fair.c 266.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
355
/* Iterate thr' all leaf cfs_rq's on a runqueue */
356 357 358
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
359 360

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
361
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
362 363 364
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
365
		return se->cfs_rq;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	return NULL;
P
Peter Zijlstra 已提交
368 369 370 371 372 373 374
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

375 376 377 378 379 380 381 382 383 384 385 386 387
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
388 389
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

407 408 409 410 411 412
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
413

414 415 416
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
417 418 419
}


P
Peter Zijlstra 已提交
420 421
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
422

P
Peter Zijlstra 已提交
423
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424
{
P
Peter Zijlstra 已提交
425
	return &task_rq(p)->cfs;
426 427
}

P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

442 443 444 445 446 447 448 449
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

450 451
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
452 453 454 455 456 457

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

458 459 460 461 462
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
463 464
#endif	/* CONFIG_FAIR_GROUP_SCHED */

465
static __always_inline
466
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 468 469 470 471

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

472
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473
{
474
	s64 delta = (s64)(vruntime - max_vruntime);
475
	if (delta > 0)
476
		max_vruntime = vruntime;
477

478
	return max_vruntime;
479 480
}

481
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

490 491 492 493 494 495
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

496 497
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
498
	struct sched_entity *curr = cfs_rq->curr;
499
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500

501 502
	u64 vruntime = cfs_rq->min_vruntime;

503 504 505 506 507 508
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
509

510 511 512
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
513

514
		if (!curr)
515 516 517 518 519
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

520
	/* ensure we never gain time by being placed backwards. */
521
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 523 524 525
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
526 527
}

528 529 530
/*
 * Enqueue an entity into the rb-tree:
 */
531
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532
{
533
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 535
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
536
	bool leftmost = true;
537 538 539 540 541 542 543 544 545 546 547

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
548
		if (entity_before(se, entry)) {
549 550 551
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
552
			leftmost = false;
553 554 555 556
		}
	}

	rb_link_node(&se->run_node, parent, link);
557 558
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
559 560
}

561
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562
{
563
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 565
}

566
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567
{
568
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 570 571 572 573

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
574 575
}

576 577 578 579 580 581 582 583 584 585 586
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
587
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588
{
589
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590

591 592
	if (!last)
		return NULL;
593 594

	return rb_entry(last, struct sched_entity, run_node);
595 596
}

597 598 599 600
/**************************************************************
 * Scheduling class statistics methods:
 */

601
int sched_proc_update_handler(struct ctl_table *table, int write,
602
		void __user *buffer, size_t *lenp,
603 604
		loff_t *ppos)
{
605
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606
	unsigned int factor = get_update_sysctl_factor();
607 608 609 610 611 612 613

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

614 615 616 617 618 619 620
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

621 622 623
	return 0;
}
#endif
624

625
/*
626
 * delta /= w
627
 */
628
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629
{
630
	if (unlikely(se->load.weight != NICE_0_LOAD))
631
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 633 634 635

	return delta;
}

636 637 638
/*
 * The idea is to set a period in which each task runs once.
 *
639
 * When there are too many tasks (sched_nr_latency) we have to stretch
640 641 642 643
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
644 645
static u64 __sched_period(unsigned long nr_running)
{
646 647 648 649
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
650 651
}

652 653 654 655
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
656
 * s = p*P[w/rw]
657
 */
P
Peter Zijlstra 已提交
658
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659
{
M
Mike Galbraith 已提交
660
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661

M
Mike Galbraith 已提交
662
	for_each_sched_entity(se) {
L
Lin Ming 已提交
663
		struct load_weight *load;
664
		struct load_weight lw;
L
Lin Ming 已提交
665 666 667

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
668

M
Mike Galbraith 已提交
669
		if (unlikely(!se->on_rq)) {
670
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
671 672 673 674

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
675
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
676 677
	}
	return slice;
678 679
}

680
/*
A
Andrei Epure 已提交
681
 * We calculate the vruntime slice of a to-be-inserted task.
682
 *
683
 * vs = s/w
684
 */
685
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
686
{
687
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 689
}

690
#ifdef CONFIG_SMP
691
#include "pelt.h"
692 693
#include "sched-pelt.h"

694
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 696
static unsigned long task_h_load(struct task_struct *p);

697 698
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
699
{
700
	struct sched_avg *sa = &se->avg;
701

702 703
	memset(sa, 0, sizeof(*sa));

704 705 706 707 708 709 710
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
711 712
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

713 714
	se->runnable_weight = se->load.weight;

715
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716
}
717

718
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719
static void attach_entity_cfs_rq(struct sched_entity *se);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
734
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735
 *
736
 * where n denotes the nth task and cpu_scale the CPU capacity.
737
 *
738 739
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
740 741 742 743 744 745 746 747 748 749 750
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
751 752
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 754 755 756 757 758 759 760 761 762 763 764

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
765 766 767 768 769 770 771

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
772
			update_cfs_rq_load_avg(now, cfs_rq);
773
			attach_entity_load_avg(cfs_rq, se, 0);
774 775 776 777 778
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
779
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 781 782 783
			return;
		}
	}

784
	attach_entity_cfs_rq(se);
785 786
}

787
#else /* !CONFIG_SMP */
788
void init_entity_runnable_average(struct sched_entity *se)
789 790
{
}
791 792 793
void post_init_entity_util_avg(struct sched_entity *se)
{
}
794 795 796
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
797
#endif /* CONFIG_SMP */
798

799
/*
800
 * Update the current task's runtime statistics.
801
 */
802
static void update_curr(struct cfs_rq *cfs_rq)
803
{
804
	struct sched_entity *curr = cfs_rq->curr;
805
	u64 now = rq_clock_task(rq_of(cfs_rq));
806
	u64 delta_exec;
807 808 809 810

	if (unlikely(!curr))
		return;

811 812
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
813
		return;
814

I
Ingo Molnar 已提交
815
	curr->exec_start = now;
816

817 818 819 820
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
821
	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 823 824 825

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

826 827 828
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

829
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830
		cgroup_account_cputime(curtask, delta_exec);
831
		account_group_exec_runtime(curtask, delta_exec);
832
	}
833 834

	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 836
}

837 838 839 840 841
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

842
static inline void
843
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844
{
845 846 847 848 849 850 851
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 853

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 855
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
856

857
	__schedstat_set(se->statistics.wait_start, wait_start);
858 859
}

860
static inline void
861 862 863
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
864 865
	u64 delta;

866 867 868 869
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 871 872 873 874 875 876 877 878

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
879
			__schedstat_set(se->statistics.wait_start, delta);
880 881 882 883 884
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

885
	__schedstat_set(se->statistics.wait_max,
886
		      max(schedstat_val(se->statistics.wait_max), delta));
887 888 889
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
890 891
}

892
static inline void
893 894 895
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
896 897 898 899 900 901 902
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
903 904 905 906

	if (entity_is_task(se))
		tsk = task_of(se);

907 908
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 910 911 912

		if ((s64)delta < 0)
			delta = 0;

913
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914
			__schedstat_set(se->statistics.sleep_max, delta);
915

916 917
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 919 920 921 922 923

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
924 925
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931
			__schedstat_set(se->statistics.block_max, delta);
932

933 934
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937

		if (tsk) {
			if (tsk->in_iowait) {
938 939
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
958 959
}

960 961 962
/*
 * Task is being enqueued - update stats:
 */
963
static inline void
964
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965
{
966 967 968
	if (!schedstat_enabled())
		return;

969 970 971 972
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
973
	if (se != cfs_rq->curr)
974
		update_stats_wait_start(cfs_rq, se);
975 976 977

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
978 979 980
}

static inline void
981
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985 986

	if (!schedstat_enabled())
		return;

987 988 989 990
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
991
	if (se != cfs_rq->curr)
992
		update_stats_wait_end(cfs_rq, se);
993

994 995
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
996

997
		if (tsk->state & TASK_INTERRUPTIBLE)
998
			__schedstat_set(se->statistics.sleep_start,
999 1000
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001
			__schedstat_set(se->statistics.block_start,
1002
				      rq_clock(rq_of(cfs_rq)));
1003 1004 1005
	}
}

1006 1007 1008 1009
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1010
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 1012 1013 1014
{
	/*
	 * We are starting a new run period:
	 */
1015
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 1017 1018 1019 1020 1021
}

/**************************************************
 * Scheduling class queueing methods:
 */

1022 1023
#ifdef CONFIG_NUMA_BALANCING
/*
1024 1025 1026
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1027
 */
1028 1029
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 1031 1032

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1033

1034 1035 1036
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1084
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 1086 1087
	unsigned int scan, floor;
	unsigned int windows = 1;

1088 1089
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1090 1091 1092 1093 1094 1095
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1115 1116
static unsigned int task_scan_max(struct task_struct *p)
{
1117 1118
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1119 1120 1121

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1137 1138 1139
	return max(smin, smax);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1202 1203 1204 1205 1206
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1207
/*
1208
 * The averaged statistics, shared & private, memory & CPU,
1209 1210 1211 1212 1213
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214
{
1215
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 1217 1218 1219
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1220
	if (!p->numa_faults)
1221 1222
		return 0;

1223 1224
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 1226
}

1227 1228 1229 1230 1231
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1232 1233
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 1235
}

1236 1237
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1238 1239
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315
					dist >= maxdist)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1343 1344 1345 1346 1347 1348
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1349 1350
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1351
{
1352
	unsigned long faults, total_faults;
1353

1354
	if (!p->numa_faults)
1355 1356 1357 1358 1359 1360 1361
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1362
	faults = task_faults(p, nid);
1363 1364
	faults += score_nearby_nodes(p, nid, dist, true);

1365
	return 1000 * faults / total_faults;
1366 1367
}

1368 1369
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1370
{
1371 1372 1373 1374 1375 1376 1377 1378
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1379 1380
		return 0;

1381
	faults = group_faults(p, nid);
1382 1383
	faults += score_nearby_nodes(p, nid, dist, false);

1384
	return 1000 * faults / total_faults;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1427 1428
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1429
	 */
1430 1431
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1432 1433 1434
		return true;

	/*
1435 1436 1437 1438 1439 1440
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1441
	 */
1442 1443
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 1445
}

1446
static unsigned long weighted_cpuload(struct rq *rq);
1447 1448
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1449
static unsigned long capacity_of(int cpu);
1450

1451
/* Cached statistics for all CPUs within a node */
1452 1453
struct numa_stats {
	unsigned long load;
1454 1455

	/* Total compute capacity of CPUs on a node */
1456
	unsigned long compute_capacity;
1457

1458
	unsigned int nr_running;
1459
};
1460

1461 1462 1463 1464 1465
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1466 1467
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1468 1469 1470 1471 1472 1473

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1474
		ns->load += weighted_cpuload(rq);
1475
		ns->compute_capacity += capacity_of(cpu);
1476 1477

		cpus++;
1478 1479
	}

1480 1481 1482 1483 1484
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1485
	 * We'll detect a huge imbalance and bail there.
1486 1487 1488 1489
	 */
	if (!cpus)
		return;

1490 1491 1492 1493
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

1494
	capacity = min_t(unsigned, capacity,
1495
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 1497
}

1498 1499
struct task_numa_env {
	struct task_struct *p;
1500

1501 1502
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1503

1504
	struct numa_stats src_stats, dst_stats;
1505

1506
	int imbalance_pct;
1507
	int dist;
1508 1509 1510

	struct task_struct *best_task;
	long best_imp;
1511 1512 1513
	int best_cpu;
};

1514 1515 1516
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	struct rq *rq = cpu_rq(env->dst_cpu);

	/* Bail out if run-queue part of active NUMA balance. */
	if (xchg(&rq->numa_migrate_on, 1))
		return;

	/*
	 * Clear previous best_cpu/rq numa-migrate flag, since task now
	 * found a better CPU to move/swap.
	 */
	if (env->best_cpu != -1) {
		rq = cpu_rq(env->best_cpu);
		WRITE_ONCE(rq->numa_migrate_on, 0);
	}

1532 1533
	if (env->best_task)
		put_task_struct(env->best_task);
1534 1535
	if (p)
		get_task_struct(p);
1536 1537 1538 1539 1540 1541

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1542
static bool load_too_imbalanced(long src_load, long dst_load,
1543 1544
				struct task_numa_env *env)
{
1545 1546
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1558

1559
	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560

1561
	orig_src_load = env->src_stats.load;
1562
	orig_dst_load = env->dst_stats.load;
1563

1564
	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565 1566 1567

	/* Would this change make things worse? */
	return (imb > old_imb);
1568 1569
}

1570 1571 1572 1573 1574 1575
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1576
static void task_numa_compare(struct task_numa_env *env,
1577
			      long taskimp, long groupimp, bool maymove)
1578 1579 1580
{
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1581
	long src_load, dst_load;
1582
	long load;
1583
	long imp = env->p->numa_group ? groupimp : taskimp;
1584
	long moveimp = imp;
1585
	int dist = env->dist;
1586

1587 1588 1589
	if (READ_ONCE(dst_rq->numa_migrate_on))
		return;

1590
	rcu_read_lock();
1591 1592
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1593 1594
		cur = NULL;

1595 1596 1597 1598 1599 1600 1601
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1602 1603 1604 1605 1606 1607 1608
	if (!cur) {
		if (maymove || imp > env->best_imp)
			goto assign;
		else
			goto unlock;
	}

1609 1610 1611 1612
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1613
	 * the value is, the more remote accesses that would be expected to
1614 1615
	 * be incurred if the tasks were swapped.
	 */
1616 1617 1618
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1619

1620 1621 1622 1623 1624 1625 1626
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
	if (cur->numa_group == env->p->numa_group) {
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1627
		/*
1628 1629
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1630
		 */
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		if (cur->numa_group)
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
		if (cur->numa_group && env->p->numa_group)
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1644 1645
	}

1646
	if (imp <= env->best_imp)
1647 1648
		goto unlock;

1649 1650 1651
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
		imp = moveimp - 1;
		cur = NULL;
1652
		goto assign;
1653
	}
1654 1655 1656 1657

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1658 1659 1660 1661
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1662 1663
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1664

1665
	if (load_too_imbalanced(src_load, dst_load, env))
1666 1667
		goto unlock;

1668
assign:
1669 1670 1671 1672
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1673 1674
	if (!cur) {
		/*
1675
		 * select_idle_siblings() uses an per-CPU cpumask that
1676 1677 1678
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1679 1680
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1681 1682
		local_irq_enable();
	}
1683

1684 1685 1686 1687 1688
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1689 1690
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1691
{
1692 1693
	long src_load, dst_load, load;
	bool maymove = false;
1694 1695
	int cpu;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1706 1707
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1708
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1709 1710 1711
			continue;

		env->dst_cpu = cpu;
1712
		task_numa_compare(env, taskimp, groupimp, maymove);
1713 1714 1715
	}
}

1716 1717 1718 1719
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1720

1721
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1722
		.src_nid = task_node(p),
1723 1724 1725 1726 1727

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1728
		.best_cpu = -1,
1729 1730
	};
	struct sched_domain *sd;
1731
	struct rq *best_rq;
1732
	unsigned long taskweight, groupweight;
1733
	int nid, ret, dist;
1734
	long taskimp, groupimp;
1735

1736
	/*
1737 1738 1739 1740 1741 1742
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1743 1744
	 */
	rcu_read_lock();
1745
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1746 1747
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1748 1749
	rcu_read_unlock();

1750 1751 1752 1753 1754 1755 1756
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1757
		sched_setnuma(p, task_node(p));
1758 1759 1760
		return -EINVAL;
	}

1761
	env.dst_nid = p->numa_preferred_nid;
1762 1763 1764 1765 1766 1767
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1768
	update_numa_stats(&env.dst_stats, env.dst_nid);
1769

1770
	/* Try to find a spot on the preferred nid. */
1771
	task_numa_find_cpu(&env, taskimp, groupimp);
1772

1773 1774 1775 1776 1777 1778 1779
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1780
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1781 1782 1783
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1784

1785
			dist = node_distance(env.src_nid, env.dst_nid);
1786 1787 1788 1789 1790
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1791

1792
			/* Only consider nodes where both task and groups benefit */
1793 1794
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1795
			if (taskimp < 0 && groupimp < 0)
1796 1797
				continue;

1798
			env.dist = dist;
1799 1800
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1801
			task_numa_find_cpu(&env, taskimp, groupimp);
1802 1803 1804
		}
	}

1805 1806 1807 1808 1809 1810 1811 1812
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1813 1814 1815 1816
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
1817
			nid = cpu_to_node(env.best_cpu);
1818

1819 1820
		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
1821 1822 1823 1824 1825
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1826

1827
	best_rq = cpu_rq(env.best_cpu);
1828
	if (env.best_task == NULL) {
1829
		ret = migrate_task_to(p, env.best_cpu);
1830
		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1831 1832
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1833 1834 1835
		return ret;
	}

1836
	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1837
	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1838

1839 1840
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1841 1842
	put_task_struct(env.best_task);
	return ret;
1843 1844
}

1845 1846 1847
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1848 1849
	unsigned long interval = HZ;

1850
	/* This task has no NUMA fault statistics yet */
1851
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1852 1853
		return;

1854
	/* Periodically retry migrating the task to the preferred node */
1855
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1856
	p->numa_migrate_retry = jiffies + interval;
1857 1858

	/* Success if task is already running on preferred CPU */
1859
	if (task_node(p) == p->numa_preferred_nid)
1860 1861 1862
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1863
	task_numa_migrate(p);
1864 1865
}

1866
/*
1867
 * Find out how many nodes on the workload is actively running on. Do this by
1868 1869 1870 1871
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1872
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1873 1874
{
	unsigned long faults, max_faults = 0;
1875
	int nid, active_nodes = 0;
1876 1877 1878 1879 1880 1881 1882 1883 1884

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1885 1886
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1887
	}
1888 1889 1890

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1891 1892
}

1893 1894 1895
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1896 1897 1898
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1899 1900
 */
#define NUMA_PERIOD_SLOTS 10
1901
#define NUMA_PERIOD_THRESHOLD 7
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1913
	int lr_ratio, ps_ratio;
1914 1915 1916 1917 1918 1919 1920 1921
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1922 1923 1924
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1925
	 */
1926
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1962 1963 1964 1965 1966
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1967 1968 1969
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
1970
		 */
1971 1972
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1973 1974 1975 1976 1977 1978 1979
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1998
		delta = p->se.avg.load_sum;
1999
		*period = LOAD_AVG_MAX;
2000 2001 2002 2003 2004 2005 2006 2007
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2055
		nodemask_t max_group = NODE_MASK_NONE;
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2089 2090
		if (!max_faults)
			break;
2091 2092 2093 2094 2095
		nodes = max_group;
	}
	return nid;
}

2096 2097
static void task_numa_placement(struct task_struct *p)
{
2098 2099
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
2100
	unsigned long fault_types[2] = { 0, 0 };
2101 2102
	unsigned long total_faults;
	u64 runtime, period;
2103
	spinlock_t *group_lock = NULL;
2104

2105 2106 2107 2108 2109
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2110
	seq = READ_ONCE(p->mm->numa_scan_seq);
2111 2112 2113
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2114
	p->numa_scan_period_max = task_scan_max(p);
2115

2116 2117 2118 2119
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2120 2121 2122
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2123
		spin_lock_irq(group_lock);
2124 2125
	}

2126 2127
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2128 2129
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2130
		unsigned long faults = 0, group_faults = 0;
2131
		int priv;
2132

2133
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2134
			long diff, f_diff, f_weight;
2135

2136 2137 2138 2139
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2140

2141
			/* Decay existing window, copy faults since last scan */
2142 2143 2144
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2145

2146 2147 2148 2149 2150 2151 2152 2153
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2154
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2155
				   (total_faults + 1);
2156 2157
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2158

2159 2160 2161
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2162
			p->total_numa_faults += diff;
2163
			if (p->numa_group) {
2164 2165 2166 2167 2168 2169 2170 2171 2172
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2173
				p->numa_group->total_faults += diff;
2174
				group_faults += p->numa_group->faults[mem_idx];
2175
			}
2176 2177
		}

2178 2179 2180 2181 2182 2183 2184
		if (!p->numa_group) {
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
2185 2186
			max_nid = nid;
		}
2187 2188
	}

2189
	if (p->numa_group) {
2190
		numa_group_count_active_nodes(p->numa_group);
2191
		spin_unlock_irq(group_lock);
2192
		max_nid = preferred_group_nid(p, max_nid);
2193 2194
	}

2195 2196 2197 2198
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);
2199
	}
2200 2201

	update_task_scan_period(p, fault_types[0], fault_types[1]);
2202 2203
}

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2215 2216
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2217 2218 2219 2220 2221 2222 2223 2224 2225
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2226
				    4*nr_node_ids*sizeof(unsigned long);
2227 2228 2229 2230 2231 2232

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2233 2234
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2235
		spin_lock_init(&grp->lock);
2236
		grp->gid = p->pid;
2237
		/* Second half of the array tracks nids where faults happen */
2238 2239
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2240

2241
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2242
			grp->faults[i] = p->numa_faults[i];
2243

2244
		grp->total_faults = p->total_numa_faults;
2245

2246 2247 2248 2249 2250
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2251
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2252 2253

	if (!cpupid_match_pid(tsk, cpupid))
2254
		goto no_join;
2255 2256 2257

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2258
		goto no_join;
2259 2260 2261

	my_grp = p->numa_group;
	if (grp == my_grp)
2262
		goto no_join;
2263 2264 2265 2266 2267 2268

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2269
		goto no_join;
2270 2271 2272 2273 2274

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2275
		goto no_join;
2276

2277 2278 2279 2280 2281 2282 2283
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2284

2285 2286 2287
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2288
	if (join && !get_numa_group(grp))
2289
		goto no_join;
2290 2291 2292 2293 2294 2295

	rcu_read_unlock();

	if (!join)
		return;

2296 2297
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2298

2299
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2300 2301
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2302
	}
2303 2304
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2305 2306 2307 2308 2309

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2310
	spin_unlock_irq(&grp->lock);
2311 2312 2313 2314

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2315 2316 2317 2318 2319
	return;

no_join:
	rcu_read_unlock();
	return;
2320 2321 2322 2323 2324
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2325
	void *numa_faults = p->numa_faults;
2326 2327
	unsigned long flags;
	int i;
2328 2329

	if (grp) {
2330
		spin_lock_irqsave(&grp->lock, flags);
2331
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2332
			grp->faults[i] -= p->numa_faults[i];
2333
		grp->total_faults -= p->total_numa_faults;
2334

2335
		grp->nr_tasks--;
2336
		spin_unlock_irqrestore(&grp->lock, flags);
2337
		RCU_INIT_POINTER(p->numa_group, NULL);
2338 2339 2340
		put_numa_group(grp);
	}

2341
	p->numa_faults = NULL;
2342
	kfree(numa_faults);
2343 2344
}

2345 2346 2347
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2348
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2349 2350
{
	struct task_struct *p = current;
2351
	bool migrated = flags & TNF_MIGRATED;
2352
	int cpu_node = task_node(current);
2353
	int local = !!(flags & TNF_FAULT_LOCAL);
2354
	struct numa_group *ng;
2355
	int priv;
2356

2357
	if (!static_branch_likely(&sched_numa_balancing))
2358 2359
		return;

2360 2361 2362 2363
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2364
	/* Allocate buffer to track faults on a per-node basis */
2365 2366
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2367
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2368

2369 2370
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2371
			return;
2372

2373
		p->total_numa_faults = 0;
2374
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2375
	}
2376

2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2385
		if (!priv && !(flags & TNF_NO_GROUP))
2386
			task_numa_group(p, last_cpupid, flags, &priv);
2387 2388
	}

2389 2390 2391 2392 2393 2394
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2395 2396 2397 2398
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2399 2400
		local = 1;

2401 2402 2403 2404
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
2405 2406
	if (time_after(jiffies, p->numa_migrate_retry)) {
		task_numa_placement(p);
2407
		numa_migrate_preferred(p);
2408
	}
2409

I
Ingo Molnar 已提交
2410 2411
	if (migrated)
		p->numa_pages_migrated += pages;
2412 2413
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2414

2415 2416
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2417
	p->numa_faults_locality[local] += pages;
2418 2419
}

2420 2421
static void reset_ptenuma_scan(struct task_struct *p)
{
2422 2423 2424 2425 2426 2427 2428 2429
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2430
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2431 2432 2433
	p->mm->numa_scan_offset = 0;
}

2434 2435 2436 2437 2438 2439 2440 2441 2442
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2443
	u64 runtime = p->se.sum_exec_runtime;
2444
	struct vm_area_struct *vma;
2445
	unsigned long start, end;
2446
	unsigned long nr_pte_updates = 0;
2447
	long pages, virtpages;
2448

2449
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2463
	if (!mm->numa_next_scan) {
2464 2465
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2466 2467
	}

2468 2469 2470 2471 2472 2473 2474
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2475 2476
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2477
		p->numa_scan_period = task_scan_start(p);
2478
	}
2479

2480
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2481 2482 2483
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2484 2485 2486 2487 2488 2489
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2490 2491 2492
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2493
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2494 2495
	if (!pages)
		return;
2496

2497

2498 2499
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2500
	vma = find_vma(mm, start);
2501 2502
	if (!vma) {
		reset_ptenuma_scan(p);
2503
		start = 0;
2504 2505
		vma = mm->mmap;
	}
2506
	for (; vma; vma = vma->vm_next) {
2507
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2508
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2509
			continue;
2510
		}
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2522 2523 2524 2525 2526 2527
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2528

2529 2530 2531 2532
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2533
			nr_pte_updates = change_prot_numa(vma, start, end);
2534 2535

			/*
2536 2537 2538 2539 2540 2541
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2542 2543 2544
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2545
			virtpages -= (end - start) >> PAGE_SHIFT;
2546

2547
			start = end;
2548
			if (pages <= 0 || virtpages <= 0)
2549
				goto out;
2550 2551

			cond_resched();
2552
		} while (end != vma->vm_end);
2553
	}
2554

2555
out:
2556
	/*
P
Peter Zijlstra 已提交
2557 2558 2559 2560
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2561 2562
	 */
	if (vma)
2563
		mm->numa_scan_offset = start;
2564 2565 2566
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2603
	if (now > curr->node_stamp + period) {
2604
		if (!curr->node_stamp)
2605
			curr->numa_scan_period = task_scan_start(curr);
2606
		curr->node_stamp += period;
2607 2608 2609 2610 2611 2612 2613

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2614

2615 2616 2617 2618 2619
static void update_scan_period(struct task_struct *p, int new_cpu)
{
	int src_nid = cpu_to_node(task_cpu(p));
	int dst_nid = cpu_to_node(new_cpu);

2620 2621 2622
	if (!static_branch_likely(&sched_numa_balancing))
		return;

2623 2624 2625
	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
		return;

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (src_nid == dst_nid)
		return;

	/*
	 * Allow resets if faults have been trapped before one scan
	 * has completed. This is most likely due to a new task that
	 * is pulled cross-node due to wakeups or load balancing.
	 */
	if (p->numa_scan_seq) {
		/*
		 * Avoid scan adjustments if moving to the preferred
		 * node or if the task was not previously running on
		 * the preferred node.
		 */
		if (dst_nid == p->numa_preferred_nid ||
		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
			return;
	}

	p->numa_scan_period = task_scan_start(p);
2646 2647
}

2648 2649 2650 2651
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2652 2653 2654 2655 2656 2657 2658 2659

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2660

2661 2662 2663 2664
static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}

2665 2666
#endif /* CONFIG_NUMA_BALANCING */

2667 2668 2669 2670
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2671
	if (!parent_entity(se))
2672
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2673
#ifdef CONFIG_SMP
2674 2675 2676 2677 2678 2679
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2680
#endif
2681 2682 2683 2684 2685 2686 2687
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2688
	if (!parent_entity(se))
2689
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2690
#ifdef CONFIG_SMP
2691 2692
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2693
		list_del_init(&se->group_node);
2694
	}
2695
#endif
2696 2697 2698
	cfs_rq->nr_running--;
}

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2740 2741 2742 2743
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2744 2745 2746 2747 2748
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2749 2750 2751 2752 2753
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2780
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2781
			    unsigned long weight, unsigned long runnable)
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2792
	se->runnable_weight = runnable;
2793 2794 2795
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2796 2797 2798 2799 2800 2801 2802
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2819
	reweight_entity(cfs_rq, se, weight, weight);
2820 2821 2822
	load->inv_weight = sched_prio_to_wmult[prio];
}

2823
#ifdef CONFIG_FAIR_GROUP_SCHED
2824
#ifdef CONFIG_SMP
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2863
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2889 2890 2891 2892 2893 2894 2895 2896 2897
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2898
static long calc_group_shares(struct cfs_rq *cfs_rq)
2899
{
2900 2901 2902 2903
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2904

2905
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2906

2907
	tg_weight = atomic_long_read(&tg->load_avg);
2908

2909 2910 2911
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2912

2913
	shares = (tg_shares * load);
2914 2915
	if (tg_weight)
		shares /= tg_weight;
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2929
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2930
}
2931 2932

/*
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2958 2959 2960
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2961 2962 2963 2964 2965 2966 2967
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2968 2969 2970 2971

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2972

2973 2974
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2975
#endif /* CONFIG_SMP */
2976

2977 2978
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2979 2980 2981 2982 2983
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2984
{
2985 2986
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
2987

2988
	if (!gcfs_rq)
2989 2990
		return;

2991
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
2992
		return;
2993

2994
#ifndef CONFIG_SMP
2995
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2996 2997

	if (likely(se->load.weight == shares))
2998
		return;
2999
#else
3000 3001
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3002
#endif
P
Peter Zijlstra 已提交
3003

3004
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3005
}
3006

P
Peter Zijlstra 已提交
3007
#else /* CONFIG_FAIR_GROUP_SCHED */
3008
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3009 3010 3011 3012
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3013
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3014
{
3015 3016
	struct rq *rq = rq_of(cfs_rq);

3017
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3018 3019 3020
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3021
		 * a real problem.
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3032
		cpufreq_update_util(rq, flags);
3033 3034 3035
	}
}

3036
#ifdef CONFIG_SMP
3037
#ifdef CONFIG_FAIR_GROUP_SCHED
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3051
 * Updating tg's load_avg is necessary before update_cfs_share().
3052
 */
3053
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3054
{
3055
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3056

3057 3058 3059 3060 3061 3062
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3063 3064 3065
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3066
	}
3067
}
3068

3069
/*
3070
 * Called within set_task_rq() right before setting a task's CPU. The
3071 3072 3073 3074 3075 3076
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3077 3078 3079
	u64 p_last_update_time;
	u64 n_last_update_time;

3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3090 3091
	if (!(se->avg.last_update_time && prev))
		return;
3092 3093

#ifndef CONFIG_64BIT
3094
	{
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3109
	}
3110
#else
3111 3112
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3113
#endif
3114 3115
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3116
}
3117

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3129 3130 3131
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3132 3133 3134 3135 3136 3137 3138 3139
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3140
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3141 3142 3143
 *
 * And per (1) we have:
 *
3144
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3163 3164 3165 3166 3167 3168
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3169
 *
3170
 * So we'll have to approximate.. :/
3171
 *
3172
 * Given the constraint:
3173
 *
3174
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3175
 *
3176 3177
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3178
 *
3179
 * On removal, we'll assume each task is equally runnable; which yields:
3180
 *
3181
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3182
 *
3183
 * XXX: only do this for the part of runnable > running ?
3184 3185 3186
 *
 */

3187
static inline void
3188
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3189 3190 3191 3192 3193 3194 3195
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3196 3197 3198 3199 3200 3201 3202 3203
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3214
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3215
{
3216 3217 3218 3219
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3220

3221 3222
	if (!runnable_sum)
		return;
3223

3224
	gcfs_rq->prop_runnable_sum = 0;
3225

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3249
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3250 3251 3252 3253 3254 3255
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3256 3257
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3258

3259 3260
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3261

3262 3263 3264 3265
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3266

3267 3268
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3269 3270
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3271

3272 3273
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3274

3275
	if (se->on_rq) {
3276 3277
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3278 3279 3280
	}
}

3281
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3282
{
3283 3284
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3285 3286 3287 3288 3289
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3290
	struct cfs_rq *cfs_rq, *gcfs_rq;
3291 3292 3293 3294

	if (entity_is_task(se))
		return 0;

3295 3296
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3297 3298
		return 0;

3299 3300
	gcfs_rq->propagate = 0;

3301 3302
	cfs_rq = cfs_rq_of(se);

3303
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3304

3305 3306
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3307 3308 3309 3310

	return 1;
}

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3330
	if (gcfs_rq->propagate)
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3341
#else /* CONFIG_FAIR_GROUP_SCHED */
3342

3343
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3344 3345 3346 3347 3348 3349

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3350
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3351

3352
#endif /* CONFIG_FAIR_GROUP_SCHED */
3353

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3365 3366 3367 3368
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3369
 */
3370
static inline int
3371
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3372
{
3373
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3374
	struct sched_avg *sa = &cfs_rq->avg;
3375
	int decayed = 0;
3376

3377 3378
	if (cfs_rq->removed.nr) {
		unsigned long r;
3379
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3380 3381 3382 3383

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3384
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3385 3386 3387 3388
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3389
		sub_positive(&sa->load_avg, r);
3390
		sub_positive(&sa->load_sum, r * divider);
3391

3392
		r = removed_util;
3393
		sub_positive(&sa->util_avg, r);
3394
		sub_positive(&sa->util_sum, r * divider);
3395

3396
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3397 3398

		decayed = 1;
3399
	}
3400

3401
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3402

3403 3404 3405 3406
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3407

3408
	if (decayed)
3409
		cfs_rq_util_change(cfs_rq, 0);
3410

3411
	return decayed;
3412 3413
}

3414 3415 3416 3417
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
3418
 * @flags: migration hints
3419 3420 3421 3422
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3423
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3424
{
3425 3426 3427 3428 3429 3430 3431 3432 3433
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3434
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3453
	enqueue_load_avg(cfs_rq, se);
3454 3455
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3456 3457

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3458

3459
	cfs_rq_util_change(cfs_rq, flags);
3460 3461
}

3462 3463 3464 3465 3466 3467 3468 3469
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3470 3471
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3472
	dequeue_load_avg(cfs_rq, se);
3473 3474
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3475 3476

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3477

3478
	cfs_rq_util_change(cfs_rq, 0);
3479 3480
}

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3508 3509 3510 3511 3512 3513 3514 3515
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3516 3517 3518 3519 3520 3521
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3522
#ifndef CONFIG_64BIT
3523 3524
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3525
	u64 last_update_time_copy;
3526
	u64 last_update_time;
3527

3528 3529 3530 3531 3532
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3533 3534 3535

	return last_update_time;
}
3536
#else
3537 3538 3539 3540
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3541 3542
#endif

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3553
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3554 3555
}

3556 3557 3558 3559 3560 3561 3562
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3563
	unsigned long flags;
3564 3565

	/*
3566 3567 3568 3569 3570 3571 3572
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3573 3574
	 */

3575
	sync_entity_load_avg(se);
3576 3577 3578 3579 3580

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3581
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3582
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3583
}
3584

3585 3586
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3587
	return cfs_rq->avg.runnable_load_avg;
3588 3589 3590 3591 3592 3593 3594
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3595
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3596

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3624
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3650 3651 3652 3653
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3654 3655 3656 3657 3658 3659 3660 3661 3662
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3663 3664 3665 3666 3667 3668 3669 3670
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3671 3672 3673 3674
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3675
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3703 3704
#else /* CONFIG_SMP */

3705 3706
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3707
#define DO_ATTACH	0x0
3708

3709
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3710
{
3711
	cfs_rq_util_change(cfs_rq, 0);
3712 3713
}

3714
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3715

3716
static inline void
3717
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3718 3719 3720
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3721
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3722 3723 3724 3725
{
	return 0;
}

3726 3727 3728 3729 3730 3731 3732
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3733
#endif /* CONFIG_SMP */
3734

P
Peter Zijlstra 已提交
3735 3736 3737 3738 3739 3740 3741 3742 3743
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3744
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3745 3746 3747
#endif
}

3748 3749 3750
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3751
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3752

3753 3754 3755 3756 3757 3758
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3759
	if (initial && sched_feat(START_DEBIT))
3760
		vruntime += sched_vslice(cfs_rq, se);
3761

3762
	/* sleeps up to a single latency don't count. */
3763
	if (!initial) {
3764
		unsigned long thresh = sysctl_sched_latency;
3765

3766 3767 3768 3769 3770 3771
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3772

3773
		vruntime -= thresh;
3774 3775
	}

3776
	/* ensure we never gain time by being placed backwards. */
3777
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3778 3779
}

3780 3781
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3794
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3795
			     "stat_blocked and stat_runtime require the "
3796
			     "kernel parameter schedstats=enable or "
3797 3798 3799 3800 3801
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3821
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3833
static void
3834
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3835
{
3836 3837 3838
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3839
	/*
3840 3841
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3842
	 */
3843
	if (renorm && curr)
3844 3845
		se->vruntime += cfs_rq->min_vruntime;

3846 3847
	update_curr(cfs_rq);

3848
	/*
3849 3850 3851 3852
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3853
	 */
3854 3855 3856
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3857 3858 3859 3860 3861 3862 3863 3864
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3865
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3866
	update_cfs_group(se);
3867
	enqueue_runnable_load_avg(cfs_rq, se);
3868
	account_entity_enqueue(cfs_rq, se);
3869

3870
	if (flags & ENQUEUE_WAKEUP)
3871
		place_entity(cfs_rq, se, 0);
3872

3873
	check_schedstat_required();
3874 3875
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3876
	if (!curr)
3877
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3878
	se->on_rq = 1;
3879

3880
	if (cfs_rq->nr_running == 1) {
3881
		list_add_leaf_cfs_rq(cfs_rq);
3882 3883
		check_enqueue_throttle(cfs_rq);
	}
3884 3885
}

3886
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3887
{
3888 3889
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3890
		if (cfs_rq->last != se)
3891
			break;
3892 3893

		cfs_rq->last = NULL;
3894 3895
	}
}
P
Peter Zijlstra 已提交
3896

3897 3898 3899 3900
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3901
		if (cfs_rq->next != se)
3902
			break;
3903 3904

		cfs_rq->next = NULL;
3905
	}
P
Peter Zijlstra 已提交
3906 3907
}

3908 3909 3910 3911
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3912
		if (cfs_rq->skip != se)
3913
			break;
3914 3915

		cfs_rq->skip = NULL;
3916 3917 3918
	}
}

P
Peter Zijlstra 已提交
3919 3920
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3921 3922 3923 3924 3925
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3926 3927 3928

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3929 3930
}

3931
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3932

3933
static void
3934
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3935
{
3936 3937 3938 3939
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3940 3941 3942 3943 3944 3945 3946 3947 3948

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3949
	update_load_avg(cfs_rq, se, UPDATE_TG);
3950
	dequeue_runnable_load_avg(cfs_rq, se);
3951

3952
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3953

P
Peter Zijlstra 已提交
3954
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3955

3956
	if (se != cfs_rq->curr)
3957
		__dequeue_entity(cfs_rq, se);
3958
	se->on_rq = 0;
3959
	account_entity_dequeue(cfs_rq, se);
3960 3961

	/*
3962 3963 3964 3965
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3966
	 */
3967
	if (!(flags & DEQUEUE_SLEEP))
3968
		se->vruntime -= cfs_rq->min_vruntime;
3969

3970 3971 3972
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3973
	update_cfs_group(se);
3974 3975 3976 3977 3978 3979 3980 3981 3982

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3983 3984 3985 3986 3987
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3988
static void
I
Ingo Molnar 已提交
3989
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3990
{
3991
	unsigned long ideal_runtime, delta_exec;
3992 3993
	struct sched_entity *se;
	s64 delta;
3994

P
Peter Zijlstra 已提交
3995
	ideal_runtime = sched_slice(cfs_rq, curr);
3996
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3997
	if (delta_exec > ideal_runtime) {
3998
		resched_curr(rq_of(cfs_rq));
3999 4000 4001 4002 4003
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4015 4016
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4017

4018 4019
	if (delta < 0)
		return;
4020

4021
	if (delta > ideal_runtime)
4022
		resched_curr(rq_of(cfs_rq));
4023 4024
}

4025
static void
4026
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4027
{
4028 4029 4030 4031 4032 4033 4034
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4035
		update_stats_wait_end(cfs_rq, se);
4036
		__dequeue_entity(cfs_rq, se);
4037
		update_load_avg(cfs_rq, se, UPDATE_TG);
4038 4039
	}

4040
	update_stats_curr_start(cfs_rq, se);
4041
	cfs_rq->curr = se;
4042

I
Ingo Molnar 已提交
4043 4044 4045 4046 4047
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4048
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4049 4050 4051
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4052
	}
4053

4054
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4055 4056
}

4057 4058 4059
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4060 4061 4062 4063 4064 4065 4066
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4067 4068
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4069
{
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4081

4082 4083 4084 4085 4086
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4097 4098 4099
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4100

4101 4102 4103 4104 4105 4106
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4107 4108 4109 4110 4111 4112
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4113
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4114 4115

	return se;
4116 4117
}

4118
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4119

4120
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4121 4122 4123 4124 4125 4126
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4127
		update_curr(cfs_rq);
4128

4129 4130 4131
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4132
	check_spread(cfs_rq, prev);
4133

4134
	if (prev->on_rq) {
4135
		update_stats_wait_start(cfs_rq, prev);
4136 4137
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4138
		/* in !on_rq case, update occurred at dequeue */
4139
		update_load_avg(cfs_rq, prev, 0);
4140
	}
4141
	cfs_rq->curr = NULL;
4142 4143
}

P
Peter Zijlstra 已提交
4144 4145
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4146 4147
{
	/*
4148
	 * Update run-time statistics of the 'current'.
4149
	 */
4150
	update_curr(cfs_rq);
4151

4152 4153 4154
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4155
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4156
	update_cfs_group(curr);
4157

P
Peter Zijlstra 已提交
4158 4159 4160 4161 4162
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4163
	if (queued) {
4164
		resched_curr(rq_of(cfs_rq));
4165 4166
		return;
	}
P
Peter Zijlstra 已提交
4167 4168 4169 4170 4171 4172 4173 4174
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4175
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4176
		check_preempt_tick(cfs_rq, curr);
4177 4178
}

4179 4180 4181 4182 4183 4184

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4185 4186

#ifdef HAVE_JUMP_LABEL
4187
static struct static_key __cfs_bandwidth_used;
4188 4189 4190

static inline bool cfs_bandwidth_used(void)
{
4191
	return static_key_false(&__cfs_bandwidth_used);
4192 4193
}

4194
void cfs_bandwidth_usage_inc(void)
4195
{
4196
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4197 4198 4199 4200
}

void cfs_bandwidth_usage_dec(void)
{
4201
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4202 4203 4204 4205 4206 4207 4208
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4209 4210
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4211 4212
#endif /* HAVE_JUMP_LABEL */

4213 4214 4215 4216 4217 4218 4219 4220
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4221 4222 4223 4224 4225 4226

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4227 4228 4229 4230 4231 4232 4233
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4234
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4235 4236 4237 4238 4239 4240 4241 4242 4243
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4244
	cfs_b->expires_seq++;
P
Paul Turner 已提交
4245 4246
}

4247 4248 4249 4250 4251
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4252 4253 4254 4255
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4256
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4257

4258
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4259 4260
}

4261 4262
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4263 4264 4265
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4266
	u64 amount = 0, min_amount, expires;
4267
	int expires_seq;
4268 4269 4270 4271 4272 4273 4274

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4275
	else {
P
Peter Zijlstra 已提交
4276
		start_cfs_bandwidth(cfs_b);
4277 4278 4279 4280 4281 4282

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4283
	}
4284
	expires_seq = cfs_b->expires_seq;
P
Paul Turner 已提交
4285
	expires = cfs_b->runtime_expires;
4286 4287 4288
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4289 4290 4291 4292 4293
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
4294 4295
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
P
Paul Turner 已提交
4296
		cfs_rq->runtime_expires = expires;
4297
	}
4298 4299

	return cfs_rq->runtime_remaining > 0;
4300 4301
}

P
Paul Turner 已提交
4302 4303 4304 4305 4306
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4307
{
P
Paul Turner 已提交
4308 4309 4310
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4311
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4312 4313
		return;

P
Paul Turner 已提交
4314 4315 4316 4317 4318 4319 4320 4321 4322
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4323
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
P
Paul Turner 已提交
4324
	 */
4325
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
P
Paul Turner 已提交
4326 4327 4328 4329 4330 4331 4332 4333
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4334
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4335 4336
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4337
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4338 4339 4340
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4341 4342
		return;

4343 4344 4345 4346 4347
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4348
		resched_curr(rq_of(cfs_rq));
4349 4350
}

4351
static __always_inline
4352
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4353
{
4354
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4355 4356 4357 4358 4359
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4360 4361
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4362
	return cfs_bandwidth_used() && cfs_rq->throttled;
4363 4364
}

4365 4366 4367
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4368
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4395
		/* adjust cfs_rq_clock_task() */
4396
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4397
					     cfs_rq->throttled_clock_task;
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4408 4409
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4410
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4411 4412 4413 4414 4415
	cfs_rq->throttle_count++;

	return 0;
}

4416
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4417 4418 4419 4420 4421
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4422
	bool empty;
4423 4424 4425

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4426
	/* freeze hierarchy runnable averages while throttled */
4427 4428 4429
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4447
		sub_nr_running(rq, task_delta);
4448 4449

	cfs_rq->throttled = 1;
4450
	cfs_rq->throttled_clock = rq_clock(rq);
4451
	raw_spin_lock(&cfs_b->lock);
4452
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4453

4454 4455 4456 4457 4458
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4459 4460 4461 4462 4463 4464 4465 4466

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4467 4468 4469
	raw_spin_unlock(&cfs_b->lock);
}

4470
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4471 4472 4473 4474 4475 4476 4477
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4478
	se = cfs_rq->tg->se[cpu_of(rq)];
4479 4480

	cfs_rq->throttled = 0;
4481 4482 4483

	update_rq_clock(rq);

4484
	raw_spin_lock(&cfs_b->lock);
4485
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4486 4487 4488
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4489 4490 4491
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4510
		add_nr_running(rq, task_delta);
4511

4512
	/* Determine whether we need to wake up potentially idle CPU: */
4513
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4514
		resched_curr(rq);
4515 4516 4517 4518 4519 4520
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4521 4522
	u64 runtime;
	u64 starting_runtime = remaining;
4523 4524 4525 4526 4527

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4528
		struct rq_flags rf;
4529

4530
		rq_lock(rq, &rf);
4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4547
		rq_unlock(rq, &rf);
4548 4549 4550 4551 4552 4553

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4554
	return starting_runtime - remaining;
4555 4556
}

4557 4558 4559 4560 4561 4562 4563 4564
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4565
	u64 runtime, runtime_expires;
4566
	int throttled;
4567 4568 4569

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4570
		goto out_deactivate;
4571

4572
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4573
	cfs_b->nr_periods += overrun;
4574

4575 4576 4577 4578 4579 4580
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4581 4582 4583

	__refill_cfs_bandwidth_runtime(cfs_b);

4584 4585 4586
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4587
		return 0;
4588 4589
	}

4590 4591 4592
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4593 4594 4595
	runtime_expires = cfs_b->runtime_expires;

	/*
4596 4597 4598 4599 4600
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4601
	 */
4602 4603
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4604 4605 4606 4607 4608 4609 4610
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4611 4612

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4613
	}
4614

4615 4616 4617 4618 4619 4620 4621
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4622

4623 4624 4625 4626
	return 0;

out_deactivate:
	return 1;
4627
}
4628

4629 4630 4631 4632 4633 4634 4635
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4636 4637 4638 4639
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4640
 * hrtimer base being cleared by hrtimer_start. In the case of
4641 4642
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4668 4669 4670
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4700 4701 4702
	if (!cfs_bandwidth_used())
		return;

4703
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4719 4720 4721
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4722
		return;
4723
	}
4724

4725
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4726
		runtime = cfs_b->runtime;
4727

4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4738
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4739 4740 4741
	raw_spin_unlock(&cfs_b->lock);
}

4742 4743 4744 4745 4746 4747 4748
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4749 4750 4751
	if (!cfs_bandwidth_used())
		return;

4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4780
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4781 4782
}

4783
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4784
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4785
{
4786
	if (!cfs_bandwidth_used())
4787
		return false;
4788

4789
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4790
		return false;
4791 4792 4793 4794 4795 4796

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4797
		return true;
4798 4799

	throttle_cfs_rq(cfs_rq);
4800
	return true;
4801
}
4802 4803 4804 4805 4806

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4807

4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4820
	raw_spin_lock(&cfs_b->lock);
4821
	for (;;) {
P
Peter Zijlstra 已提交
4822
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4823 4824 4825 4826 4827
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4828 4829
	if (idle)
		cfs_b->period_active = 0;
4830
	raw_spin_unlock(&cfs_b->lock);
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4843
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4855
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4856
{
4857 4858
	u64 overrun;

P
Peter Zijlstra 已提交
4859
	lockdep_assert_held(&cfs_b->lock);
4860

4861 4862 4863 4864 4865 4866 4867 4868
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4869 4870 4871 4872
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4873 4874 4875 4876
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4877 4878 4879 4880
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4881
/*
4882
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4883 4884 4885 4886 4887 4888
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4889 4890
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4891
	struct task_group *tg;
4892

4893 4894 4895 4896 4897 4898
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4899 4900 4901 4902 4903

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4904
	rcu_read_unlock();
4905 4906
}

4907
/* cpu offline callback */
4908
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4909
{
4910 4911 4912 4913 4914 4915 4916
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4917 4918 4919 4920 4921 4922 4923 4924

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4925
		cfs_rq->runtime_remaining = 1;
4926
		/*
4927
		 * Offline rq is schedulable till CPU is completely disabled
4928 4929 4930 4931
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4932 4933 4934
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4935
	rcu_read_unlock();
4936 4937 4938
}

#else /* CONFIG_CFS_BANDWIDTH */
4939 4940
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4941
	return rq_clock_task(rq_of(cfs_rq));
4942 4943
}

4944
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4945
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4946
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4947
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4948
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4949 4950 4951 4952 4953

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4965 4966 4967 4968 4969

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4970 4971
#endif

4972 4973 4974 4975 4976
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4977
static inline void update_runtime_enabled(struct rq *rq) {}
4978
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4979 4980 4981

#endif /* CONFIG_CFS_BANDWIDTH */

4982 4983 4984 4985
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4986 4987 4988 4989 4990 4991
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4992
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4993

4994
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4995 4996 4997 4998 4999 5000
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5001
				resched_curr(rq);
P
Peter Zijlstra 已提交
5002 5003
			return;
		}
5004
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5005 5006
	}
}
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5017
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5018 5019 5020 5021 5022
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5023
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5024 5025 5026 5027
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5028 5029 5030 5031

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5032 5033
#endif

5034 5035 5036 5037 5038
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5039
static void
5040
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5041 5042
{
	struct cfs_rq *cfs_rq;
5043
	struct sched_entity *se = &p->se;
5044

5045 5046 5047 5048 5049 5050 5051 5052
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5053 5054 5055 5056 5057 5058
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5059
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5060

5061
	for_each_sched_entity(se) {
5062
		if (se->on_rq)
5063 5064
			break;
		cfs_rq = cfs_rq_of(se);
5065
		enqueue_entity(cfs_rq, se, flags);
5066 5067 5068 5069 5070 5071

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5072
		 */
5073 5074
		if (cfs_rq_throttled(cfs_rq))
			break;
5075
		cfs_rq->h_nr_running++;
5076

5077
		flags = ENQUEUE_WAKEUP;
5078
	}
P
Peter Zijlstra 已提交
5079

P
Peter Zijlstra 已提交
5080
	for_each_sched_entity(se) {
5081
		cfs_rq = cfs_rq_of(se);
5082
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5083

5084 5085 5086
		if (cfs_rq_throttled(cfs_rq))
			break;

5087
		update_load_avg(cfs_rq, se, UPDATE_TG);
5088
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5089 5090
	}

Y
Yuyang Du 已提交
5091
	if (!se)
5092
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5093

5094
	hrtick_update(rq);
5095 5096
}

5097 5098
static void set_next_buddy(struct sched_entity *se);

5099 5100 5101 5102 5103
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5104
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5105 5106
{
	struct cfs_rq *cfs_rq;
5107
	struct sched_entity *se = &p->se;
5108
	int task_sleep = flags & DEQUEUE_SLEEP;
5109 5110 5111

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5112
		dequeue_entity(cfs_rq, se, flags);
5113 5114 5115 5116 5117 5118 5119 5120 5121

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5122
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5123

5124
		/* Don't dequeue parent if it has other entities besides us */
5125
		if (cfs_rq->load.weight) {
5126 5127
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5128 5129 5130 5131
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5132 5133
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5134
			break;
5135
		}
5136
		flags |= DEQUEUE_SLEEP;
5137
	}
P
Peter Zijlstra 已提交
5138

P
Peter Zijlstra 已提交
5139
	for_each_sched_entity(se) {
5140
		cfs_rq = cfs_rq_of(se);
5141
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5142

5143 5144 5145
		if (cfs_rq_throttled(cfs_rq))
			break;

5146
		update_load_avg(cfs_rq, se, UPDATE_TG);
5147
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5148 5149
	}

Y
Yuyang Du 已提交
5150
	if (!se)
5151
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5152

5153
	util_est_dequeue(&rq->cfs, p, task_sleep);
5154
	hrtick_update(rq);
5155 5156
}

5157
#ifdef CONFIG_SMP
5158 5159 5160 5161 5162

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5163
#ifdef CONFIG_NO_HZ_COMMON
5164 5165 5166 5167 5168
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5169
 * The exact cpuload calculated at every tick would be:
5170
 *
5171 5172
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5173 5174
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5175 5176 5177
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5178 5179 5180
 *
 * decay_load_missed() below does efficient calculation of
 *
5181 5182 5183 5184 5185 5186
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5187
 *
5188
 * The calculation is approximated on a 128 point scale.
5189 5190
 */
#define DEGRADE_SHIFT		7
5191 5192 5193 5194 5195 5196 5197 5198 5199

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5229 5230 5231 5232

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5233
	int has_blocked;		/* Idle CPUS has blocked load */
5234
	unsigned long next_balance;     /* in jiffy units */
5235
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5236 5237
} nohz ____cacheline_aligned;

5238
#endif /* CONFIG_NO_HZ_COMMON */
5239

5240
/**
5241
 * __cpu_load_update - update the rq->cpu_load[] statistics
5242 5243 5244 5245
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5246
 * Update rq->cpu_load[] statistics. This function is usually called every
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5273
 * term.
5274
 */
5275 5276
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5277
{
5278
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5290
		old_load = this_rq->cpu_load[i];
5291
#ifdef CONFIG_NO_HZ_COMMON
5292
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5293 5294 5295 5296 5297 5298 5299 5300 5301
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5302
#endif
5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5316
/* Used instead of source_load when we know the type == 0 */
5317
static unsigned long weighted_cpuload(struct rq *rq)
5318
{
5319
	return cfs_rq_runnable_load_avg(&rq->cfs);
5320 5321
}

5322
#ifdef CONFIG_NO_HZ_COMMON
5323 5324
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5325
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5351
		cpu_load_update(this_rq, load, pending_updates);
5352 5353 5354
	}
}

5355 5356 5357 5358
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5359
static void cpu_load_update_idle(struct rq *this_rq)
5360 5361 5362 5363
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5364
	if (weighted_cpuload(this_rq))
5365 5366
		return;

5367
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5368 5369 5370
}

/*
5371 5372 5373 5374
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5375
 */
5376
void cpu_load_update_nohz_start(void)
5377 5378
{
	struct rq *this_rq = this_rq();
5379 5380 5381 5382 5383 5384

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5385
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5386 5387 5388 5389 5390 5391 5392
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5393
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5394 5395
	struct rq *this_rq = this_rq();
	unsigned long load;
5396
	struct rq_flags rf;
5397 5398 5399 5400

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5401
	load = weighted_cpuload(this_rq);
5402
	rq_lock(this_rq, &rf);
5403
	update_rq_clock(this_rq);
5404
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5405
	rq_unlock(this_rq, &rf);
5406
}
5407 5408 5409 5410 5411 5412 5413 5414
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5415
#ifdef CONFIG_NO_HZ_COMMON
5416 5417
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5418
#endif
5419 5420
	cpu_load_update(this_rq, load, 1);
}
5421 5422 5423 5424

/*
 * Called from scheduler_tick()
 */
5425
void cpu_load_update_active(struct rq *this_rq)
5426
{
5427
	unsigned long load = weighted_cpuload(this_rq);
5428 5429 5430 5431 5432

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5433 5434
}

5435
/*
5436
 * Return a low guess at the load of a migration-source CPU weighted
5437 5438 5439 5440 5441 5442 5443 5444
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5445
	unsigned long total = weighted_cpuload(rq);
5446 5447 5448 5449 5450 5451 5452 5453

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5454
 * Return a high guess at the load of a migration-target CPU weighted
5455 5456 5457 5458 5459
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5460
	unsigned long total = weighted_cpuload(rq);
5461 5462 5463 5464 5465 5466 5467

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5468
static unsigned long capacity_of(int cpu)
5469
{
5470
	return cpu_rq(cpu)->cpu_capacity;
5471 5472
}

5473 5474 5475 5476 5477
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5478 5479 5480
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5481
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5482
	unsigned long load_avg = weighted_cpuload(rq);
5483 5484

	if (nr_running)
5485
		return load_avg / nr_running;
5486 5487 5488 5489

	return 0;
}

P
Peter Zijlstra 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5507 5508
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5509
 *
M
Mike Galbraith 已提交
5510
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5523
 */
5524 5525
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5526 5527
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5528
	int factor = this_cpu_read(sd_llc_size);
5529

M
Mike Galbraith 已提交
5530 5531 5532 5533 5534
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5535 5536
}

5537
/*
5538 5539 5540
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5541
 *
5542 5543
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5544 5545 5546 5547
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5548
 */
5549
static int
5550
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5551
{
5552 5553 5554 5555 5556
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5557 5558 5559 5560 5561 5562
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5563
	 */
5564 5565
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5566

5567
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5568
		return this_cpu;
5569

5570
	return nr_cpumask_bits;
5571 5572
}

5573
static int
5574 5575
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5576 5577 5578 5579
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5580
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5581 5582 5583 5584

	if (sync) {
		unsigned long current_load = task_h_load(current);

5585
		if (current_load > this_eff_load)
5586
			return this_cpu;
5587

5588
		this_eff_load -= current_load;
5589 5590 5591 5592
	}

	task_load = task_h_load(p);

5593 5594 5595 5596
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5597

5598
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5599 5600 5601 5602
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5603

5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5614 5615
}

5616
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5617
		       int this_cpu, int prev_cpu, int sync)
5618
{
5619
	int target = nr_cpumask_bits;
5620

5621
	if (sched_feat(WA_IDLE))
5622
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5623

5624 5625
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5626

5627
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5628 5629
	if (target == nr_cpumask_bits)
		return prev_cpu;
5630

5631 5632 5633
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5634 5635
}

5636
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5637 5638 5639

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5640
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5641 5642
}

5643 5644 5645
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5646 5647
 *
 * Assumes p is allowed on at least one CPU in sd.
5648 5649
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5650
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5651
		  int this_cpu, int sd_flag)
5652
{
5653
	struct sched_group *idlest = NULL, *group = sd->groups;
5654
	struct sched_group *most_spare_sg = NULL;
5655 5656 5657
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5658
	unsigned long most_spare = 0, this_spare = 0;
5659
	int load_idx = sd->forkexec_idx;
5660 5661 5662
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5663

5664 5665 5666
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5667
	do {
5668 5669
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5670 5671
		int local_group;
		int i;
5672

5673
		/* Skip over this group if it has no CPUs allowed */
5674
		if (!cpumask_intersects(sched_group_span(group),
5675
					&p->cpus_allowed))
5676 5677 5678
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5679
					       sched_group_span(group));
5680

5681 5682 5683 5684
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5685
		avg_load = 0;
5686
		runnable_load = 0;
5687
		max_spare_cap = 0;
5688

5689
		for_each_cpu(i, sched_group_span(group)) {
5690
			/* Bias balancing toward CPUs of our domain */
5691 5692 5693 5694 5695
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5696 5697 5698
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5699 5700 5701 5702 5703

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5704 5705
		}

5706
		/* Adjust by relative CPU capacity of the group */
5707 5708 5709 5710
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5711 5712

		if (local_group) {
5713 5714
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5715 5716
			this_spare = max_spare_cap;
		} else {
5717 5718 5719
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5720
				 * so we can pick this new CPU:
5721 5722 5723 5724 5725 5726 5727 5728
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5729
				 * blocked load into account through avg_load:
5730 5731
				 */
				min_avg_load = avg_load;
5732 5733 5734 5735 5736 5737 5738
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5739 5740 5741
		}
	} while (group = group->next, group != sd->groups);

5742 5743 5744 5745 5746 5747
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5748 5749 5750 5751
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5752
	 */
5753 5754 5755
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5756
	if (this_spare > task_util(p) / 2 &&
5757
	    imbalance_scale*this_spare > 100*most_spare)
5758
		return NULL;
5759 5760

	if (most_spare > task_util(p) / 2)
5761 5762
		return most_spare_sg;

5763
skip_spare:
5764 5765 5766
	if (!idlest)
		return NULL;

5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5779
	if (min_runnable_load > (this_runnable_load + imbalance))
5780
		return NULL;
5781 5782 5783 5784 5785

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5786 5787 5788 5789
	return idlest;
}

/*
5790
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5791 5792
 */
static int
5793
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5794 5795
{
	unsigned long load, min_load = ULONG_MAX;
5796 5797 5798 5799
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5800 5801
	int i;

5802 5803
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5804
		return cpumask_first(sched_group_span(group));
5805

5806
	/* Traverse only the allowed CPUs */
5807
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5808
		if (available_idle_cpu(i)) {
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5830
		} else if (shallowest_idle_cpu == -1) {
5831
			load = weighted_cpuload(cpu_rq(i));
5832
			if (load < min_load) {
5833 5834 5835
				min_load = load;
				least_loaded_cpu = i;
			}
5836 5837 5838
		}
	}

5839
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5840
}
5841

5842 5843 5844
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5845
	int new_cpu = cpu;
5846

5847 5848 5849
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5850 5851 5852 5853 5854 5855 5856
	/*
	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
	 * last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5874
		if (new_cpu == cpu) {
5875
			/* Now try balancing at a lower domain level of 'cpu': */
5876 5877 5878 5879
			sd = sd->child;
			continue;
		}

5880
		/* Now try balancing at a lower domain level of 'new_cpu': */
5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5895
#ifdef CONFIG_SCHED_SMT
5896
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5925
void __update_idle_core(struct rq *rq)
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5938
		if (!available_idle_cpu(cpu))
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5955
	int core, cpu;
5956

P
Peter Zijlstra 已提交
5957 5958 5959
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5960 5961 5962
	if (!test_idle_cores(target, false))
		return -1;

5963
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5964

5965
	for_each_cpu_wrap(core, cpus, target) {
5966 5967 5968 5969
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
5970
			if (!available_idle_cpu(cpu))
5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5993 5994 5995
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5996
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5997
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5998
			continue;
5999
		if (available_idle_cpu(cpu))
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6024
 */
6025 6026
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6027
	struct sched_domain *this_sd;
6028
	u64 avg_cost, avg_idle;
6029 6030
	u64 time, cost;
	s64 delta;
6031
	int cpu, nr = INT_MAX;
6032

6033 6034 6035 6036
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6037 6038 6039 6040
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6041 6042 6043 6044
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6045 6046
		return -1;

6047 6048 6049 6050 6051 6052 6053 6054
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6055 6056
	time = local_clock();

6057
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6058 6059
		if (!--nr)
			return -1;
6060
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6061
			continue;
6062
		if (available_idle_cpu(cpu))
6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6076
 */
6077
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6078
{
6079
	struct sched_domain *sd;
6080
	int i, recent_used_cpu;
6081

6082
	if (available_idle_cpu(target))
6083
		return target;
6084 6085

	/*
6086
	 * If the previous CPU is cache affine and idle, don't be stupid:
6087
	 */
6088
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6089
		return prev;
6090

6091
	/* Check a recently used CPU as a potential idle candidate: */
6092 6093 6094 6095
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6096
	    available_idle_cpu(recent_used_cpu) &&
6097 6098 6099
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6100
		 * candidate for the next wake:
6101 6102 6103 6104 6105
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6106
	sd = rcu_dereference(per_cpu(sd_llc, target));
6107 6108
	if (!sd)
		return target;
6109

6110 6111 6112
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6113

6114 6115 6116 6117 6118 6119 6120
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6121

6122 6123
	return target;
}
6124

6125 6126 6127 6128 6129 6130 6131
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6142 6143 6144 6145 6146 6147 6148 6149
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6160 6161
 *
 * Return: the (estimated) utilization for the specified CPU
6162
 */
6163
static inline unsigned long cpu_util(int cpu)
6164
{
6165 6166 6167 6168 6169 6170 6171 6172
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6173

6174
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6175
}
6176

6177
/*
6178
 * cpu_util_wake: Compute CPU utilization with any contributions from
6179 6180
 * the waking task p removed.
 */
6181
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6182
{
6183 6184
	struct cfs_rq *cfs_rq;
	unsigned int util;
6185 6186

	/* Task has no contribution or is new */
6187
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6188 6189
		return cpu_util(cpu);

6190 6191 6192 6193 6194
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's blocked util from CPU's util */
	util -= min_t(unsigned int, util, task_util(p));
6195

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_wake = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_wake = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6231 6232
}

6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6251 6252 6253
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6254 6255 6256
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6257
/*
6258 6259 6260
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6261
 *
6262 6263
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6264
 *
6265
 * Returns the target CPU number.
6266 6267 6268
 *
 * preempt must be disabled.
 */
6269
static int
6270
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6271
{
6272
	struct sched_domain *tmp, *sd = NULL;
6273
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6274
	int new_cpu = prev_cpu;
6275
	int want_affine = 0;
6276
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6277

P
Peter Zijlstra 已提交
6278 6279
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6280
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6281
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6282
	}
6283

6284
	rcu_read_lock();
6285
	for_each_domain(cpu, tmp) {
6286
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6287
			break;
6288

6289
		/*
6290
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6291
		 * cpu is a valid SD_WAKE_AFFINE target.
6292
		 */
6293 6294
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6295 6296 6297 6298
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6299
			break;
6300
		}
6301

6302
		if (tmp->flags & sd_flag)
6303
			sd = tmp;
M
Mike Galbraith 已提交
6304 6305
		else if (!want_affine)
			break;
6306 6307
	}

6308 6309
	if (unlikely(sd)) {
		/* Slow path */
6310
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6311 6312 6313 6314 6315 6316 6317
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6318
	}
6319
	rcu_read_unlock();
6320

6321
	return new_cpu;
6322
}
6323

6324 6325
static void detach_entity_cfs_rq(struct sched_entity *se);

6326
/*
6327
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6328
 * cfs_rq_of(p) references at time of call are still valid and identify the
6329
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6330
 */
6331
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6332
{
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6378 6379 6380

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6381 6382

	/* We have migrated, no longer consider this task hot */
6383
	p->se.exec_start = 0;
6384 6385

	update_scan_period(p, new_cpu);
6386
}
6387 6388 6389 6390 6391

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6392 6393
#endif /* CONFIG_SMP */

6394
static unsigned long wakeup_gran(struct sched_entity *se)
6395 6396 6397 6398
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6399 6400
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6401 6402 6403 6404 6405 6406 6407 6408 6409
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6410
	 */
6411
	return calc_delta_fair(gran, se);
6412 6413
}

6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6436
	gran = wakeup_gran(se);
6437 6438 6439 6440 6441 6442
	if (vdiff > gran)
		return 1;

	return 0;
}

6443 6444
static void set_last_buddy(struct sched_entity *se)
{
6445 6446 6447
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6448 6449 6450
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6451
		cfs_rq_of(se)->last = se;
6452
	}
6453 6454 6455 6456
}

static void set_next_buddy(struct sched_entity *se)
{
6457 6458 6459
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6460 6461 6462
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6463
		cfs_rq_of(se)->next = se;
6464
	}
6465 6466
}

6467 6468
static void set_skip_buddy(struct sched_entity *se)
{
6469 6470
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6471 6472
}

6473 6474 6475
/*
 * Preempt the current task with a newly woken task if needed:
 */
6476
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6477 6478
{
	struct task_struct *curr = rq->curr;
6479
	struct sched_entity *se = &curr->se, *pse = &p->se;
6480
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6481
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6482
	int next_buddy_marked = 0;
6483

I
Ingo Molnar 已提交
6484 6485 6486
	if (unlikely(se == pse))
		return;

6487
	/*
6488
	 * This is possible from callers such as attach_tasks(), in which we
6489 6490 6491 6492 6493 6494 6495
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6496
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6497
		set_next_buddy(pse);
6498 6499
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6500

6501 6502 6503
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6504 6505 6506 6507 6508 6509
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6510 6511 6512 6513
	 */
	if (test_tsk_need_resched(curr))
		return;

6514 6515 6516 6517 6518
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6519
	/*
6520 6521
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6522
	 */
6523
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6524
		return;
6525

6526
	find_matching_se(&se, &pse);
6527
	update_curr(cfs_rq_of(se));
6528
	BUG_ON(!pse);
6529 6530 6531 6532 6533 6534 6535
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6536
		goto preempt;
6537
	}
6538

6539
	return;
6540

6541
preempt:
6542
	resched_curr(rq);
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6557 6558
}

6559
static struct task_struct *
6560
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6561 6562 6563
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6564
	struct task_struct *p;
6565
	int new_tasks;
6566

6567
again:
6568
	if (!cfs_rq->nr_running)
6569
		goto idle;
6570

6571
#ifdef CONFIG_FAIR_GROUP_SCHED
6572
	if (prev->sched_class != &fair_sched_class)
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6592 6593 6594 6595 6596
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6597

6598 6599 6600
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6601
			 * Therefore the nr_running test will indeed
6602 6603
			 * be correct.
			 */
6604 6605 6606 6607 6608 6609
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6610
				goto simple;
6611
			}
6612
		}
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6646
	goto done;
6647 6648
simple:
#endif
6649

6650
	put_prev_task(rq, prev);
6651

6652
	do {
6653
		se = pick_next_entity(cfs_rq, NULL);
6654
		set_next_entity(cfs_rq, se);
6655 6656 6657
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6658
	p = task_of(se);
6659

6660
done: __maybe_unused;
6661 6662 6663 6664 6665 6666 6667 6668 6669
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6670 6671
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6672 6673

	return p;
6674 6675

idle:
6676 6677
	new_tasks = idle_balance(rq, rf);

6678 6679 6680 6681 6682
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6683
	if (new_tasks < 0)
6684 6685
		return RETRY_TASK;

6686
	if (new_tasks > 0)
6687 6688 6689
		goto again;

	return NULL;
6690 6691 6692 6693 6694
}

/*
 * Account for a descheduled task:
 */
6695
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6696 6697 6698 6699 6700 6701
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6702
		put_prev_entity(cfs_rq, se);
6703 6704 6705
	}
}

6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6731 6732 6733 6734 6735
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6736
		rq_clock_skip_update(rq);
6737 6738 6739 6740 6741
	}

	set_skip_buddy(se);
}

6742 6743 6744 6745
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6746 6747
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6758
#ifdef CONFIG_SMP
6759
/**************************************************
P
Peter Zijlstra 已提交
6760 6761 6762 6763 6764
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6765
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6766 6767 6768 6769
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6770
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6771 6772 6773 6774
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6775
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6776
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6777 6778 6779 6780 6781 6782
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6783
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6784 6785 6786 6787 6788 6789
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6790
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6804
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6805
 * topology where each level pairs two lower groups (or better). This results
6806
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6807
 * tree to only the first of the previous level and we decrease the frequency
6808
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6809 6810 6811 6812 6813 6814 6815 6816
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6817
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6818 6819 6820 6821 6822 6823 6824
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6825
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6826 6827 6828
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6829
 *             log_2 n
P
Peter Zijlstra 已提交
6830 6831 6832 6833 6834 6835 6836
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6837
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6847
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6868
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6869 6870 6871 6872 6873 6874
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6875
 */
6876

6877 6878
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6879 6880
enum fbq_type { regular, remote, all };

6881
#define LBF_ALL_PINNED	0x01
6882
#define LBF_NEED_BREAK	0x02
6883 6884
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6885
#define LBF_NOHZ_STATS	0x10
6886
#define LBF_NOHZ_AGAIN	0x20
6887 6888 6889 6890 6891

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6892
	int			src_cpu;
6893 6894 6895 6896

	int			dst_cpu;
	struct rq		*dst_rq;

6897 6898
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6899
	enum cpu_idle_type	idle;
6900
	long			imbalance;
6901 6902 6903
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6904
	unsigned int		flags;
6905 6906 6907 6908

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6909 6910

	enum fbq_type		fbq_type;
6911
	struct list_head	tasks;
6912 6913
};

6914 6915 6916
/*
 * Is this task likely cache-hot:
 */
6917
static int task_hot(struct task_struct *p, struct lb_env *env)
6918 6919 6920
{
	s64 delta;

6921 6922
	lockdep_assert_held(&env->src_rq->lock);

6923 6924 6925 6926 6927 6928 6929 6930 6931
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6932
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6933 6934 6935 6936 6937 6938 6939 6940 6941
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6942
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6943 6944 6945 6946

	return delta < (s64)sysctl_sched_migration_cost;
}

6947
#ifdef CONFIG_NUMA_BALANCING
6948
/*
6949 6950 6951
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6952
 */
6953
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6954
{
6955
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6956 6957
	unsigned long src_weight, dst_weight;
	int src_nid, dst_nid, dist;
6958

6959
	if (!static_branch_likely(&sched_numa_balancing))
6960 6961
		return -1;

6962
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6963
		return -1;
6964 6965 6966 6967

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6968
	if (src_nid == dst_nid)
6969
		return -1;
6970

6971 6972 6973 6974 6975 6976 6977
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6978

6979 6980
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6981
		return 0;
6982

6983
	/* Leaving a core idle is often worse than degrading locality. */
6984
	if (env->idle == CPU_IDLE)
6985 6986
		return -1;

6987
	dist = node_distance(src_nid, dst_nid);
6988
	if (numa_group) {
6989 6990
		src_weight = group_weight(p, src_nid, dist);
		dst_weight = group_weight(p, dst_nid, dist);
6991
	} else {
6992 6993
		src_weight = task_weight(p, src_nid, dist);
		dst_weight = task_weight(p, dst_nid, dist);
6994 6995
	}

6996
	return dst_weight < src_weight;
6997 6998
}

6999
#else
7000
static inline int migrate_degrades_locality(struct task_struct *p,
7001 7002
					     struct lb_env *env)
{
7003
	return -1;
7004
}
7005 7006
#endif

7007 7008 7009 7010
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7011
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7012
{
7013
	int tsk_cache_hot;
7014 7015 7016

	lockdep_assert_held(&env->src_rq->lock);

7017 7018
	/*
	 * We do not migrate tasks that are:
7019
	 * 1) throttled_lb_pair, or
7020
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7021 7022
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7023
	 */
7024 7025 7026
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7027
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7028
		int cpu;
7029

7030
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7031

7032 7033
		env->flags |= LBF_SOME_PINNED;

7034
		/*
7035
		 * Remember if this task can be migrated to any other CPU in
7036 7037 7038
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7039 7040
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7041
		 */
7042
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7043 7044
			return 0;

7045
		/* Prevent to re-select dst_cpu via env's CPUs: */
7046
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7047
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7048
				env->flags |= LBF_DST_PINNED;
7049 7050 7051
				env->new_dst_cpu = cpu;
				break;
			}
7052
		}
7053

7054 7055
		return 0;
	}
7056 7057

	/* Record that we found atleast one task that could run on dst_cpu */
7058
	env->flags &= ~LBF_ALL_PINNED;
7059

7060
	if (task_running(env->src_rq, p)) {
7061
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7062 7063 7064 7065 7066
		return 0;
	}

	/*
	 * Aggressive migration if:
7067 7068 7069
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7070
	 */
7071 7072 7073
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7074

7075
	if (tsk_cache_hot <= 0 ||
7076
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7077
		if (tsk_cache_hot == 1) {
7078 7079
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7080
		}
7081 7082 7083
		return 1;
	}

7084
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7085
	return 0;
7086 7087
}

7088
/*
7089 7090 7091 7092 7093 7094 7095
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7096
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7097 7098 7099
	set_task_cpu(p, env->dst_cpu);
}

7100
/*
7101
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7102 7103
 * part of active balancing operations within "domain".
 *
7104
 * Returns a task if successful and NULL otherwise.
7105
 */
7106
static struct task_struct *detach_one_task(struct lb_env *env)
7107
{
7108
	struct task_struct *p;
7109

7110 7111
	lockdep_assert_held(&env->src_rq->lock);

7112 7113
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7114 7115
		if (!can_migrate_task(p, env))
			continue;
7116

7117
		detach_task(p, env);
7118

7119
		/*
7120
		 * Right now, this is only the second place where
7121
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7122
		 * so we can safely collect stats here rather than
7123
		 * inside detach_tasks().
7124
		 */
7125
		schedstat_inc(env->sd->lb_gained[env->idle]);
7126
		return p;
7127
	}
7128
	return NULL;
7129 7130
}

7131 7132
static const unsigned int sched_nr_migrate_break = 32;

7133
/*
7134 7135
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7136
 *
7137
 * Returns number of detached tasks if successful and 0 otherwise.
7138
 */
7139
static int detach_tasks(struct lb_env *env)
7140
{
7141 7142
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7143
	unsigned long load;
7144 7145 7146
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7147

7148
	if (env->imbalance <= 0)
7149
		return 0;
7150

7151
	while (!list_empty(tasks)) {
7152 7153 7154 7155 7156 7157 7158
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7159
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7160

7161 7162
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7163
		if (env->loop > env->loop_max)
7164
			break;
7165 7166

		/* take a breather every nr_migrate tasks */
7167
		if (env->loop > env->loop_break) {
7168
			env->loop_break += sched_nr_migrate_break;
7169
			env->flags |= LBF_NEED_BREAK;
7170
			break;
7171
		}
7172

7173
		if (!can_migrate_task(p, env))
7174 7175 7176
			goto next;

		load = task_h_load(p);
7177

7178
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7179 7180
			goto next;

7181
		if ((load / 2) > env->imbalance)
7182
			goto next;
7183

7184 7185 7186 7187
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7188
		env->imbalance -= load;
7189 7190

#ifdef CONFIG_PREEMPT
7191 7192
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7193
		 * kernels will stop after the first task is detached to minimize
7194 7195
		 * the critical section.
		 */
7196
		if (env->idle == CPU_NEWLY_IDLE)
7197
			break;
7198 7199
#endif

7200 7201 7202 7203
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7204
		if (env->imbalance <= 0)
7205
			break;
7206 7207 7208

		continue;
next:
7209
		list_move(&p->se.group_node, tasks);
7210
	}
7211

7212
	/*
7213 7214 7215
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7216
	 */
7217
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7218

7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7230
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7231
	p->on_rq = TASK_ON_RQ_QUEUED;
7232 7233 7234 7235 7236 7237 7238 7239 7240
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7241 7242 7243
	struct rq_flags rf;

	rq_lock(rq, &rf);
7244
	update_rq_clock(rq);
7245
	attach_task(rq, p);
7246
	rq_unlock(rq, &rf);
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7257
	struct rq_flags rf;
7258

7259
	rq_lock(env->dst_rq, &rf);
7260
	update_rq_clock(env->dst_rq);
7261 7262 7263 7264

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7265

7266 7267 7268
		attach_task(env->dst_rq, p);
	}

7269
	rq_unlock(env->dst_rq, &rf);
7270 7271
}

7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7283
static inline bool others_have_blocked(struct rq *rq)
7284 7285 7286 7287
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7288 7289 7290
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7291 7292 7293 7294 7295
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7296 7297 7298
	return false;
}

7299 7300
#ifdef CONFIG_FAIR_GROUP_SCHED

7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7312
	if (cfs_rq->avg.runnable_load_sum)
7313 7314 7315 7316 7317
		return false;

	return true;
}

7318
static void update_blocked_averages(int cpu)
7319 7320
{
	struct rq *rq = cpu_rq(cpu);
7321
	struct cfs_rq *cfs_rq, *pos;
7322
	const struct sched_class *curr_class;
7323
	struct rq_flags rf;
7324
	bool done = true;
7325

7326
	rq_lock_irqsave(rq, &rf);
7327
	update_rq_clock(rq);
7328

7329 7330 7331 7332
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7333
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7334 7335
		struct sched_entity *se;

7336 7337 7338
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7339

7340
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7341
			update_tg_load_avg(cfs_rq, 0);
7342

7343 7344 7345
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7346
			update_load_avg(cfs_rq_of(se), se, 0);
7347 7348 7349 7350 7351 7352 7353

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7354 7355 7356

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7357
			done = false;
7358
	}
7359 7360 7361 7362

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7363
	update_irq_load_avg(rq, 0);
7364
	/* Don't need periodic decay once load/util_avg are null */
7365
	if (others_have_blocked(rq))
7366
		done = false;
7367 7368 7369

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7370 7371
	if (done)
		rq->has_blocked_load = 0;
7372
#endif
7373
	rq_unlock_irqrestore(rq, &rf);
7374 7375
}

7376
/*
7377
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7378 7379 7380
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7381
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7382
{
7383 7384
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7385
	unsigned long now = jiffies;
7386
	unsigned long load;
7387

7388
	if (cfs_rq->last_h_load_update == now)
7389 7390
		return;

7391 7392 7393 7394 7395 7396 7397
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7398

7399
	if (!se) {
7400
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7401 7402 7403 7404 7405
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7406 7407
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7408 7409 7410 7411
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7412 7413
}

7414
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7415
{
7416
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7417

7418
	update_cfs_rq_h_load(cfs_rq);
7419
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7420
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7421 7422
}
#else
7423
static inline void update_blocked_averages(int cpu)
7424
{
7425 7426
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7427
	const struct sched_class *curr_class;
7428
	struct rq_flags rf;
7429

7430
	rq_lock_irqsave(rq, &rf);
7431
	update_rq_clock(rq);
7432
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7433 7434 7435 7436

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7437
	update_irq_load_avg(rq, 0);
7438 7439
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7440
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7441
		rq->has_blocked_load = 0;
7442
#endif
7443
	rq_unlock_irqrestore(rq, &rf);
7444 7445
}

7446
static unsigned long task_h_load(struct task_struct *p)
7447
{
7448
	return p->se.avg.load_avg;
7449
}
P
Peter Zijlstra 已提交
7450
#endif
7451 7452

/********** Helpers for find_busiest_group ************************/
7453 7454 7455 7456 7457 7458 7459

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7460 7461 7462 7463 7464 7465 7466
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7467
	unsigned long load_per_task;
7468
	unsigned long group_capacity;
7469
	unsigned long group_util; /* Total utilization of the group */
7470 7471 7472
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7473
	enum group_type group_type;
7474
	int group_no_capacity;
7475 7476 7477 7478
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7479 7480
};

J
Joonsoo Kim 已提交
7481 7482 7483 7484 7485 7486 7487
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7488
	unsigned long total_running;
J
Joonsoo Kim 已提交
7489
	unsigned long total_load;	/* Total load of all groups in sd */
7490
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7491 7492 7493
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7494
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7495 7496
};

7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7508
		.total_running = 0UL,
7509
		.total_load = 0UL,
7510
		.total_capacity = 0UL,
7511 7512
		.busiest_stat = {
			.avg_load = 0UL,
7513 7514
			.sum_nr_running = 0,
			.group_type = group_other,
7515 7516 7517 7518
		},
	};
}

7519 7520 7521
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7522
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7523 7524
 *
 * Return: The load index.
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7547
static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7548 7549
{
	struct rq *rq = cpu_rq(cpu);
7550
	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7551 7552
	unsigned long used, free;
	unsigned long irq;
7553

7554
	irq = cpu_util_irq(rq);
7555

7556 7557
	if (unlikely(irq >= max))
		return 1;
7558

7559 7560
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7561

7562 7563
	if (unlikely(used >= max))
		return 1;
7564

7565
	free = max - used;
7566 7567

	return scale_irq_capacity(free, irq, max);
7568 7569
}

7570
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7571
{
7572
	unsigned long capacity = scale_rt_capacity(sd, cpu);
7573 7574
	struct sched_group *sdg = sd->groups;

7575
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7576

7577 7578
	if (!capacity)
		capacity = 1;
7579

7580 7581
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7582
	sdg->sgc->min_capacity = capacity;
7583 7584
}

7585
void update_group_capacity(struct sched_domain *sd, int cpu)
7586 7587 7588
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7589
	unsigned long capacity, min_capacity;
7590 7591 7592 7593
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7594
	sdg->sgc->next_update = jiffies + interval;
7595 7596

	if (!child) {
7597
		update_cpu_capacity(sd, cpu);
7598 7599 7600
		return;
	}

7601
	capacity = 0;
7602
	min_capacity = ULONG_MAX;
7603

P
Peter Zijlstra 已提交
7604 7605 7606 7607 7608 7609
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7610
		for_each_cpu(cpu, sched_group_span(sdg)) {
7611
			struct sched_group_capacity *sgc;
7612
			struct rq *rq = cpu_rq(cpu);
7613

7614
			/*
7615
			 * build_sched_domains() -> init_sched_groups_capacity()
7616 7617 7618
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7619 7620
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7621
			 *
7622
			 * This avoids capacity from being 0 and
7623 7624 7625
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7626
				capacity += capacity_of(cpu);
7627 7628 7629
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7630
			}
7631

7632
			min_capacity = min(capacity, min_capacity);
7633
		}
P
Peter Zijlstra 已提交
7634 7635 7636 7637
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7638
		 */
P
Peter Zijlstra 已提交
7639 7640 7641

		group = child->groups;
		do {
7642 7643 7644 7645
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7646 7647 7648
			group = group->next;
		} while (group != child->groups);
	}
7649

7650
	sdg->sgc->capacity = capacity;
7651
	sdg->sgc->min_capacity = min_capacity;
7652 7653
}

7654
/*
7655 7656 7657
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7658 7659
 */
static inline int
7660
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7661
{
7662 7663
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7664 7665
}

7666 7667
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7668
 * groups is inadequate due to ->cpus_allowed constraints.
7669
 *
7670 7671
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7672 7673
 * Something like:
 *
7674 7675
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7676 7677 7678
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7679
 * cpu 3 and leave one of the CPUs in the second group unused.
7680 7681
 *
 * The current solution to this issue is detecting the skew in the first group
7682 7683
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7684 7685
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7686
 * update_sd_pick_busiest(). And calculate_imbalance() and
7687
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7688 7689 7690 7691 7692 7693 7694
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7695
static inline int sg_imbalanced(struct sched_group *group)
7696
{
7697
	return group->sgc->imbalance;
7698 7699
}

7700
/*
7701 7702 7703
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7704 7705
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7706 7707 7708 7709 7710
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7711
 */
7712 7713
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7714
{
7715 7716
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7717

7718
	if ((sgs->group_capacity * 100) >
7719
			(sgs->group_util * env->sd->imbalance_pct))
7720
		return true;
7721

7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7738

7739
	if ((sgs->group_capacity * 100) <
7740
			(sgs->group_util * env->sd->imbalance_pct))
7741
		return true;
7742

7743
	return false;
7744 7745
}

7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7757 7758 7759
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7760
{
7761
	if (sgs->group_no_capacity)
7762 7763 7764 7765 7766 7767 7768 7769
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7770
static bool update_nohz_stats(struct rq *rq, bool force)
7771 7772 7773 7774
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7775 7776 7777
	if (!rq->has_blocked_load)
		return false;

7778
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7779
		return false;
7780

7781
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7782
		return true;
7783 7784

	update_blocked_averages(cpu);
7785 7786 7787 7788

	return rq->has_blocked_load;
#else
	return false;
7789 7790 7791
#endif
}

7792 7793
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7794
 * @env: The load balancing environment.
7795 7796 7797 7798
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7799
 * @overload: Indicate more than one runnable task for any CPU.
7800
 */
7801 7802
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7803 7804
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7805
{
7806
	unsigned long load;
7807
	int i, nr_running;
7808

7809 7810
	memset(sgs, 0, sizeof(*sgs));

7811
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7812 7813
		struct rq *rq = cpu_rq(i);

7814
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7815
			env->flags |= LBF_NOHZ_AGAIN;
7816

7817
		/* Bias balancing toward CPUs of our domain: */
7818
		if (local_group)
7819
			load = target_load(i, load_idx);
7820
		else
7821 7822 7823
			load = source_load(i, load_idx);

		sgs->group_load += load;
7824
		sgs->group_util += cpu_util(i);
7825
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7826

7827 7828
		nr_running = rq->nr_running;
		if (nr_running > 1)
7829 7830
			*overload = true;

7831 7832 7833 7834
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7835
		sgs->sum_weighted_load += weighted_cpuload(rq);
7836 7837 7838 7839
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7840
			sgs->idle_cpus++;
7841 7842
	}

7843 7844
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7845
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7846

7847
	if (sgs->sum_nr_running)
7848
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7849

7850
	sgs->group_weight = group->group_weight;
7851

7852
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7853
	sgs->group_type = group_classify(group, sgs);
7854 7855
}

7856 7857
/**
 * update_sd_pick_busiest - return 1 on busiest group
7858
 * @env: The load balancing environment.
7859 7860
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7861
 * @sgs: sched_group statistics
7862 7863 7864
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7865 7866 7867
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7868
 */
7869
static bool update_sd_pick_busiest(struct lb_env *env,
7870 7871
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7872
				   struct sg_lb_stats *sgs)
7873
{
7874
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7875

7876
	if (sgs->group_type > busiest->group_type)
7877 7878
		return true;

7879 7880 7881 7882 7883 7884
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7899 7900
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7901 7902
		return true;

7903
	/* No ASYM_PACKING if target CPU is already busy */
7904 7905
	if (env->idle == CPU_NOT_IDLE)
		return true;
7906
	/*
T
Tim Chen 已提交
7907 7908 7909
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7910
	 */
T
Tim Chen 已提交
7911 7912
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7913 7914 7915
		if (!sds->busiest)
			return true;

7916
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7917 7918
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7919 7920 7921 7922 7923 7924
			return true;
	}

	return false;
}

7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7955
/**
7956
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7957
 * @env: The load balancing environment.
7958 7959
 * @sds: variable to hold the statistics for this sched_domain.
 */
7960
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7961
{
7962 7963
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7964
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7965
	struct sg_lb_stats tmp_sgs;
7966
	int load_idx, prefer_sibling = 0;
7967
	bool overload = false;
7968 7969 7970 7971

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7972
#ifdef CONFIG_NO_HZ_COMMON
7973
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7974 7975 7976
		env->flags |= LBF_NOHZ_STATS;
#endif

7977
	load_idx = get_sd_load_idx(env->sd, env->idle);
7978 7979

	do {
J
Joonsoo Kim 已提交
7980
		struct sg_lb_stats *sgs = &tmp_sgs;
7981 7982
		int local_group;

7983
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7984 7985
		if (local_group) {
			sds->local = sg;
7986
			sgs = local;
7987 7988

			if (env->idle != CPU_NEWLY_IDLE ||
7989 7990
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7991
		}
7992

7993 7994
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7995

7996 7997 7998
		if (local_group)
			goto next_group;

7999 8000
		/*
		 * In case the child domain prefers tasks go to siblings
8001
		 * first, lower the sg capacity so that we'll try
8002 8003
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
8004 8005 8006 8007
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
8008
		 */
8009
		if (prefer_sibling && sds->local &&
8010 8011
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8012
			sgs->group_no_capacity = 1;
8013
			sgs->group_type = group_classify(sg, sgs);
8014
		}
8015

8016
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8017
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8018
			sds->busiest_stat = *sgs;
8019 8020
		}

8021 8022
next_group:
		/* Now, start updating sd_lb_stats */
8023
		sds->total_running += sgs->sum_nr_running;
8024
		sds->total_load += sgs->group_load;
8025
		sds->total_capacity += sgs->group_capacity;
8026

8027
		sg = sg->next;
8028
	} while (sg != env->sd->groups);
8029

8030 8031 8032 8033 8034 8035 8036 8037 8038
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8039 8040
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8041 8042 8043 8044 8045 8046

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8047 8048 8049 8050
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8051
 *			sched domain.
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8066
 * Return: 1 when packing is required and a task should be moved to
8067
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8068
 *
8069
 * @env: The load balancing environment.
8070 8071
 * @sds: Statistics of the sched_domain which is to be packed
 */
8072
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8073 8074 8075
{
	int busiest_cpu;

8076
	if (!(env->sd->flags & SD_ASYM_PACKING))
8077 8078
		return 0;

8079 8080 8081
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8082 8083 8084
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8085 8086
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8087 8088
		return 0;

8089
	env->imbalance = DIV_ROUND_CLOSEST(
8090
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8091
		SCHED_CAPACITY_SCALE);
8092

8093
	return 1;
8094 8095 8096 8097 8098 8099
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8100
 * @env: The load balancing environment.
8101 8102
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8103 8104
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8105
{
8106
	unsigned long tmp, capa_now = 0, capa_move = 0;
8107
	unsigned int imbn = 2;
8108
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8109
	struct sg_lb_stats *local, *busiest;
8110

J
Joonsoo Kim 已提交
8111 8112
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8113

J
Joonsoo Kim 已提交
8114 8115 8116 8117
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8118

J
Joonsoo Kim 已提交
8119
	scaled_busy_load_per_task =
8120
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8121
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8122

8123 8124
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8125
		env->imbalance = busiest->load_per_task;
8126 8127 8128 8129 8130
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8131
	 * however we may be able to increase total CPU capacity used by
8132 8133 8134
	 * moving them.
	 */

8135
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8136
			min(busiest->load_per_task, busiest->avg_load);
8137
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8138
			min(local->load_per_task, local->avg_load);
8139
	capa_now /= SCHED_CAPACITY_SCALE;
8140 8141

	/* Amount of load we'd subtract */
8142
	if (busiest->avg_load > scaled_busy_load_per_task) {
8143
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8144
			    min(busiest->load_per_task,
8145
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8146
	}
8147 8148

	/* Amount of load we'd add */
8149
	if (busiest->avg_load * busiest->group_capacity <
8150
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8151 8152
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8153
	} else {
8154
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8155
		      local->group_capacity;
J
Joonsoo Kim 已提交
8156
	}
8157
	capa_move += local->group_capacity *
8158
		    min(local->load_per_task, local->avg_load + tmp);
8159
	capa_move /= SCHED_CAPACITY_SCALE;
8160 8161

	/* Move if we gain throughput */
8162
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8163
		env->imbalance = busiest->load_per_task;
8164 8165 8166 8167 8168
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8169
 * @env: load balance environment
8170 8171
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8172
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8173
{
8174
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8175 8176 8177 8178
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8179

8180
	if (busiest->group_type == group_imbalanced) {
8181 8182
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8183
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8184
		 */
J
Joonsoo Kim 已提交
8185 8186
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8187 8188
	}

8189
	/*
8190 8191 8192 8193
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8194
	 */
8195 8196
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8197 8198
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8199 8200
	}

8201
	/*
8202
	 * If there aren't any idle CPUs, avoid creating some.
8203 8204 8205
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8206
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8207
		if (load_above_capacity > busiest->group_capacity) {
8208
			load_above_capacity -= busiest->group_capacity;
8209
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8210 8211
			load_above_capacity /= busiest->group_capacity;
		} else
8212
			load_above_capacity = ~0UL;
8213 8214 8215
	}

	/*
8216
	 * We're trying to get all the CPUs to the average_load, so we don't
8217
	 * want to push ourselves above the average load, nor do we wish to
8218
	 * reduce the max loaded CPU below the average load. At the same time,
8219 8220
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8221
	 */
8222
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8223 8224

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8225
	env->imbalance = min(
8226 8227
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8228
	) / SCHED_CAPACITY_SCALE;
8229 8230 8231

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8232
	 * there is no guarantee that any tasks will be moved so we'll have
8233 8234 8235
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8236
	if (env->imbalance < busiest->load_per_task)
8237
		return fix_small_imbalance(env, sds);
8238
}
8239

8240 8241 8242 8243
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8244
 * if there is an imbalance.
8245 8246 8247 8248
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8249
 * @env: The load balancing environment.
8250
 *
8251
 * Return:	- The busiest group if imbalance exists.
8252
 */
J
Joonsoo Kim 已提交
8253
static struct sched_group *find_busiest_group(struct lb_env *env)
8254
{
J
Joonsoo Kim 已提交
8255
	struct sg_lb_stats *local, *busiest;
8256 8257
	struct sd_lb_stats sds;

8258
	init_sd_lb_stats(&sds);
8259 8260 8261 8262 8263

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8264
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8265 8266
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8267

8268
	/* ASYM feature bypasses nice load balance check */
8269
	if (check_asym_packing(env, &sds))
8270 8271
		return sds.busiest;

8272
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8273
	if (!sds.busiest || busiest->sum_nr_running == 0)
8274 8275
		goto out_balanced;

8276
	/* XXX broken for overlapping NUMA groups */
8277 8278
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8279

P
Peter Zijlstra 已提交
8280 8281
	/*
	 * If the busiest group is imbalanced the below checks don't
8282
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8283 8284
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8285
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8286 8287
		goto force_balance;

8288 8289 8290 8291 8292
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8293
	    busiest->group_no_capacity)
8294 8295
		goto force_balance;

8296
	/*
8297
	 * If the local group is busier than the selected busiest group
8298 8299
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8300
	if (local->avg_load >= busiest->avg_load)
8301 8302
		goto out_balanced;

8303 8304 8305 8306
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8307
	if (local->avg_load >= sds.avg_load)
8308 8309
		goto out_balanced;

8310
	if (env->idle == CPU_IDLE) {
8311
		/*
8312
		 * This CPU is idle. If the busiest group is not overloaded
8313
		 * and there is no imbalance between this and busiest group
8314
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8315 8316
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8317
		 */
8318 8319
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8320
			goto out_balanced;
8321 8322 8323 8324 8325
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8326 8327
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8328
			goto out_balanced;
8329
	}
8330

8331
force_balance:
8332
	/* Looks like there is an imbalance. Compute it */
8333
	calculate_imbalance(env, &sds);
8334
	return env->imbalance ? sds.busiest : NULL;
8335 8336

out_balanced:
8337
	env->imbalance = 0;
8338 8339 8340 8341
	return NULL;
}

/*
8342
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8343
 */
8344
static struct rq *find_busiest_queue(struct lb_env *env,
8345
				     struct sched_group *group)
8346 8347
{
	struct rq *busiest = NULL, *rq;
8348
	unsigned long busiest_load = 0, busiest_capacity = 1;
8349 8350
	int i;

8351
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8352
		unsigned long capacity, wl;
8353 8354 8355 8356
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8357

8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8380
		capacity = capacity_of(i);
8381

8382
		wl = weighted_cpuload(rq);
8383

8384 8385
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8386
		 * which is not scaled with the CPU capacity.
8387
		 */
8388 8389 8390

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8391 8392
			continue;

8393
		/*
8394 8395 8396
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8397
		 * potentially running at a lower capacity.
8398
		 *
8399
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8400
		 * multiplication to rid ourselves of the division works out
8401 8402
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8403
		 */
8404
		if (wl * busiest_capacity > busiest_load * capacity) {
8405
			busiest_load = wl;
8406
			busiest_capacity = capacity;
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8420
static int need_active_balance(struct lb_env *env)
8421
{
8422 8423 8424
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8425 8426 8427

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8428 8429
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8430
		 */
T
Tim Chen 已提交
8431 8432
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8433
			return 1;
8434 8435
	}

8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8449 8450 8451
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8452 8453
static int active_load_balance_cpu_stop(void *data);

8454 8455 8456 8457 8458
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8459 8460 8461 8462 8463 8464 8465
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8466
	/*
8467
	 * In the newly idle case, we will allow all the CPUs
8468 8469 8470 8471 8472
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8473
	/* Try to find first idle CPU */
8474
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8475
		if (!idle_cpu(cpu))
8476 8477 8478 8479 8480 8481 8482 8483 8484 8485
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8486
	 * First idle CPU or the first CPU(busiest) in this sched group
8487 8488
	 * is eligible for doing load balancing at this and above domains.
	 */
8489
	return balance_cpu == env->dst_cpu;
8490 8491
}

8492 8493 8494 8495 8496 8497
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8498
			int *continue_balancing)
8499
{
8500
	int ld_moved, cur_ld_moved, active_balance = 0;
8501
	struct sched_domain *sd_parent = sd->parent;
8502 8503
	struct sched_group *group;
	struct rq *busiest;
8504
	struct rq_flags rf;
8505
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8506

8507 8508
	struct lb_env env = {
		.sd		= sd,
8509 8510
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8511
		.dst_grpmask    = sched_group_span(sd->groups),
8512
		.idle		= idle,
8513
		.loop_break	= sched_nr_migrate_break,
8514
		.cpus		= cpus,
8515
		.fbq_type	= all,
8516
		.tasks		= LIST_HEAD_INIT(env.tasks),
8517 8518
	};

8519
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8520

8521
	schedstat_inc(sd->lb_count[idle]);
8522 8523

redo:
8524 8525
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8526
		goto out_balanced;
8527
	}
8528

8529
	group = find_busiest_group(&env);
8530
	if (!group) {
8531
		schedstat_inc(sd->lb_nobusyg[idle]);
8532 8533 8534
		goto out_balanced;
	}

8535
	busiest = find_busiest_queue(&env, group);
8536
	if (!busiest) {
8537
		schedstat_inc(sd->lb_nobusyq[idle]);
8538 8539 8540
		goto out_balanced;
	}

8541
	BUG_ON(busiest == env.dst_rq);
8542

8543
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8544

8545 8546 8547
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8548 8549 8550 8551 8552 8553 8554 8555
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8556
		env.flags |= LBF_ALL_PINNED;
8557
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8558

8559
more_balance:
8560
		rq_lock_irqsave(busiest, &rf);
8561
		update_rq_clock(busiest);
8562 8563 8564 8565 8566

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8567
		cur_ld_moved = detach_tasks(&env);
8568 8569

		/*
8570 8571 8572 8573 8574
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8575
		 */
8576

8577
		rq_unlock(busiest, &rf);
8578 8579 8580 8581 8582 8583

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8584
		local_irq_restore(rf.flags);
8585

8586 8587 8588 8589 8590
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8591 8592 8593 8594
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8595
		 * iterate on same src_cpu is dependent on number of CPUs in our
8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8610
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8611

8612
			/* Prevent to re-select dst_cpu via env's CPUs */
8613 8614
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8615
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8616
			env.dst_cpu	 = env.new_dst_cpu;
8617
			env.flags	&= ~LBF_DST_PINNED;
8618 8619
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8620

8621 8622 8623 8624 8625 8626
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8627

8628 8629 8630 8631
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8632
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8633

8634
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8635 8636 8637
				*group_imbalance = 1;
		}

8638
		/* All tasks on this runqueue were pinned by CPU affinity */
8639
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8640
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8641 8642 8643 8644 8645 8646 8647 8648 8649
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8650 8651
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8652
				goto redo;
8653
			}
8654
			goto out_all_pinned;
8655 8656 8657 8658
		}
	}

	if (!ld_moved) {
8659
		schedstat_inc(sd->lb_failed[idle]);
8660 8661 8662 8663 8664 8665 8666 8667
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8668

8669
		if (need_active_balance(&env)) {
8670 8671
			unsigned long flags;

8672 8673
			raw_spin_lock_irqsave(&busiest->lock, flags);

8674 8675 8676 8677
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8678
			 */
8679
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8680 8681
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8682
				env.flags |= LBF_ALL_PINNED;
8683 8684 8685
				goto out_one_pinned;
			}

8686 8687 8688 8689 8690
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8691 8692 8693 8694 8695 8696
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8697

8698
			if (active_balance) {
8699 8700 8701
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8702
			}
8703

8704
			/* We've kicked active balancing, force task migration. */
8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8718
		 * detach_tasks).
8719 8720 8721 8722 8723 8724 8725 8726
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8744
	schedstat_inc(sd->lb_balanced[idle]);
8745 8746 8747 8748 8749

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8750
	if (((env.flags & LBF_ALL_PINNED) &&
8751
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8752 8753 8754
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8755
	ld_moved = 0;
8756 8757 8758 8759
out:
	return ld_moved;
}

8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8776
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8777 8778 8779
{
	unsigned long interval, next;

8780 8781
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8782 8783 8784 8785 8786 8787
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8788
/*
8789
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8790 8791 8792
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8793
 */
8794
static int active_load_balance_cpu_stop(void *data)
8795
{
8796 8797
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8798
	int target_cpu = busiest_rq->push_cpu;
8799
	struct rq *target_rq = cpu_rq(target_cpu);
8800
	struct sched_domain *sd;
8801
	struct task_struct *p = NULL;
8802
	struct rq_flags rf;
8803

8804
	rq_lock_irq(busiest_rq, &rf);
8805 8806 8807 8808 8809 8810 8811
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8812

8813
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8814 8815 8816
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8817 8818 8819

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8820
		goto out_unlock;
8821 8822 8823 8824

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8825
	 * Bjorn Helgaas on a 128-CPU setup.
8826 8827 8828 8829
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8830
	rcu_read_lock();
8831 8832 8833 8834 8835 8836 8837
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8838 8839
		struct lb_env env = {
			.sd		= sd,
8840 8841 8842 8843
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8844
			.idle		= CPU_IDLE,
8845 8846 8847 8848 8849 8850 8851
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8852 8853
		};

8854
		schedstat_inc(sd->alb_count);
8855
		update_rq_clock(busiest_rq);
8856

8857
		p = detach_one_task(&env);
8858
		if (p) {
8859
			schedstat_inc(sd->alb_pushed);
8860 8861 8862
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8863
			schedstat_inc(sd->alb_failed);
8864
		}
8865
	}
8866
	rcu_read_unlock();
8867 8868
out_unlock:
	busiest_rq->active_balance = 0;
8869
	rq_unlock(busiest_rq, &rf);
8870 8871 8872 8873 8874 8875

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8876
	return 0;
8877 8878
}

8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

8997 8998 8999 9000 9001
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

9002
#ifdef CONFIG_NO_HZ_COMMON
9003 9004 9005 9006 9007 9008
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
9009

9010
static inline int find_new_ilb(void)
9011
{
9012
	int ilb = cpumask_first(nohz.idle_cpus_mask);
9013

9014 9015 9016 9017
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
9018 9019
}

9020 9021 9022 9023 9024
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
9025
static void kick_ilb(unsigned int flags)
9026 9027 9028 9029 9030
{
	int ilb_cpu;

	nohz.next_balance++;

9031
	ilb_cpu = find_new_ilb();
9032

9033 9034
	if (ilb_cpu >= nr_cpu_ids)
		return;
9035

9036
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9037
	if (flags & NOHZ_KICK_MASK)
9038
		return;
9039

9040 9041
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9042
	 * This way we generate a sched IPI on the target CPU which
9043 9044 9045 9046
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9066
	unsigned int flags = 0;
9067 9068 9069 9070 9071 9072 9073 9074

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9075
	nohz_balance_exit_idle(rq);
9076 9077 9078 9079 9080 9081 9082 9083

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9084 9085
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9086 9087
		flags = NOHZ_STATS_KICK;

9088
	if (time_before(now, nohz.next_balance))
9089
		goto out;
9090 9091

	if (rq->nr_running >= 2) {
9092
		flags = NOHZ_KICK_MASK;
9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9105
			flags = NOHZ_KICK_MASK;
9106 9107 9108 9109 9110 9111 9112 9113 9114
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9115
			flags = NOHZ_KICK_MASK;
9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9128
				flags = NOHZ_KICK_MASK;
9129 9130 9131 9132 9133 9134 9135
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9136 9137
	if (flags)
		kick_ilb(flags);
9138 9139
}

9140
static void set_cpu_sd_state_busy(int cpu)
9141
{
9142
	struct sched_domain *sd;
9143

9144 9145
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9146

9147 9148 9149 9150 9151 9152 9153
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9154 9155
}

9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9171 9172 9173 9174
{
	struct sched_domain *sd;

	rcu_read_lock();
9175
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9176 9177 9178 9179 9180

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9181
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9182
unlock:
9183 9184 9185
	rcu_read_unlock();
}

9186
/*
9187
 * This routine will record that the CPU is going idle with tick stopped.
9188
 * This info will be used in performing idle load balancing in the future.
9189
 */
9190
void nohz_balance_enter_idle(int cpu)
9191
{
9192 9193 9194 9195
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9196
	/* If this CPU is going down, then nothing needs to be done: */
9197 9198 9199
	if (!cpu_active(cpu))
		return;

9200
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9201
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9202 9203
		return;

9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9217
	if (rq->nohz_tick_stopped)
9218
		goto out;
9219

9220
	/* If we're a completely isolated CPU, we don't play: */
9221
	if (on_null_domain(rq))
9222 9223
		return;

9224 9225
	rq->nohz_tick_stopped = 1;

9226 9227
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9228

9229 9230 9231 9232 9233 9234 9235
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9236
	set_cpu_sd_state_idle(cpu);
9237 9238 9239 9240 9241 9242 9243

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9244 9245 9246
}

/*
9247 9248 9249 9250 9251
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9252
 */
9253 9254
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9255
{
9256
	/* Earliest time when we have to do rebalance again */
9257 9258
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9259
	bool has_blocked_load = false;
9260
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9261 9262
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9263
	int ret = false;
P
Peter Zijlstra 已提交
9264
	struct rq *rq;
9265

P
Peter Zijlstra 已提交
9266
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9267

9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9284
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9285
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9286 9287 9288
			continue;

		/*
9289 9290
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9291 9292
		 * balancing owner will pick it up.
		 */
9293 9294 9295 9296
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9297

V
Vincent Guittot 已提交
9298 9299
		rq = cpu_rq(balance_cpu);

9300
		has_blocked_load |= update_nohz_stats(rq, true);
9301

9302 9303 9304 9305 9306
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9307 9308
			struct rq_flags rf;

9309
			rq_lock_irqsave(rq, &rf);
9310
			update_rq_clock(rq);
9311
			cpu_load_update_idle(rq);
9312
			rq_unlock_irqrestore(rq, &rf);
9313

P
Peter Zijlstra 已提交
9314 9315
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9316
		}
9317

9318 9319 9320 9321
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9322
	}
9323

9324 9325 9326 9327 9328 9329
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9330 9331 9332
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9333 9334 9335
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9336 9337 9338
	/* The full idle balance loop has been done */
	ret = true;

9339 9340 9341 9342
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9343

9344 9345 9346 9347 9348 9349 9350
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9351

9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9381
	return true;
9382
}
9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9416 9417 9418
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9419
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9420 9421 9422
{
	return false;
}
9423 9424

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9425
#endif /* CONFIG_NO_HZ_COMMON */
9426

P
Peter Zijlstra 已提交
9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9461

P
Peter Zijlstra 已提交
9462 9463 9464 9465 9466 9467
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9468 9469
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9519
out:
P
Peter Zijlstra 已提交
9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9544 9545 9546 9547
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9548
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9549
{
9550
	struct rq *this_rq = this_rq();
9551
	enum cpu_idle_type idle = this_rq->idle_balance ?
9552 9553 9554
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9555 9556
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9557
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9558
	 * give the idle CPUs a chance to load balance. Else we may
9559 9560
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9561
	 */
P
Peter Zijlstra 已提交
9562 9563 9564 9565 9566
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9567
	rebalance_domains(this_rq, idle);
9568 9569 9570 9571 9572
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9573
void trigger_load_balance(struct rq *rq)
9574 9575
{
	/* Don't need to rebalance while attached to NULL domain */
9576 9577 9578 9579
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9580
		raise_softirq(SCHED_SOFTIRQ);
9581 9582

	nohz_balancer_kick(rq);
9583 9584
}

9585 9586 9587
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9588 9589

	update_runtime_enabled(rq);
9590 9591 9592 9593 9594
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9595 9596 9597

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9598 9599
}

9600
#endif /* CONFIG_SMP */
9601

9602
/*
9603 9604 9605 9606 9607 9608
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9609
 */
P
Peter Zijlstra 已提交
9610
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9611 9612 9613 9614 9615 9616
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9617
		entity_tick(cfs_rq, se, queued);
9618
	}
9619

9620
	if (static_branch_unlikely(&sched_numa_balancing))
9621
		task_tick_numa(rq, curr);
9622 9623 9624
}

/*
P
Peter Zijlstra 已提交
9625 9626 9627
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9628
 */
P
Peter Zijlstra 已提交
9629
static void task_fork_fair(struct task_struct *p)
9630
{
9631 9632
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9633
	struct rq *rq = this_rq();
9634
	struct rq_flags rf;
9635

9636
	rq_lock(rq, &rf);
9637 9638
	update_rq_clock(rq);

9639 9640
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9641 9642
	if (curr) {
		update_curr(cfs_rq);
9643
		se->vruntime = curr->vruntime;
9644
	}
9645
	place_entity(cfs_rq, se, 1);
9646

P
Peter Zijlstra 已提交
9647
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9648
		/*
9649 9650 9651
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9652
		swap(curr->vruntime, se->vruntime);
9653
		resched_curr(rq);
9654
	}
9655

9656
	se->vruntime -= cfs_rq->min_vruntime;
9657
	rq_unlock(rq, &rf);
9658 9659
}

9660 9661 9662 9663
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9664 9665
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9666
{
9667
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9668 9669
		return;

9670 9671 9672 9673 9674
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9675
	if (rq->curr == p) {
9676
		if (p->prio > oldprio)
9677
			resched_curr(rq);
9678
	} else
9679
		check_preempt_curr(rq, p, 0);
9680 9681
}

9682
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9683 9684 9685 9686
{
	struct sched_entity *se = &p->se;

	/*
9687 9688 9689 9690 9691 9692 9693 9694 9695 9696
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9697
	 *
9698 9699 9700 9701
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9702
	 */
9703 9704
	if (!se->sum_exec_runtime ||
	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9705 9706 9707 9708 9709
		return true;

	return false;
}

9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9728
		update_load_avg(cfs_rq, se, UPDATE_TG);
9729 9730 9731 9732 9733 9734
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9735
static void detach_entity_cfs_rq(struct sched_entity *se)
9736 9737 9738
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9739
	/* Catch up with the cfs_rq and remove our load when we leave */
9740
	update_load_avg(cfs_rq, se, 0);
9741
	detach_entity_load_avg(cfs_rq, se);
9742
	update_tg_load_avg(cfs_rq, false);
9743
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9744 9745
}

9746
static void attach_entity_cfs_rq(struct sched_entity *se)
9747
{
9748
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9749 9750

#ifdef CONFIG_FAIR_GROUP_SCHED
9751 9752 9753 9754 9755 9756
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9757

9758
	/* Synchronize entity with its cfs_rq */
9759
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9760
	attach_entity_load_avg(cfs_rq, se, 0);
9761
	update_tg_load_avg(cfs_rq, false);
9762
	propagate_entity_cfs_rq(se);
9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9788 9789 9790 9791

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9792

9793 9794 9795 9796 9797 9798 9799 9800
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9801

9802
	if (task_on_rq_queued(p)) {
9803
		/*
9804 9805 9806
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9807
		 */
9808 9809 9810 9811
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9812
	}
9813 9814
}

9815 9816 9817 9818 9819 9820 9821 9822 9823
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9824 9825 9826 9827 9828 9829 9830
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9831 9832
}

9833 9834
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9835
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9836 9837 9838 9839
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9840
#ifdef CONFIG_SMP
9841
	raw_spin_lock_init(&cfs_rq->removed.lock);
9842
#endif
9843 9844
}

P
Peter Zijlstra 已提交
9845
#ifdef CONFIG_FAIR_GROUP_SCHED
9846 9847 9848 9849 9850 9851 9852 9853
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9854
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9855
{
9856
	detach_task_cfs_rq(p);
9857
	set_task_rq(p, task_cpu(p));
9858 9859 9860 9861 9862

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9863
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9864
}
9865

9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9879 9880 9881 9882 9883 9884 9885 9886 9887
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9888
		if (tg->se)
9889 9890 9891 9892 9893 9894 9895 9896 9897 9898
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9899
	struct cfs_rq *cfs_rq;
9900 9901
	int i;

K
Kees Cook 已提交
9902
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9903 9904
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9905
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9926
		init_entity_runnable_average(se);
9927 9928 9929 9930 9931 9932 9933 9934 9935 9936
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9948
		update_rq_clock(rq);
9949
		attach_entity_cfs_rq(se);
9950
		sync_throttle(tg, i);
9951 9952 9953 9954
		raw_spin_unlock_irq(&rq->lock);
	}
}

9955
void unregister_fair_sched_group(struct task_group *tg)
9956 9957
{
	unsigned long flags;
9958 9959
	struct rq *rq;
	int cpu;
9960

9961 9962 9963
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9964

9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9997
	if (!parent) {
9998
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9999 10000
		se->depth = 0;
	} else {
10001
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
10002 10003
		se->depth = parent->depth + 1;
	}
10004 10005

	se->my_q = cfs_rq;
10006 10007
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
10032 10033
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10034 10035

		/* Propagate contribution to hierarchy */
10036
		rq_lock_irqsave(rq, &rf);
10037
		update_rq_clock(rq);
10038
		for_each_sched_entity(se) {
10039
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10040
			update_cfs_group(se);
10041
		}
10042
		rq_unlock_irqrestore(rq, &rf);
10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10058 10059
void online_fair_sched_group(struct task_group *tg) { }

10060
void unregister_fair_sched_group(struct task_group *tg) { }
10061 10062 10063

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10064

10065
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10066 10067 10068 10069 10070 10071 10072 10073 10074
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10075
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10076 10077 10078 10079

	return rr_interval;
}

10080 10081 10082
/*
 * All the scheduling class methods:
 */
10083
const struct sched_class fair_sched_class = {
10084
	.next			= &idle_sched_class,
10085 10086 10087
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10088
	.yield_to_task		= yield_to_task_fair,
10089

I
Ingo Molnar 已提交
10090
	.check_preempt_curr	= check_preempt_wakeup,
10091 10092 10093 10094

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10095
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10096
	.select_task_rq		= select_task_rq_fair,
10097
	.migrate_task_rq	= migrate_task_rq_fair,
10098

10099 10100
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10101

10102
	.task_dead		= task_dead_fair,
10103
	.set_cpus_allowed	= set_cpus_allowed_common,
10104
#endif
10105

10106
	.set_curr_task          = set_curr_task_fair,
10107
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10108
	.task_fork		= task_fork_fair,
10109 10110

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10111
	.switched_from		= switched_from_fair,
10112
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10113

10114 10115
	.get_rr_interval	= get_rr_interval_fair,

10116 10117
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10118
#ifdef CONFIG_FAIR_GROUP_SCHED
10119
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10120
#endif
10121 10122 10123
};

#ifdef CONFIG_SCHED_DEBUG
10124
void print_cfs_stats(struct seq_file *m, int cpu)
10125
{
10126
	struct cfs_rq *cfs_rq, *pos;
10127

10128
	rcu_read_lock();
10129
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10130
		print_cfs_rq(m, cpu, cfs_rq);
10131
	rcu_read_unlock();
10132
}
10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10154 10155 10156 10157 10158 10159

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10160
#ifdef CONFIG_NO_HZ_COMMON
10161
	nohz.next_balance = jiffies;
10162
	nohz.next_blocked = jiffies;
10163 10164 10165 10166 10167
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}