fair.c 247.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48 49
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
50
 */
51 52
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
53

54 55 56 57
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
58 59 60 61 62 63
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
64
 */
65
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
66

67
/*
68
 * Minimal preemption granularity for CPU-bound tasks:
69
 *
70
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
71
 */
72 73
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
74 75

/*
76
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
77
 */
78
static unsigned int sched_nr_latency = 8;
79 80

/*
81
 * After fork, child runs first. If set to 0 (default) then
82
 * parent will (try to) run first.
83
 */
84
unsigned int sysctl_sched_child_runs_first __read_mostly;
85 86 87 88 89 90 91

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
92 93
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
94
 */
95 96
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
97

98
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
99

T
Tim Chen 已提交
100 101 102 103 104 105 106 107 108 109
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

110 111 112 113 114 115 116 117 118
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
119 120 121
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
122 123
#endif

124 125
/*
 * The margin used when comparing utilization with CPU capacity:
126
 * util * margin < capacity * 1024
127 128
 *
 * (default: ~20%)
129
 */
130
unsigned int capacity_margin				= 1280;
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

150 151 152 153 154 155 156 157 158
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
159
static unsigned int get_update_sysctl_factor(void)
160
{
161
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

197
#define WMULT_CONST	(~0U)
198 199
#define WMULT_SHIFT	32

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
216 217

/*
218 219 220 221
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
222
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 224 225 226 227
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228
 */
229
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230
{
231 232
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
233

234
	__update_inv_weight(lw);
235

236 237 238 239 240
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
241 242
	}

243 244
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
245

246 247 248 249
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
250

251
	return mul_u64_u32_shr(delta_exec, fact, shift);
252 253 254 255
}


const struct sched_class fair_sched_class;
256

257 258 259 260
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

261
#ifdef CONFIG_FAIR_GROUP_SCHED
262

263
/* cpu runqueue to which this cfs_rq is attached */
264 265
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
266
	return cfs_rq->rq;
267 268
}

269 270
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
271

272 273
static inline struct task_struct *task_of(struct sched_entity *se)
{
274
	SCHED_WARN_ON(!entity_is_task(se));
275 276 277
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

299 300 301
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
302 303
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
304 305 306
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
307 308 309 310 311
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
312 313
		 */
		if (cfs_rq->tg->parent &&
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
334
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
355
		}
356 357 358 359 360 361 362 363 364 365 366 367 368

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
369 370 371 372 373
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
374
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
375 376 377
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
378
		return se->cfs_rq;
P
Peter Zijlstra 已提交
379

P
Peter Zijlstra 已提交
380
	return NULL;
P
Peter Zijlstra 已提交
381 382 383 384 385 386 387
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

388 389 390 391 392 393 394 395 396 397 398 399 400
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
401 402
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

420 421 422 423 424 425
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
426

427 428 429
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
430 431 432 433
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
434 435
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
436

P
Peter Zijlstra 已提交
437
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
438
{
P
Peter Zijlstra 已提交
439
	return &task_rq(p)->cfs;
440 441
}

P
Peter Zijlstra 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

456 457 458 459 460 461 462 463
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

472 473 474 475 476
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
477 478
#endif	/* CONFIG_FAIR_GROUP_SCHED */

479
static __always_inline
480
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
481 482 483 484 485

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

486
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
487
{
488
	s64 delta = (s64)(vruntime - max_vruntime);
489
	if (delta > 0)
490
		max_vruntime = vruntime;
491

492
	return max_vruntime;
493 494
}

495
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

504 505 506 507 508 509
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

510 511
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
512 513
	struct sched_entity *curr = cfs_rq->curr;

514 515
	u64 vruntime = cfs_rq->min_vruntime;

516 517 518 519 520 521
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
522 523 524 525 526 527

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

528
		if (!curr)
529 530 531 532 533
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

534
	/* ensure we never gain time by being placed backwards. */
535
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
536 537 538 539
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
540 541
}

542 543 544
/*
 * Enqueue an entity into the rb-tree:
 */
545
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
562
		if (entity_before(se, entry)) {
563 564 565 566 567 568 569 570 571 572 573
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
574
	if (leftmost)
I
Ingo Molnar 已提交
575
		cfs_rq->rb_leftmost = &se->run_node;
576 577 578 579 580

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

581
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
582
{
P
Peter Zijlstra 已提交
583 584 585 586 587 588
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
589

590 591 592
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

593
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
594
{
595 596 597 598 599 600
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
601 602
}

603 604 605 606 607 608 609 610 611 612 613
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
614
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
615
{
616
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
617

618 619
	if (!last)
		return NULL;
620 621

	return rb_entry(last, struct sched_entity, run_node);
622 623
}

624 625 626 627
/**************************************************************
 * Scheduling class statistics methods:
 */

628
int sched_proc_update_handler(struct ctl_table *table, int write,
629
		void __user *buffer, size_t *lenp,
630 631
		loff_t *ppos)
{
632
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
633
	unsigned int factor = get_update_sysctl_factor();
634 635 636 637 638 639 640

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

641 642 643 644 645 646 647
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

648 649 650
	return 0;
}
#endif
651

652
/*
653
 * delta /= w
654
 */
655
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
656
{
657
	if (unlikely(se->load.weight != NICE_0_LOAD))
658
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
659 660 661 662

	return delta;
}

663 664 665
/*
 * The idea is to set a period in which each task runs once.
 *
666
 * When there are too many tasks (sched_nr_latency) we have to stretch
667 668 669 670
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
671 672
static u64 __sched_period(unsigned long nr_running)
{
673 674 675 676
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
677 678
}

679 680 681 682
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
683
 * s = p*P[w/rw]
684
 */
P
Peter Zijlstra 已提交
685
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686
{
M
Mike Galbraith 已提交
687
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
688

M
Mike Galbraith 已提交
689
	for_each_sched_entity(se) {
L
Lin Ming 已提交
690
		struct load_weight *load;
691
		struct load_weight lw;
L
Lin Ming 已提交
692 693 694

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
695

M
Mike Galbraith 已提交
696
		if (unlikely(!se->on_rq)) {
697
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
698 699 700 701

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
702
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
703 704
	}
	return slice;
705 706
}

707
/*
A
Andrei Epure 已提交
708
 * We calculate the vruntime slice of a to-be-inserted task.
709
 *
710
 * vs = s/w
711
 */
712
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
713
{
714
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
715 716
}

717
#ifdef CONFIG_SMP
718
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
719 720
static unsigned long task_h_load(struct task_struct *p);

721 722
/*
 * We choose a half-life close to 1 scheduling period.
723 724
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
725 726 727
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
728
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
729

730 731
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
732
{
733
	struct sched_avg *sa = &se->avg;
734

735 736 737 738 739 740 741
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
742 743 744 745 746 747 748 749
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
750
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
751 752 753 754 755
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
756
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757
}
758

759
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
760
static void attach_entity_cfs_rq(struct sched_entity *se);
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
791
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
792 793 794 795 796 797 798 799 800 801 802 803 804

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
805 806 807 808 809 810 811 812 813 814 815 816 817 818

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
819
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
820 821 822 823
			return;
		}
	}

824
	attach_entity_cfs_rq(se);
825 826
}

827
#else /* !CONFIG_SMP */
828
void init_entity_runnable_average(struct sched_entity *se)
829 830
{
}
831 832 833
void post_init_entity_util_avg(struct sched_entity *se)
{
}
834 835 836
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
837
#endif /* CONFIG_SMP */
838

839
/*
840
 * Update the current task's runtime statistics.
841
 */
842
static void update_curr(struct cfs_rq *cfs_rq)
843
{
844
	struct sched_entity *curr = cfs_rq->curr;
845
	u64 now = rq_clock_task(rq_of(cfs_rq));
846
	u64 delta_exec;
847 848 849 850

	if (unlikely(!curr))
		return;

851 852
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
853
		return;
854

I
Ingo Molnar 已提交
855
	curr->exec_start = now;
856

857 858 859 860
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
861
	schedstat_add(cfs_rq->exec_clock, delta_exec);
862 863 864 865

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

866 867 868
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

869
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870
		cpuacct_charge(curtask, delta_exec);
871
		account_group_exec_runtime(curtask, delta_exec);
872
	}
873 874

	account_cfs_rq_runtime(cfs_rq, delta_exec);
875 876
}

877 878 879 880 881
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

882
static inline void
883
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884
{
885 886 887 888 889 890 891
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
892 893

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 895
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
896

897
	schedstat_set(se->statistics.wait_start, wait_start);
898 899
}

900
static inline void
901 902 903
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
904 905
	u64 delta;

906 907 908 909
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910 911 912 913 914 915 916 917 918

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
919
			schedstat_set(se->statistics.wait_start, delta);
920 921 922 923 924
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

925 926 927 928 929
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
930 931
}

932
static inline void
933 934 935
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
936 937 938 939 940 941 942
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
943 944 945 946

	if (entity_is_task(se))
		tsk = task_of(se);

947 948
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949 950 951 952

		if ((s64)delta < 0)
			delta = 0;

953 954
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
955

956 957
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
958 959 960 961 962 963

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
964 965
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966 967 968 969

		if ((s64)delta < 0)
			delta = 0;

970 971
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
972

973 974
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
975 976 977

		if (tsk) {
			if (tsk->in_iowait) {
978 979
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
998 999
}

1000 1001 1002
/*
 * Task is being enqueued - update stats:
 */
1003
static inline void
1004
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005
{
1006 1007 1008
	if (!schedstat_enabled())
		return;

1009 1010 1011 1012
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1013
	if (se != cfs_rq->curr)
1014
		update_stats_wait_start(cfs_rq, se);
1015 1016 1017

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1018 1019 1020
}

static inline void
1021
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022
{
1023 1024 1025 1026

	if (!schedstat_enabled())
		return;

1027 1028 1029 1030
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1031
	if (se != cfs_rq->curr)
1032
		update_stats_wait_end(cfs_rq, se);
1033

1034 1035
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1036

1037 1038 1039 1040 1041 1042
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1043 1044 1045
	}
}

1046 1047 1048 1049
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1050
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 1052 1053 1054
{
	/*
	 * We are starting a new run period:
	 */
1055
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 1057 1058 1059 1060 1061
}

/**************************************************
 * Scheduling class queueing methods:
 */

1062 1063
#ifdef CONFIG_NUMA_BALANCING
/*
1064 1065 1066
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1067
 */
1068 1069
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070 1071 1072

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1073

1074 1075 1076
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1101
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 1103 1104
	unsigned int scan, floor;
	unsigned int windows = 1;

1105 1106
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1135 1136 1137 1138 1139
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1140
	pid_t gid;
1141
	int active_nodes;
1142 1143

	struct rcu_head rcu;
1144
	unsigned long total_faults;
1145
	unsigned long max_faults_cpu;
1146 1147 1148 1149 1150
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1151
	unsigned long *faults_cpu;
1152
	unsigned long faults[0];
1153 1154
};

1155 1156 1157 1158 1159 1160 1161 1162 1163
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1164 1165 1166 1167 1168
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1169 1170 1171 1172 1173 1174 1175
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1176
{
1177
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1178 1179 1180 1181
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1182
	if (!p->numa_faults)
1183 1184
		return 0;

1185 1186
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1187 1188
}

1189 1190 1191 1192 1193
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1194 1195
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1196 1197
}

1198 1199
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1200 1201
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1281 1282 1283 1284 1285 1286
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1287 1288
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1289
{
1290
	unsigned long faults, total_faults;
1291

1292
	if (!p->numa_faults)
1293 1294 1295 1296 1297 1298 1299
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1300
	faults = task_faults(p, nid);
1301 1302
	faults += score_nearby_nodes(p, nid, dist, true);

1303
	return 1000 * faults / total_faults;
1304 1305
}

1306 1307
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1308
{
1309 1310 1311 1312 1313 1314 1315 1316
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1317 1318
		return 0;

1319
	faults = group_faults(p, nid);
1320 1321
	faults += score_nearby_nodes(p, nid, dist, false);

1322
	return 1000 * faults / total_faults;
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1365 1366
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1367
	 */
1368 1369
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1370 1371 1372
		return true;

	/*
1373 1374 1375 1376 1377 1378
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1379
	 */
1380 1381
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1382 1383
}

1384
static unsigned long weighted_cpuload(const int cpu);
1385 1386
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1387
static unsigned long capacity_of(int cpu);
1388 1389
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1390
/* Cached statistics for all CPUs within a node */
1391
struct numa_stats {
1392
	unsigned long nr_running;
1393
	unsigned long load;
1394 1395

	/* Total compute capacity of CPUs on a node */
1396
	unsigned long compute_capacity;
1397 1398

	/* Approximate capacity in terms of runnable tasks on a node */
1399
	unsigned long task_capacity;
1400
	int has_free_capacity;
1401
};
1402

1403 1404 1405 1406 1407
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1408 1409
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1410 1411 1412 1413 1414 1415 1416

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1417
		ns->compute_capacity += capacity_of(cpu);
1418 1419

		cpus++;
1420 1421
	}

1422 1423 1424 1425 1426
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1427 1428
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1429 1430 1431 1432
	 */
	if (!cpus)
		return;

1433 1434 1435 1436 1437 1438
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1439
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1440 1441
}

1442 1443
struct task_numa_env {
	struct task_struct *p;
1444

1445 1446
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1447

1448
	struct numa_stats src_stats, dst_stats;
1449

1450
	int imbalance_pct;
1451
	int dist;
1452 1453 1454

	struct task_struct *best_task;
	long best_imp;
1455 1456 1457
	int best_cpu;
};

1458 1459 1460 1461 1462
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1463 1464
	if (p)
		get_task_struct(p);
1465 1466 1467 1468 1469 1470

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1471
static bool load_too_imbalanced(long src_load, long dst_load,
1472 1473
				struct task_numa_env *env)
{
1474 1475
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1487 1488

	/* We care about the slope of the imbalance, not the direction. */
1489 1490
	if (dst_load < src_load)
		swap(dst_load, src_load);
1491 1492

	/* Is the difference below the threshold? */
1493 1494
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1495 1496 1497 1498 1499
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1500
	 * Compare it with the old imbalance.
1501
	 */
1502
	orig_src_load = env->src_stats.load;
1503
	orig_dst_load = env->dst_stats.load;
1504

1505 1506
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1507

1508 1509 1510 1511 1512
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1513 1514
}

1515 1516 1517 1518 1519 1520
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1521 1522
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1523 1524 1525 1526
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1527
	long src_load, dst_load;
1528
	long load;
1529
	long imp = env->p->numa_group ? groupimp : taskimp;
1530
	long moveimp = imp;
1531
	int dist = env->dist;
1532 1533

	rcu_read_lock();
1534 1535
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1536 1537
		cur = NULL;

1538 1539 1540 1541 1542 1543 1544
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1557 1558
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1559
		 * in any group then look only at task weights.
1560
		 */
1561
		if (cur->numa_group == env->p->numa_group) {
1562 1563
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1564 1565 1566 1567 1568 1569
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1570
		} else {
1571 1572 1573 1574 1575 1576
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1577 1578
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1579
			else
1580 1581
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1582
		}
1583 1584
	}

1585
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1586 1587 1588 1589
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1590
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1591
		    !env->dst_stats.has_free_capacity)
1592 1593 1594 1595 1596 1597
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1598 1599
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1600 1601 1602 1603 1604 1605
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1606 1607 1608
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1627
	if (cur) {
1628 1629 1630
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1631 1632
	}

1633
	if (load_too_imbalanced(src_load, dst_load, env))
1634 1635
		goto unlock;

1636 1637 1638 1639
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1640 1641 1642 1643 1644 1645
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1646 1647
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1648 1649
		local_irq_enable();
	}
1650

1651 1652 1653 1654 1655 1656
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1657 1658
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1659 1660 1661 1662 1663 1664 1665 1666 1667
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1668
		task_numa_compare(env, taskimp, groupimp);
1669 1670 1671
	}
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1689 1690 1691
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1692 1693 1694 1695 1696
		return true;

	return false;
}

1697 1698 1699 1700
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1701

1702
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1703
		.src_nid = task_node(p),
1704 1705 1706 1707 1708

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1709
		.best_cpu = -1,
1710 1711
	};
	struct sched_domain *sd;
1712
	unsigned long taskweight, groupweight;
1713
	int nid, ret, dist;
1714
	long taskimp, groupimp;
1715

1716
	/*
1717 1718 1719 1720 1721 1722
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1723 1724
	 */
	rcu_read_lock();
1725
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1726 1727
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1728 1729
	rcu_read_unlock();

1730 1731 1732 1733 1734 1735 1736
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1737
		p->numa_preferred_nid = task_node(p);
1738 1739 1740
		return -EINVAL;
	}

1741
	env.dst_nid = p->numa_preferred_nid;
1742 1743 1744 1745 1746 1747
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1748
	update_numa_stats(&env.dst_stats, env.dst_nid);
1749

1750
	/* Try to find a spot on the preferred nid. */
1751 1752
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1753

1754 1755 1756 1757 1758 1759 1760
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1761
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 1763 1764
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1765

1766
			dist = node_distance(env.src_nid, env.dst_nid);
1767 1768 1769 1770 1771
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1772

1773
			/* Only consider nodes where both task and groups benefit */
1774 1775
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1776
			if (taskimp < 0 && groupimp < 0)
1777 1778
				continue;

1779
			env.dist = dist;
1780 1781
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1782 1783
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1784 1785 1786
		}
	}

1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1795
	if (p->numa_group) {
1796 1797
		struct numa_group *ng = p->numa_group;

1798 1799 1800 1801 1802
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1803
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1804 1805 1806 1807 1808 1809
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1810

1811 1812 1813 1814 1815 1816
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1817
	if (env.best_task == NULL) {
1818 1819 1820
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1821 1822 1823 1824
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1825 1826
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1827 1828
	put_task_struct(env.best_task);
	return ret;
1829 1830
}

1831 1832 1833
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1834 1835
	unsigned long interval = HZ;

1836
	/* This task has no NUMA fault statistics yet */
1837
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1838 1839
		return;

1840
	/* Periodically retry migrating the task to the preferred node */
1841 1842
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1843 1844

	/* Success if task is already running on preferred CPU */
1845
	if (task_node(p) == p->numa_preferred_nid)
1846 1847 1848
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1849
	task_numa_migrate(p);
1850 1851
}

1852
/*
1853
 * Find out how many nodes on the workload is actively running on. Do this by
1854 1855 1856 1857
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1858
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1859 1860
{
	unsigned long faults, max_faults = 0;
1861
	int nid, active_nodes = 0;
1862 1863 1864 1865 1866 1867 1868 1869 1870

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1871 1872
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1873
	}
1874 1875 1876

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1877 1878
}

1879 1880 1881
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1882 1883 1884
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1885 1886
 */
#define NUMA_PERIOD_SLOTS 10
1887
#define NUMA_PERIOD_THRESHOLD 7
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1908 1909 1910
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1911
	 */
1912
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1946
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1947 1948 1949 1950 1951 1952 1953 1954
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1973 1974
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1975 1976 1977 1978 1979 1980 1981 1982
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2030
		nodemask_t max_group = NODE_MASK_NONE;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2064 2065
		if (!max_faults)
			break;
2066 2067 2068 2069 2070
		nodes = max_group;
	}
	return nid;
}

2071 2072
static void task_numa_placement(struct task_struct *p)
{
2073 2074
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2075
	unsigned long fault_types[2] = { 0, 0 };
2076 2077
	unsigned long total_faults;
	u64 runtime, period;
2078
	spinlock_t *group_lock = NULL;
2079

2080 2081 2082 2083 2084
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2085
	seq = READ_ONCE(p->mm->numa_scan_seq);
2086 2087 2088
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2089
	p->numa_scan_period_max = task_scan_max(p);
2090

2091 2092 2093 2094
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2095 2096 2097
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2098
		spin_lock_irq(group_lock);
2099 2100
	}

2101 2102
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2103 2104
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2105
		unsigned long faults = 0, group_faults = 0;
2106
		int priv;
2107

2108
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2109
			long diff, f_diff, f_weight;
2110

2111 2112 2113 2114
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2115

2116
			/* Decay existing window, copy faults since last scan */
2117 2118 2119
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2120

2121 2122 2123 2124 2125 2126 2127 2128
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2129
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2130
				   (total_faults + 1);
2131 2132
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2133

2134 2135 2136
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2137
			p->total_numa_faults += diff;
2138
			if (p->numa_group) {
2139 2140 2141 2142 2143 2144 2145 2146 2147
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2148
				p->numa_group->total_faults += diff;
2149
				group_faults += p->numa_group->faults[mem_idx];
2150
			}
2151 2152
		}

2153 2154 2155 2156
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2157 2158 2159 2160 2161 2162 2163

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2164 2165
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2166
	if (p->numa_group) {
2167
		numa_group_count_active_nodes(p->numa_group);
2168
		spin_unlock_irq(group_lock);
2169
		max_nid = preferred_group_nid(p, max_group_nid);
2170 2171
	}

2172 2173 2174 2175 2176 2177 2178
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2179
	}
2180 2181
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2193 2194
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2204
				    4*nr_node_ids*sizeof(unsigned long);
2205 2206 2207 2208 2209 2210

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2211 2212
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2213
		spin_lock_init(&grp->lock);
2214
		grp->gid = p->pid;
2215
		/* Second half of the array tracks nids where faults happen */
2216 2217
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2218

2219
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2220
			grp->faults[i] = p->numa_faults[i];
2221

2222
		grp->total_faults = p->total_numa_faults;
2223

2224 2225 2226 2227 2228
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2229
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2230 2231

	if (!cpupid_match_pid(tsk, cpupid))
2232
		goto no_join;
2233 2234 2235

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2236
		goto no_join;
2237 2238 2239

	my_grp = p->numa_group;
	if (grp == my_grp)
2240
		goto no_join;
2241 2242 2243 2244 2245 2246

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2247
		goto no_join;
2248 2249 2250 2251 2252

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2253
		goto no_join;
2254

2255 2256 2257 2258 2259 2260 2261
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2262

2263 2264 2265
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2266
	if (join && !get_numa_group(grp))
2267
		goto no_join;
2268 2269 2270 2271 2272 2273

	rcu_read_unlock();

	if (!join)
		return;

2274 2275
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2276

2277
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2278 2279
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2280
	}
2281 2282
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2283 2284 2285 2286 2287

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2288
	spin_unlock_irq(&grp->lock);
2289 2290 2291 2292

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2293 2294 2295 2296 2297
	return;

no_join:
	rcu_read_unlock();
	return;
2298 2299 2300 2301 2302
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2303
	void *numa_faults = p->numa_faults;
2304 2305
	unsigned long flags;
	int i;
2306 2307

	if (grp) {
2308
		spin_lock_irqsave(&grp->lock, flags);
2309
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2310
			grp->faults[i] -= p->numa_faults[i];
2311
		grp->total_faults -= p->total_numa_faults;
2312

2313
		grp->nr_tasks--;
2314
		spin_unlock_irqrestore(&grp->lock, flags);
2315
		RCU_INIT_POINTER(p->numa_group, NULL);
2316 2317 2318
		put_numa_group(grp);
	}

2319
	p->numa_faults = NULL;
2320
	kfree(numa_faults);
2321 2322
}

2323 2324 2325
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2326
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2327 2328
{
	struct task_struct *p = current;
2329
	bool migrated = flags & TNF_MIGRATED;
2330
	int cpu_node = task_node(current);
2331
	int local = !!(flags & TNF_FAULT_LOCAL);
2332
	struct numa_group *ng;
2333
	int priv;
2334

2335
	if (!static_branch_likely(&sched_numa_balancing))
2336 2337
		return;

2338 2339 2340 2341
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2342
	/* Allocate buffer to track faults on a per-node basis */
2343 2344
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2345
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2346

2347 2348
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2349
			return;
2350

2351
		p->total_numa_faults = 0;
2352
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2353
	}
2354

2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2363
		if (!priv && !(flags & TNF_NO_GROUP))
2364
			task_numa_group(p, last_cpupid, flags, &priv);
2365 2366
	}

2367 2368 2369 2370 2371 2372
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2373 2374 2375 2376
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2377 2378
		local = 1;

2379
	task_numa_placement(p);
2380

2381 2382 2383 2384 2385
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2386 2387
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2388 2389
	if (migrated)
		p->numa_pages_migrated += pages;
2390 2391
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2392

2393 2394
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2395
	p->numa_faults_locality[local] += pages;
2396 2397
}

2398 2399
static void reset_ptenuma_scan(struct task_struct *p)
{
2400 2401 2402 2403 2404 2405 2406 2407
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2408
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2409 2410 2411
	p->mm->numa_scan_offset = 0;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2421
	u64 runtime = p->se.sum_exec_runtime;
2422
	struct vm_area_struct *vma;
2423
	unsigned long start, end;
2424
	unsigned long nr_pte_updates = 0;
2425
	long pages, virtpages;
2426

2427
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2441
	if (!mm->numa_next_scan) {
2442 2443
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2444 2445
	}

2446 2447 2448 2449 2450 2451 2452
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2453 2454 2455 2456
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2457

2458
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2459 2460 2461
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2462 2463 2464 2465 2466 2467
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2468 2469 2470
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2471
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2472 2473
	if (!pages)
		return;
2474

2475

2476
	down_read(&mm->mmap_sem);
2477
	vma = find_vma(mm, start);
2478 2479
	if (!vma) {
		reset_ptenuma_scan(p);
2480
		start = 0;
2481 2482
		vma = mm->mmap;
	}
2483
	for (; vma; vma = vma->vm_next) {
2484
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2485
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2486
			continue;
2487
		}
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2499 2500 2501 2502 2503 2504
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2505

2506 2507 2508 2509
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2510
			nr_pte_updates = change_prot_numa(vma, start, end);
2511 2512

			/*
2513 2514 2515 2516 2517 2518
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2519 2520 2521
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2522
			virtpages -= (end - start) >> PAGE_SHIFT;
2523

2524
			start = end;
2525
			if (pages <= 0 || virtpages <= 0)
2526
				goto out;
2527 2528

			cond_resched();
2529
		} while (end != vma->vm_end);
2530
	}
2531

2532
out:
2533
	/*
P
Peter Zijlstra 已提交
2534 2535 2536 2537
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2538 2539
	 */
	if (vma)
2540
		mm->numa_scan_offset = start;
2541 2542 2543
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2580
	if (now > curr->node_stamp + period) {
2581
		if (!curr->node_stamp)
2582
			curr->numa_scan_period = task_scan_min(curr);
2583
		curr->node_stamp += period;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2595 2596 2597 2598 2599 2600 2601 2602

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2603 2604
#endif /* CONFIG_NUMA_BALANCING */

2605 2606 2607 2608
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2609
	if (!parent_entity(se))
2610
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2611
#ifdef CONFIG_SMP
2612 2613 2614 2615 2616 2617
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2618
#endif
2619 2620 2621 2622 2623 2624 2625
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2626
	if (!parent_entity(se))
2627
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2628
#ifdef CONFIG_SMP
2629 2630
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2631
		list_del_init(&se->group_node);
2632
	}
2633
#endif
2634 2635 2636
	cfs_rq->nr_running--;
}

2637 2638
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2639
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2640
{
2641
	long tg_weight, load, shares;
2642 2643

	/*
2644 2645 2646
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2647
	 */
2648
	load = scale_load_down(cfs_rq->load.weight);
2649

2650
	tg_weight = atomic_long_read(&tg->load_avg);
2651

2652 2653 2654
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2655 2656

	shares = (tg->shares * load);
2657 2658
	if (tg_weight)
		shares /= tg_weight;
2659 2660 2661 2662 2663 2664 2665 2666 2667

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2668
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2669 2670 2671 2672
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2673

P
Peter Zijlstra 已提交
2674 2675 2676
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2677 2678 2679 2680
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2681
		account_entity_dequeue(cfs_rq, se);
2682
	}
P
Peter Zijlstra 已提交
2683 2684 2685 2686 2687 2688 2689

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2690 2691
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2692
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2693 2694 2695
{
	struct task_group *tg;
	struct sched_entity *se;
2696
	long shares;
P
Peter Zijlstra 已提交
2697 2698 2699

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2700
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2701
		return;
2702 2703 2704 2705
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2706
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2707 2708 2709 2710

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2711
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2712 2713 2714 2715
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2716
#ifdef CONFIG_SMP
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2747 2748 2749 2750 2751 2752
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2765 2766
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2767 2768 2769 2770 2771 2772
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2773 2774
	}

2775 2776
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2795 2796 2797
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2798 2799
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2800 2801
}

2802
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2803

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2832 2833
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2834
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2835
{
2836
	u64 delta, scaled_delta, periods;
2837
	u32 contrib;
2838
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2839
	unsigned long scale_freq, scale_cpu;
2840

2841
	delta = now - sa->last_update_time;
2842 2843 2844 2845 2846
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2847
		sa->last_update_time = now;
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2858
	sa->last_update_time = now;
2859

2860 2861 2862
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2863
	/* delta_w is the amount already accumulated against our next period */
2864
	delta_w = sa->period_contrib;
2865 2866 2867
	if (delta + delta_w >= 1024) {
		decayed = 1;

2868 2869 2870
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2871 2872 2873 2874 2875 2876
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2877
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2878
		if (weight) {
2879 2880 2881 2882 2883
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2884
		}
2885
		if (running)
2886
			sa->util_sum += scaled_delta_w * scale_cpu;
2887 2888 2889 2890 2891 2892 2893

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2894
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2895 2896 2897 2898
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2899
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2900 2901

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2902
		contrib = __compute_runnable_contrib(periods);
2903
		contrib = cap_scale(contrib, scale_freq);
2904
		if (weight) {
2905
			sa->load_sum += weight * contrib;
2906 2907 2908
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2909
		if (running)
2910
			sa->util_sum += contrib * scale_cpu;
2911 2912 2913
	}

	/* Remainder of delta accrued against u_0` */
2914
	scaled_delta = cap_scale(delta, scale_freq);
2915
	if (weight) {
2916
		sa->load_sum += weight * scaled_delta;
2917
		if (cfs_rq)
2918
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2919
	}
2920
	if (running)
2921
		sa->util_sum += scaled_delta * scale_cpu;
2922

2923
	sa->period_contrib += delta;
2924

2925 2926
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2927 2928 2929 2930
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2931
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2932
	}
2933

2934
	return decayed;
2935 2936
}

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2957
#ifdef CONFIG_FAIR_GROUP_SCHED
2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2973
 */
2974
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2975
{
2976
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2977

2978 2979 2980 2981 2982 2983
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2984 2985 2986
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2987
	}
2988
}
2989

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3157
#else /* CONFIG_FAIR_GROUP_SCHED */
3158

3159
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3160 3161 3162 3163 3164 3165 3166 3167

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3168
#endif /* CONFIG_FAIR_GROUP_SCHED */
3169

3170 3171
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3172
	if (&this_rq()->cfs == cfs_rq) {
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3189
		cpufreq_update_util(rq_of(cfs_rq), 0);
3190 3191 3192
	}
}

3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3222 3223 3224 3225
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3226
 */
3227 3228
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3229
{
3230
	struct sched_avg *sa = &cfs_rq->avg;
3231
	int decayed, removed_load = 0, removed_util = 0;
3232

3233
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3234
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3235 3236
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3237
		removed_load = 1;
3238
		set_tg_cfs_propagate(cfs_rq);
3239
	}
3240

3241 3242
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3243 3244
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3245
		removed_util = 1;
3246
		set_tg_cfs_propagate(cfs_rq);
3247
	}
3248

3249
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3250
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3251

3252 3253 3254 3255
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3256

3257 3258
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3259

3260
	return decayed || removed_load;
3261 3262
}

3263 3264 3265 3266 3267 3268
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3269
/* Update task and its cfs_rq load average */
3270
static inline void update_load_avg(struct sched_entity *se, int flags)
3271 3272 3273 3274 3275
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3276
	int decayed;
3277 3278 3279 3280 3281

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3282 3283
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
		__update_load_avg(now, cpu, &se->avg,
3284 3285
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
3286
	}
3287

3288 3289 3290 3291
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3292
		update_tg_load_avg(cfs_rq, 0);
3293 3294
}

3295 3296 3297 3298 3299 3300 3301 3302
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3303 3304 3305 3306 3307 3308 3309
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3310
	set_tg_cfs_propagate(cfs_rq);
3311 3312

	cfs_rq_util_change(cfs_rq);
3313 3314
}

3315 3316 3317 3318 3319 3320 3321 3322
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3323 3324 3325
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3326 3327 3328 3329
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3330
	set_tg_cfs_propagate(cfs_rq);
3331 3332

	cfs_rq_util_change(cfs_rq);
3333 3334
}

3335 3336 3337
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3338
{
3339
	struct sched_avg *sa = &se->avg;
3340

3341 3342 3343
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3344
	if (!sa->last_update_time) {
3345
		attach_entity_load_avg(cfs_rq, se);
3346
		update_tg_load_avg(cfs_rq, 0);
3347
	}
3348 3349
}

3350 3351 3352 3353 3354 3355 3356
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3357
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3358 3359
}

3360
#ifndef CONFIG_64BIT
3361 3362
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3363
	u64 last_update_time_copy;
3364
	u64 last_update_time;
3365

3366 3367 3368 3369 3370
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3371 3372 3373

	return last_update_time;
}
3374
#else
3375 3376 3377 3378
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3379 3380
#endif

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
}

3394 3395 3396 3397 3398 3399 3400 3401 3402
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3403 3404 3405 3406 3407 3408 3409
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3410 3411
	 */

3412
	sync_entity_load_avg(se);
3413 3414
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3415
}
3416

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3427 3428
static int idle_balance(struct rq *this_rq);

3429 3430
#else /* CONFIG_SMP */

3431 3432 3433 3434 3435 3436
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3437 3438 3439 3440
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3441
{
3442
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3443 3444
}

3445 3446
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3447 3448
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3449
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3450

3451 3452 3453 3454 3455
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3456 3457 3458 3459 3460
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3461
#endif /* CONFIG_SMP */
3462

P
Peter Zijlstra 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3472
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3473 3474 3475
#endif
}

3476 3477 3478
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3479
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3480

3481 3482 3483 3484 3485 3486
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3487
	if (initial && sched_feat(START_DEBIT))
3488
		vruntime += sched_vslice(cfs_rq, se);
3489

3490
	/* sleeps up to a single latency don't count. */
3491
	if (!initial) {
3492
		unsigned long thresh = sysctl_sched_latency;
3493

3494 3495 3496 3497 3498 3499
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3500

3501
		vruntime -= thresh;
3502 3503
	}

3504
	/* ensure we never gain time by being placed backwards. */
3505
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3506 3507
}

3508 3509
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3522
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3523 3524 3525 3526 3527 3528 3529
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3549
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3561
static void
3562
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3563
{
3564 3565 3566
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3567
	/*
3568 3569
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3570
	 */
3571
	if (renorm && curr)
3572 3573
		se->vruntime += cfs_rq->min_vruntime;

3574 3575
	update_curr(cfs_rq);

3576
	/*
3577 3578 3579 3580
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3581
	 */
3582 3583 3584
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3585
	update_load_avg(se, UPDATE_TG);
3586
	enqueue_entity_load_avg(cfs_rq, se);
3587 3588
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3589

3590
	if (flags & ENQUEUE_WAKEUP)
3591
		place_entity(cfs_rq, se, 0);
3592

3593
	check_schedstat_required();
3594 3595
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3596
	if (!curr)
3597
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3598
	se->on_rq = 1;
3599

3600
	if (cfs_rq->nr_running == 1) {
3601
		list_add_leaf_cfs_rq(cfs_rq);
3602 3603
		check_enqueue_throttle(cfs_rq);
	}
3604 3605
}

3606
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3607
{
3608 3609
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3610
		if (cfs_rq->last != se)
3611
			break;
3612 3613

		cfs_rq->last = NULL;
3614 3615
	}
}
P
Peter Zijlstra 已提交
3616

3617 3618 3619 3620
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3621
		if (cfs_rq->next != se)
3622
			break;
3623 3624

		cfs_rq->next = NULL;
3625
	}
P
Peter Zijlstra 已提交
3626 3627
}

3628 3629 3630 3631
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3632
		if (cfs_rq->skip != se)
3633
			break;
3634 3635

		cfs_rq->skip = NULL;
3636 3637 3638
	}
}

P
Peter Zijlstra 已提交
3639 3640
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3641 3642 3643 3644 3645
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3646 3647 3648

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3649 3650
}

3651
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3652

3653
static void
3654
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3655
{
3656 3657 3658 3659
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3660
	update_load_avg(se, UPDATE_TG);
3661
	dequeue_entity_load_avg(cfs_rq, se);
3662

3663
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3664

P
Peter Zijlstra 已提交
3665
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3666

3667
	if (se != cfs_rq->curr)
3668
		__dequeue_entity(cfs_rq, se);
3669
	se->on_rq = 0;
3670
	account_entity_dequeue(cfs_rq, se);
3671 3672

	/*
3673 3674 3675 3676
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3677
	 */
3678
	if (!(flags & DEQUEUE_SLEEP))
3679
		se->vruntime -= cfs_rq->min_vruntime;
3680

3681 3682 3683
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3684
	update_cfs_shares(cfs_rq);
3685 3686 3687 3688 3689 3690 3691 3692 3693

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3694 3695 3696 3697 3698
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3699
static void
I
Ingo Molnar 已提交
3700
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3701
{
3702
	unsigned long ideal_runtime, delta_exec;
3703 3704
	struct sched_entity *se;
	s64 delta;
3705

P
Peter Zijlstra 已提交
3706
	ideal_runtime = sched_slice(cfs_rq, curr);
3707
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3708
	if (delta_exec > ideal_runtime) {
3709
		resched_curr(rq_of(cfs_rq));
3710 3711 3712 3713 3714
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3726 3727
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3728

3729 3730
	if (delta < 0)
		return;
3731

3732
	if (delta > ideal_runtime)
3733
		resched_curr(rq_of(cfs_rq));
3734 3735
}

3736
static void
3737
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3738
{
3739 3740 3741 3742 3743 3744 3745
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3746
		update_stats_wait_end(cfs_rq, se);
3747
		__dequeue_entity(cfs_rq, se);
3748
		update_load_avg(se, UPDATE_TG);
3749 3750
	}

3751
	update_stats_curr_start(cfs_rq, se);
3752
	cfs_rq->curr = se;
3753

I
Ingo Molnar 已提交
3754 3755 3756 3757 3758
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3759
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3760 3761 3762
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3763
	}
3764

3765
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3766 3767
}

3768 3769 3770
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3771 3772 3773 3774 3775 3776 3777
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3778 3779
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3780
{
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3792

3793 3794 3795 3796 3797
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3808 3809 3810
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3811

3812 3813 3814 3815 3816 3817
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3818 3819 3820 3821 3822 3823
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3824
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3825 3826

	return se;
3827 3828
}

3829
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3830

3831
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3832 3833 3834 3835 3836 3837
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3838
		update_curr(cfs_rq);
3839

3840 3841 3842
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3843
	check_spread(cfs_rq, prev);
3844

3845
	if (prev->on_rq) {
3846
		update_stats_wait_start(cfs_rq, prev);
3847 3848
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3849
		/* in !on_rq case, update occurred at dequeue */
3850
		update_load_avg(prev, 0);
3851
	}
3852
	cfs_rq->curr = NULL;
3853 3854
}

P
Peter Zijlstra 已提交
3855 3856
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3857 3858
{
	/*
3859
	 * Update run-time statistics of the 'current'.
3860
	 */
3861
	update_curr(cfs_rq);
3862

3863 3864 3865
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3866
	update_load_avg(curr, UPDATE_TG);
3867
	update_cfs_shares(cfs_rq);
3868

P
Peter Zijlstra 已提交
3869 3870 3871 3872 3873
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3874
	if (queued) {
3875
		resched_curr(rq_of(cfs_rq));
3876 3877
		return;
	}
P
Peter Zijlstra 已提交
3878 3879 3880 3881 3882 3883 3884 3885
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3886
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3887
		check_preempt_tick(cfs_rq, curr);
3888 3889
}

3890 3891 3892 3893 3894 3895

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3896 3897

#ifdef HAVE_JUMP_LABEL
3898
static struct static_key __cfs_bandwidth_used;
3899 3900 3901

static inline bool cfs_bandwidth_used(void)
{
3902
	return static_key_false(&__cfs_bandwidth_used);
3903 3904
}

3905
void cfs_bandwidth_usage_inc(void)
3906
{
3907 3908 3909 3910 3911 3912
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3913 3914 3915 3916 3917 3918 3919
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3920 3921
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3922 3923
#endif /* HAVE_JUMP_LABEL */

3924 3925 3926 3927 3928 3929 3930 3931
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3932 3933 3934 3935 3936 3937

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3938 3939 3940 3941 3942 3943 3944
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3945
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3957 3958 3959 3960 3961
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3962 3963 3964 3965
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3966
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3967

3968
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3969 3970
}

3971 3972
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3973 3974 3975
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3976
	u64 amount = 0, min_amount, expires;
3977 3978 3979 3980 3981 3982 3983

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3984
	else {
P
Peter Zijlstra 已提交
3985
		start_cfs_bandwidth(cfs_b);
3986 3987 3988 3989 3990 3991

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3992
	}
P
Paul Turner 已提交
3993
	expires = cfs_b->runtime_expires;
3994 3995 3996
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3997 3998 3999 4000 4001 4002 4003
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4004 4005

	return cfs_rq->runtime_remaining > 0;
4006 4007
}

P
Paul Turner 已提交
4008 4009 4010 4011 4012
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4013
{
P
Paul Turner 已提交
4014 4015 4016
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4017
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4018 4019
		return;

P
Paul Turner 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4029 4030 4031
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4032 4033
	 */

4034
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4035 4036 4037 4038 4039 4040 4041 4042
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4043
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4044 4045
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4046
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4047 4048 4049
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4050 4051
		return;

4052 4053 4054 4055 4056
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4057
		resched_curr(rq_of(cfs_rq));
4058 4059
}

4060
static __always_inline
4061
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4062
{
4063
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4064 4065 4066 4067 4068
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4069 4070
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4071
	return cfs_bandwidth_used() && cfs_rq->throttled;
4072 4073
}

4074 4075 4076
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4077
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4105
		/* adjust cfs_rq_clock_task() */
4106
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4107
					     cfs_rq->throttled_clock_task;
4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4118 4119
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4120
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4121 4122 4123 4124 4125
	cfs_rq->throttle_count++;

	return 0;
}

4126
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4127 4128 4129 4130 4131
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4132
	bool empty;
4133 4134 4135

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4136
	/* freeze hierarchy runnable averages while throttled */
4137 4138 4139
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4157
		sub_nr_running(rq, task_delta);
4158 4159

	cfs_rq->throttled = 1;
4160
	cfs_rq->throttled_clock = rq_clock(rq);
4161
	raw_spin_lock(&cfs_b->lock);
4162
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4163

4164 4165 4166 4167 4168
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4169 4170 4171 4172 4173 4174 4175 4176

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4177 4178 4179
	raw_spin_unlock(&cfs_b->lock);
}

4180
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4181 4182 4183 4184 4185 4186 4187
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4188
	se = cfs_rq->tg->se[cpu_of(rq)];
4189 4190

	cfs_rq->throttled = 0;
4191 4192 4193

	update_rq_clock(rq);

4194
	raw_spin_lock(&cfs_b->lock);
4195
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4196 4197 4198
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4199 4200 4201
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4220
		add_nr_running(rq, task_delta);
4221 4222 4223

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4224
		resched_curr(rq);
4225 4226 4227 4228 4229 4230
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4231 4232
	u64 runtime;
	u64 starting_runtime = remaining;
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4263
	return starting_runtime - remaining;
4264 4265
}

4266 4267 4268 4269 4270 4271 4272 4273
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4274
	u64 runtime, runtime_expires;
4275
	int throttled;
4276 4277 4278

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4279
		goto out_deactivate;
4280

4281
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4282
	cfs_b->nr_periods += overrun;
4283

4284 4285 4286 4287 4288 4289
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4290 4291 4292

	__refill_cfs_bandwidth_runtime(cfs_b);

4293 4294 4295
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4296
		return 0;
4297 4298
	}

4299 4300 4301
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4302 4303 4304
	runtime_expires = cfs_b->runtime_expires;

	/*
4305 4306 4307 4308 4309
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4310
	 */
4311 4312
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4313 4314 4315 4316 4317 4318 4319
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4320 4321

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4322
	}
4323

4324 4325 4326 4327 4328 4329 4330
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4331

4332 4333 4334 4335
	return 0;

out_deactivate:
	return 1;
4336
}
4337

4338 4339 4340 4341 4342 4343 4344
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4345 4346 4347 4348
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4349
 * hrtimer base being cleared by hrtimer_start. In the case of
4350 4351
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4377 4378 4379
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4409 4410 4411
	if (!cfs_bandwidth_used())
		return;

4412
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4428 4429 4430
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4431
		return;
4432
	}
4433

4434
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4435
		runtime = cfs_b->runtime;
4436

4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4447
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4448 4449 4450
	raw_spin_unlock(&cfs_b->lock);
}

4451 4452 4453 4454 4455 4456 4457
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4458 4459 4460
	if (!cfs_bandwidth_used())
		return;

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4489
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4490 4491
}

4492
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4493
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4494
{
4495
	if (!cfs_bandwidth_used())
4496
		return false;
4497

4498
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4499
		return false;
4500 4501 4502 4503 4504 4505

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4506
		return true;
4507 4508

	throttle_cfs_rq(cfs_rq);
4509
	return true;
4510
}
4511 4512 4513 4514 4515

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4516

4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4529
	raw_spin_lock(&cfs_b->lock);
4530
	for (;;) {
P
Peter Zijlstra 已提交
4531
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4532 4533 4534 4535 4536
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4537 4538
	if (idle)
		cfs_b->period_active = 0;
4539
	raw_spin_unlock(&cfs_b->lock);
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4552
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4564
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4565
{
P
Peter Zijlstra 已提交
4566
	lockdep_assert_held(&cfs_b->lock);
4567

P
Peter Zijlstra 已提交
4568 4569 4570 4571 4572
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4573 4574 4575 4576
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4577 4578 4579 4580
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4581 4582 4583 4584
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4598
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4610
		cfs_rq->runtime_remaining = 1;
4611 4612 4613 4614 4615 4616
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4617 4618 4619 4620 4621 4622
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4623 4624
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4625
	return rq_clock_task(rq_of(cfs_rq));
4626 4627
}

4628
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4629
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4630
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4631
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4632
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4633 4634 4635 4636 4637

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4649 4650 4651 4652 4653

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4654 4655
#endif

4656 4657 4658 4659 4660
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4661
static inline void update_runtime_enabled(struct rq *rq) {}
4662
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4663 4664 4665

#endif /* CONFIG_CFS_BANDWIDTH */

4666 4667 4668 4669
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4670 4671 4672 4673 4674 4675
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4676
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4677

4678
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4679 4680 4681 4682 4683 4684
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4685
				resched_curr(rq);
P
Peter Zijlstra 已提交
4686 4687
			return;
		}
4688
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4689 4690
	}
}
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4701
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4702 4703 4704 4705 4706
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4707
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4708 4709 4710 4711
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4712 4713 4714 4715

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4716 4717
#endif

4718 4719 4720 4721 4722
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4723
static void
4724
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4725 4726
{
	struct cfs_rq *cfs_rq;
4727
	struct sched_entity *se = &p->se;
4728

4729 4730 4731 4732 4733 4734 4735 4736
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4737
	for_each_sched_entity(se) {
4738
		if (se->on_rq)
4739 4740
			break;
		cfs_rq = cfs_rq_of(se);
4741
		enqueue_entity(cfs_rq, se, flags);
4742 4743 4744 4745 4746 4747

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4748
		 */
4749 4750
		if (cfs_rq_throttled(cfs_rq))
			break;
4751
		cfs_rq->h_nr_running++;
4752

4753
		flags = ENQUEUE_WAKEUP;
4754
	}
P
Peter Zijlstra 已提交
4755

P
Peter Zijlstra 已提交
4756
	for_each_sched_entity(se) {
4757
		cfs_rq = cfs_rq_of(se);
4758
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4759

4760 4761 4762
		if (cfs_rq_throttled(cfs_rq))
			break;

4763
		update_load_avg(se, UPDATE_TG);
4764
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4765 4766
	}

Y
Yuyang Du 已提交
4767
	if (!se)
4768
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4769

4770
	hrtick_update(rq);
4771 4772
}

4773 4774
static void set_next_buddy(struct sched_entity *se);

4775 4776 4777 4778 4779
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4780
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4781 4782
{
	struct cfs_rq *cfs_rq;
4783
	struct sched_entity *se = &p->se;
4784
	int task_sleep = flags & DEQUEUE_SLEEP;
4785 4786 4787

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4788
		dequeue_entity(cfs_rq, se, flags);
4789 4790 4791 4792 4793 4794 4795 4796 4797

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4798
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4799

4800
		/* Don't dequeue parent if it has other entities besides us */
4801
		if (cfs_rq->load.weight) {
4802 4803
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4804 4805 4806 4807
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4808 4809
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4810
			break;
4811
		}
4812
		flags |= DEQUEUE_SLEEP;
4813
	}
P
Peter Zijlstra 已提交
4814

P
Peter Zijlstra 已提交
4815
	for_each_sched_entity(se) {
4816
		cfs_rq = cfs_rq_of(se);
4817
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4818

4819 4820 4821
		if (cfs_rq_throttled(cfs_rq))
			break;

4822
		update_load_avg(se, UPDATE_TG);
4823
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4824 4825
	}

Y
Yuyang Du 已提交
4826
	if (!se)
4827
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4828

4829
	hrtick_update(rq);
4830 4831
}

4832
#ifdef CONFIG_SMP
4833 4834 4835 4836 4837

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4838
#ifdef CONFIG_NO_HZ_COMMON
4839 4840 4841 4842 4843
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4844
 * The exact cpuload calculated at every tick would be:
4845
 *
4846 4847 4848 4849 4850 4851 4852
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4853 4854 4855
 *
 * decay_load_missed() below does efficient calculation of
 *
4856 4857 4858 4859 4860 4861
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4862
 *
4863
 * The calculation is approximated on a 128 point scale.
4864 4865
 */
#define DEGRADE_SHIFT		7
4866 4867 4868 4869 4870 4871 4872 4873 4874

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4904
#endif /* CONFIG_NO_HZ_COMMON */
4905

4906
/**
4907
 * __cpu_load_update - update the rq->cpu_load[] statistics
4908 4909 4910 4911
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4912
 * Update rq->cpu_load[] statistics. This function is usually called every
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4939
 * term.
4940
 */
4941 4942
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4943
{
4944
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4956
		old_load = this_rq->cpu_load[i];
4957
#ifdef CONFIG_NO_HZ_COMMON
4958
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4959 4960 4961 4962 4963 4964 4965 4966 4967
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4968
#endif
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4984 4985 4986 4987 4988 4989
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4990
#ifdef CONFIG_NO_HZ_COMMON
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5019
		cpu_load_update(this_rq, load, pending_updates);
5020 5021 5022
	}
}

5023 5024 5025 5026
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5027
static void cpu_load_update_idle(struct rq *this_rq)
5028 5029 5030 5031
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5032
	if (weighted_cpuload(cpu_of(this_rq)))
5033 5034
		return;

5035
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5036 5037 5038
}

/*
5039 5040 5041 5042
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5043
 */
5044
void cpu_load_update_nohz_start(void)
5045 5046
{
	struct rq *this_rq = this_rq();
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5061
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5062 5063
	struct rq *this_rq = this_rq();
	unsigned long load;
5064 5065 5066 5067

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5068
	load = weighted_cpuload(cpu_of(this_rq));
5069
	raw_spin_lock(&this_rq->lock);
5070
	update_rq_clock(this_rq);
5071
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5072 5073
	raw_spin_unlock(&this_rq->lock);
}
5074 5075 5076 5077 5078 5079 5080 5081
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5082
#ifdef CONFIG_NO_HZ_COMMON
5083 5084
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5085
#endif
5086 5087
	cpu_load_update(this_rq, load, 1);
}
5088 5089 5090 5091

/*
 * Called from scheduler_tick()
 */
5092
void cpu_load_update_active(struct rq *this_rq)
5093
{
5094
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5095 5096 5097 5098 5099

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5100 5101
}

5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5135
static unsigned long capacity_of(int cpu)
5136
{
5137
	return cpu_rq(cpu)->cpu_capacity;
5138 5139
}

5140 5141 5142 5143 5144
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5145 5146 5147
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5148
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5149
	unsigned long load_avg = weighted_cpuload(cpu);
5150 5151

	if (nr_running)
5152
		return load_avg / nr_running;
5153 5154 5155 5156

	return 0;
}

5157
#ifdef CONFIG_FAIR_GROUP_SCHED
5158 5159 5160 5161 5162 5163
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5207
 */
P
Peter Zijlstra 已提交
5208
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5209
{
P
Peter Zijlstra 已提交
5210
	struct sched_entity *se = tg->se[cpu];
5211

5212
	if (!tg->parent)	/* the trivial, non-cgroup case */
5213 5214
		return wl;

P
Peter Zijlstra 已提交
5215
	for_each_sched_entity(se) {
5216 5217
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5218

5219
		tg = cfs_rq->tg;
5220

5221 5222 5223
		/*
		 * W = @wg + \Sum rw_j
		 */
5224 5225 5226 5227 5228
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5229

5230 5231 5232
		/*
		 * w = rw_i + @wl
		 */
5233
		w += wl;
5234

5235 5236 5237 5238
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5239
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5240
		else
5241
			wl = scale_load_down(tg->shares);
5242

5243 5244 5245 5246 5247
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5248 5249
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5250 5251 5252 5253

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5254
		wl -= se->avg.load_avg;
5255 5256 5257 5258 5259 5260 5261 5262

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5263 5264
		wg = 0;
	}
5265

P
Peter Zijlstra 已提交
5266
	return wl;
5267 5268
}
#else
P
Peter Zijlstra 已提交
5269

5270
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5271
{
5272
	return wl;
5273
}
P
Peter Zijlstra 已提交
5274

5275 5276
#endif

P
Peter Zijlstra 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5294 5295
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5296
 *
M
Mike Galbraith 已提交
5297
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5310
 */
5311 5312
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5313 5314
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5315
	int factor = this_cpu_read(sd_llc_size);
5316

M
Mike Galbraith 已提交
5317 5318 5319 5320 5321
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5322 5323
}

5324 5325
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5326
{
5327
	s64 this_load, load;
5328
	s64 this_eff_load, prev_eff_load;
5329
	int idx, this_cpu;
5330
	struct task_group *tg;
5331
	unsigned long weight;
5332
	int balanced;
5333

5334 5335 5336 5337
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5338

5339 5340 5341 5342 5343
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5344 5345
	if (sync) {
		tg = task_group(current);
5346
		weight = current->se.avg.load_avg;
5347

5348
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5349 5350
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5351

5352
	tg = task_group(p);
5353
	weight = p->se.avg.load_avg;
5354

5355 5356
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5357 5358 5359
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5360 5361 5362 5363
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5364 5365
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5366

5367 5368
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5369

5370
	if (this_load > 0) {
5371 5372 5373 5374
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5375
	}
5376

5377
	balanced = this_eff_load <= prev_eff_load;
5378

5379
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5380

5381 5382
	if (!balanced)
		return 0;
5383

5384 5385
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5386 5387

	return 1;
5388 5389
}

5390 5391 5392 5393 5394 5395 5396 5397
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5398 5399 5400 5401 5402
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5403
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5404
		  int this_cpu, int sd_flag)
5405
{
5406
	struct sched_group *idlest = NULL, *group = sd->groups;
5407
	struct sched_group *most_spare_sg = NULL;
5408 5409
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5410
	unsigned long most_spare = 0, this_spare = 0;
5411
	int load_idx = sd->forkexec_idx;
5412 5413 5414
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5415

5416 5417 5418
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5419
	do {
5420 5421
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5422 5423
		int local_group;
		int i;
5424

5425 5426
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5427
					tsk_cpus_allowed(p)))
5428 5429 5430 5431 5432
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5433 5434 5435 5436
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5437
		avg_load = 0;
5438
		runnable_load = 0;
5439
		max_spare_cap = 0;
5440 5441 5442 5443 5444 5445 5446 5447

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5448 5449 5450
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5451 5452 5453 5454 5455

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5456 5457
		}

5458
		/* Adjust by relative CPU capacity of the group */
5459 5460 5461 5462
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5463 5464

		if (local_group) {
5465 5466
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5467 5468
			this_spare = max_spare_cap;
		} else {
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5484 5485 5486 5487 5488 5489 5490
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5491 5492 5493
		}
	} while (group = group->next, group != sd->groups);

5494 5495 5496 5497 5498 5499
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5500 5501 5502 5503
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5504
	 */
5505 5506 5507
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5508
	if (this_spare > task_util(p) / 2 &&
5509
	    imbalance_scale*this_spare > 100*most_spare)
5510
		return NULL;
5511 5512

	if (most_spare > task_util(p) / 2)
5513 5514
		return most_spare_sg;

5515
skip_spare:
5516 5517 5518 5519
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5520
		return NULL;
5521 5522 5523 5524 5525

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5526 5527 5528 5529 5530 5531 5532 5533 5534 5535
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5536 5537 5538 5539
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5540 5541
	int i;

5542 5543 5544 5545
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5546
	/* Traverse only the allowed CPUs */
5547
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5570
		} else if (shallowest_idle_cpu == -1) {
5571 5572 5573 5574 5575
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5576 5577 5578
		}
	}

5579
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5580
}
5581

5582
/*
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5648
void __update_idle_core(struct rq *rq)
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5680 5681 5682
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
	if (!test_idle_cores(target, false))
		return -1;

	cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5716 5717 5718
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
	for_each_cpu(cpu, cpu_smt_mask(target)) {
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5747
 */
5748 5749
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5750 5751
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5752 5753 5754 5755
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5756 5757 5758 5759 5760 5761
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
	if ((avg_idle / 512) < avg_cost)
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5788
 */
5789
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5790
{
5791
	struct sched_domain *sd;
5792
	int i;
5793

5794 5795
	if (idle_cpu(target))
		return target;
5796 5797

	/*
5798
	 * If the previous cpu is cache affine and idle, don't be stupid.
5799
	 */
5800 5801
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5802

5803
	sd = rcu_dereference(per_cpu(sd_llc, target));
5804 5805
	if (!sd)
		return target;
5806

5807 5808 5809
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5810

5811 5812 5813 5814 5815 5816 5817
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5818

5819 5820
	return target;
}
5821

5822
/*
5823
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5824
 * tasks. The unit of the return value must be the one of capacity so we can
5825 5826
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5847
 */
5848
static int cpu_util(int cpu)
5849
{
5850
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5851 5852
	unsigned long capacity = capacity_orig_of(cpu);

5853
	return (util >= capacity) ? capacity : util;
5854
}
5855

5856 5857 5858 5859 5860
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5897 5898 5899
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5900 5901 5902
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5903
/*
5904 5905 5906
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5907
 *
5908 5909
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5910
 *
5911
 * Returns the target cpu number.
5912 5913 5914
 *
 * preempt must be disabled.
 */
5915
static int
5916
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5917
{
5918
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5919
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5920
	int new_cpu = prev_cpu;
5921
	int want_affine = 0;
5922
	int sync = wake_flags & WF_SYNC;
5923

P
Peter Zijlstra 已提交
5924 5925
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5926 5927
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5928
	}
5929

5930
	rcu_read_lock();
5931
	for_each_domain(cpu, tmp) {
5932
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5933
			break;
5934

5935
		/*
5936 5937
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5938
		 */
5939 5940 5941
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5942
			break;
5943
		}
5944

5945
		if (tmp->flags & sd_flag)
5946
			sd = tmp;
M
Mike Galbraith 已提交
5947 5948
		else if (!want_affine)
			break;
5949 5950
	}

M
Mike Galbraith 已提交
5951 5952
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5953
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5954
			new_cpu = cpu;
5955
	}
5956

M
Mike Galbraith 已提交
5957 5958
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5959
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5960 5961

	} else while (sd) {
5962
		struct sched_group *group;
5963
		int weight;
5964

5965
		if (!(sd->flags & sd_flag)) {
5966 5967 5968
			sd = sd->child;
			continue;
		}
5969

5970
		group = find_idlest_group(sd, p, cpu, sd_flag);
5971 5972 5973 5974
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5975

5976
		new_cpu = find_idlest_cpu(group, p, cpu);
5977 5978 5979 5980
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5981
		}
5982 5983 5984

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5985
		weight = sd->span_weight;
5986 5987
		sd = NULL;
		for_each_domain(cpu, tmp) {
5988
			if (weight <= tmp->span_weight)
5989
				break;
5990
			if (tmp->flags & sd_flag)
5991 5992 5993
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5994
	}
5995
	rcu_read_unlock();
5996

5997
	return new_cpu;
5998
}
5999 6000 6001 6002

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6003
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6004
 */
6005
static void migrate_task_rq_fair(struct task_struct *p)
6006
{
6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6033
	/*
6034 6035 6036 6037 6038
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6039
	 */
6040 6041 6042 6043
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6044 6045

	/* We have migrated, no longer consider this task hot */
6046
	p->se.exec_start = 0;
6047
}
6048 6049 6050 6051 6052

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6053 6054
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6055 6056
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6057 6058 6059 6060
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6061 6062
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6063 6064 6065 6066 6067 6068 6069 6070 6071
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6072
	 */
6073
	return calc_delta_fair(gran, se);
6074 6075
}

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6098
	gran = wakeup_gran(curr, se);
6099 6100 6101 6102 6103 6104
	if (vdiff > gran)
		return 1;

	return 0;
}

6105 6106
static void set_last_buddy(struct sched_entity *se)
{
6107 6108 6109 6110 6111
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6112 6113 6114 6115
}

static void set_next_buddy(struct sched_entity *se)
{
6116 6117 6118 6119 6120
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6121 6122
}

6123 6124
static void set_skip_buddy(struct sched_entity *se)
{
6125 6126
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6127 6128
}

6129 6130 6131
/*
 * Preempt the current task with a newly woken task if needed:
 */
6132
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6133 6134
{
	struct task_struct *curr = rq->curr;
6135
	struct sched_entity *se = &curr->se, *pse = &p->se;
6136
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6137
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6138
	int next_buddy_marked = 0;
6139

I
Ingo Molnar 已提交
6140 6141 6142
	if (unlikely(se == pse))
		return;

6143
	/*
6144
	 * This is possible from callers such as attach_tasks(), in which we
6145 6146 6147 6148 6149 6150 6151
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6152
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6153
		set_next_buddy(pse);
6154 6155
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6156

6157 6158 6159
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6160 6161 6162 6163 6164 6165
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6166 6167 6168 6169
	 */
	if (test_tsk_need_resched(curr))
		return;

6170 6171 6172 6173 6174
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6175
	/*
6176 6177
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6178
	 */
6179
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6180
		return;
6181

6182
	find_matching_se(&se, &pse);
6183
	update_curr(cfs_rq_of(se));
6184
	BUG_ON(!pse);
6185 6186 6187 6188 6189 6190 6191
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6192
		goto preempt;
6193
	}
6194

6195
	return;
6196

6197
preempt:
6198
	resched_curr(rq);
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6213 6214
}

6215
static struct task_struct *
6216
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6217 6218 6219
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6220
	struct task_struct *p;
6221
	int new_tasks;
6222

6223
again:
6224 6225
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6226
		goto idle;
6227

6228
	if (prev->sched_class != &fair_sched_class)
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6248 6249 6250 6251 6252
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6253

6254 6255 6256 6257 6258 6259 6260 6261 6262
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6303

6304
	if (!cfs_rq->nr_running)
6305
		goto idle;
6306

6307
	put_prev_task(rq, prev);
6308

6309
	do {
6310
		se = pick_next_entity(cfs_rq, NULL);
6311
		set_next_entity(cfs_rq, se);
6312 6313 6314
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6315
	p = task_of(se);
6316

6317 6318
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6319 6320

	return p;
6321 6322

idle:
6323 6324 6325 6326 6327 6328
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
6329
	rq_unpin_lock(rq, rf);
6330
	new_tasks = idle_balance(rq);
6331
	rq_repin_lock(rq, rf);
6332 6333 6334 6335 6336
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6337
	if (new_tasks < 0)
6338 6339
		return RETRY_TASK;

6340
	if (new_tasks > 0)
6341 6342 6343
		goto again;

	return NULL;
6344 6345 6346 6347 6348
}

/*
 * Account for a descheduled task:
 */
6349
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6350 6351 6352 6353 6354 6355
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6356
		put_prev_entity(cfs_rq, se);
6357 6358 6359
	}
}

6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6385 6386 6387 6388 6389
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6390
		rq_clock_skip_update(rq, true);
6391 6392 6393 6394 6395
	}

	set_skip_buddy(se);
}

6396 6397 6398 6399
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6400 6401
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6412
#ifdef CONFIG_SMP
6413
/**************************************************
P
Peter Zijlstra 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6430
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6431 6432 6433 6434 6435 6436
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6437
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6438 6439 6440 6441 6442 6443
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6444
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6483
 *             log_2 n
P
Peter Zijlstra 已提交
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6529
 */
6530

6531 6532
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6533 6534
enum fbq_type { regular, remote, all };

6535
#define LBF_ALL_PINNED	0x01
6536
#define LBF_NEED_BREAK	0x02
6537 6538
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6539 6540 6541 6542 6543

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6544
	int			src_cpu;
6545 6546 6547 6548

	int			dst_cpu;
	struct rq		*dst_rq;

6549 6550
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6551
	enum cpu_idle_type	idle;
6552
	long			imbalance;
6553 6554 6555
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6556
	unsigned int		flags;
6557 6558 6559 6560

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6561 6562

	enum fbq_type		fbq_type;
6563
	struct list_head	tasks;
6564 6565
};

6566 6567 6568
/*
 * Is this task likely cache-hot:
 */
6569
static int task_hot(struct task_struct *p, struct lb_env *env)
6570 6571 6572
{
	s64 delta;

6573 6574
	lockdep_assert_held(&env->src_rq->lock);

6575 6576 6577 6578 6579 6580 6581 6582 6583
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6584
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6585 6586 6587 6588 6589 6590 6591 6592 6593
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6594
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6595 6596 6597 6598

	return delta < (s64)sysctl_sched_migration_cost;
}

6599
#ifdef CONFIG_NUMA_BALANCING
6600
/*
6601 6602 6603
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6604
 */
6605
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6606
{
6607
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6608
	unsigned long src_faults, dst_faults;
6609 6610
	int src_nid, dst_nid;

6611
	if (!static_branch_likely(&sched_numa_balancing))
6612 6613
		return -1;

6614
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6615
		return -1;
6616 6617 6618 6619

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6620
	if (src_nid == dst_nid)
6621
		return -1;
6622

6623 6624 6625 6626 6627 6628 6629
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6630

6631 6632
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6633
		return 0;
6634

6635 6636 6637 6638 6639 6640
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6641 6642
	}

6643
	return dst_faults < src_faults;
6644 6645
}

6646
#else
6647
static inline int migrate_degrades_locality(struct task_struct *p,
6648 6649
					     struct lb_env *env)
{
6650
	return -1;
6651
}
6652 6653
#endif

6654 6655 6656 6657
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6658
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6659
{
6660
	int tsk_cache_hot;
6661 6662 6663

	lockdep_assert_held(&env->src_rq->lock);

6664 6665
	/*
	 * We do not migrate tasks that are:
6666
	 * 1) throttled_lb_pair, or
6667
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6668 6669
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6670
	 */
6671 6672 6673
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6674
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6675
		int cpu;
6676

6677
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6678

6679 6680
		env->flags |= LBF_SOME_PINNED;

6681 6682 6683 6684 6685 6686 6687 6688
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6689
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6690 6691
			return 0;

6692 6693 6694
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6695
				env->flags |= LBF_DST_PINNED;
6696 6697 6698
				env->new_dst_cpu = cpu;
				break;
			}
6699
		}
6700

6701 6702
		return 0;
	}
6703 6704

	/* Record that we found atleast one task that could run on dst_cpu */
6705
	env->flags &= ~LBF_ALL_PINNED;
6706

6707
	if (task_running(env->src_rq, p)) {
6708
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6709 6710 6711 6712 6713
		return 0;
	}

	/*
	 * Aggressive migration if:
6714 6715 6716
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6717
	 */
6718 6719 6720
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6721

6722
	if (tsk_cache_hot <= 0 ||
6723
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6724
		if (tsk_cache_hot == 1) {
6725 6726
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6727
		}
6728 6729 6730
		return 1;
	}

6731
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6732
	return 0;
6733 6734
}

6735
/*
6736 6737 6738 6739 6740 6741 6742
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6743
	deactivate_task(env->src_rq, p, 0);
6744 6745 6746
	set_task_cpu(p, env->dst_cpu);
}

6747
/*
6748
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6749 6750
 * part of active balancing operations within "domain".
 *
6751
 * Returns a task if successful and NULL otherwise.
6752
 */
6753
static struct task_struct *detach_one_task(struct lb_env *env)
6754 6755 6756
{
	struct task_struct *p, *n;

6757 6758
	lockdep_assert_held(&env->src_rq->lock);

6759 6760 6761
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6762

6763
		detach_task(p, env);
6764

6765
		/*
6766
		 * Right now, this is only the second place where
6767
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6768
		 * so we can safely collect stats here rather than
6769
		 * inside detach_tasks().
6770
		 */
6771
		schedstat_inc(env->sd->lb_gained[env->idle]);
6772
		return p;
6773
	}
6774
	return NULL;
6775 6776
}

6777 6778
static const unsigned int sched_nr_migrate_break = 32;

6779
/*
6780 6781
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6782
 *
6783
 * Returns number of detached tasks if successful and 0 otherwise.
6784
 */
6785
static int detach_tasks(struct lb_env *env)
6786
{
6787 6788
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6789
	unsigned long load;
6790 6791 6792
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6793

6794
	if (env->imbalance <= 0)
6795
		return 0;
6796

6797
	while (!list_empty(tasks)) {
6798 6799 6800 6801 6802 6803 6804
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6805
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6806

6807 6808
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6809
		if (env->loop > env->loop_max)
6810
			break;
6811 6812

		/* take a breather every nr_migrate tasks */
6813
		if (env->loop > env->loop_break) {
6814
			env->loop_break += sched_nr_migrate_break;
6815
			env->flags |= LBF_NEED_BREAK;
6816
			break;
6817
		}
6818

6819
		if (!can_migrate_task(p, env))
6820 6821 6822
			goto next;

		load = task_h_load(p);
6823

6824
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6825 6826
			goto next;

6827
		if ((load / 2) > env->imbalance)
6828
			goto next;
6829

6830 6831 6832 6833
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6834
		env->imbalance -= load;
6835 6836

#ifdef CONFIG_PREEMPT
6837 6838
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6839
		 * kernels will stop after the first task is detached to minimize
6840 6841
		 * the critical section.
		 */
6842
		if (env->idle == CPU_NEWLY_IDLE)
6843
			break;
6844 6845
#endif

6846 6847 6848 6849
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6850
		if (env->imbalance <= 0)
6851
			break;
6852 6853 6854

		continue;
next:
6855
		list_move_tail(&p->se.group_node, tasks);
6856
	}
6857

6858
	/*
6859 6860 6861
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6862
	 */
6863
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6864

6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6877
	p->on_rq = TASK_ON_RQ_QUEUED;
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6906

6907 6908 6909 6910
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6911 6912
}

P
Peter Zijlstra 已提交
6913
#ifdef CONFIG_FAIR_GROUP_SCHED
6914
static void update_blocked_averages(int cpu)
6915 6916
{
	struct rq *rq = cpu_rq(cpu);
6917 6918
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6919

6920 6921
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6922

6923 6924 6925 6926
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6927
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6928 6929 6930
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6931

6932
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6933
			update_tg_load_avg(cfs_rq, 0);
6934 6935 6936 6937

		/* Propagate pending load changes to the parent */
		if (cfs_rq->tg->se[cpu])
			update_load_avg(cfs_rq->tg->se[cpu], 0);
6938
	}
6939
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6940 6941
}

6942
/*
6943
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6944 6945 6946
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6947
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6948
{
6949 6950
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6951
	unsigned long now = jiffies;
6952
	unsigned long load;
6953

6954
	if (cfs_rq->last_h_load_update == now)
6955 6956
		return;

6957 6958 6959 6960 6961 6962 6963
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6964

6965
	if (!se) {
6966
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6967 6968 6969 6970 6971
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6972 6973
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6974 6975 6976 6977
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6978 6979
}

6980
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6981
{
6982
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6983

6984
	update_cfs_rq_h_load(cfs_rq);
6985
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6986
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6987 6988
}
#else
6989
static inline void update_blocked_averages(int cpu)
6990
{
6991 6992 6993 6994 6995 6996
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6997
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6998
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6999 7000
}

7001
static unsigned long task_h_load(struct task_struct *p)
7002
{
7003
	return p->se.avg.load_avg;
7004
}
P
Peter Zijlstra 已提交
7005
#endif
7006 7007

/********** Helpers for find_busiest_group ************************/
7008 7009 7010 7011 7012 7013 7014

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7015 7016 7017 7018 7019 7020 7021
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7022
	unsigned long load_per_task;
7023
	unsigned long group_capacity;
7024
	unsigned long group_util; /* Total utilization of the group */
7025 7026 7027
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7028
	enum group_type group_type;
7029
	int group_no_capacity;
7030 7031 7032 7033
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7034 7035
};

J
Joonsoo Kim 已提交
7036 7037 7038 7039 7040 7041 7042 7043
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7044
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7045 7046 7047
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7048
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7049 7050
};

7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7063
		.total_capacity = 0UL,
7064 7065
		.busiest_stat = {
			.avg_load = 0UL,
7066 7067
			.sum_nr_running = 0,
			.group_type = group_other,
7068 7069 7070 7071
		},
	};
}

7072 7073 7074
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7075
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7076 7077
 *
 * Return: The load index.
7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7100
static unsigned long scale_rt_capacity(int cpu)
7101 7102
{
	struct rq *rq = cpu_rq(cpu);
7103
	u64 total, used, age_stamp, avg;
7104
	s64 delta;
7105

7106 7107 7108 7109
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7110 7111
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7112
	delta = __rq_clock_broken(rq) - age_stamp;
7113

7114 7115 7116 7117
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7118

7119
	used = div_u64(avg, total);
7120

7121 7122
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7123

7124
	return 1;
7125 7126
}

7127
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7128
{
7129
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7130 7131
	struct sched_group *sdg = sd->groups;

7132
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7133

7134
	capacity *= scale_rt_capacity(cpu);
7135
	capacity >>= SCHED_CAPACITY_SHIFT;
7136

7137 7138
	if (!capacity)
		capacity = 1;
7139

7140 7141
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7142
	sdg->sgc->min_capacity = capacity;
7143 7144
}

7145
void update_group_capacity(struct sched_domain *sd, int cpu)
7146 7147 7148
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7149
	unsigned long capacity, min_capacity;
7150 7151 7152 7153
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7154
	sdg->sgc->next_update = jiffies + interval;
7155 7156

	if (!child) {
7157
		update_cpu_capacity(sd, cpu);
7158 7159 7160
		return;
	}

7161
	capacity = 0;
7162
	min_capacity = ULONG_MAX;
7163

P
Peter Zijlstra 已提交
7164 7165 7166 7167 7168 7169
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7170
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7171
			struct sched_group_capacity *sgc;
7172
			struct rq *rq = cpu_rq(cpu);
7173

7174
			/*
7175
			 * build_sched_domains() -> init_sched_groups_capacity()
7176 7177 7178
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7179 7180
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7181
			 *
7182
			 * This avoids capacity from being 0 and
7183 7184 7185
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7186
				capacity += capacity_of(cpu);
7187 7188 7189
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7190
			}
7191

7192
			min_capacity = min(capacity, min_capacity);
7193
		}
P
Peter Zijlstra 已提交
7194 7195 7196 7197
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7198
		 */
P
Peter Zijlstra 已提交
7199 7200 7201

		group = child->groups;
		do {
7202 7203 7204 7205
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7206 7207 7208
			group = group->next;
		} while (group != child->groups);
	}
7209

7210
	sdg->sgc->capacity = capacity;
7211
	sdg->sgc->min_capacity = min_capacity;
7212 7213
}

7214
/*
7215 7216 7217
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7218 7219
 */
static inline int
7220
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7221
{
7222 7223
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7224 7225
}

7226 7227 7228 7229 7230 7231 7232 7233
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7234 7235
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7236 7237 7238 7239 7240 7241
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7242 7243
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7244 7245
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7246
 * update_sd_pick_busiest(). And calculate_imbalance() and
7247
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7248 7249 7250 7251 7252 7253 7254
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7255
static inline int sg_imbalanced(struct sched_group *group)
7256
{
7257
	return group->sgc->imbalance;
7258 7259
}

7260
/*
7261 7262 7263
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7264 7265
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7266 7267 7268 7269 7270
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7271
 */
7272 7273
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7274
{
7275 7276
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7277

7278
	if ((sgs->group_capacity * 100) >
7279
			(sgs->group_util * env->sd->imbalance_pct))
7280
		return true;
7281

7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7298

7299
	if ((sgs->group_capacity * 100) <
7300
			(sgs->group_util * env->sd->imbalance_pct))
7301
		return true;
7302

7303
	return false;
7304 7305
}

7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7317 7318 7319
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7320
{
7321
	if (sgs->group_no_capacity)
7322 7323 7324 7325 7326 7327 7328 7329
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7330 7331
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7332
 * @env: The load balancing environment.
7333 7334 7335 7336
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7337
 * @overload: Indicate more than one runnable task for any CPU.
7338
 */
7339 7340
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7341 7342
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7343
{
7344
	unsigned long load;
7345
	int i, nr_running;
7346

7347 7348
	memset(sgs, 0, sizeof(*sgs));

7349
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7350 7351 7352
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7353
		if (local_group)
7354
			load = target_load(i, load_idx);
7355
		else
7356 7357 7358
			load = source_load(i, load_idx);

		sgs->group_load += load;
7359
		sgs->group_util += cpu_util(i);
7360
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7361

7362 7363
		nr_running = rq->nr_running;
		if (nr_running > 1)
7364 7365
			*overload = true;

7366 7367 7368 7369
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7370
		sgs->sum_weighted_load += weighted_cpuload(i);
7371 7372 7373 7374
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7375
			sgs->idle_cpus++;
7376 7377
	}

7378 7379
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7380
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7381

7382
	if (sgs->sum_nr_running)
7383
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7384

7385
	sgs->group_weight = group->group_weight;
7386

7387
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7388
	sgs->group_type = group_classify(group, sgs);
7389 7390
}

7391 7392
/**
 * update_sd_pick_busiest - return 1 on busiest group
7393
 * @env: The load balancing environment.
7394 7395
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7396
 * @sgs: sched_group statistics
7397 7398 7399
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7400 7401 7402
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7403
 */
7404
static bool update_sd_pick_busiest(struct lb_env *env,
7405 7406
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7407
				   struct sg_lb_stats *sgs)
7408
{
7409
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7410

7411
	if (sgs->group_type > busiest->group_type)
7412 7413
		return true;

7414 7415 7416 7417 7418 7419
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7434 7435
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7436 7437
		return true;

7438 7439 7440
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7441
	/*
T
Tim Chen 已提交
7442 7443 7444
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7445
	 */
T
Tim Chen 已提交
7446 7447
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7448 7449 7450
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7451 7452 7453
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7454 7455 7456 7457 7458 7459
			return true;
	}

	return false;
}

7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7490
/**
7491
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7492
 * @env: The load balancing environment.
7493 7494
 * @sds: variable to hold the statistics for this sched_domain.
 */
7495
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7496
{
7497 7498
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
7499
	struct sg_lb_stats tmp_sgs;
7500
	int load_idx, prefer_sibling = 0;
7501
	bool overload = false;
7502 7503 7504 7505

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7506
	load_idx = get_sd_load_idx(env->sd, env->idle);
7507 7508

	do {
J
Joonsoo Kim 已提交
7509
		struct sg_lb_stats *sgs = &tmp_sgs;
7510 7511
		int local_group;

7512
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7513 7514 7515
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
7516 7517

			if (env->idle != CPU_NEWLY_IDLE ||
7518 7519
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7520
		}
7521

7522 7523
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7524

7525 7526 7527
		if (local_group)
			goto next_group;

7528 7529
		/*
		 * In case the child domain prefers tasks go to siblings
7530
		 * first, lower the sg capacity so that we'll try
7531 7532
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7533 7534 7535 7536
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7537
		 */
7538
		if (prefer_sibling && sds->local &&
7539 7540 7541
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7542
			sgs->group_type = group_classify(sg, sgs);
7543
		}
7544

7545
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7546
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7547
			sds->busiest_stat = *sgs;
7548 7549
		}

7550 7551 7552
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7553
		sds->total_capacity += sgs->group_capacity;
7554

7555
		sg = sg->next;
7556
	} while (sg != env->sd->groups);
7557 7558 7559

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7560 7561 7562 7563 7564 7565 7566

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7586
 * Return: 1 when packing is required and a task should be moved to
7587 7588
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7589
 * @env: The load balancing environment.
7590 7591
 * @sds: Statistics of the sched_domain which is to be packed
 */
7592
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7593 7594 7595
{
	int busiest_cpu;

7596
	if (!(env->sd->flags & SD_ASYM_PACKING))
7597 7598
		return 0;

7599 7600 7601
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7602 7603 7604
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7605 7606
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7607 7608
		return 0;

7609
	env->imbalance = DIV_ROUND_CLOSEST(
7610
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7611
		SCHED_CAPACITY_SCALE);
7612

7613
	return 1;
7614 7615 7616 7617 7618 7619
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7620
 * @env: The load balancing environment.
7621 7622
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7623 7624
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7625
{
7626
	unsigned long tmp, capa_now = 0, capa_move = 0;
7627
	unsigned int imbn = 2;
7628
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7629
	struct sg_lb_stats *local, *busiest;
7630

J
Joonsoo Kim 已提交
7631 7632
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7633

J
Joonsoo Kim 已提交
7634 7635 7636 7637
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7638

J
Joonsoo Kim 已提交
7639
	scaled_busy_load_per_task =
7640
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7641
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7642

7643 7644
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7645
		env->imbalance = busiest->load_per_task;
7646 7647 7648 7649 7650
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7651
	 * however we may be able to increase total CPU capacity used by
7652 7653 7654
	 * moving them.
	 */

7655
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7656
			min(busiest->load_per_task, busiest->avg_load);
7657
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7658
			min(local->load_per_task, local->avg_load);
7659
	capa_now /= SCHED_CAPACITY_SCALE;
7660 7661

	/* Amount of load we'd subtract */
7662
	if (busiest->avg_load > scaled_busy_load_per_task) {
7663
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7664
			    min(busiest->load_per_task,
7665
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7666
	}
7667 7668

	/* Amount of load we'd add */
7669
	if (busiest->avg_load * busiest->group_capacity <
7670
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7671 7672
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7673
	} else {
7674
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7675
		      local->group_capacity;
J
Joonsoo Kim 已提交
7676
	}
7677
	capa_move += local->group_capacity *
7678
		    min(local->load_per_task, local->avg_load + tmp);
7679
	capa_move /= SCHED_CAPACITY_SCALE;
7680 7681

	/* Move if we gain throughput */
7682
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7683
		env->imbalance = busiest->load_per_task;
7684 7685 7686 7687 7688
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7689
 * @env: load balance environment
7690 7691
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7692
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7693
{
7694
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7695 7696 7697 7698
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7699

7700
	if (busiest->group_type == group_imbalanced) {
7701 7702 7703 7704
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7705 7706
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7707 7708
	}

7709
	/*
7710 7711 7712 7713
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7714
	 */
7715 7716
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7717 7718
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7719 7720
	}

7721 7722 7723 7724 7725
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7726
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7727
		if (load_above_capacity > busiest->group_capacity) {
7728
			load_above_capacity -= busiest->group_capacity;
7729
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7730 7731
			load_above_capacity /= busiest->group_capacity;
		} else
7732
			load_above_capacity = ~0UL;
7733 7734 7735 7736 7737 7738
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7739 7740
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7741
	 */
7742
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7743 7744

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7745
	env->imbalance = min(
7746 7747
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7748
	) / SCHED_CAPACITY_SCALE;
7749 7750 7751

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7752
	 * there is no guarantee that any tasks will be moved so we'll have
7753 7754 7755
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7756
	if (env->imbalance < busiest->load_per_task)
7757
		return fix_small_imbalance(env, sds);
7758
}
7759

7760 7761 7762 7763
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7764
 * if there is an imbalance.
7765 7766 7767 7768
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7769
 * @env: The load balancing environment.
7770
 *
7771
 * Return:	- The busiest group if imbalance exists.
7772
 */
J
Joonsoo Kim 已提交
7773
static struct sched_group *find_busiest_group(struct lb_env *env)
7774
{
J
Joonsoo Kim 已提交
7775
	struct sg_lb_stats *local, *busiest;
7776 7777
	struct sd_lb_stats sds;

7778
	init_sd_lb_stats(&sds);
7779 7780 7781 7782 7783

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7784
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7785 7786
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7787

7788
	/* ASYM feature bypasses nice load balance check */
7789
	if (check_asym_packing(env, &sds))
7790 7791
		return sds.busiest;

7792
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7793
	if (!sds.busiest || busiest->sum_nr_running == 0)
7794 7795
		goto out_balanced;

7796 7797
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7798

P
Peter Zijlstra 已提交
7799 7800
	/*
	 * If the busiest group is imbalanced the below checks don't
7801
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7802 7803
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7804
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7805 7806
		goto force_balance;

7807
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7808 7809
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7810 7811
		goto force_balance;

7812
	/*
7813
	 * If the local group is busier than the selected busiest group
7814 7815
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7816
	if (local->avg_load >= busiest->avg_load)
7817 7818
		goto out_balanced;

7819 7820 7821 7822
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7823
	if (local->avg_load >= sds.avg_load)
7824 7825
		goto out_balanced;

7826
	if (env->idle == CPU_IDLE) {
7827
		/*
7828 7829 7830 7831 7832
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7833
		 */
7834 7835
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7836
			goto out_balanced;
7837 7838 7839 7840 7841
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7842 7843
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7844
			goto out_balanced;
7845
	}
7846

7847
force_balance:
7848
	/* Looks like there is an imbalance. Compute it */
7849
	calculate_imbalance(env, &sds);
7850 7851 7852
	return sds.busiest;

out_balanced:
7853
	env->imbalance = 0;
7854 7855 7856 7857 7858 7859
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7860
static struct rq *find_busiest_queue(struct lb_env *env,
7861
				     struct sched_group *group)
7862 7863
{
	struct rq *busiest = NULL, *rq;
7864
	unsigned long busiest_load = 0, busiest_capacity = 1;
7865 7866
	int i;

7867
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7868
		unsigned long capacity, wl;
7869 7870 7871 7872
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7873

7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7896
		capacity = capacity_of(i);
7897

7898
		wl = weighted_cpuload(i);
7899

7900 7901
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7902
		 * which is not scaled with the cpu capacity.
7903
		 */
7904 7905 7906

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7907 7908
			continue;

7909 7910
		/*
		 * For the load comparisons with the other cpu's, consider
7911 7912 7913
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7914
		 *
7915
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7916
		 * multiplication to rid ourselves of the division works out
7917 7918
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7919
		 */
7920
		if (wl * busiest_capacity > busiest_load * capacity) {
7921
			busiest_load = wl;
7922
			busiest_capacity = capacity;
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

7936
static int need_active_balance(struct lb_env *env)
7937
{
7938 7939 7940
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7941 7942 7943

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
7944 7945
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
7946
		 */
T
Tim Chen 已提交
7947 7948
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7949
			return 1;
7950 7951
	}

7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7965 7966 7967
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7968 7969
static int active_load_balance_cpu_stop(void *data);

7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8001
	return balance_cpu == env->dst_cpu;
8002 8003
}

8004 8005 8006 8007 8008 8009
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8010
			int *continue_balancing)
8011
{
8012
	int ld_moved, cur_ld_moved, active_balance = 0;
8013
	struct sched_domain *sd_parent = sd->parent;
8014 8015 8016
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
8017
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8018

8019 8020
	struct lb_env env = {
		.sd		= sd,
8021 8022
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8023
		.dst_grpmask    = sched_group_cpus(sd->groups),
8024
		.idle		= idle,
8025
		.loop_break	= sched_nr_migrate_break,
8026
		.cpus		= cpus,
8027
		.fbq_type	= all,
8028
		.tasks		= LIST_HEAD_INIT(env.tasks),
8029 8030
	};

8031 8032 8033 8034
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8035
	if (idle == CPU_NEWLY_IDLE)
8036 8037
		env.dst_grpmask = NULL;

8038 8039
	cpumask_copy(cpus, cpu_active_mask);

8040
	schedstat_inc(sd->lb_count[idle]);
8041 8042

redo:
8043 8044
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8045
		goto out_balanced;
8046
	}
8047

8048
	group = find_busiest_group(&env);
8049
	if (!group) {
8050
		schedstat_inc(sd->lb_nobusyg[idle]);
8051 8052 8053
		goto out_balanced;
	}

8054
	busiest = find_busiest_queue(&env, group);
8055
	if (!busiest) {
8056
		schedstat_inc(sd->lb_nobusyq[idle]);
8057 8058 8059
		goto out_balanced;
	}

8060
	BUG_ON(busiest == env.dst_rq);
8061

8062
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8063

8064 8065 8066
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8067 8068 8069 8070 8071 8072 8073 8074
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8075
		env.flags |= LBF_ALL_PINNED;
8076
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8077

8078
more_balance:
8079
		raw_spin_lock_irqsave(&busiest->lock, flags);
8080 8081 8082 8083 8084

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8085
		cur_ld_moved = detach_tasks(&env);
8086 8087

		/*
8088 8089 8090 8091 8092
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8093
		 */
8094 8095 8096 8097 8098 8099 8100 8101

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8102
		local_irq_restore(flags);
8103

8104 8105 8106 8107 8108
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8128
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8129

8130 8131 8132
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8133
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8134
			env.dst_cpu	 = env.new_dst_cpu;
8135
			env.flags	&= ~LBF_DST_PINNED;
8136 8137
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8138

8139 8140 8141 8142 8143 8144
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8145

8146 8147 8148 8149
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8150
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8151

8152
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8153 8154 8155
				*group_imbalance = 1;
		}

8156
		/* All tasks on this runqueue were pinned by CPU affinity */
8157
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8158
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8159 8160 8161
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8162
				goto redo;
8163
			}
8164
			goto out_all_pinned;
8165 8166 8167 8168
		}
	}

	if (!ld_moved) {
8169
		schedstat_inc(sd->lb_failed[idle]);
8170 8171 8172 8173 8174 8175 8176 8177
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8178

8179
		if (need_active_balance(&env)) {
8180 8181
			raw_spin_lock_irqsave(&busiest->lock, flags);

8182 8183 8184
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8185 8186
			 */
			if (!cpumask_test_cpu(this_cpu,
8187
					tsk_cpus_allowed(busiest->curr))) {
8188 8189
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8190
				env.flags |= LBF_ALL_PINNED;
8191 8192 8193
				goto out_one_pinned;
			}

8194 8195 8196 8197 8198
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8199 8200 8201 8202 8203 8204
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8205

8206
			if (active_balance) {
8207 8208 8209
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8210
			}
8211

8212
			/* We've kicked active balancing, force task migration. */
8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8226
		 * detach_tasks).
8227 8228 8229 8230 8231 8232 8233 8234
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8252
	schedstat_inc(sd->lb_balanced[idle]);
8253 8254 8255 8256 8257

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8258
	if (((env.flags & LBF_ALL_PINNED) &&
8259
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8260 8261 8262
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8263
	ld_moved = 0;
8264 8265 8266 8267
out:
	return ld_moved;
}

8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8284
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8285 8286 8287
{
	unsigned long interval, next;

8288 8289
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8290 8291 8292 8293 8294 8295
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8296 8297 8298 8299
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8300
static int idle_balance(struct rq *this_rq)
8301
{
8302 8303
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8304 8305
	struct sched_domain *sd;
	int pulled_task = 0;
8306
	u64 curr_cost = 0;
8307

8308 8309 8310 8311 8312 8313
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8314 8315
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8316 8317 8318
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8319
			update_next_balance(sd, &next_balance);
8320 8321
		rcu_read_unlock();

8322
		goto out;
8323
	}
8324

8325 8326
	raw_spin_unlock(&this_rq->lock);

8327
	update_blocked_averages(this_cpu);
8328
	rcu_read_lock();
8329
	for_each_domain(this_cpu, sd) {
8330
		int continue_balancing = 1;
8331
		u64 t0, domain_cost;
8332 8333 8334 8335

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8336
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8337
			update_next_balance(sd, &next_balance);
8338
			break;
8339
		}
8340

8341
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8342 8343
			t0 = sched_clock_cpu(this_cpu);

8344
			pulled_task = load_balance(this_cpu, this_rq,
8345 8346
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8347 8348 8349 8350 8351 8352

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8353
		}
8354

8355
		update_next_balance(sd, &next_balance);
8356 8357 8358 8359 8360 8361

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8362 8363
			break;
	}
8364
	rcu_read_unlock();
8365 8366 8367

	raw_spin_lock(&this_rq->lock);

8368 8369 8370
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8371
	/*
8372 8373 8374
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8375
	 */
8376
	if (this_rq->cfs.h_nr_running && !pulled_task)
8377
		pulled_task = 1;
8378

8379 8380 8381
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8382
		this_rq->next_balance = next_balance;
8383

8384
	/* Is there a task of a high priority class? */
8385
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8386 8387
		pulled_task = -1;

8388
	if (pulled_task)
8389 8390
		this_rq->idle_stamp = 0;

8391
	return pulled_task;
8392 8393 8394
}

/*
8395 8396 8397 8398
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8399
 */
8400
static int active_load_balance_cpu_stop(void *data)
8401
{
8402 8403
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8404
	int target_cpu = busiest_rq->push_cpu;
8405
	struct rq *target_rq = cpu_rq(target_cpu);
8406
	struct sched_domain *sd;
8407
	struct task_struct *p = NULL;
8408 8409 8410 8411 8412 8413 8414

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8415 8416 8417

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8418
		goto out_unlock;
8419 8420 8421 8422 8423 8424 8425 8426 8427

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8428
	rcu_read_lock();
8429 8430 8431 8432 8433 8434 8435
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8436 8437
		struct lb_env env = {
			.sd		= sd,
8438 8439 8440 8441
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8442 8443 8444
			.idle		= CPU_IDLE,
		};

8445
		schedstat_inc(sd->alb_count);
8446

8447
		p = detach_one_task(&env);
8448
		if (p) {
8449
			schedstat_inc(sd->alb_pushed);
8450 8451 8452
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8453
			schedstat_inc(sd->alb_failed);
8454
		}
8455
	}
8456
	rcu_read_unlock();
8457 8458
out_unlock:
	busiest_rq->active_balance = 0;
8459 8460 8461 8462 8463 8464 8465
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8466
	return 0;
8467 8468
}

8469 8470 8471 8472 8473
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8474
#ifdef CONFIG_NO_HZ_COMMON
8475 8476 8477 8478 8479 8480
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8481
static struct {
8482
	cpumask_var_t idle_cpus_mask;
8483
	atomic_t nr_cpus;
8484 8485
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8486

8487
static inline int find_new_ilb(void)
8488
{
8489
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8490

8491 8492 8493 8494
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8495 8496
}

8497 8498 8499 8500 8501
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8502
static void nohz_balancer_kick(void)
8503 8504 8505 8506 8507
{
	int ilb_cpu;

	nohz.next_balance++;

8508
	ilb_cpu = find_new_ilb();
8509

8510 8511
	if (ilb_cpu >= nr_cpu_ids)
		return;
8512

8513
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8514 8515 8516 8517 8518 8519 8520 8521
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8522 8523 8524
	return;
}

8525
void nohz_balance_exit_idle(unsigned int cpu)
8526 8527
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8528 8529 8530 8531 8532 8533 8534
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8535 8536 8537 8538
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8539 8540 8541
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8542
	int cpu = smp_processor_id();
8543 8544

	rcu_read_lock();
8545
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8546 8547 8548 8549 8550

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8551
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8552
unlock:
8553 8554 8555 8556 8557 8558
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8559
	int cpu = smp_processor_id();
8560 8561

	rcu_read_lock();
8562
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8563 8564 8565 8566 8567

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8568
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8569
unlock:
8570 8571 8572
	rcu_read_unlock();
}

8573
/*
8574
 * This routine will record that the cpu is going idle with tick stopped.
8575
 * This info will be used in performing idle load balancing in the future.
8576
 */
8577
void nohz_balance_enter_idle(int cpu)
8578
{
8579 8580 8581 8582 8583 8584
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8585 8586
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8587

8588 8589 8590 8591 8592 8593
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8594 8595 8596
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8597 8598 8599 8600 8601
}
#endif

static DEFINE_SPINLOCK(balancing);

8602 8603 8604 8605
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8606
void update_max_interval(void)
8607 8608 8609 8610
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8611 8612 8613 8614
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8615
 * Balancing parameters are set up in init_sched_domains.
8616
 */
8617
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8618
{
8619
	int continue_balancing = 1;
8620
	int cpu = rq->cpu;
8621
	unsigned long interval;
8622
	struct sched_domain *sd;
8623 8624 8625
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8626 8627
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8628

8629
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8630

8631
	rcu_read_lock();
8632
	for_each_domain(cpu, sd) {
8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8645 8646 8647
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8659
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8660 8661 8662 8663 8664 8665 8666 8667

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8668
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8669
				/*
8670
				 * The LBF_DST_PINNED logic could have changed
8671 8672
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8673
				 */
8674
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8675 8676
			}
			sd->last_balance = jiffies;
8677
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8678 8679 8680 8681 8682 8683 8684 8685
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8686 8687
	}
	if (need_decay) {
8688
		/*
8689 8690
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8691
		 */
8692 8693
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8694
	}
8695
	rcu_read_unlock();
8696 8697 8698 8699 8700 8701

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8702
	if (likely(update_next_balance)) {
8703
		rq->next_balance = next_balance;
8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8718 8719
}

8720
#ifdef CONFIG_NO_HZ_COMMON
8721
/*
8722
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8723 8724
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8725
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8726
{
8727
	int this_cpu = this_rq->cpu;
8728 8729
	struct rq *rq;
	int balance_cpu;
8730 8731 8732
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8733

8734 8735 8736
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8737 8738

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8739
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8740 8741 8742 8743 8744 8745 8746
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8747
		if (need_resched())
8748 8749
			break;

V
Vincent Guittot 已提交
8750 8751
		rq = cpu_rq(balance_cpu);

8752 8753 8754 8755 8756 8757 8758
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8759
			cpu_load_update_idle(rq);
8760 8761 8762
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8763

8764 8765 8766 8767
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8768
	}
8769 8770 8771 8772 8773 8774 8775 8776

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8777 8778
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8779 8780 8781
}

/*
8782
 * Current heuristic for kicking the idle load balancer in the presence
8783
 * of an idle cpu in the system.
8784
 *   - This rq has more than one task.
8785 8786 8787 8788
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8789 8790
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8791
 */
8792
static inline bool nohz_kick_needed(struct rq *rq)
8793 8794
{
	unsigned long now = jiffies;
8795
	struct sched_domain_shared *sds;
8796
	struct sched_domain *sd;
T
Tim Chen 已提交
8797
	int nr_busy, i, cpu = rq->cpu;
8798
	bool kick = false;
8799

8800
	if (unlikely(rq->idle_balance))
8801
		return false;
8802

8803 8804 8805 8806
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8807
	set_cpu_sd_state_busy();
8808
	nohz_balance_exit_idle(cpu);
8809 8810 8811 8812 8813 8814

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8815
		return false;
8816 8817

	if (time_before(now, nohz.next_balance))
8818
		return false;
8819

8820
	if (rq->nr_running >= 2)
8821
		return true;
8822

8823
	rcu_read_lock();
8824 8825 8826 8827 8828 8829 8830
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8831 8832 8833 8834 8835
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8836
	}
8837

8838 8839 8840 8841 8842 8843 8844 8845
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8846

8847
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8848 8849 8850 8851 8852
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8853

T
Tim Chen 已提交
8854 8855 8856 8857 8858 8859
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8860
unlock:
8861
	rcu_read_unlock();
8862
	return kick;
8863 8864
}
#else
8865
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8866 8867 8868 8869 8870 8871
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8872
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8873
{
8874
	struct rq *this_rq = this_rq();
8875
	enum cpu_idle_type idle = this_rq->idle_balance ?
8876 8877 8878
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8879
	 * If this cpu has a pending nohz_balance_kick, then do the
8880
	 * balancing on behalf of the other idle cpus whose ticks are
8881 8882 8883 8884
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8885
	 */
8886
	nohz_idle_balance(this_rq, idle);
8887
	rebalance_domains(this_rq, idle);
8888 8889 8890 8891 8892
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8893
void trigger_load_balance(struct rq *rq)
8894 8895
{
	/* Don't need to rebalance while attached to NULL domain */
8896 8897 8898 8899
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8900
		raise_softirq(SCHED_SOFTIRQ);
8901
#ifdef CONFIG_NO_HZ_COMMON
8902
	if (nohz_kick_needed(rq))
8903
		nohz_balancer_kick();
8904
#endif
8905 8906
}

8907 8908 8909
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8910 8911

	update_runtime_enabled(rq);
8912 8913 8914 8915 8916
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8917 8918 8919

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8920 8921
}

8922
#endif /* CONFIG_SMP */
8923

8924 8925 8926
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8927
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8928 8929 8930 8931 8932 8933
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8934
		entity_tick(cfs_rq, se, queued);
8935
	}
8936

8937
	if (static_branch_unlikely(&sched_numa_balancing))
8938
		task_tick_numa(rq, curr);
8939 8940 8941
}

/*
P
Peter Zijlstra 已提交
8942 8943 8944
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8945
 */
P
Peter Zijlstra 已提交
8946
static void task_fork_fair(struct task_struct *p)
8947
{
8948 8949
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8950
	struct rq *rq = this_rq();
8951

8952
	raw_spin_lock(&rq->lock);
8953 8954
	update_rq_clock(rq);

8955 8956
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8957 8958
	if (curr) {
		update_curr(cfs_rq);
8959
		se->vruntime = curr->vruntime;
8960
	}
8961
	place_entity(cfs_rq, se, 1);
8962

P
Peter Zijlstra 已提交
8963
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8964
		/*
8965 8966 8967
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8968
		swap(curr->vruntime, se->vruntime);
8969
		resched_curr(rq);
8970
	}
8971

8972
	se->vruntime -= cfs_rq->min_vruntime;
8973
	raw_spin_unlock(&rq->lock);
8974 8975
}

8976 8977 8978 8979
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8980 8981
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8982
{
8983
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8984 8985
		return;

8986 8987 8988 8989 8990
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8991
	if (rq->curr == p) {
8992
		if (p->prio > oldprio)
8993
			resched_curr(rq);
8994
	} else
8995
		check_preempt_curr(rq, p, 0);
8996 8997
}

8998
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8999 9000 9001 9002
{
	struct sched_entity *se = &p->se;

	/*
9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9013
	 *
9014 9015 9016 9017
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9018
	 */
9019 9020 9021 9022 9023 9024
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9050
static void detach_entity_cfs_rq(struct sched_entity *se)
9051 9052 9053
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9054
	/* Catch up with the cfs_rq and remove our load when we leave */
9055
	update_load_avg(se, 0);
9056
	detach_entity_load_avg(cfs_rq, se);
9057
	update_tg_load_avg(cfs_rq, false);
9058
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9059 9060
}

9061
static void attach_entity_cfs_rq(struct sched_entity *se)
9062
{
9063
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9064 9065

#ifdef CONFIG_FAIR_GROUP_SCHED
9066 9067 9068 9069 9070 9071
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9072

9073
	/* Synchronize entity with its cfs_rq */
9074
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9075
	attach_entity_load_avg(cfs_rq, se);
9076
	update_tg_load_avg(cfs_rq, false);
9077
	propagate_entity_cfs_rq(se);
9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9103 9104 9105 9106

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9107

9108 9109 9110 9111 9112 9113 9114 9115
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9116

9117
	if (task_on_rq_queued(p)) {
9118
		/*
9119 9120 9121
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9122
		 */
9123 9124 9125 9126
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9127
	}
9128 9129
}

9130 9131 9132 9133 9134 9135 9136 9137 9138
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9139 9140 9141 9142 9143 9144 9145
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9146 9147
}

9148 9149 9150 9151 9152 9153 9154
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9155
#ifdef CONFIG_SMP
9156 9157 9158
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9159 9160
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9161
#endif
9162 9163
}

P
Peter Zijlstra 已提交
9164
#ifdef CONFIG_FAIR_GROUP_SCHED
9165 9166 9167 9168 9169 9170 9171 9172
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9173
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9174
{
9175
	detach_task_cfs_rq(p);
9176
	set_task_rq(p, task_cpu(p));
9177 9178 9179 9180 9181

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9182
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9183
}
9184

9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9198 9199 9200 9201 9202 9203 9204 9205 9206
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9207
		if (tg->se)
9208 9209 9210 9211 9212 9213 9214 9215 9216 9217
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9218
	struct cfs_rq *cfs_rq;
9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9245
		init_entity_runnable_average(se);
9246 9247 9248 9249 9250 9251 9252 9253 9254 9255
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9267
		attach_entity_cfs_rq(se);
9268
		sync_throttle(tg, i);
9269 9270 9271 9272
		raw_spin_unlock_irq(&rq->lock);
	}
}

9273
void unregister_fair_sched_group(struct task_group *tg)
9274 9275
{
	unsigned long flags;
9276 9277
	struct rq *rq;
	int cpu;
9278

9279 9280 9281
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9282

9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9315
	if (!parent) {
9316
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9317 9318
		se->depth = 0;
	} else {
9319
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9320 9321
		se->depth = parent->depth + 1;
	}
9322 9323

	se->my_q = cfs_rq;
9324 9325
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
9356 9357 9358

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
9359
		for_each_sched_entity(se)
9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9377 9378
void online_fair_sched_group(struct task_group *tg) { }

9379
void unregister_fair_sched_group(struct task_group *tg) { }
9380 9381 9382

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9383

9384
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9385 9386 9387 9388 9389 9390 9391 9392 9393
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9394
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9395 9396 9397 9398

	return rr_interval;
}

9399 9400 9401
/*
 * All the scheduling class methods:
 */
9402
const struct sched_class fair_sched_class = {
9403
	.next			= &idle_sched_class,
9404 9405 9406
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9407
	.yield_to_task		= yield_to_task_fair,
9408

I
Ingo Molnar 已提交
9409
	.check_preempt_curr	= check_preempt_wakeup,
9410 9411 9412 9413

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9414
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9415
	.select_task_rq		= select_task_rq_fair,
9416
	.migrate_task_rq	= migrate_task_rq_fair,
9417

9418 9419
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9420

9421
	.task_dead		= task_dead_fair,
9422
	.set_cpus_allowed	= set_cpus_allowed_common,
9423
#endif
9424

9425
	.set_curr_task          = set_curr_task_fair,
9426
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9427
	.task_fork		= task_fork_fair,
9428 9429

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9430
	.switched_from		= switched_from_fair,
9431
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9432

9433 9434
	.get_rr_interval	= get_rr_interval_fair,

9435 9436
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9437
#ifdef CONFIG_FAIR_GROUP_SCHED
9438
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9439
#endif
9440 9441 9442
};

#ifdef CONFIG_SCHED_DEBUG
9443
void print_cfs_stats(struct seq_file *m, int cpu)
9444 9445 9446
{
	struct cfs_rq *cfs_rq;

9447
	rcu_read_lock();
9448
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9449
		print_cfs_rq(m, cpu, cfs_rq);
9450
	rcu_read_unlock();
9451
}
9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9473 9474 9475 9476 9477 9478

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9479
#ifdef CONFIG_NO_HZ_COMMON
9480
	nohz.next_balance = jiffies;
9481 9482 9483 9484 9485
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}