_rq = TASK_ON_RQ_QUEUED;
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6024

6025 6026 6027 6028
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6029 6030
}

P
Peter Zijlstra 已提交
6031
#ifdef CONFIG_FAIR_GROUP_SCHED
6032
static void update_blocked_averages(int cpu)
6033 6034
{
	struct rq *rq = cpu_rq(cpu);
6035 6036
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6037

6038 6039
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6040

6041 6042 6043 6044
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6045
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6046 6047 6048
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6049

6050 6051 6052
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);
	}
6053
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6054 6055
}

6056
/*
6057
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6058 6059 6060
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6061
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6062
{
6063 6064
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6065
	unsigned long now = jiffies;
6066
	unsigned long load;
6067

6068
	if (cfs_rq->last_h_load_update == now)
6069 6070
		return;

6071 6072 6073 6074 6075 6076 6077
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6078

6079
	if (!se) {
6080
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6081 6082 6083 6084 6085
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6086 6087
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6088 6089 6090 6091
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6092 6093
}

6094
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6095
{
6096
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6097

6098
	update_cfs_rq_h_load(cfs_rq);
6099
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6100
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6101 6102
}
#else
6103
static inline void update_blocked_averages(int cpu)
6104
{
6105 6106 6107 6108 6109 6110 6111 6112
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6113 6114
}

6115
static unsigned long task_h_load(struct task_struct *p)
6116
{
6117
	return p->se.avg.load_avg;
6118
}
P
Peter Zijlstra 已提交
6119
#endif
6120 6121

/********** Helpers for find_busiest_group ************************/
6122 6123 6124 6125 6126 6127 6128

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6129 6130 6131 6132 6133 6134 6135
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6136
	unsigned long load_per_task;
6137
	unsigned long group_capacity;
6138
	unsigned long group_util; /* Total utilization of the group */
6139 6140 6141
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6142
	enum group_type group_type;
6143
	int group_no_capacity;
6144 6145 6146 6147
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6148 6149
};

J
Joonsoo Kim 已提交
6150 6151 6152 6153 6154 6155 6156 6157
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6158
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6159 6160 6161
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6162
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6163 6164
};

6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6177
		.total_capacity = 0UL,
6178 6179
		.busiest_stat = {
			.avg_load = 0UL,
6180 6181
			.sum_nr_running = 0,
			.group_type = group_other,
6182 6183 6184 6185
		},
	};
}

6186 6187 6188
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6189
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6190 6191
 *
 * Return: The load index.
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6214
static unsigned long scale_rt_capacity(int cpu)
6215 6216
{
	struct rq *rq = cpu_rq(cpu);
6217
	u64 total, used, age_stamp, avg;
6218
	s64 delta;
6219

6220 6221 6222 6223
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6224 6225
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6226
	delta = __rq_clock_broken(rq) - age_stamp;
6227

6228 6229 6230 6231
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6232

6233
	used = div_u64(avg, total);
6234

6235 6236
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6237

6238
	return 1;
6239 6240
}

6241
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6242
{
6243
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6244 6245
	struct sched_group *sdg = sd->groups;

6246
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6247

6248
	capacity *= scale_rt_capacity(cpu);
6249
	capacity >>= SCHED_CAPACITY_SHIFT;
6250

6251 6252
	if (!capacity)
		capacity = 1;
6253

6254 6255
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6256 6257
}

6258
void update_group_capacity(struct sched_domain *sd, int cpu)
6259 6260 6261
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6262
	unsigned long capacity;
6263 6264 6265 6266
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6267
	sdg->sgc->next_update = jiffies + interval;
6268 6269

	if (!child) {
6270
		update_cpu_capacity(sd, cpu);
6271 6272 6273
		return;
	}

6274
	capacity = 0;
6275

P
Peter Zijlstra 已提交
6276 6277 6278 6279 6280 6281
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6282
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6283
			struct sched_group_capacity *sgc;
6284
			struct rq *rq = cpu_rq(cpu);
6285

6286
			/*
6287
			 * build_sched_domains() -> init_sched_groups_capacity()
6288 6289 6290
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6291 6292
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6293
			 *
6294
			 * This avoids capacity from being 0 and
6295 6296 6297
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6298
				capacity += capacity_of(cpu);
6299 6300
				continue;
			}
6301

6302 6303
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6304
		}
P
Peter Zijlstra 已提交
6305 6306 6307 6308 6309 6310 6311 6312
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6313
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6314 6315 6316
			group = group->next;
		} while (group != child->groups);
	}
6317

6318
	sdg->sgc->capacity = capacity;
6319 6320
}

6321
/*
6322 6323 6324
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6325 6326
 */
static inline int
6327
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6328
{
6329 6330
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6331 6332
}

6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6349 6350
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6351 6352
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6353
 * update_sd_pick_busiest(). And calculate_imbalance() and
6354
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6355 6356 6357 6358 6359 6360 6361
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6362
static inline int sg_imbalanced(struct sched_group *group)
6363
{
6364
	return group->sgc->imbalance;
6365 6366
}

6367
/*
6368 6369 6370
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6371 6372
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6373 6374 6375 6376 6377
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6378
 */
6379 6380
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6381
{
6382 6383
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6384

6385
	if ((sgs->group_capacity * 100) >
6386
			(sgs->group_util * env->sd->imbalance_pct))
6387
		return true;
6388

6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6405

6406
	if ((sgs->group_capacity * 100) <
6407
			(sgs->group_util * env->sd->imbalance_pct))
6408
		return true;
6409

6410
	return false;
6411 6412
}

6413 6414 6415
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6416
{
6417
	if (sgs->group_no_capacity)
6418 6419 6420 6421 6422 6423 6424 6425
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6426 6427
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6428
 * @env: The load balancing environment.
6429 6430 6431 6432
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6433
 * @overload: Indicate more than one runnable task for any CPU.
6434
 */
6435 6436
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6437 6438
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6439
{
6440
	unsigned long load;
6441
	int i, nr_running;
6442

6443 6444
	memset(sgs, 0, sizeof(*sgs));

6445
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6446 6447 6448
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6449
		if (local_group)
6450
			load = target_load(i, load_idx);
6451
		else
6452 6453 6454
			load = source_load(i, load_idx);

		sgs->group_load += load;
6455
		sgs->group_util += cpu_util(i);
6456
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6457

6458 6459
		nr_running = rq->nr_running;
		if (nr_running > 1)
6460 6461
			*overload = true;

6462 6463 6464 6465
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6466
		sgs->sum_weighted_load += weighted_cpuload(i);
6467 6468 6469 6470
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6471
			sgs->idle_cpus++;
6472 6473
	}

6474 6475
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6476
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6477

6478
	if (sgs->sum_nr_running)
6479
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6480

6481
	sgs->group_weight = group->group_weight;
6482

6483
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6484
	sgs->group_type = group_classify(group, sgs);
6485 6486
}

6487 6488
/**
 * update_sd_pick_busiest - return 1 on busiest group
6489
 * @env: The load balancing environment.
6490 6491
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6492
 * @sgs: sched_group statistics
6493 6494 6495
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6496 6497 6498
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6499
 */
6500
static bool update_sd_pick_busiest(struct lb_env *env,
6501 6502
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6503
				   struct sg_lb_stats *sgs)
6504
{
6505
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6506

6507
	if (sgs->group_type > busiest->group_type)
6508 6509
		return true;

6510 6511 6512 6513 6514 6515 6516 6517
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6518 6519 6520 6521 6522 6523 6524
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6525
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6566
/**
6567
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6568
 * @env: The load balancing environment.
6569 6570
 * @sds: variable to hold the statistics for this sched_domain.
 */
6571
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6572
{
6573 6574
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6575
	struct sg_lb_stats tmp_sgs;
6576
	int load_idx, prefer_sibling = 0;
6577
	bool overload = false;
6578 6579 6580 6581

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6582
	load_idx = get_sd_load_idx(env->sd, env->idle);
6583 6584

	do {
J
Joonsoo Kim 已提交
6585
		struct sg_lb_stats *sgs = &tmp_sgs;
6586 6587
		int local_group;

6588
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6589 6590 6591
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6592 6593

			if (env->idle != CPU_NEWLY_IDLE ||
6594 6595
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6596
		}
6597

6598 6599
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6600

6601 6602 6603
		if (local_group)
			goto next_group;

6604 6605
		/*
		 * In case the child domain prefers tasks go to siblings
6606
		 * first, lower the sg capacity so that we'll try
6607 6608
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6609 6610 6611 6612
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6613
		 */
6614
		if (prefer_sibling && sds->local &&
6615 6616 6617
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6618
			sgs->group_type = group_classify(sg, sgs);
6619
		}
6620

6621
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6622
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6623
			sds->busiest_stat = *sgs;
6624 6625
		}

6626 6627 6628
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6629
		sds->total_capacity += sgs->group_capacity;
6630

6631
		sg = sg->next;
6632
	} while (sg != env->sd->groups);
6633 6634 6635

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6636 6637 6638 6639 6640 6641 6642

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6662
 * Return: 1 when packing is required and a task should be moved to
6663 6664
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6665
 * @env: The load balancing environment.
6666 6667
 * @sds: Statistics of the sched_domain which is to be packed
 */
6668
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6669 6670 6671
{
	int busiest_cpu;

6672
	if (!(env->sd->flags & SD_ASYM_PACKING))
6673 6674 6675 6676 6677 6678
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6679
	if (env->dst_cpu > busiest_cpu)
6680 6681
		return 0;

6682
	env->imbalance = DIV_ROUND_CLOSEST(
6683
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6684
		SCHED_CAPACITY_SCALE);
6685

6686
	return 1;
6687 6688 6689 6690 6691 6692
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6693
 * @env: The load balancing environment.
6694 6695
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6696 6697
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6698
{
6699
	unsigned long tmp, capa_now = 0, capa_move = 0;
6700
	unsigned int imbn = 2;
6701
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6702
	struct sg_lb_stats *local, *busiest;
6703

J
Joonsoo Kim 已提交
6704 6705
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6706

J
Joonsoo Kim 已提交
6707 6708 6709 6710
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6711

J
Joonsoo Kim 已提交
6712
	scaled_busy_load_per_task =
6713
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6714
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6715

6716 6717
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6718
		env->imbalance = busiest->load_per_task;
6719 6720 6721 6722 6723
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6724
	 * however we may be able to increase total CPU capacity used by
6725 6726 6727
	 * moving them.
	 */

6728
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6729
			min(busiest->load_per_task, busiest->avg_load);
6730
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6731
			min(local->load_per_task, local->avg_load);
6732
	capa_now /= SCHED_CAPACITY_SCALE;
6733 6734

	/* Amount of load we'd subtract */
6735
	if (busiest->avg_load > scaled_busy_load_per_task) {
6736
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6737
			    min(busiest->load_per_task,
6738
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6739
	}
6740 6741

	/* Amount of load we'd add */
6742
	if (busiest->avg_load * busiest->group_capacity <
6743
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6744 6745
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6746
	} else {
6747
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6748
		      local->group_capacity;
J
Joonsoo Kim 已提交
6749
	}
6750
	capa_move += local->group_capacity *
6751
		    min(local->load_per_task, local->avg_load + tmp);
6752
	capa_move /= SCHED_CAPACITY_SCALE;
6753 6754

	/* Move if we gain throughput */
6755
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6756
		env->imbalance = busiest->load_per_task;
6757 6758 6759 6760 6761
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6762
 * @env: load balance environment
6763 6764
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6765
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6766
{
6767
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6768 6769 6770 6771
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6772

6773
	if (busiest->group_type == group_imbalanced) {
6774 6775 6776 6777
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6778 6779
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6780 6781
	}

6782 6783 6784
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6785
	 * its cpu_capacity, while calculating max_load..)
6786
	 */
6787 6788
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6789 6790
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6791 6792
	}

6793 6794 6795 6796 6797
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
6798 6799 6800 6801 6802 6803
		load_above_capacity = busiest->sum_nr_running *
					SCHED_LOAD_SCALE;
		if (load_above_capacity > busiest->group_capacity)
			load_above_capacity -= busiest->group_capacity;
		else
			load_above_capacity = ~0UL;
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6814
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6815 6816

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6817
	env->imbalance = min(
6818 6819
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6820
	) / SCHED_CAPACITY_SCALE;
6821 6822 6823

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6824
	 * there is no guarantee that any tasks will be moved so we'll have
6825 6826 6827
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6828
	if (env->imbalance < busiest->load_per_task)
6829
		return fix_small_imbalance(env, sds);
6830
}
6831

6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6844
 * @env: The load balancing environment.
6845
 *
6846
 * Return:	- The busiest group if imbalance exists.
6847 6848 6849 6850
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6851
static struct sched_group *find_busiest_group(struct lb_env *env)
6852
{
J
Joonsoo Kim 已提交
6853
	struct sg_lb_stats *local, *busiest;
6854 6855
	struct sd_lb_stats sds;

6856
	init_sd_lb_stats(&sds);
6857 6858 6859 6860 6861

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6862
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6863 6864
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6865

6866
	/* ASYM feature bypasses nice load balance check */
6867 6868
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6869 6870
		return sds.busiest;

6871
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6872
	if (!sds.busiest || busiest->sum_nr_running == 0)
6873 6874
		goto out_balanced;

6875 6876
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6877

P
Peter Zijlstra 已提交
6878 6879
	/*
	 * If the busiest group is imbalanced the below checks don't
6880
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6881 6882
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6883
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6884 6885
		goto force_balance;

6886
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6887 6888
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
6889 6890
		goto force_balance;

6891
	/*
6892
	 * If the local group is busier than the selected busiest group
6893 6894
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6895
	if (local->avg_load >= busiest->avg_load)
6896 6897
		goto out_balanced;

6898 6899 6900 6901
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6902
	if (local->avg_load >= sds.avg_load)
6903 6904
		goto out_balanced;

6905
	if (env->idle == CPU_IDLE) {
6906
		/*
6907 6908 6909 6910 6911
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
6912
		 */
6913 6914
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6915
			goto out_balanced;
6916 6917 6918 6919 6920
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6921 6922
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6923
			goto out_balanced;
6924
	}
6925

6926
force_balance:
6927
	/* Looks like there is an imbalance. Compute it */
6928
	calculate_imbalance(env, &sds);
6929 6930 6931
	return sds.busiest;

out_balanced:
6932
	env->imbalance = 0;
6933 6934 6935 6936 6937 6938
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6939
static struct rq *find_busiest_queue(struct lb_env *env,
6940
				     struct sched_group *group)
6941 6942
{
	struct rq *busiest = NULL, *rq;
6943
	unsigned long busiest_load = 0, busiest_capacity = 1;
6944 6945
	int i;

6946
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6947
		unsigned long capacity, wl;
6948 6949 6950 6951
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6952

6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6975
		capacity = capacity_of(i);
6976

6977
		wl = weighted_cpuload(i);
6978

6979 6980
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6981
		 * which is not scaled with the cpu capacity.
6982
		 */
6983 6984 6985

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
6986 6987
			continue;

6988 6989
		/*
		 * For the load comparisons with the other cpu's, consider
6990 6991 6992
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6993
		 *
6994
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6995
		 * multiplication to rid ourselves of the division works out
6996 6997
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6998
		 */
6999
		if (wl * busiest_capacity > busiest_load * capacity) {
7000
			busiest_load = wl;
7001
			busiest_capacity = capacity;
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7016
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7017

7018
static int need_active_balance(struct lb_env *env)
7019
{
7020 7021 7022
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7023 7024 7025 7026 7027 7028

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7029
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7030
			return 1;
7031 7032
	}

7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7046 7047 7048
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7049 7050
static int active_load_balance_cpu_stop(void *data);

7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7082
	return balance_cpu == env->dst_cpu;
7083 7084
}

7085 7086 7087 7088 7089 7090
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7091
			int *continue_balancing)
7092
{
7093
	int ld_moved, cur_ld_moved, active_balance = 0;
7094
	struct sched_domain *sd_parent = sd->parent;
7095 7096 7097
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7098
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7099

7100 7101
	struct lb_env env = {
		.sd		= sd,
7102 7103
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7104
		.dst_grpmask    = sched_group_cpus(sd->groups),
7105
		.idle		= idle,
7106
		.loop_break	= sched_nr_migrate_break,
7107
		.cpus		= cpus,
7108
		.fbq_type	= all,
7109
		.tasks		= LIST_HEAD_INIT(env.tasks),
7110 7111
	};

7112 7113 7114 7115
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7116
	if (idle == CPU_NEWLY_IDLE)
7117 7118
		env.dst_grpmask = NULL;

7119 7120 7121 7122 7123
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7124 7125
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7126
		goto out_balanced;
7127
	}
7128

7129
	group = find_busiest_group(&env);
7130 7131 7132 7133 7134
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7135
	busiest = find_busiest_queue(&env, group);
7136 7137 7138 7139 7140
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7141
	BUG_ON(busiest == env.dst_rq);
7142

7143
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7144

7145 7146 7147
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7148 7149 7150 7151 7152 7153 7154 7155
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7156
		env.flags |= LBF_ALL_PINNED;
7157
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7158

7159
more_balance:
7160
		raw_spin_lock_irqsave(&busiest->lock, flags);
7161 7162 7163 7164 7165

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7166
		cur_ld_moved = detach_tasks(&env);
7167 7168

		/*
7169 7170 7171 7172 7173
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7174
		 */
7175 7176 7177 7178 7179 7180 7181 7182

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7183
		local_irq_restore(flags);
7184

7185 7186 7187 7188 7189
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7209
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7210

7211 7212 7213
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7214
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7215
			env.dst_cpu	 = env.new_dst_cpu;
7216
			env.flags	&= ~LBF_DST_PINNED;
7217 7218
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7219

7220 7221 7222 7223 7224 7225
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7226

7227 7228 7229 7230
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7231
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7232

7233
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7234 7235 7236
				*group_imbalance = 1;
		}

7237
		/* All tasks on this runqueue were pinned by CPU affinity */
7238
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7239
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7240 7241 7242
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7243
				goto redo;
7244
			}
7245
			goto out_all_pinned;
7246 7247 7248 7249 7250
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7251 7252 7253 7254 7255 7256 7257 7258
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7259

7260
		if (need_active_balance(&env)) {
7261 7262
			raw_spin_lock_irqsave(&busiest->lock, flags);

7263 7264 7265
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7266 7267
			 */
			if (!cpumask_test_cpu(this_cpu,
7268
					tsk_cpus_allowed(busiest->curr))) {
7269 7270
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7271
				env.flags |= LBF_ALL_PINNED;
7272 7273 7274
				goto out_one_pinned;
			}

7275 7276 7277 7278 7279
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7280 7281 7282 7283 7284 7285
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7286

7287
			if (active_balance) {
7288 7289 7290
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7291
			}
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7310
		 * detach_tasks).
7311 7312 7313 7314 7315 7316 7317 7318
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7336 7337 7338 7339 7340 7341
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7342
	if (((env.flags & LBF_ALL_PINNED) &&
7343
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7344 7345 7346
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7347
	ld_moved = 0;
7348 7349 7350 7351
out:
	return ld_moved;
}

7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7379 7380 7381 7382
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7383
static int idle_balance(struct rq *this_rq)
7384
{
7385 7386
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7387 7388
	struct sched_domain *sd;
	int pulled_task = 0;
7389
	u64 curr_cost = 0;
7390

7391 7392 7393 7394 7395 7396
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7397 7398
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7399 7400 7401 7402 7403 7404
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7405
		goto out;
7406
	}
7407

7408 7409
	raw_spin_unlock(&this_rq->lock);

7410
	update_blocked_averages(this_cpu);
7411
	rcu_read_lock();
7412
	for_each_domain(this_cpu, sd) {
7413
		int continue_balancing = 1;
7414
		u64 t0, domain_cost;
7415 7416 7417 7418

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7419 7420
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7421
			break;
7422
		}
7423

7424
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7425 7426
			t0 = sched_clock_cpu(this_cpu);

7427
			pulled_task = load_balance(this_cpu, this_rq,
7428 7429
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7430 7431 7432 7433 7434 7435

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7436
		}
7437

7438
		update_next_balance(sd, 0, &next_balance);
7439 7440 7441 7442 7443 7444

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7445 7446
			break;
	}
7447
	rcu_read_unlock();
7448 7449 7450

	raw_spin_lock(&this_rq->lock);

7451 7452 7453
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7454
	/*
7455 7456 7457
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7458
	 */
7459
	if (this_rq->cfs.h_nr_running && !pulled_task)
7460
		pulled_task = 1;
7461

7462 7463 7464
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7465
		this_rq->next_balance = next_balance;
7466

7467
	/* Is there a task of a high priority class? */
7468
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7469 7470
		pulled_task = -1;

7471
	if (pulled_task)
7472 7473
		this_rq->idle_stamp = 0;

7474
	return pulled_task;
7475 7476 7477
}

/*
7478 7479 7480 7481
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7482
 */
7483
static int active_load_balance_cpu_stop(void *data)
7484
{
7485 7486
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7487
	int target_cpu = busiest_rq->push_cpu;
7488
	struct rq *target_rq = cpu_rq(target_cpu);
7489
	struct sched_domain *sd;
7490
	struct task_struct *p = NULL;
7491 7492 7493 7494 7495 7496 7497

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7498 7499 7500

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7501
		goto out_unlock;
7502 7503 7504 7505 7506 7507 7508 7509 7510

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7511
	rcu_read_lock();
7512 7513 7514 7515 7516 7517 7518
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7519 7520
		struct lb_env env = {
			.sd		= sd,
7521 7522 7523 7524
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7525 7526 7527
			.idle		= CPU_IDLE,
		};

7528 7529
		schedstat_inc(sd, alb_count);

7530 7531
		p = detach_one_task(&env);
		if (p)
7532 7533 7534 7535
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7536
	rcu_read_unlock();
7537 7538
out_unlock:
	busiest_rq->active_balance = 0;
7539 7540 7541 7542 7543 7544 7545
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7546
	return 0;
7547 7548
}

7549 7550 7551 7552 7553
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7554
#ifdef CONFIG_NO_HZ_COMMON
7555 7556 7557 7558 7559 7560
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7561
static struct {
7562
	cpumask_var_t idle_cpus_mask;
7563
	atomic_t nr_cpus;
7564 7565
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7566

7567
static inline int find_new_ilb(void)
7568
{
7569
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7570

7571 7572 7573 7574
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7575 7576
}

7577 7578 7579 7580 7581
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7582
static void nohz_balancer_kick(void)
7583 7584 7585 7586 7587
{
	int ilb_cpu;

	nohz.next_balance++;

7588
	ilb_cpu = find_new_ilb();
7589

7590 7591
	if (ilb_cpu >= nr_cpu_ids)
		return;
7592

7593
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7594 7595 7596 7597 7598 7599 7600 7601
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7602 7603 7604
	return;
}

7605
static inline void nohz_balance_exit_idle(int cpu)
7606 7607
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7608 7609 7610 7611 7612 7613 7614
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7615 7616 7617 7618
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7619 7620 7621
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7622
	int cpu = smp_processor_id();
7623 7624

	rcu_read_lock();
7625
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7626 7627 7628 7629 7630

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7631
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7632
unlock:
7633 7634 7635 7636 7637 7638
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7639
	int cpu = smp_processor_id();
7640 7641

	rcu_read_lock();
7642
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7643 7644 7645 7646 7647

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7648
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7649
unlock:
7650 7651 7652
	rcu_read_unlock();
}

7653
/*
7654
 * This routine will record that the cpu is going idle with tick stopped.
7655
 * This info will be used in performing idle load balancing in the future.
7656
 */
7657
void nohz_balance_enter_idle(int cpu)
7658
{
7659 7660 7661 7662 7663 7664
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7665 7666
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7667

7668 7669 7670 7671 7672 7673
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7674 7675 7676
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7677
}
7678

7679
static int sched_ilb_notifier(struct notifier_block *nfb,
7680 7681 7682 7683
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7684
		nohz_balance_exit_idle(smp_processor_id());
7685 7686 7687 7688 7689
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7690 7691 7692 7693
#endif

static DEFINE_SPINLOCK(balancing);

7694 7695 7696 7697
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7698
void update_max_interval(void)
7699 7700 7701 7702
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7703 7704 7705 7706
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7707
 * Balancing parameters are set up in init_sched_domains.
7708
 */
7709
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7710
{
7711
	int continue_balancing = 1;
7712
	int cpu = rq->cpu;
7713
	unsigned long interval;
7714
	struct sched_domain *sd;
7715 7716 7717
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7718 7719
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7720

7721
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7722

7723
	rcu_read_lock();
7724
	for_each_domain(cpu, sd) {
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7737 7738 7739
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7751
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7752 7753 7754 7755 7756 7757 7758 7759

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7760
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7761
				/*
7762
				 * The LBF_DST_PINNED logic could have changed
7763 7764
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7765
				 */
7766
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7767 7768
			}
			sd->last_balance = jiffies;
7769
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7770 7771 7772 7773 7774 7775 7776 7777
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7778 7779
	}
	if (need_decay) {
7780
		/*
7781 7782
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7783
		 */
7784 7785
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7786
	}
7787
	rcu_read_unlock();
7788 7789 7790 7791 7792 7793

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
7794
	if (likely(update_next_balance)) {
7795
		rq->next_balance = next_balance;
7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
7810 7811
}

7812
#ifdef CONFIG_NO_HZ_COMMON
7813
/*
7814
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7815 7816
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7817
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7818
{
7819
	int this_cpu = this_rq->cpu;
7820 7821
	struct rq *rq;
	int balance_cpu;
7822 7823 7824
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7825

7826 7827 7828
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7829 7830

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7831
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7832 7833 7834 7835 7836 7837 7838
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7839
		if (need_resched())
7840 7841
			break;

V
Vincent Guittot 已提交
7842 7843
		rq = cpu_rq(balance_cpu);

7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7855

7856 7857 7858 7859
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
7860
	}
7861 7862 7863 7864 7865 7866 7867 7868

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
7869 7870
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7871 7872 7873
}

/*
7874
 * Current heuristic for kicking the idle load balancer in the presence
7875
 * of an idle cpu in the system.
7876
 *   - This rq has more than one task.
7877 7878 7879 7880
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
7881 7882
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7883
 */
7884
static inline bool nohz_kick_needed(struct rq *rq)
7885 7886
{
	unsigned long now = jiffies;
7887
	struct sched_domain *sd;
7888
	struct sched_group_capacity *sgc;
7889
	int nr_busy, cpu = rq->cpu;
7890
	bool kick = false;
7891

7892
	if (unlikely(rq->idle_balance))
7893
		return false;
7894

7895 7896 7897 7898
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7899
	set_cpu_sd_state_busy();
7900
	nohz_balance_exit_idle(cpu);
7901 7902 7903 7904 7905 7906

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
7907
		return false;
7908 7909

	if (time_before(now, nohz.next_balance))
7910
		return false;
7911

7912
	if (rq->nr_running >= 2)
7913
		return true;
7914

7915
	rcu_read_lock();
7916 7917
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
7918 7919
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7920

7921 7922 7923 7924 7925
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

7926
	}
7927

7928 7929 7930 7931 7932 7933 7934 7935
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
7936

7937
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7938
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7939 7940 7941 7942
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
7943

7944
unlock:
7945
	rcu_read_unlock();
7946
	return kick;
7947 7948
}
#else
7949
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7950 7951 7952 7953 7954 7955
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7956 7957
static void run_rebalance_domains(struct softirq_action *h)
{
7958
	struct rq *this_rq = this_rq();
7959
	enum cpu_idle_type idle = this_rq->idle_balance ?
7960 7961 7962
						CPU_IDLE : CPU_NOT_IDLE;

	/*
7963
	 * If this cpu has a pending nohz_balance_kick, then do the
7964
	 * balancing on behalf of the other idle cpus whose ticks are
7965 7966 7967 7968
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
7969
	 */
7970
	nohz_idle_balance(this_rq, idle);
7971
	rebalance_domains(this_rq, idle);
7972 7973 7974 7975 7976
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7977
void trigger_load_balance(struct rq *rq)
7978 7979
{
	/* Don't need to rebalance while attached to NULL domain */
7980 7981 7982 7983
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7984
		raise_softirq(SCHED_SOFTIRQ);
7985
#ifdef CONFIG_NO_HZ_COMMON
7986
	if (nohz_kick_needed(rq))
7987
		nohz_balancer_kick();
7988
#endif
7989 7990
}

7991 7992 7993
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7994 7995

	update_runtime_enabled(rq);
7996 7997 7998 7999 8000
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8001 8002 8003

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8004 8005
}

8006
#endif /* CONFIG_SMP */
8007

8008 8009 8010
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8011
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8012 8013 8014 8015 8016 8017
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8018
		entity_tick(cfs_rq, se, queued);
8019
	}
8020

8021
	if (static_branch_unlikely(&sched_numa_balancing))
8022
		task_tick_numa(rq, curr);
8023 8024 8025
}

/*
P
Peter Zijlstra 已提交
8026 8027 8028
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8029
 */
P
Peter Zijlstra 已提交
8030
static void task_fork_fair(struct task_struct *p)
8031
{
8032 8033
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
8034
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
8035 8036 8037
	struct rq *rq = this_rq();
	unsigned long flags;

8038
	raw_spin_lock_irqsave(&rq->lock, flags);
8039

8040 8041
	update_rq_clock(rq);

8042 8043 8044
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

8045 8046 8047 8048 8049 8050 8051 8052 8053
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
8054

8055
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
8056

8057 8058
	if (curr)
		se->vruntime = curr->vruntime;
8059
	place_entity(cfs_rq, se, 1);
8060

P
Peter Zijlstra 已提交
8061
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8062
		/*
8063 8064 8065
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8066
		swap(curr->vruntime, se->vruntime);
8067
		resched_curr(rq);
8068
	}
8069

8070 8071
	se->vruntime -= cfs_rq->min_vruntime;

8072
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8073 8074
}

8075 8076 8077 8078
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8079 8080
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8081
{
8082
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8083 8084
		return;

8085 8086 8087 8088 8089
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8090
	if (rq->curr == p) {
8091
		if (p->prio > oldprio)
8092
			resched_curr(rq);
8093
	} else
8094
		check_preempt_curr(rq, p, 0);
8095 8096
}

8097
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8098 8099 8100 8101
{
	struct sched_entity *se = &p->se;

	/*
8102 8103 8104 8105 8106 8107 8108 8109 8110 8111
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8112
	 *
8113 8114 8115 8116
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8117
	 */
8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8130 8131 8132 8133 8134 8135 8136
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8137

8138
	/* Catch up with the cfs_rq and remove our load when we leave */
8139
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8140 8141
}

8142
static void attach_task_cfs_rq(struct task_struct *p)
8143
{
8144
	struct sched_entity *se = &p->se;
8145
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8146 8147

#ifdef CONFIG_FAIR_GROUP_SCHED
8148 8149 8150 8151 8152 8153
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8154

8155
	/* Synchronize task with its cfs_rq */
8156 8157 8158 8159 8160
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8161

8162 8163 8164 8165 8166 8167 8168 8169
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8170

8171
	if (task_on_rq_queued(p)) {
8172
		/*
8173 8174 8175
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8176
		 */
8177 8178 8179 8180
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8181
	}
8182 8183
}

8184 8185 8186 8187 8188 8189 8190 8191 8192
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8193 8194 8195 8196 8197 8198 8199
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8200 8201
}

8202 8203 8204 8205 8206 8207 8208
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8209
#ifdef CONFIG_SMP
8210 8211
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8212
#endif
8213 8214
}

P
Peter Zijlstra 已提交
8215
#ifdef CONFIG_FAIR_GROUP_SCHED
8216
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8217
{
8218
	detach_task_cfs_rq(p);
8219
	set_task_rq(p, task_cpu(p));
8220 8221 8222 8223 8224

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8225
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8226
}
8227 8228 8229 8230 8231 8232 8233 8234 8235 8236

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8237 8238 8239
		if (tg->se) {
			if (tg->se[i])
				remove_entity_load_avg(tg->se[i]);
8240
			kfree(tg->se[i]);
8241
		}
8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8278
		init_entity_runnable_average(se);
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8323
	if (!parent) {
8324
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8325 8326
		se->depth = 0;
	} else {
8327
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8328 8329
		se->depth = parent->depth + 1;
	}
8330 8331

	se->my_q = cfs_rq;
8332 8333
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8364 8365 8366

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8367
		for_each_sched_entity(se)
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8389

8390
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8391 8392 8393 8394 8395 8396 8397 8398 8399
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8400
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8401 8402 8403 8404

	return rr_interval;
}

8405 8406 8407
/*
 * All the scheduling class methods:
 */
8408
const struct sched_class fair_sched_class = {
8409
	.next			= &idle_sched_class,
8410 8411 8412
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8413
	.yield_to_task		= yield_to_task_fair,
8414

I
Ingo Molnar 已提交
8415
	.check_preempt_curr	= check_preempt_wakeup,
8416 8417 8418 8419

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8420
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8421
	.select_task_rq		= select_task_rq_fair,
8422
	.migrate_task_rq	= migrate_task_rq_fair,
8423

8424 8425
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8426 8427

	.task_waking		= task_waking_fair,
8428
	.task_dead		= task_dead_fair,
8429
	.set_cpus_allowed	= set_cpus_allowed_common,
8430
#endif
8431

8432
	.set_curr_task          = set_curr_task_fair,
8433
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8434
	.task_fork		= task_fork_fair,
8435 8436

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8437
	.switched_from		= switched_from_fair,
8438
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8439

8440 8441
	.get_rr_interval	= get_rr_interval_fair,

8442 8443
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8444
#ifdef CONFIG_FAIR_GROUP_SCHED
8445
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8446
#endif
8447 8448 8449
};

#ifdef CONFIG_SCHED_DEBUG
8450
void print_cfs_stats(struct seq_file *m, int cpu)
8451 8452 8453
{
	struct cfs_rq *cfs_rq;

8454
	rcu_read_lock();
8455
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8456
		print_cfs_rq(m, cpu, cfs_rq);
8457
	rcu_read_unlock();
8458
}
8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8480 8481 8482 8483 8484 8485

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8486
#ifdef CONFIG_NO_HZ_COMMON
8487
	nohz.next_balance = jiffies;
8488
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8489
	cpu_notifier(sched_ilb_notifier, 0);
8490 8491 8492 8493
#endif
#endif /* SMP */

}