fair.c 248.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371 372 373 374 375
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
376
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
377 378 379
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
380
		return se->cfs_rq;
P
Peter Zijlstra 已提交
381

P
Peter Zijlstra 已提交
382
	return NULL;
P
Peter Zijlstra 已提交
383 384 385 386 387 388 389
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

390 391 392 393 394 395 396 397 398 399 400 401 402
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
403 404
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

422 423 424 425 426 427
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
428

429 430 431
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
432 433 434 435
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
436 437
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
438

P
Peter Zijlstra 已提交
439
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440
{
P
Peter Zijlstra 已提交
441
	return &task_rq(p)->cfs;
442 443
}

P
Peter Zijlstra 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

458 459 460 461 462 463 464 465
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

474 475 476 477 478
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
479 480
#endif	/* CONFIG_FAIR_GROUP_SCHED */

481
static __always_inline
482
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 484 485 486 487

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

488
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489
{
490
	s64 delta = (s64)(vruntime - max_vruntime);
491
	if (delta > 0)
492
		max_vruntime = vruntime;
493

494
	return max_vruntime;
495 496
}

497
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

506 507 508 509 510 511
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

512 513
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
514 515
	struct sched_entity *curr = cfs_rq->curr;

516 517
	u64 vruntime = cfs_rq->min_vruntime;

518 519 520 521 522 523
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
524 525 526 527 528 529

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

530
		if (!curr)
531 532 533 534 535
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

536
	/* ensure we never gain time by being placed backwards. */
537
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 539 540 541
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
542 543
}

544 545 546
/*
 * Enqueue an entity into the rb-tree:
 */
547
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
564
		if (entity_before(se, entry)) {
565 566 567 568 569 570 571 572 573 574 575
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
576
	if (leftmost)
I
Ingo Molnar 已提交
577
		cfs_rq->rb_leftmost = &se->run_node;
578 579 580 581 582

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

583
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584
{
P
Peter Zijlstra 已提交
585 586 587 588 589 590
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
591

592 593 594
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

595
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596
{
597 598 599 600 601 602
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
603 604
}

605 606 607 608 609 610 611 612 613 614 615
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
616
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617
{
618
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619

620 621
	if (!last)
		return NULL;
622 623

	return rb_entry(last, struct sched_entity, run_node);
624 625
}

626 627 628 629
/**************************************************************
 * Scheduling class statistics methods:
 */

630
int sched_proc_update_handler(struct ctl_table *table, int write,
631
		void __user *buffer, size_t *lenp,
632 633
		loff_t *ppos)
{
634
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635
	unsigned int factor = get_update_sysctl_factor();
636 637 638 639 640 641 642

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

643 644 645 646 647 648 649
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

650 651 652
	return 0;
}
#endif
653

654
/*
655
 * delta /= w
656
 */
657
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658
{
659
	if (unlikely(se->load.weight != NICE_0_LOAD))
660
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 662 663 664

	return delta;
}

665 666 667
/*
 * The idea is to set a period in which each task runs once.
 *
668
 * When there are too many tasks (sched_nr_latency) we have to stretch
669 670 671 672
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
673 674
static u64 __sched_period(unsigned long nr_running)
{
675 676 677 678
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
679 680
}

681 682 683 684
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
685
 * s = p*P[w/rw]
686
 */
P
Peter Zijlstra 已提交
687
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688
{
M
Mike Galbraith 已提交
689
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690

M
Mike Galbraith 已提交
691
	for_each_sched_entity(se) {
L
Lin Ming 已提交
692
		struct load_weight *load;
693
		struct load_weight lw;
L
Lin Ming 已提交
694 695 696

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
697

M
Mike Galbraith 已提交
698
		if (unlikely(!se->on_rq)) {
699
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
700 701 702 703

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
704
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
705 706
	}
	return slice;
707 708
}

709
/*
A
Andrei Epure 已提交
710
 * We calculate the vruntime slice of a to-be-inserted task.
711
 *
712
 * vs = s/w
713
 */
714
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
715
{
716
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 718
}

719
#ifdef CONFIG_SMP
720
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
721 722
static unsigned long task_h_load(struct task_struct *p);

723 724
/*
 * We choose a half-life close to 1 scheduling period.
725 726
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
727 728 729
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
730

731 732
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
733
{
734
	struct sched_avg *sa = &se->avg;
735

736 737 738 739 740 741 742
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
743 744 745 746 747 748 749 750
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
751
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
752 753 754 755 756
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
757
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
758
}
759

760
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
761
static void attach_entity_cfs_rq(struct sched_entity *se);
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
792
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
793 794 795 796 797 798 799 800 801 802 803 804 805

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
806 807 808 809 810 811 812 813 814 815 816 817 818 819

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
820
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
821 822 823 824
			return;
		}
	}

825
	attach_entity_cfs_rq(se);
826 827
}

828
#else /* !CONFIG_SMP */
829
void init_entity_runnable_average(struct sched_entity *se)
830 831
{
}
832 833 834
void post_init_entity_util_avg(struct sched_entity *se)
{
}
835 836 837
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
838
#endif /* CONFIG_SMP */
839

840
/*
841
 * Update the current task's runtime statistics.
842
 */
843
static void update_curr(struct cfs_rq *cfs_rq)
844
{
845
	struct sched_entity *curr = cfs_rq->curr;
846
	u64 now = rq_clock_task(rq_of(cfs_rq));
847
	u64 delta_exec;
848 849 850 851

	if (unlikely(!curr))
		return;

852 853
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
854
		return;
855

I
Ingo Molnar 已提交
856
	curr->exec_start = now;
857

858 859 860 861
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
862
	schedstat_add(cfs_rq->exec_clock, delta_exec);
863 864 865 866

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

867 868 869
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

870
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
871
		cpuacct_charge(curtask, delta_exec);
872
		account_group_exec_runtime(curtask, delta_exec);
873
	}
874 875

	account_cfs_rq_runtime(cfs_rq, delta_exec);
876 877
}

878 879 880 881 882
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

883
static inline void
884
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
885
{
886 887 888 889 890 891 892
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
893 894

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
895 896
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
897

898
	schedstat_set(se->statistics.wait_start, wait_start);
899 900
}

901
static inline void
902 903 904
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
905 906
	u64 delta;

907 908 909 910
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
911 912 913 914 915 916 917 918 919

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
920
			schedstat_set(se->statistics.wait_start, delta);
921 922 923 924 925
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

926 927 928 929 930
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
931 932
}

933
static inline void
934 935 936
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
937 938 939 940 941 942 943
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
944 945 946 947

	if (entity_is_task(se))
		tsk = task_of(se);

948 949
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
950 951 952 953

		if ((s64)delta < 0)
			delta = 0;

954 955
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
956

957 958
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
959 960 961 962 963 964

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
965 966
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
967 968 969 970

		if ((s64)delta < 0)
			delta = 0;

971 972
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
973

974 975
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
976 977 978

		if (tsk) {
			if (tsk->in_iowait) {
979 980
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
999 1000
}

1001 1002 1003
/*
 * Task is being enqueued - update stats:
 */
1004
static inline void
1005
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1006
{
1007 1008 1009
	if (!schedstat_enabled())
		return;

1010 1011 1012 1013
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1014
	if (se != cfs_rq->curr)
1015
		update_stats_wait_start(cfs_rq, se);
1016 1017 1018

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1019 1020 1021
}

static inline void
1022
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1023
{
1024 1025 1026 1027

	if (!schedstat_enabled())
		return;

1028 1029 1030 1031
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1032
	if (se != cfs_rq->curr)
1033
		update_stats_wait_end(cfs_rq, se);
1034

1035 1036
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1037

1038 1039 1040 1041 1042 1043
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1044 1045 1046
	}
}

1047 1048 1049 1050
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1051
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1052 1053 1054 1055
{
	/*
	 * We are starting a new run period:
	 */
1056
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1057 1058 1059 1060 1061 1062
}

/**************************************************
 * Scheduling class queueing methods:
 */

1063 1064
#ifdef CONFIG_NUMA_BALANCING
/*
1065 1066 1067
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1068
 */
1069 1070
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1071 1072 1073

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1074

1075 1076 1077
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1102
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1103 1104 1105
	unsigned int scan, floor;
	unsigned int windows = 1;

1106 1107
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1136 1137 1138 1139 1140
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1141
	pid_t gid;
1142
	int active_nodes;
1143 1144

	struct rcu_head rcu;
1145
	unsigned long total_faults;
1146
	unsigned long max_faults_cpu;
1147 1148 1149 1150 1151
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1152
	unsigned long *faults_cpu;
1153
	unsigned long faults[0];
1154 1155
};

1156 1157 1158 1159 1160 1161 1162 1163 1164
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1165 1166 1167 1168 1169
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1170 1171 1172 1173 1174 1175 1176
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1177
{
1178
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1179 1180 1181 1182
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1183
	if (!p->numa_faults)
1184 1185
		return 0;

1186 1187
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1188 1189
}

1190 1191 1192 1193 1194
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1195 1196
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1197 1198
}

1199 1200
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1201 1202
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1282 1283 1284 1285 1286 1287
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1288 1289
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1290
{
1291
	unsigned long faults, total_faults;
1292

1293
	if (!p->numa_faults)
1294 1295 1296 1297 1298 1299 1300
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1301
	faults = task_faults(p, nid);
1302 1303
	faults += score_nearby_nodes(p, nid, dist, true);

1304
	return 1000 * faults / total_faults;
1305 1306
}

1307 1308
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1309
{
1310 1311 1312 1313 1314 1315 1316 1317
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1318 1319
		return 0;

1320
	faults = group_faults(p, nid);
1321 1322
	faults += score_nearby_nodes(p, nid, dist, false);

1323
	return 1000 * faults / total_faults;
1324 1325
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1366 1367
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1368
	 */
1369 1370
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1371 1372 1373
		return true;

	/*
1374 1375 1376 1377 1378 1379
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1380
	 */
1381 1382
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1383 1384
}

1385
static unsigned long weighted_cpuload(const int cpu);
1386 1387
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1388
static unsigned long capacity_of(int cpu);
1389 1390
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1391
/* Cached statistics for all CPUs within a node */
1392
struct numa_stats {
1393
	unsigned long nr_running;
1394
	unsigned long load;
1395 1396

	/* Total compute capacity of CPUs on a node */
1397
	unsigned long compute_capacity;
1398 1399

	/* Approximate capacity in terms of runnable tasks on a node */
1400
	unsigned long task_capacity;
1401
	int has_free_capacity;
1402
};
1403

1404 1405 1406 1407 1408
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1409 1410
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1411 1412 1413 1414 1415 1416 1417

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1418
		ns->compute_capacity += capacity_of(cpu);
1419 1420

		cpus++;
1421 1422
	}

1423 1424 1425 1426 1427
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1428 1429
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1430 1431 1432 1433
	 */
	if (!cpus)
		return;

1434 1435 1436 1437 1438 1439
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1440
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1441 1442
}

1443 1444
struct task_numa_env {
	struct task_struct *p;
1445

1446 1447
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1448

1449
	struct numa_stats src_stats, dst_stats;
1450

1451
	int imbalance_pct;
1452
	int dist;
1453 1454 1455

	struct task_struct *best_task;
	long best_imp;
1456 1457 1458
	int best_cpu;
};

1459 1460 1461 1462 1463
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1464 1465
	if (p)
		get_task_struct(p);
1466 1467 1468 1469 1470 1471

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1472
static bool load_too_imbalanced(long src_load, long dst_load,
1473 1474
				struct task_numa_env *env)
{
1475 1476
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1488 1489

	/* We care about the slope of the imbalance, not the direction. */
1490 1491
	if (dst_load < src_load)
		swap(dst_load, src_load);
1492 1493

	/* Is the difference below the threshold? */
1494 1495
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1496 1497 1498 1499 1500
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1501
	 * Compare it with the old imbalance.
1502
	 */
1503
	orig_src_load = env->src_stats.load;
1504
	orig_dst_load = env->dst_stats.load;
1505

1506 1507
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1508

1509 1510 1511 1512 1513
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1514 1515
}

1516 1517 1518 1519 1520 1521
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1522 1523
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1524 1525 1526 1527
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1528
	long src_load, dst_load;
1529
	long load;
1530
	long imp = env->p->numa_group ? groupimp : taskimp;
1531
	long moveimp = imp;
1532
	int dist = env->dist;
1533 1534

	rcu_read_lock();
1535 1536
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1537 1538
		cur = NULL;

1539 1540 1541 1542 1543 1544 1545
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1546 1547 1548 1549 1550 1551 1552 1553 1554
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1555
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1556 1557
			goto unlock;

1558 1559
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1560
		 * in any group then look only at task weights.
1561
		 */
1562
		if (cur->numa_group == env->p->numa_group) {
1563 1564
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1565 1566 1567 1568 1569 1570
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1571
		} else {
1572 1573 1574 1575 1576 1577
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1578 1579
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1580
			else
1581 1582
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1583
		}
1584 1585
	}

1586
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1587 1588 1589 1590
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1591
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1592
		    !env->dst_stats.has_free_capacity)
1593 1594 1595 1596 1597 1598
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1599 1600
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1601 1602 1603 1604 1605 1606
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1607 1608 1609
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1610

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1628
	if (cur) {
1629 1630 1631
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1632 1633
	}

1634
	if (load_too_imbalanced(src_load, dst_load, env))
1635 1636
		goto unlock;

1637 1638 1639 1640
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1641 1642 1643 1644 1645 1646
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1647 1648
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1649 1650
		local_irq_enable();
	}
1651

1652 1653 1654 1655 1656 1657
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1658 1659
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1660 1661 1662 1663 1664
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1665
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1666 1667 1668
			continue;

		env->dst_cpu = cpu;
1669
		task_numa_compare(env, taskimp, groupimp);
1670 1671 1672
	}
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1690 1691 1692
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1693 1694 1695 1696 1697
		return true;

	return false;
}

1698 1699 1700 1701
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1702

1703
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1704
		.src_nid = task_node(p),
1705 1706 1707 1708 1709

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1710
		.best_cpu = -1,
1711 1712
	};
	struct sched_domain *sd;
1713
	unsigned long taskweight, groupweight;
1714
	int nid, ret, dist;
1715
	long taskimp, groupimp;
1716

1717
	/*
1718 1719 1720 1721 1722 1723
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1724 1725
	 */
	rcu_read_lock();
1726
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1727 1728
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1729 1730
	rcu_read_unlock();

1731 1732 1733 1734 1735 1736 1737
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1738
		p->numa_preferred_nid = task_node(p);
1739 1740 1741
		return -EINVAL;
	}

1742
	env.dst_nid = p->numa_preferred_nid;
1743 1744 1745 1746 1747 1748
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1749
	update_numa_stats(&env.dst_stats, env.dst_nid);
1750

1751
	/* Try to find a spot on the preferred nid. */
1752 1753
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1754

1755 1756 1757 1758 1759 1760 1761
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1762
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1763 1764 1765
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1766

1767
			dist = node_distance(env.src_nid, env.dst_nid);
1768 1769 1770 1771 1772
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1773

1774
			/* Only consider nodes where both task and groups benefit */
1775 1776
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1777
			if (taskimp < 0 && groupimp < 0)
1778 1779
				continue;

1780
			env.dist = dist;
1781 1782
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1783 1784
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1785 1786 1787
		}
	}

1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1796
	if (p->numa_group) {
1797 1798
		struct numa_group *ng = p->numa_group;

1799 1800 1801 1802 1803
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1804
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1805 1806 1807 1808 1809 1810
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1811

1812 1813 1814 1815 1816 1817
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1818
	if (env.best_task == NULL) {
1819 1820 1821
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1822 1823 1824 1825
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1826 1827
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1828 1829
	put_task_struct(env.best_task);
	return ret;
1830 1831
}

1832 1833 1834
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1835 1836
	unsigned long interval = HZ;

1837
	/* This task has no NUMA fault statistics yet */
1838
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1839 1840
		return;

1841
	/* Periodically retry migrating the task to the preferred node */
1842 1843
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1844 1845

	/* Success if task is already running on preferred CPU */
1846
	if (task_node(p) == p->numa_preferred_nid)
1847 1848 1849
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1850
	task_numa_migrate(p);
1851 1852
}

1853
/*
1854
 * Find out how many nodes on the workload is actively running on. Do this by
1855 1856 1857 1858
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1859
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1860 1861
{
	unsigned long faults, max_faults = 0;
1862
	int nid, active_nodes = 0;
1863 1864 1865 1866 1867 1868 1869 1870 1871

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1872 1873
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1874
	}
1875 1876 1877

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1878 1879
}

1880 1881 1882
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1883 1884 1885
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1886 1887
 */
#define NUMA_PERIOD_SLOTS 10
1888
#define NUMA_PERIOD_THRESHOLD 7
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1909 1910 1911
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1912
	 */
1913
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1947
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1948 1949 1950 1951 1952 1953 1954 1955
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1974 1975
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1976 1977 1978 1979 1980 1981 1982 1983
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2031
		nodemask_t max_group = NODE_MASK_NONE;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2065 2066
		if (!max_faults)
			break;
2067 2068 2069 2070 2071
		nodes = max_group;
	}
	return nid;
}

2072 2073
static void task_numa_placement(struct task_struct *p)
{
2074 2075
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2076
	unsigned long fault_types[2] = { 0, 0 };
2077 2078
	unsigned long total_faults;
	u64 runtime, period;
2079
	spinlock_t *group_lock = NULL;
2080

2081 2082 2083 2084 2085
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2086
	seq = READ_ONCE(p->mm->numa_scan_seq);
2087 2088 2089
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2090
	p->numa_scan_period_max = task_scan_max(p);
2091

2092 2093 2094 2095
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2096 2097 2098
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2099
		spin_lock_irq(group_lock);
2100 2101
	}

2102 2103
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2104 2105
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2106
		unsigned long faults = 0, group_faults = 0;
2107
		int priv;
2108

2109
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2110
			long diff, f_diff, f_weight;
2111

2112 2113 2114 2115
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2116

2117
			/* Decay existing window, copy faults since last scan */
2118 2119 2120
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2121

2122 2123 2124 2125 2126 2127 2128 2129
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2130
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2131
				   (total_faults + 1);
2132 2133
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2134

2135 2136 2137
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2138
			p->total_numa_faults += diff;
2139
			if (p->numa_group) {
2140 2141 2142 2143 2144 2145 2146 2147 2148
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2149
				p->numa_group->total_faults += diff;
2150
				group_faults += p->numa_group->faults[mem_idx];
2151
			}
2152 2153
		}

2154 2155 2156 2157
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2158 2159 2160 2161 2162 2163 2164

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2165 2166
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2167
	if (p->numa_group) {
2168
		numa_group_count_active_nodes(p->numa_group);
2169
		spin_unlock_irq(group_lock);
2170
		max_nid = preferred_group_nid(p, max_group_nid);
2171 2172
	}

2173 2174 2175 2176 2177 2178 2179
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2180
	}
2181 2182
}

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2194 2195
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2196 2197 2198 2199 2200 2201 2202 2203 2204
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2205
				    4*nr_node_ids*sizeof(unsigned long);
2206 2207 2208 2209 2210 2211

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2212 2213
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2214
		spin_lock_init(&grp->lock);
2215
		grp->gid = p->pid;
2216
		/* Second half of the array tracks nids where faults happen */
2217 2218
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2219

2220
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2221
			grp->faults[i] = p->numa_faults[i];
2222

2223
		grp->total_faults = p->total_numa_faults;
2224

2225 2226 2227 2228 2229
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2230
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2231 2232

	if (!cpupid_match_pid(tsk, cpupid))
2233
		goto no_join;
2234 2235 2236

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2237
		goto no_join;
2238 2239 2240

	my_grp = p->numa_group;
	if (grp == my_grp)
2241
		goto no_join;
2242 2243 2244 2245 2246 2247

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2248
		goto no_join;
2249 2250 2251 2252 2253

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2254
		goto no_join;
2255

2256 2257 2258 2259 2260 2261 2262
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2263

2264 2265 2266
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2267
	if (join && !get_numa_group(grp))
2268
		goto no_join;
2269 2270 2271 2272 2273 2274

	rcu_read_unlock();

	if (!join)
		return;

2275 2276
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2277

2278
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2279 2280
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2281
	}
2282 2283
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2284 2285 2286 2287 2288

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2289
	spin_unlock_irq(&grp->lock);
2290 2291 2292 2293

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2294 2295 2296 2297 2298
	return;

no_join:
	rcu_read_unlock();
	return;
2299 2300 2301 2302 2303
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2304
	void *numa_faults = p->numa_faults;
2305 2306
	unsigned long flags;
	int i;
2307 2308

	if (grp) {
2309
		spin_lock_irqsave(&grp->lock, flags);
2310
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2311
			grp->faults[i] -= p->numa_faults[i];
2312
		grp->total_faults -= p->total_numa_faults;
2313

2314
		grp->nr_tasks--;
2315
		spin_unlock_irqrestore(&grp->lock, flags);
2316
		RCU_INIT_POINTER(p->numa_group, NULL);
2317 2318 2319
		put_numa_group(grp);
	}

2320
	p->numa_faults = NULL;
2321
	kfree(numa_faults);
2322 2323
}

2324 2325 2326
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2327
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2328 2329
{
	struct task_struct *p = current;
2330
	bool migrated = flags & TNF_MIGRATED;
2331
	int cpu_node = task_node(current);
2332
	int local = !!(flags & TNF_FAULT_LOCAL);
2333
	struct numa_group *ng;
2334
	int priv;
2335

2336
	if (!static_branch_likely(&sched_numa_balancing))
2337 2338
		return;

2339 2340 2341 2342
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2343
	/* Allocate buffer to track faults on a per-node basis */
2344 2345
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2346
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2347

2348 2349
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2350
			return;
2351

2352
		p->total_numa_faults = 0;
2353
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2354
	}
2355

2356 2357 2358 2359 2360 2361 2362 2363
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2364
		if (!priv && !(flags & TNF_NO_GROUP))
2365
			task_numa_group(p, last_cpupid, flags, &priv);
2366 2367
	}

2368 2369 2370 2371 2372 2373
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2374 2375 2376 2377
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2378 2379
		local = 1;

2380
	task_numa_placement(p);
2381

2382 2383 2384 2385 2386
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2387 2388
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2389 2390
	if (migrated)
		p->numa_pages_migrated += pages;
2391 2392
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2393

2394 2395
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2396
	p->numa_faults_locality[local] += pages;
2397 2398
}

2399 2400
static void reset_ptenuma_scan(struct task_struct *p)
{
2401 2402 2403 2404 2405 2406 2407 2408
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2409
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2410 2411 2412
	p->mm->numa_scan_offset = 0;
}

2413 2414 2415 2416 2417 2418 2419 2420 2421
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2422
	u64 runtime = p->se.sum_exec_runtime;
2423
	struct vm_area_struct *vma;
2424
	unsigned long start, end;
2425
	unsigned long nr_pte_updates = 0;
2426
	long pages, virtpages;
2427

2428
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2442
	if (!mm->numa_next_scan) {
2443 2444
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2445 2446
	}

2447 2448 2449 2450 2451 2452 2453
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2454 2455 2456 2457
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2458

2459
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2460 2461 2462
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2463 2464 2465 2466 2467 2468
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2469 2470 2471
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2472
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2473 2474
	if (!pages)
		return;
2475

2476

2477
	down_read(&mm->mmap_sem);
2478
	vma = find_vma(mm, start);
2479 2480
	if (!vma) {
		reset_ptenuma_scan(p);
2481
		start = 0;
2482 2483
		vma = mm->mmap;
	}
2484
	for (; vma; vma = vma->vm_next) {
2485
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2486
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2487
			continue;
2488
		}
2489

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2500 2501 2502 2503 2504 2505
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2506

2507 2508 2509 2510
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2511
			nr_pte_updates = change_prot_numa(vma, start, end);
2512 2513

			/*
2514 2515 2516 2517 2518 2519
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2520 2521 2522
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2523
			virtpages -= (end - start) >> PAGE_SHIFT;
2524

2525
			start = end;
2526
			if (pages <= 0 || virtpages <= 0)
2527
				goto out;
2528 2529

			cond_resched();
2530
		} while (end != vma->vm_end);
2531
	}
2532

2533
out:
2534
	/*
P
Peter Zijlstra 已提交
2535 2536 2537 2538
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2539 2540
	 */
	if (vma)
2541
		mm->numa_scan_offset = start;
2542 2543 2544
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2581
	if (now > curr->node_stamp + period) {
2582
		if (!curr->node_stamp)
2583
			curr->numa_scan_period = task_scan_min(curr);
2584
		curr->node_stamp += period;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2596 2597 2598 2599 2600 2601 2602 2603

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2604 2605
#endif /* CONFIG_NUMA_BALANCING */

2606 2607 2608 2609
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2610
	if (!parent_entity(se))
2611
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2612
#ifdef CONFIG_SMP
2613 2614 2615 2616 2617 2618
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2619
#endif
2620 2621 2622 2623 2624 2625 2626
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2627
	if (!parent_entity(se))
2628
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2629
#ifdef CONFIG_SMP
2630 2631
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2632
		list_del_init(&se->group_node);
2633
	}
2634
#endif
2635 2636 2637
	cfs_rq->nr_running--;
}

2638 2639
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2640
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2641
{
2642
	long tg_weight, load, shares;
2643 2644

	/*
2645 2646 2647
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2648
	 */
2649
	load = scale_load_down(cfs_rq->load.weight);
2650

2651
	tg_weight = atomic_long_read(&tg->load_avg);
2652

2653 2654 2655
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2656 2657

	shares = (tg->shares * load);
2658 2659
	if (tg_weight)
		shares /= tg_weight;
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2673 2674 2675 2676 2677 2678 2679 2680
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2681
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2682 2683 2684 2685
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2686

P
Peter Zijlstra 已提交
2687 2688 2689
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2690 2691 2692 2693
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2694
		account_entity_dequeue(cfs_rq, se);
2695
	}
P
Peter Zijlstra 已提交
2696 2697 2698 2699 2700 2701 2702

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2703 2704
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2705
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2706
{
2707
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2708
	struct task_group *tg;
2709
	long shares;
P
Peter Zijlstra 已提交
2710

2711 2712 2713 2714
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2715
		return;
2716 2717 2718

	tg = cfs_rq->tg;

2719 2720 2721 2722
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2723
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2724 2725 2726

	reweight_entity(cfs_rq_of(se), se, shares);
}
2727

P
Peter Zijlstra 已提交
2728
#else /* CONFIG_FAIR_GROUP_SCHED */
2729
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2730 2731 2732 2733
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2734
#ifdef CONFIG_SMP
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

2745 2746 2747 2748
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
2749
static u64 decay_load(u64 val, u64 n)
2750
{
2751 2752
	unsigned int local_n;

2753
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2754 2755 2756 2757 2758 2759 2760
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2761 2762
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2763 2764 2765 2766 2767 2768
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2769 2770
	}

2771 2772
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2773 2774
}

2775
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2776
{
2777
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2778

2779
	/*
P
Peter Zijlstra 已提交
2780
	 * c1 = d1 y^p
2781
	 */
2782
	c1 = decay_load((u64)d1, periods);
2783 2784

	/*
P
Peter Zijlstra 已提交
2785
	 *            p-1
2786 2787
	 * c2 = 1024 \Sum y^n
	 *            n=1
2788
	 *
2789 2790
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
2791
	 *              n=0        n=p
2792
	 */
2793
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2794 2795

	return c1 + c2 + c3;
2796 2797
}

2798
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
2811 2812 2813
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
2814
 *
P
Peter Zijlstra 已提交
2815
 *    = u y^p +					(Step 1)
2816
 *
P
Peter Zijlstra 已提交
2817 2818 2819
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
2820 2821 2822 2823 2824 2825
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
	unsigned long scale_freq, scale_cpu;
2826
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods);
		}
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

2846 2847 2848 2849 2850 2851 2852
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
	if (weight) {
		sa->load_sum += weight * contrib;
		if (cfs_rq)
			cfs_rq->runnable_load_sum += weight * contrib;
	}
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2895
static __always_inline int
2896
___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2897
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2898
{
2899
	u64 delta;
2900

2901
	delta = now - sa->last_update_time;
2902 2903 2904 2905 2906
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2907
		sa->last_update_time = now;
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2918 2919

	sa->last_update_time += delta << 10;
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
		return 0;
2930

2931 2932 2933 2934 2935 2936 2937
	/*
	 * Step 2: update *_avg.
	 */
	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
	if (cfs_rq) {
		cfs_rq->runnable_load_avg =
			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2938
	}
2939
	sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2940

2941
	return 1;
2942 2943
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	return ___update_load_avg(now, cpu, &se->avg,
				  se->on_rq * scale_load_down(se->load.weight),
				  cfs_rq->curr == se, NULL);
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
	return ___update_load_avg(now, cpu, &cfs_rq->avg,
			scale_load_down(cfs_rq->load.weight),
			cfs_rq->curr != NULL, cfs_rq);
}

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2986
#ifdef CONFIG_FAIR_GROUP_SCHED
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
3002
 */
3003
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3004
{
3005
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3006

3007 3008 3009 3010 3011 3012
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3013 3014 3015
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3016
	}
3017
}
3018

3019 3020 3021 3022 3023 3024 3025 3026
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3027 3028 3029
	u64 p_last_update_time;
	u64 n_last_update_time;

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3040 3041
	if (!(se->avg.last_update_time && prev))
		return;
3042 3043

#ifndef CONFIG_64BIT
3044
	{
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3059
	}
3060
#else
3061 3062
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3063
#endif
3064 3065
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3066
}
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3218
#else /* CONFIG_FAIR_GROUP_SCHED */
3219

3220
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3221 3222 3223 3224 3225 3226 3227 3228

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3229
#endif /* CONFIG_FAIR_GROUP_SCHED */
3230

3231 3232
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3233
	if (&this_rq()->cfs == cfs_rq) {
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3250
		cpufreq_update_util(rq_of(cfs_rq), 0);
3251 3252 3253
	}
}

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3283 3284 3285 3286
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3287
 */
3288 3289
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3290
{
3291
	struct sched_avg *sa = &cfs_rq->avg;
3292
	int decayed, removed_load = 0, removed_util = 0;
3293

3294
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3295
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3296 3297
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3298
		removed_load = 1;
3299
		set_tg_cfs_propagate(cfs_rq);
3300
	}
3301

3302 3303
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3304 3305
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3306
		removed_util = 1;
3307
		set_tg_cfs_propagate(cfs_rq);
3308
	}
3309

3310
	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3311

3312 3313 3314 3315
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3316

3317 3318
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3319

3320
	return decayed || removed_load;
3321 3322
}

3323 3324 3325 3326 3327 3328
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3329
/* Update task and its cfs_rq load average */
3330
static inline void update_load_avg(struct sched_entity *se, int flags)
3331 3332 3333 3334 3335
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3336
	int decayed;
3337 3338 3339 3340 3341

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3342 3343
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);
3344

3345 3346 3347 3348
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3349
		update_tg_load_avg(cfs_rq, 0);
3350 3351
}

3352 3353 3354 3355 3356 3357 3358 3359
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3360 3361 3362 3363 3364 3365 3366
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3367
	set_tg_cfs_propagate(cfs_rq);
3368 3369

	cfs_rq_util_change(cfs_rq);
3370 3371
}

3372 3373 3374 3375 3376 3377 3378 3379
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3380 3381 3382
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3383 3384 3385 3386
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3387
	set_tg_cfs_propagate(cfs_rq);
3388 3389

	cfs_rq_util_change(cfs_rq);
3390 3391
}

3392 3393 3394
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3395
{
3396
	struct sched_avg *sa = &se->avg;
3397

3398 3399 3400
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3401
	if (!sa->last_update_time) {
3402
		attach_entity_load_avg(cfs_rq, se);
3403
		update_tg_load_avg(cfs_rq, 0);
3404
	}
3405 3406
}

3407 3408 3409 3410 3411 3412 3413
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3414
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3415 3416
}

3417
#ifndef CONFIG_64BIT
3418 3419
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3420
	u64 last_update_time_copy;
3421
	u64 last_update_time;
3422

3423 3424 3425 3426 3427
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3428 3429 3430

	return last_update_time;
}
3431
#else
3432 3433 3434 3435
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3436 3437
#endif

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3448
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3449 3450
}

3451 3452 3453 3454 3455 3456 3457 3458 3459
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3460 3461 3462 3463 3464 3465 3466
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3467 3468
	 */

3469
	sync_entity_load_avg(se);
3470 3471
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3472
}
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3484
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3485

3486 3487
#else /* CONFIG_SMP */

3488 3489 3490 3491 3492 3493
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3494 3495 3496 3497
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3498
{
3499
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3500 3501
}

3502 3503
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3504 3505
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3506
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3507

3508 3509 3510 3511 3512
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3513
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3514 3515 3516 3517
{
	return 0;
}

3518
#endif /* CONFIG_SMP */
3519

P
Peter Zijlstra 已提交
3520 3521 3522 3523 3524 3525 3526 3527 3528
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3529
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3530 3531 3532
#endif
}

3533 3534 3535
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3536
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3537

3538 3539 3540 3541 3542 3543
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3544
	if (initial && sched_feat(START_DEBIT))
3545
		vruntime += sched_vslice(cfs_rq, se);
3546

3547
	/* sleeps up to a single latency don't count. */
3548
	if (!initial) {
3549
		unsigned long thresh = sysctl_sched_latency;
3550

3551 3552 3553 3554 3555 3556
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3557

3558
		vruntime -= thresh;
3559 3560
	}

3561
	/* ensure we never gain time by being placed backwards. */
3562
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3563 3564
}

3565 3566
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3579
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3580 3581 3582 3583 3584 3585 3586
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3606
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3618
static void
3619
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3620
{
3621 3622 3623
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3624
	/*
3625 3626
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3627
	 */
3628
	if (renorm && curr)
3629 3630
		se->vruntime += cfs_rq->min_vruntime;

3631 3632
	update_curr(cfs_rq);

3633
	/*
3634 3635 3636 3637
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3638
	 */
3639 3640 3641
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3642 3643 3644 3645 3646 3647 3648 3649
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3650
	update_load_avg(se, UPDATE_TG);
3651
	enqueue_entity_load_avg(cfs_rq, se);
3652
	update_cfs_shares(se);
3653
	account_entity_enqueue(cfs_rq, se);
3654

3655
	if (flags & ENQUEUE_WAKEUP)
3656
		place_entity(cfs_rq, se, 0);
3657

3658
	check_schedstat_required();
3659 3660
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3661
	if (!curr)
3662
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3663
	se->on_rq = 1;
3664

3665
	if (cfs_rq->nr_running == 1) {
3666
		list_add_leaf_cfs_rq(cfs_rq);
3667 3668
		check_enqueue_throttle(cfs_rq);
	}
3669 3670
}

3671
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3672
{
3673 3674
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3675
		if (cfs_rq->last != se)
3676
			break;
3677 3678

		cfs_rq->last = NULL;
3679 3680
	}
}
P
Peter Zijlstra 已提交
3681

3682 3683 3684 3685
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3686
		if (cfs_rq->next != se)
3687
			break;
3688 3689

		cfs_rq->next = NULL;
3690
	}
P
Peter Zijlstra 已提交
3691 3692
}

3693 3694 3695 3696
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3697
		if (cfs_rq->skip != se)
3698
			break;
3699 3700

		cfs_rq->skip = NULL;
3701 3702 3703
	}
}

P
Peter Zijlstra 已提交
3704 3705
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3706 3707 3708 3709 3710
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3711 3712 3713

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3714 3715
}

3716
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3717

3718
static void
3719
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3720
{
3721 3722 3723 3724
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3725 3726 3727 3728 3729 3730 3731 3732 3733

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3734
	update_load_avg(se, UPDATE_TG);
3735
	dequeue_entity_load_avg(cfs_rq, se);
3736

3737
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3738

P
Peter Zijlstra 已提交
3739
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3740

3741
	if (se != cfs_rq->curr)
3742
		__dequeue_entity(cfs_rq, se);
3743
	se->on_rq = 0;
3744
	account_entity_dequeue(cfs_rq, se);
3745 3746

	/*
3747 3748 3749 3750
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3751
	 */
3752
	if (!(flags & DEQUEUE_SLEEP))
3753
		se->vruntime -= cfs_rq->min_vruntime;
3754

3755 3756 3757
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3758
	update_cfs_shares(se);
3759 3760 3761 3762 3763 3764 3765 3766 3767

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3768 3769 3770 3771 3772
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3773
static void
I
Ingo Molnar 已提交
3774
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3775
{
3776
	unsigned long ideal_runtime, delta_exec;
3777 3778
	struct sched_entity *se;
	s64 delta;
3779

P
Peter Zijlstra 已提交
3780
	ideal_runtime = sched_slice(cfs_rq, curr);
3781
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3782
	if (delta_exec > ideal_runtime) {
3783
		resched_curr(rq_of(cfs_rq));
3784 3785 3786 3787 3788
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3800 3801
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3802

3803 3804
	if (delta < 0)
		return;
3805

3806
	if (delta > ideal_runtime)
3807
		resched_curr(rq_of(cfs_rq));
3808 3809
}

3810
static void
3811
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3812
{
3813 3814 3815 3816 3817 3818 3819
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3820
		update_stats_wait_end(cfs_rq, se);
3821
		__dequeue_entity(cfs_rq, se);
3822
		update_load_avg(se, UPDATE_TG);
3823 3824
	}

3825
	update_stats_curr_start(cfs_rq, se);
3826
	cfs_rq->curr = se;
3827

I
Ingo Molnar 已提交
3828 3829 3830 3831 3832
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3833
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3834 3835 3836
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3837
	}
3838

3839
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3840 3841
}

3842 3843 3844
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3845 3846 3847 3848 3849 3850 3851
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3852 3853
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3854
{
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3866

3867 3868 3869 3870 3871
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3882 3883 3884
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3885

3886 3887 3888 3889 3890 3891
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3892 3893 3894 3895 3896 3897
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3898
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3899 3900

	return se;
3901 3902
}

3903
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3904

3905
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3906 3907 3908 3909 3910 3911
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3912
		update_curr(cfs_rq);
3913

3914 3915 3916
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3917
	check_spread(cfs_rq, prev);
3918

3919
	if (prev->on_rq) {
3920
		update_stats_wait_start(cfs_rq, prev);
3921 3922
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3923
		/* in !on_rq case, update occurred at dequeue */
3924
		update_load_avg(prev, 0);
3925
	}
3926
	cfs_rq->curr = NULL;
3927 3928
}

P
Peter Zijlstra 已提交
3929 3930
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3931 3932
{
	/*
3933
	 * Update run-time statistics of the 'current'.
3934
	 */
3935
	update_curr(cfs_rq);
3936

3937 3938 3939
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3940
	update_load_avg(curr, UPDATE_TG);
3941
	update_cfs_shares(curr);
3942

P
Peter Zijlstra 已提交
3943 3944 3945 3946 3947
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3948
	if (queued) {
3949
		resched_curr(rq_of(cfs_rq));
3950 3951
		return;
	}
P
Peter Zijlstra 已提交
3952 3953 3954 3955 3956 3957 3958 3959
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3960
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3961
		check_preempt_tick(cfs_rq, curr);
3962 3963
}

3964 3965 3966 3967 3968 3969

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3970 3971

#ifdef HAVE_JUMP_LABEL
3972
static struct static_key __cfs_bandwidth_used;
3973 3974 3975

static inline bool cfs_bandwidth_used(void)
{
3976
	return static_key_false(&__cfs_bandwidth_used);
3977 3978
}

3979
void cfs_bandwidth_usage_inc(void)
3980
{
3981 3982 3983 3984 3985 3986
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3987 3988 3989 3990 3991 3992 3993
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3994 3995
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3996 3997
#endif /* HAVE_JUMP_LABEL */

3998 3999 4000 4001 4002 4003 4004 4005
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4006 4007 4008 4009 4010 4011

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4012 4013 4014 4015 4016 4017 4018
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4019
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4031 4032 4033 4034 4035
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4036 4037 4038 4039
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4040
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4041

4042
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4043 4044
}

4045 4046
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4047 4048 4049
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4050
	u64 amount = 0, min_amount, expires;
4051 4052 4053 4054 4055 4056 4057

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4058
	else {
P
Peter Zijlstra 已提交
4059
		start_cfs_bandwidth(cfs_b);
4060 4061 4062 4063 4064 4065

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4066
	}
P
Paul Turner 已提交
4067
	expires = cfs_b->runtime_expires;
4068 4069 4070
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4071 4072 4073 4074 4075 4076 4077
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4078 4079

	return cfs_rq->runtime_remaining > 0;
4080 4081
}

P
Paul Turner 已提交
4082 4083 4084 4085 4086
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4087
{
P
Paul Turner 已提交
4088 4089 4090
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4091
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4092 4093
		return;

P
Paul Turner 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4103 4104 4105
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4106 4107
	 */

4108
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4109 4110 4111 4112 4113 4114 4115 4116
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4117
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4118 4119
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4120
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4121 4122 4123
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4124 4125
		return;

4126 4127 4128 4129 4130
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4131
		resched_curr(rq_of(cfs_rq));
4132 4133
}

4134
static __always_inline
4135
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4136
{
4137
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4138 4139 4140 4141 4142
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4143 4144
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4145
	return cfs_bandwidth_used() && cfs_rq->throttled;
4146 4147
}

4148 4149 4150
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4151
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4179
		/* adjust cfs_rq_clock_task() */
4180
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4181
					     cfs_rq->throttled_clock_task;
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4192 4193
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4194
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4195 4196 4197 4198 4199
	cfs_rq->throttle_count++;

	return 0;
}

4200
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4201 4202 4203 4204 4205
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4206
	bool empty;
4207 4208 4209

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4210
	/* freeze hierarchy runnable averages while throttled */
4211 4212 4213
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4231
		sub_nr_running(rq, task_delta);
4232 4233

	cfs_rq->throttled = 1;
4234
	cfs_rq->throttled_clock = rq_clock(rq);
4235
	raw_spin_lock(&cfs_b->lock);
4236
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4237

4238 4239 4240 4241 4242
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4243 4244 4245 4246 4247 4248 4249 4250

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4251 4252 4253
	raw_spin_unlock(&cfs_b->lock);
}

4254
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4255 4256 4257 4258 4259 4260 4261
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4262
	se = cfs_rq->tg->se[cpu_of(rq)];
4263 4264

	cfs_rq->throttled = 0;
4265 4266 4267

	update_rq_clock(rq);

4268
	raw_spin_lock(&cfs_b->lock);
4269
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4270 4271 4272
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4273 4274 4275
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4294
		add_nr_running(rq, task_delta);
4295 4296 4297

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4298
		resched_curr(rq);
4299 4300 4301 4302 4303 4304
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4305 4306
	u64 runtime;
	u64 starting_runtime = remaining;
4307 4308 4309 4310 4311

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4312
		struct rq_flags rf;
4313

4314
		rq_lock(rq, &rf);
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4331
		rq_unlock(rq, &rf);
4332 4333 4334 4335 4336 4337

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4338
	return starting_runtime - remaining;
4339 4340
}

4341 4342 4343 4344 4345 4346 4347 4348
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4349
	u64 runtime, runtime_expires;
4350
	int throttled;
4351 4352 4353

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4354
		goto out_deactivate;
4355

4356
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4357
	cfs_b->nr_periods += overrun;
4358

4359 4360 4361 4362 4363 4364
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4365 4366 4367

	__refill_cfs_bandwidth_runtime(cfs_b);

4368 4369 4370
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4371
		return 0;
4372 4373
	}

4374 4375 4376
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4377 4378 4379
	runtime_expires = cfs_b->runtime_expires;

	/*
4380 4381 4382 4383 4384
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4385
	 */
4386 4387
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4388 4389 4390 4391 4392 4393 4394
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4395 4396

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4397
	}
4398

4399 4400 4401 4402 4403 4404 4405
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4406

4407 4408 4409 4410
	return 0;

out_deactivate:
	return 1;
4411
}
4412

4413 4414 4415 4416 4417 4418 4419
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4420 4421 4422 4423
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4424
 * hrtimer base being cleared by hrtimer_start. In the case of
4425 4426
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4452 4453 4454
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4484 4485 4486
	if (!cfs_bandwidth_used())
		return;

4487
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4503 4504 4505
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4506
		return;
4507
	}
4508

4509
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4510
		runtime = cfs_b->runtime;
4511

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4522
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4523 4524 4525
	raw_spin_unlock(&cfs_b->lock);
}

4526 4527 4528 4529 4530 4531 4532
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4533 4534 4535
	if (!cfs_bandwidth_used())
		return;

4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4564
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4565 4566
}

4567
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4568
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4569
{
4570
	if (!cfs_bandwidth_used())
4571
		return false;
4572

4573
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4574
		return false;
4575 4576 4577 4578 4579 4580

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4581
		return true;
4582 4583

	throttle_cfs_rq(cfs_rq);
4584
	return true;
4585
}
4586 4587 4588 4589 4590

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4604
	raw_spin_lock(&cfs_b->lock);
4605
	for (;;) {
P
Peter Zijlstra 已提交
4606
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4607 4608 4609 4610 4611
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4612 4613
	if (idle)
		cfs_b->period_active = 0;
4614
	raw_spin_unlock(&cfs_b->lock);
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4627
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4639
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4640
{
P
Peter Zijlstra 已提交
4641
	lockdep_assert_held(&cfs_b->lock);
4642

P
Peter Zijlstra 已提交
4643 4644 4645 4646 4647
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4648 4649 4650 4651
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4652 4653 4654 4655
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4656 4657 4658 4659
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4673
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4685
		cfs_rq->runtime_remaining = 1;
4686 4687 4688 4689 4690 4691
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4692 4693 4694 4695 4696 4697
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4698 4699
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4700
	return rq_clock_task(rq_of(cfs_rq));
4701 4702
}

4703
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4704
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4705
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4706
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4707
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4708 4709 4710 4711 4712

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4724 4725 4726 4727 4728

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4729 4730
#endif

4731 4732 4733 4734 4735
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4736
static inline void update_runtime_enabled(struct rq *rq) {}
4737
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4738 4739 4740

#endif /* CONFIG_CFS_BANDWIDTH */

4741 4742 4743 4744
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4745 4746 4747 4748 4749 4750
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4751
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4752

4753
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4754 4755 4756 4757 4758 4759
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4760
				resched_curr(rq);
P
Peter Zijlstra 已提交
4761 4762
			return;
		}
4763
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4764 4765
	}
}
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4776
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4777 4778 4779 4780 4781
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4782
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4783 4784 4785 4786
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4787 4788 4789 4790

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4791 4792
#endif

4793 4794 4795 4796 4797
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4798
static void
4799
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4800 4801
{
	struct cfs_rq *cfs_rq;
4802
	struct sched_entity *se = &p->se;
4803

4804 4805 4806 4807 4808 4809 4810 4811
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4812
	for_each_sched_entity(se) {
4813
		if (se->on_rq)
4814 4815
			break;
		cfs_rq = cfs_rq_of(se);
4816
		enqueue_entity(cfs_rq, se, flags);
4817 4818 4819 4820 4821 4822

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4823
		 */
4824 4825
		if (cfs_rq_throttled(cfs_rq))
			break;
4826
		cfs_rq->h_nr_running++;
4827

4828
		flags = ENQUEUE_WAKEUP;
4829
	}
P
Peter Zijlstra 已提交
4830

P
Peter Zijlstra 已提交
4831
	for_each_sched_entity(se) {
4832
		cfs_rq = cfs_rq_of(se);
4833
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4834

4835 4836 4837
		if (cfs_rq_throttled(cfs_rq))
			break;

4838
		update_load_avg(se, UPDATE_TG);
4839
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4840 4841
	}

Y
Yuyang Du 已提交
4842
	if (!se)
4843
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4844

4845
	hrtick_update(rq);
4846 4847
}

4848 4849
static void set_next_buddy(struct sched_entity *se);

4850 4851 4852 4853 4854
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4855
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4856 4857
{
	struct cfs_rq *cfs_rq;
4858
	struct sched_entity *se = &p->se;
4859
	int task_sleep = flags & DEQUEUE_SLEEP;
4860 4861 4862

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4863
		dequeue_entity(cfs_rq, se, flags);
4864 4865 4866 4867 4868 4869 4870 4871 4872

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4873
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4874

4875
		/* Don't dequeue parent if it has other entities besides us */
4876
		if (cfs_rq->load.weight) {
4877 4878
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4879 4880 4881 4882
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4883 4884
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4885
			break;
4886
		}
4887
		flags |= DEQUEUE_SLEEP;
4888
	}
P
Peter Zijlstra 已提交
4889

P
Peter Zijlstra 已提交
4890
	for_each_sched_entity(se) {
4891
		cfs_rq = cfs_rq_of(se);
4892
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4893

4894 4895 4896
		if (cfs_rq_throttled(cfs_rq))
			break;

4897
		update_load_avg(se, UPDATE_TG);
4898
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4899 4900
	}

Y
Yuyang Du 已提交
4901
	if (!se)
4902
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4903

4904
	hrtick_update(rq);
4905 4906
}

4907
#ifdef CONFIG_SMP
4908 4909 4910 4911 4912

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4913
#ifdef CONFIG_NO_HZ_COMMON
4914 4915 4916 4917 4918
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4919
 * The exact cpuload calculated at every tick would be:
4920
 *
4921 4922 4923 4924 4925 4926 4927
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4928 4929 4930
 *
 * decay_load_missed() below does efficient calculation of
 *
4931 4932 4933 4934 4935 4936
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4937
 *
4938
 * The calculation is approximated on a 128 point scale.
4939 4940
 */
#define DEGRADE_SHIFT		7
4941 4942 4943 4944 4945 4946 4947 4948 4949

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4979
#endif /* CONFIG_NO_HZ_COMMON */
4980

4981
/**
4982
 * __cpu_load_update - update the rq->cpu_load[] statistics
4983 4984 4985 4986
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4987
 * Update rq->cpu_load[] statistics. This function is usually called every
4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5014
 * term.
5015
 */
5016 5017
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5018
{
5019
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5031
		old_load = this_rq->cpu_load[i];
5032
#ifdef CONFIG_NO_HZ_COMMON
5033
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5034 5035 5036 5037 5038 5039 5040 5041 5042
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5043
#endif
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5059 5060 5061 5062 5063 5064
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5065
#ifdef CONFIG_NO_HZ_COMMON
5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5094
		cpu_load_update(this_rq, load, pending_updates);
5095 5096 5097
	}
}

5098 5099 5100 5101
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5102
static void cpu_load_update_idle(struct rq *this_rq)
5103 5104 5105 5106
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5107
	if (weighted_cpuload(cpu_of(this_rq)))
5108 5109
		return;

5110
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5111 5112 5113
}

/*
5114 5115 5116 5117
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5118
 */
5119
void cpu_load_update_nohz_start(void)
5120 5121
{
	struct rq *this_rq = this_rq();
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5136
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5137 5138
	struct rq *this_rq = this_rq();
	unsigned long load;
5139
	struct rq_flags rf;
5140 5141 5142 5143

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5144
	load = weighted_cpuload(cpu_of(this_rq));
5145
	rq_lock(this_rq, &rf);
5146
	update_rq_clock(this_rq);
5147
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5148
	rq_unlock(this_rq, &rf);
5149
}
5150 5151 5152 5153 5154 5155 5156 5157
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5158
#ifdef CONFIG_NO_HZ_COMMON
5159 5160
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5161
#endif
5162 5163
	cpu_load_update(this_rq, load, 1);
}
5164 5165 5166 5167

/*
 * Called from scheduler_tick()
 */
5168
void cpu_load_update_active(struct rq *this_rq)
5169
{
5170
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5171 5172 5173 5174 5175

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5176 5177
}

5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5211
static unsigned long capacity_of(int cpu)
5212
{
5213
	return cpu_rq(cpu)->cpu_capacity;
5214 5215
}

5216 5217 5218 5219 5220
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5221 5222 5223
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5224
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5225
	unsigned long load_avg = weighted_cpuload(cpu);
5226 5227

	if (nr_running)
5228
		return load_avg / nr_running;
5229 5230 5231 5232

	return 0;
}

5233
#ifdef CONFIG_FAIR_GROUP_SCHED
5234 5235 5236 5237 5238 5239
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5283
 */
P
Peter Zijlstra 已提交
5284
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5285
{
P
Peter Zijlstra 已提交
5286
	struct sched_entity *se = tg->se[cpu];
5287

5288
	if (!tg->parent)	/* the trivial, non-cgroup case */
5289 5290
		return wl;

P
Peter Zijlstra 已提交
5291
	for_each_sched_entity(se) {
5292 5293
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5294

5295
		tg = cfs_rq->tg;
5296

5297 5298 5299
		/*
		 * W = @wg + \Sum rw_j
		 */
5300 5301 5302 5303 5304
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5305

5306 5307 5308
		/*
		 * w = rw_i + @wl
		 */
5309
		w += wl;
5310

5311 5312 5313 5314
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5315
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5316
		else
5317
			wl = scale_load_down(tg->shares);
5318

5319 5320 5321 5322 5323
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5324 5325
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5326 5327 5328 5329

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5330
		wl -= se->avg.load_avg;
5331 5332 5333 5334 5335 5336 5337 5338

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5339 5340
		wg = 0;
	}
5341

P
Peter Zijlstra 已提交
5342
	return wl;
5343 5344
}
#else
P
Peter Zijlstra 已提交
5345

5346
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5347
{
5348
	return wl;
5349
}
P
Peter Zijlstra 已提交
5350

5351 5352
#endif

P
Peter Zijlstra 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5370 5371
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5372
 *
M
Mike Galbraith 已提交
5373
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5386
 */
5387 5388
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5389 5390
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5391
	int factor = this_cpu_read(sd_llc_size);
5392

M
Mike Galbraith 已提交
5393 5394 5395 5396 5397
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5398 5399
}

5400 5401
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5402
{
5403
	s64 this_load, load;
5404
	s64 this_eff_load, prev_eff_load;
5405
	int idx, this_cpu;
5406
	struct task_group *tg;
5407
	unsigned long weight;
5408
	int balanced;
5409

5410 5411 5412 5413
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5414

5415 5416 5417 5418 5419
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5420 5421
	if (sync) {
		tg = task_group(current);
5422
		weight = current->se.avg.load_avg;
5423

5424
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5425 5426
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5427

5428
	tg = task_group(p);
5429
	weight = p->se.avg.load_avg;
5430

5431 5432
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5433 5434 5435
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5436 5437 5438 5439
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5440 5441
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5442

5443 5444
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5445

5446
	if (this_load > 0) {
5447 5448 5449 5450
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5451
	}
5452

5453
	balanced = this_eff_load <= prev_eff_load;
5454

5455
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5456

5457 5458
	if (!balanced)
		return 0;
5459

5460 5461
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5462 5463

	return 1;
5464 5465
}

5466 5467 5468 5469 5470 5471 5472 5473
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5474 5475 5476 5477 5478
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5479
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5480
		  int this_cpu, int sd_flag)
5481
{
5482
	struct sched_group *idlest = NULL, *group = sd->groups;
5483
	struct sched_group *most_spare_sg = NULL;
5484 5485
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5486
	unsigned long most_spare = 0, this_spare = 0;
5487
	int load_idx = sd->forkexec_idx;
5488 5489 5490
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5491

5492 5493 5494
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5495
	do {
5496 5497
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5498 5499
		int local_group;
		int i;
5500

5501 5502
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5503
					&p->cpus_allowed))
5504 5505 5506 5507 5508
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5509 5510 5511 5512
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5513
		avg_load = 0;
5514
		runnable_load = 0;
5515
		max_spare_cap = 0;
5516 5517 5518 5519 5520 5521 5522 5523

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5524 5525 5526
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5527 5528 5529 5530 5531

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5532 5533
		}

5534
		/* Adjust by relative CPU capacity of the group */
5535 5536 5537 5538
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5539 5540

		if (local_group) {
5541 5542
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5543 5544
			this_spare = max_spare_cap;
		} else {
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5560 5561 5562 5563 5564 5565 5566
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5567 5568 5569
		}
	} while (group = group->next, group != sd->groups);

5570 5571 5572 5573 5574 5575
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5576 5577 5578 5579
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5580
	 */
5581 5582 5583
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5584
	if (this_spare > task_util(p) / 2 &&
5585
	    imbalance_scale*this_spare > 100*most_spare)
5586
		return NULL;
5587 5588

	if (most_spare > task_util(p) / 2)
5589 5590
		return most_spare_sg;

5591
skip_spare:
5592 5593 5594 5595
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5596
		return NULL;
5597 5598 5599 5600 5601

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5612 5613 5614 5615
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5616 5617
	int i;

5618 5619 5620 5621
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5622
	/* Traverse only the allowed CPUs */
5623
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5646
		} else if (shallowest_idle_cpu == -1) {
5647 5648 5649 5650 5651
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5652 5653 5654
		}
	}

5655
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5656
}
5657

5658
/*
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5724
void __update_idle_core(struct rq *rq)
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5756 5757 5758
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5759 5760 5761
	if (!test_idle_cores(target, false))
		return -1;

5762
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5792 5793 5794
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5795
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5796
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5823
 */
5824 5825
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5826 5827
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5828 5829 5830 5831
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5832 5833 5834 5835 5836 5837
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5838 5839 5840 5841
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5842
	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5843 5844 5845 5846 5847
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5848
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5864
 */
5865
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5866
{
5867
	struct sched_domain *sd;
5868
	int i;
5869

5870 5871
	if (idle_cpu(target))
		return target;
5872 5873

	/*
5874
	 * If the previous cpu is cache affine and idle, don't be stupid.
5875
	 */
5876 5877
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5878

5879
	sd = rcu_dereference(per_cpu(sd_llc, target));
5880 5881
	if (!sd)
		return target;
5882

5883 5884 5885
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5886

5887 5888 5889 5890 5891 5892 5893
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5894

5895 5896
	return target;
}
5897

5898
/*
5899
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5900
 * tasks. The unit of the return value must be the one of capacity so we can
5901 5902
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5923
 */
5924
static int cpu_util(int cpu)
5925
{
5926
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5927 5928
	unsigned long capacity = capacity_orig_of(cpu);

5929
	return (util >= capacity) ? capacity : util;
5930
}
5931

5932 5933 5934 5935 5936
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5973 5974 5975
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5976 5977 5978
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5979
/*
5980 5981 5982
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5983
 *
5984 5985
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5986
 *
5987
 * Returns the target cpu number.
5988 5989 5990
 *
 * preempt must be disabled.
 */
5991
static int
5992
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5993
{
5994
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5995
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5996
	int new_cpu = prev_cpu;
5997
	int want_affine = 0;
5998
	int sync = wake_flags & WF_SYNC;
5999

P
Peter Zijlstra 已提交
6000 6001
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6002
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6003
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6004
	}
6005

6006
	rcu_read_lock();
6007
	for_each_domain(cpu, tmp) {
6008
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6009
			break;
6010

6011
		/*
6012 6013
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6014
		 */
6015 6016 6017
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6018
			break;
6019
		}
6020

6021
		if (tmp->flags & sd_flag)
6022
			sd = tmp;
M
Mike Galbraith 已提交
6023 6024
		else if (!want_affine)
			break;
6025 6026
	}

M
Mike Galbraith 已提交
6027 6028
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6029
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6030
			new_cpu = cpu;
6031
	}
6032

M
Mike Galbraith 已提交
6033 6034
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6035
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6036 6037

	} else while (sd) {
6038
		struct sched_group *group;
6039
		int weight;
6040

6041
		if (!(sd->flags & sd_flag)) {
6042 6043 6044
			sd = sd->child;
			continue;
		}
6045

6046
		group = find_idlest_group(sd, p, cpu, sd_flag);
6047 6048 6049 6050
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6051

6052
		new_cpu = find_idlest_cpu(group, p, cpu);
6053 6054 6055 6056
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6057
		}
6058 6059 6060

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6061
		weight = sd->span_weight;
6062 6063
		sd = NULL;
		for_each_domain(cpu, tmp) {
6064
			if (weight <= tmp->span_weight)
6065
				break;
6066
			if (tmp->flags & sd_flag)
6067 6068 6069
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6070
	}
6071
	rcu_read_unlock();
6072

6073
	return new_cpu;
6074
}
6075 6076 6077 6078

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6079
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6080
 */
6081
static void migrate_task_rq_fair(struct task_struct *p)
6082
{
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6109
	/*
6110 6111 6112 6113 6114
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6115
	 */
6116 6117 6118 6119
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6120 6121

	/* We have migrated, no longer consider this task hot */
6122
	p->se.exec_start = 0;
6123
}
6124 6125 6126 6127 6128

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6129 6130
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6131 6132
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6133 6134 6135 6136
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6137 6138
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6139 6140 6141 6142 6143 6144 6145 6146 6147
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6148
	 */
6149
	return calc_delta_fair(gran, se);
6150 6151
}

6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6174
	gran = wakeup_gran(curr, se);
6175 6176 6177 6178 6179 6180
	if (vdiff > gran)
		return 1;

	return 0;
}

6181 6182
static void set_last_buddy(struct sched_entity *se)
{
6183 6184 6185 6186 6187
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6188 6189 6190 6191
}

static void set_next_buddy(struct sched_entity *se)
{
6192 6193 6194 6195 6196
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6197 6198
}

6199 6200
static void set_skip_buddy(struct sched_entity *se)
{
6201 6202
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6203 6204
}

6205 6206 6207
/*
 * Preempt the current task with a newly woken task if needed:
 */
6208
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6209 6210
{
	struct task_struct *curr = rq->curr;
6211
	struct sched_entity *se = &curr->se, *pse = &p->se;
6212
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6213
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6214
	int next_buddy_marked = 0;
6215

I
Ingo Molnar 已提交
6216 6217 6218
	if (unlikely(se == pse))
		return;

6219
	/*
6220
	 * This is possible from callers such as attach_tasks(), in which we
6221 6222 6223 6224 6225 6226 6227
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6228
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6229
		set_next_buddy(pse);
6230 6231
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6232

6233 6234 6235
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6236 6237 6238 6239 6240 6241
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6242 6243 6244 6245
	 */
	if (test_tsk_need_resched(curr))
		return;

6246 6247 6248 6249 6250
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6251
	/*
6252 6253
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6254
	 */
6255
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6256
		return;
6257

6258
	find_matching_se(&se, &pse);
6259
	update_curr(cfs_rq_of(se));
6260
	BUG_ON(!pse);
6261 6262 6263 6264 6265 6266 6267
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6268
		goto preempt;
6269
	}
6270

6271
	return;
6272

6273
preempt:
6274
	resched_curr(rq);
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6289 6290
}

6291
static struct task_struct *
6292
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6293 6294 6295
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6296
	struct task_struct *p;
6297
	int new_tasks;
6298

6299
again:
6300 6301
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6302
		goto idle;
6303

6304
	if (prev->sched_class != &fair_sched_class)
6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6324 6325 6326 6327 6328
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6379

6380
	if (!cfs_rq->nr_running)
6381
		goto idle;
6382

6383
	put_prev_task(rq, prev);
6384

6385
	do {
6386
		se = pick_next_entity(cfs_rq, NULL);
6387
		set_next_entity(cfs_rq, se);
6388 6389 6390
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6391
	p = task_of(se);
6392

6393 6394
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6395 6396

	return p;
6397 6398

idle:
6399 6400
	new_tasks = idle_balance(rq, rf);

6401 6402 6403 6404 6405
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6406
	if (new_tasks < 0)
6407 6408
		return RETRY_TASK;

6409
	if (new_tasks > 0)
6410 6411 6412
		goto again;

	return NULL;
6413 6414 6415 6416 6417
}

/*
 * Account for a descheduled task:
 */
6418
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6419 6420 6421 6422 6423 6424
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6425
		put_prev_entity(cfs_rq, se);
6426 6427 6428
	}
}

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6454 6455 6456 6457 6458
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6459
		rq_clock_skip_update(rq, true);
6460 6461 6462 6463 6464
	}

	set_skip_buddy(se);
}

6465 6466 6467 6468
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6469 6470
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6481
#ifdef CONFIG_SMP
6482
/**************************************************
P
Peter Zijlstra 已提交
6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6499
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6500 6501 6502 6503 6504 6505
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6506
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6507 6508 6509 6510 6511 6512
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6513
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6552
 *             log_2 n
P
Peter Zijlstra 已提交
6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6598
 */
6599

6600 6601
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6602 6603
enum fbq_type { regular, remote, all };

6604
#define LBF_ALL_PINNED	0x01
6605
#define LBF_NEED_BREAK	0x02
6606 6607
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6608 6609 6610 6611 6612

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6613
	int			src_cpu;
6614 6615 6616 6617

	int			dst_cpu;
	struct rq		*dst_rq;

6618 6619
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6620
	enum cpu_idle_type	idle;
6621
	long			imbalance;
6622 6623 6624
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6625
	unsigned int		flags;
6626 6627 6628 6629

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6630 6631

	enum fbq_type		fbq_type;
6632
	struct list_head	tasks;
6633 6634
};

6635 6636 6637
/*
 * Is this task likely cache-hot:
 */
6638
static int task_hot(struct task_struct *p, struct lb_env *env)
6639 6640 6641
{
	s64 delta;

6642 6643
	lockdep_assert_held(&env->src_rq->lock);

6644 6645 6646 6647 6648 6649 6650 6651 6652
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6653
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6654 6655 6656 6657 6658 6659 6660 6661 6662
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6663
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6664 6665 6666 6667

	return delta < (s64)sysctl_sched_migration_cost;
}

6668
#ifdef CONFIG_NUMA_BALANCING
6669
/*
6670 6671 6672
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6673
 */
6674
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6675
{
6676
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6677
	unsigned long src_faults, dst_faults;
6678 6679
	int src_nid, dst_nid;

6680
	if (!static_branch_likely(&sched_numa_balancing))
6681 6682
		return -1;

6683
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6684
		return -1;
6685 6686 6687 6688

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6689
	if (src_nid == dst_nid)
6690
		return -1;
6691

6692 6693 6694 6695 6696 6697 6698
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6699

6700 6701
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6702
		return 0;
6703

6704 6705 6706 6707 6708 6709
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6710 6711
	}

6712
	return dst_faults < src_faults;
6713 6714
}

6715
#else
6716
static inline int migrate_degrades_locality(struct task_struct *p,
6717 6718
					     struct lb_env *env)
{
6719
	return -1;
6720
}
6721 6722
#endif

6723 6724 6725 6726
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6727
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6728
{
6729
	int tsk_cache_hot;
6730 6731 6732

	lockdep_assert_held(&env->src_rq->lock);

6733 6734
	/*
	 * We do not migrate tasks that are:
6735
	 * 1) throttled_lb_pair, or
6736
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6737 6738
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6739
	 */
6740 6741 6742
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6743
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6744
		int cpu;
6745

6746
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6747

6748 6749
		env->flags |= LBF_SOME_PINNED;

6750 6751 6752 6753 6754 6755 6756 6757
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6758
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6759 6760
			return 0;

6761 6762
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6763
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6764
				env->flags |= LBF_DST_PINNED;
6765 6766 6767
				env->new_dst_cpu = cpu;
				break;
			}
6768
		}
6769

6770 6771
		return 0;
	}
6772 6773

	/* Record that we found atleast one task that could run on dst_cpu */
6774
	env->flags &= ~LBF_ALL_PINNED;
6775

6776
	if (task_running(env->src_rq, p)) {
6777
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6778 6779 6780 6781 6782
		return 0;
	}

	/*
	 * Aggressive migration if:
6783 6784 6785
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6786
	 */
6787 6788 6789
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6790

6791
	if (tsk_cache_hot <= 0 ||
6792
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6793
		if (tsk_cache_hot == 1) {
6794 6795
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6796
		}
6797 6798 6799
		return 1;
	}

6800
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6801
	return 0;
6802 6803
}

6804
/*
6805 6806 6807 6808 6809 6810 6811
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6812
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6813 6814 6815
	set_task_cpu(p, env->dst_cpu);
}

6816
/*
6817
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6818 6819
 * part of active balancing operations within "domain".
 *
6820
 * Returns a task if successful and NULL otherwise.
6821
 */
6822
static struct task_struct *detach_one_task(struct lb_env *env)
6823 6824 6825
{
	struct task_struct *p, *n;

6826 6827
	lockdep_assert_held(&env->src_rq->lock);

6828 6829 6830
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6831

6832
		detach_task(p, env);
6833

6834
		/*
6835
		 * Right now, this is only the second place where
6836
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6837
		 * so we can safely collect stats here rather than
6838
		 * inside detach_tasks().
6839
		 */
6840
		schedstat_inc(env->sd->lb_gained[env->idle]);
6841
		return p;
6842
	}
6843
	return NULL;
6844 6845
}

6846 6847
static const unsigned int sched_nr_migrate_break = 32;

6848
/*
6849 6850
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6851
 *
6852
 * Returns number of detached tasks if successful and 0 otherwise.
6853
 */
6854
static int detach_tasks(struct lb_env *env)
6855
{
6856 6857
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6858
	unsigned long load;
6859 6860 6861
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6862

6863
	if (env->imbalance <= 0)
6864
		return 0;
6865

6866
	while (!list_empty(tasks)) {
6867 6868 6869 6870 6871 6872 6873
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6874
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6875

6876 6877
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6878
		if (env->loop > env->loop_max)
6879
			break;
6880 6881

		/* take a breather every nr_migrate tasks */
6882
		if (env->loop > env->loop_break) {
6883
			env->loop_break += sched_nr_migrate_break;
6884
			env->flags |= LBF_NEED_BREAK;
6885
			break;
6886
		}
6887

6888
		if (!can_migrate_task(p, env))
6889 6890 6891
			goto next;

		load = task_h_load(p);
6892

6893
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6894 6895
			goto next;

6896
		if ((load / 2) > env->imbalance)
6897
			goto next;
6898

6899 6900 6901 6902
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6903
		env->imbalance -= load;
6904 6905

#ifdef CONFIG_PREEMPT
6906 6907
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6908
		 * kernels will stop after the first task is detached to minimize
6909 6910
		 * the critical section.
		 */
6911
		if (env->idle == CPU_NEWLY_IDLE)
6912
			break;
6913 6914
#endif

6915 6916 6917 6918
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6919
		if (env->imbalance <= 0)
6920
			break;
6921 6922 6923

		continue;
next:
6924
		list_move_tail(&p->se.group_node, tasks);
6925
	}
6926

6927
	/*
6928 6929 6930
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6931
	 */
6932
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6933

6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6945
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6946
	p->on_rq = TASK_ON_RQ_QUEUED;
6947 6948 6949 6950 6951 6952 6953 6954 6955
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6956 6957 6958
	struct rq_flags rf;

	rq_lock(rq, &rf);
6959
	update_rq_clock(rq);
6960
	attach_task(rq, p);
6961
	rq_unlock(rq, &rf);
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6972
	struct rq_flags rf;
6973

6974
	rq_lock(env->dst_rq, &rf);
6975
	update_rq_clock(env->dst_rq);
6976 6977 6978 6979

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6980

6981 6982 6983
		attach_task(env->dst_rq, p);
	}

6984
	rq_unlock(env->dst_rq, &rf);
6985 6986
}

P
Peter Zijlstra 已提交
6987
#ifdef CONFIG_FAIR_GROUP_SCHED
6988
static void update_blocked_averages(int cpu)
6989 6990
{
	struct rq *rq = cpu_rq(cpu);
6991
	struct cfs_rq *cfs_rq;
6992
	struct rq_flags rf;
6993

6994
	rq_lock_irqsave(rq, &rf);
6995
	update_rq_clock(rq);
6996

6997 6998 6999 7000
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7001
	for_each_leaf_cfs_rq(rq, cfs_rq) {
7002 7003
		struct sched_entity *se;

7004 7005 7006
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7007

7008
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
7009
			update_tg_load_avg(cfs_rq, 0);
7010

7011 7012 7013 7014
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
7015
	}
7016
	rq_unlock_irqrestore(rq, &rf);
7017 7018
}

7019
/*
7020
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7021 7022 7023
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7024
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7025
{
7026 7027
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7028
	unsigned long now = jiffies;
7029
	unsigned long load;
7030

7031
	if (cfs_rq->last_h_load_update == now)
7032 7033
		return;

7034 7035 7036 7037 7038 7039 7040
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7041

7042
	if (!se) {
7043
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7044 7045 7046 7047 7048
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7049 7050
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7051 7052 7053 7054
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7055 7056
}

7057
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7058
{
7059
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7060

7061
	update_cfs_rq_h_load(cfs_rq);
7062
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7063
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7064 7065
}
#else
7066
static inline void update_blocked_averages(int cpu)
7067
{
7068 7069
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7070
	struct rq_flags rf;
7071

7072
	rq_lock_irqsave(rq, &rf);
7073
	update_rq_clock(rq);
7074
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7075
	rq_unlock_irqrestore(rq, &rf);
7076 7077
}

7078
static unsigned long task_h_load(struct task_struct *p)
7079
{
7080
	return p->se.avg.load_avg;
7081
}
P
Peter Zijlstra 已提交
7082
#endif
7083 7084

/********** Helpers for find_busiest_group ************************/
7085 7086 7087 7088 7089 7090 7091

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7092 7093 7094 7095 7096 7097 7098
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7099
	unsigned long load_per_task;
7100
	unsigned long group_capacity;
7101
	unsigned long group_util; /* Total utilization of the group */
7102 7103 7104
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7105
	enum group_type group_type;
7106
	int group_no_capacity;
7107 7108 7109 7110
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7111 7112
};

J
Joonsoo Kim 已提交
7113 7114 7115 7116 7117 7118 7119 7120
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7121
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7122 7123 7124
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7125
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7126 7127
};

7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7140
		.total_capacity = 0UL,
7141 7142
		.busiest_stat = {
			.avg_load = 0UL,
7143 7144
			.sum_nr_running = 0,
			.group_type = group_other,
7145 7146 7147 7148
		},
	};
}

7149 7150 7151
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7152
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7153 7154
 *
 * Return: The load index.
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7177
static unsigned long scale_rt_capacity(int cpu)
7178 7179
{
	struct rq *rq = cpu_rq(cpu);
7180
	u64 total, used, age_stamp, avg;
7181
	s64 delta;
7182

7183 7184 7185 7186
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7187 7188
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7189
	delta = __rq_clock_broken(rq) - age_stamp;
7190

7191 7192 7193 7194
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7195

7196
	used = div_u64(avg, total);
7197

7198 7199
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7200

7201
	return 1;
7202 7203
}

7204
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7205
{
7206
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7207 7208
	struct sched_group *sdg = sd->groups;

7209
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7210

7211
	capacity *= scale_rt_capacity(cpu);
7212
	capacity >>= SCHED_CAPACITY_SHIFT;
7213

7214 7215
	if (!capacity)
		capacity = 1;
7216

7217 7218
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7219
	sdg->sgc->min_capacity = capacity;
7220 7221
}

7222
void update_group_capacity(struct sched_domain *sd, int cpu)
7223 7224 7225
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7226
	unsigned long capacity, min_capacity;
7227 7228 7229 7230
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7231
	sdg->sgc->next_update = jiffies + interval;
7232 7233

	if (!child) {
7234
		update_cpu_capacity(sd, cpu);
7235 7236 7237
		return;
	}

7238
	capacity = 0;
7239
	min_capacity = ULONG_MAX;
7240

P
Peter Zijlstra 已提交
7241 7242 7243 7244 7245 7246
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7247
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7248
			struct sched_group_capacity *sgc;
7249
			struct rq *rq = cpu_rq(cpu);
7250

7251
			/*
7252
			 * build_sched_domains() -> init_sched_groups_capacity()
7253 7254 7255
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7256 7257
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7258
			 *
7259
			 * This avoids capacity from being 0 and
7260 7261 7262
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7263
				capacity += capacity_of(cpu);
7264 7265 7266
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7267
			}
7268

7269
			min_capacity = min(capacity, min_capacity);
7270
		}
P
Peter Zijlstra 已提交
7271 7272 7273 7274
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7275
		 */
P
Peter Zijlstra 已提交
7276 7277 7278

		group = child->groups;
		do {
7279 7280 7281 7282
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7283 7284 7285
			group = group->next;
		} while (group != child->groups);
	}
7286

7287
	sdg->sgc->capacity = capacity;
7288
	sdg->sgc->min_capacity = min_capacity;
7289 7290
}

7291
/*
7292 7293 7294
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7295 7296
 */
static inline int
7297
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7298
{
7299 7300
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7301 7302
}

7303 7304
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7305
 * groups is inadequate due to ->cpus_allowed constraints.
7306 7307 7308 7309 7310
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7311 7312
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7313 7314 7315 7316 7317 7318
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7319 7320
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7321 7322
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7323
 * update_sd_pick_busiest(). And calculate_imbalance() and
7324
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7325 7326 7327 7328 7329 7330 7331
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7332
static inline int sg_imbalanced(struct sched_group *group)
7333
{
7334
	return group->sgc->imbalance;
7335 7336
}

7337
/*
7338 7339 7340
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7341 7342
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7343 7344 7345 7346 7347
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7348
 */
7349 7350
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7351
{
7352 7353
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7354

7355
	if ((sgs->group_capacity * 100) >
7356
			(sgs->group_util * env->sd->imbalance_pct))
7357
		return true;
7358

7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7375

7376
	if ((sgs->group_capacity * 100) <
7377
			(sgs->group_util * env->sd->imbalance_pct))
7378
		return true;
7379

7380
	return false;
7381 7382
}

7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7394 7395 7396
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7397
{
7398
	if (sgs->group_no_capacity)
7399 7400 7401 7402 7403 7404 7405 7406
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7407 7408
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7409
 * @env: The load balancing environment.
7410 7411 7412 7413
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7414
 * @overload: Indicate more than one runnable task for any CPU.
7415
 */
7416 7417
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7418 7419
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7420
{
7421
	unsigned long load;
7422
	int i, nr_running;
7423

7424 7425
	memset(sgs, 0, sizeof(*sgs));

7426
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7427 7428 7429
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7430
		if (local_group)
7431
			load = target_load(i, load_idx);
7432
		else
7433 7434 7435
			load = source_load(i, load_idx);

		sgs->group_load += load;
7436
		sgs->group_util += cpu_util(i);
7437
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7438

7439 7440
		nr_running = rq->nr_running;
		if (nr_running > 1)
7441 7442
			*overload = true;

7443 7444 7445 7446
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7447
		sgs->sum_weighted_load += weighted_cpuload(i);
7448 7449 7450 7451
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7452
			sgs->idle_cpus++;
7453 7454
	}

7455 7456
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7457
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7458

7459
	if (sgs->sum_nr_running)
7460
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7461

7462
	sgs->group_weight = group->group_weight;
7463

7464
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7465
	sgs->group_type = group_classify(group, sgs);
7466 7467
}

7468 7469
/**
 * update_sd_pick_busiest - return 1 on busiest group
7470
 * @env: The load balancing environment.
7471 7472
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7473
 * @sgs: sched_group statistics
7474 7475 7476
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7477 7478 7479
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7480
 */
7481
static bool update_sd_pick_busiest(struct lb_env *env,
7482 7483
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7484
				   struct sg_lb_stats *sgs)
7485
{
7486
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7487

7488
	if (sgs->group_type > busiest->group_type)
7489 7490
		return true;

7491 7492 7493 7494 7495 7496
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7511 7512
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7513 7514
		return true;

7515 7516 7517
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7518
	/*
T
Tim Chen 已提交
7519 7520 7521
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7522
	 */
T
Tim Chen 已提交
7523 7524
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7525 7526 7527
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7528 7529 7530
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7531 7532 7533 7534 7535 7536
			return true;
	}

	return false;
}

7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7567
/**
7568
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7569
 * @env: The load balancing environment.
7570 7571
 * @sds: variable to hold the statistics for this sched_domain.
 */
7572
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7573
{
7574 7575
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7576
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7577
	struct sg_lb_stats tmp_sgs;
7578
	int load_idx, prefer_sibling = 0;
7579
	bool overload = false;
7580 7581 7582 7583

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7584
	load_idx = get_sd_load_idx(env->sd, env->idle);
7585 7586

	do {
J
Joonsoo Kim 已提交
7587
		struct sg_lb_stats *sgs = &tmp_sgs;
7588 7589
		int local_group;

7590
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7591 7592
		if (local_group) {
			sds->local = sg;
7593
			sgs = local;
7594 7595

			if (env->idle != CPU_NEWLY_IDLE ||
7596 7597
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7598
		}
7599

7600 7601
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7602

7603 7604 7605
		if (local_group)
			goto next_group;

7606 7607
		/*
		 * In case the child domain prefers tasks go to siblings
7608
		 * first, lower the sg capacity so that we'll try
7609 7610
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7611 7612 7613 7614
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7615
		 */
7616
		if (prefer_sibling && sds->local &&
7617 7618
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7619
			sgs->group_no_capacity = 1;
7620
			sgs->group_type = group_classify(sg, sgs);
7621
		}
7622

7623
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7624
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7625
			sds->busiest_stat = *sgs;
7626 7627
		}

7628 7629 7630
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7631
		sds->total_capacity += sgs->group_capacity;
7632

7633
		sg = sg->next;
7634
	} while (sg != env->sd->groups);
7635 7636 7637

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7638 7639 7640 7641 7642 7643 7644

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7664
 * Return: 1 when packing is required and a task should be moved to
7665 7666
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7667
 * @env: The load balancing environment.
7668 7669
 * @sds: Statistics of the sched_domain which is to be packed
 */
7670
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7671 7672 7673
{
	int busiest_cpu;

7674
	if (!(env->sd->flags & SD_ASYM_PACKING))
7675 7676
		return 0;

7677 7678 7679
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7680 7681 7682
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7683 7684
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7685 7686
		return 0;

7687
	env->imbalance = DIV_ROUND_CLOSEST(
7688
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7689
		SCHED_CAPACITY_SCALE);
7690

7691
	return 1;
7692 7693 7694 7695 7696 7697
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7698
 * @env: The load balancing environment.
7699 7700
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7701 7702
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7703
{
7704
	unsigned long tmp, capa_now = 0, capa_move = 0;
7705
	unsigned int imbn = 2;
7706
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7707
	struct sg_lb_stats *local, *busiest;
7708

J
Joonsoo Kim 已提交
7709 7710
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7711

J
Joonsoo Kim 已提交
7712 7713 7714 7715
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7716

J
Joonsoo Kim 已提交
7717
	scaled_busy_load_per_task =
7718
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7719
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7720

7721 7722
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7723
		env->imbalance = busiest->load_per_task;
7724 7725 7726 7727 7728
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7729
	 * however we may be able to increase total CPU capacity used by
7730 7731 7732
	 * moving them.
	 */

7733
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7734
			min(busiest->load_per_task, busiest->avg_load);
7735
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7736
			min(local->load_per_task, local->avg_load);
7737
	capa_now /= SCHED_CAPACITY_SCALE;
7738 7739

	/* Amount of load we'd subtract */
7740
	if (busiest->avg_load > scaled_busy_load_per_task) {
7741
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7742
			    min(busiest->load_per_task,
7743
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7744
	}
7745 7746

	/* Amount of load we'd add */
7747
	if (busiest->avg_load * busiest->group_capacity <
7748
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7749 7750
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7751
	} else {
7752
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7753
		      local->group_capacity;
J
Joonsoo Kim 已提交
7754
	}
7755
	capa_move += local->group_capacity *
7756
		    min(local->load_per_task, local->avg_load + tmp);
7757
	capa_move /= SCHED_CAPACITY_SCALE;
7758 7759

	/* Move if we gain throughput */
7760
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7761
		env->imbalance = busiest->load_per_task;
7762 7763 7764 7765 7766
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7767
 * @env: load balance environment
7768 7769
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7770
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7771
{
7772
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7773 7774 7775 7776
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7777

7778
	if (busiest->group_type == group_imbalanced) {
7779 7780 7781 7782
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7783 7784
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7785 7786
	}

7787
	/*
7788 7789 7790 7791
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7792
	 */
7793 7794
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7795 7796
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7797 7798
	}

7799 7800 7801 7802 7803
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7804
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7805
		if (load_above_capacity > busiest->group_capacity) {
7806
			load_above_capacity -= busiest->group_capacity;
7807
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7808 7809
			load_above_capacity /= busiest->group_capacity;
		} else
7810
			load_above_capacity = ~0UL;
7811 7812 7813 7814 7815 7816
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7817 7818
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7819
	 */
7820
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7821 7822

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7823
	env->imbalance = min(
7824 7825
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7826
	) / SCHED_CAPACITY_SCALE;
7827 7828 7829

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7830
	 * there is no guarantee that any tasks will be moved so we'll have
7831 7832 7833
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7834
	if (env->imbalance < busiest->load_per_task)
7835
		return fix_small_imbalance(env, sds);
7836
}
7837

7838 7839 7840 7841
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7842
 * if there is an imbalance.
7843 7844 7845 7846
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7847
 * @env: The load balancing environment.
7848
 *
7849
 * Return:	- The busiest group if imbalance exists.
7850
 */
J
Joonsoo Kim 已提交
7851
static struct sched_group *find_busiest_group(struct lb_env *env)
7852
{
J
Joonsoo Kim 已提交
7853
	struct sg_lb_stats *local, *busiest;
7854 7855
	struct sd_lb_stats sds;

7856
	init_sd_lb_stats(&sds);
7857 7858 7859 7860 7861

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7862
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7863 7864
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7865

7866
	/* ASYM feature bypasses nice load balance check */
7867
	if (check_asym_packing(env, &sds))
7868 7869
		return sds.busiest;

7870
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7871
	if (!sds.busiest || busiest->sum_nr_running == 0)
7872 7873
		goto out_balanced;

7874 7875
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7876

P
Peter Zijlstra 已提交
7877 7878
	/*
	 * If the busiest group is imbalanced the below checks don't
7879
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7880 7881
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7882
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7883 7884
		goto force_balance;

7885
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7886 7887
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7888 7889
		goto force_balance;

7890
	/*
7891
	 * If the local group is busier than the selected busiest group
7892 7893
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7894
	if (local->avg_load >= busiest->avg_load)
7895 7896
		goto out_balanced;

7897 7898 7899 7900
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7901
	if (local->avg_load >= sds.avg_load)
7902 7903
		goto out_balanced;

7904
	if (env->idle == CPU_IDLE) {
7905
		/*
7906 7907 7908 7909 7910
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7911
		 */
7912 7913
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7914
			goto out_balanced;
7915 7916 7917 7918 7919
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7920 7921
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7922
			goto out_balanced;
7923
	}
7924

7925
force_balance:
7926
	/* Looks like there is an imbalance. Compute it */
7927
	calculate_imbalance(env, &sds);
7928 7929 7930
	return sds.busiest;

out_balanced:
7931
	env->imbalance = 0;
7932 7933 7934 7935 7936 7937
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7938
static struct rq *find_busiest_queue(struct lb_env *env,
7939
				     struct sched_group *group)
7940 7941
{
	struct rq *busiest = NULL, *rq;
7942
	unsigned long busiest_load = 0, busiest_capacity = 1;
7943 7944
	int i;

7945
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7946
		unsigned long capacity, wl;
7947 7948 7949 7950
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7951

7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7974
		capacity = capacity_of(i);
7975

7976
		wl = weighted_cpuload(i);
7977

7978 7979
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7980
		 * which is not scaled with the cpu capacity.
7981
		 */
7982 7983 7984

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7985 7986
			continue;

7987 7988
		/*
		 * For the load comparisons with the other cpu's, consider
7989 7990 7991
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7992
		 *
7993
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7994
		 * multiplication to rid ourselves of the division works out
7995 7996
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7997
		 */
7998
		if (wl * busiest_capacity > busiest_load * capacity) {
7999
			busiest_load = wl;
8000
			busiest_capacity = capacity;
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8014
static int need_active_balance(struct lb_env *env)
8015
{
8016 8017 8018
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8019 8020 8021

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8022 8023
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8024
		 */
T
Tim Chen 已提交
8025 8026
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8027
			return 1;
8028 8029
	}

8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8043 8044 8045
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8046 8047
static int active_load_balance_cpu_stop(void *data);

8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8079
	return balance_cpu == env->dst_cpu;
8080 8081
}

8082 8083 8084 8085 8086 8087
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8088
			int *continue_balancing)
8089
{
8090
	int ld_moved, cur_ld_moved, active_balance = 0;
8091
	struct sched_domain *sd_parent = sd->parent;
8092 8093
	struct sched_group *group;
	struct rq *busiest;
8094
	struct rq_flags rf;
8095
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8096

8097 8098
	struct lb_env env = {
		.sd		= sd,
8099 8100
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8101
		.dst_grpmask    = sched_group_cpus(sd->groups),
8102
		.idle		= idle,
8103
		.loop_break	= sched_nr_migrate_break,
8104
		.cpus		= cpus,
8105
		.fbq_type	= all,
8106
		.tasks		= LIST_HEAD_INIT(env.tasks),
8107 8108
	};

8109 8110 8111 8112
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8113
	if (idle == CPU_NEWLY_IDLE)
8114 8115
		env.dst_grpmask = NULL;

8116 8117
	cpumask_copy(cpus, cpu_active_mask);

8118
	schedstat_inc(sd->lb_count[idle]);
8119 8120

redo:
8121 8122
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8123
		goto out_balanced;
8124
	}
8125

8126
	group = find_busiest_group(&env);
8127
	if (!group) {
8128
		schedstat_inc(sd->lb_nobusyg[idle]);
8129 8130 8131
		goto out_balanced;
	}

8132
	busiest = find_busiest_queue(&env, group);
8133
	if (!busiest) {
8134
		schedstat_inc(sd->lb_nobusyq[idle]);
8135 8136 8137
		goto out_balanced;
	}

8138
	BUG_ON(busiest == env.dst_rq);
8139

8140
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8141

8142 8143 8144
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8145 8146 8147 8148 8149 8150 8151 8152
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8153
		env.flags |= LBF_ALL_PINNED;
8154
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8155

8156
more_balance:
8157
		rq_lock_irqsave(busiest, &rf);
8158
		update_rq_clock(busiest);
8159 8160 8161 8162 8163

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8164
		cur_ld_moved = detach_tasks(&env);
8165 8166

		/*
8167 8168 8169 8170 8171
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8172
		 */
8173

8174
		rq_unlock(busiest, &rf);
8175 8176 8177 8178 8179 8180

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8181
		local_irq_restore(rf.flags);
8182

8183 8184 8185 8186 8187
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8207
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8208

8209 8210 8211
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8212
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8213
			env.dst_cpu	 = env.new_dst_cpu;
8214
			env.flags	&= ~LBF_DST_PINNED;
8215 8216
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8217

8218 8219 8220 8221 8222 8223
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8224

8225 8226 8227 8228
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8229
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8230

8231
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8232 8233 8234
				*group_imbalance = 1;
		}

8235
		/* All tasks on this runqueue were pinned by CPU affinity */
8236
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8237
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8238 8239 8240
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8241
				goto redo;
8242
			}
8243
			goto out_all_pinned;
8244 8245 8246 8247
		}
	}

	if (!ld_moved) {
8248
		schedstat_inc(sd->lb_failed[idle]);
8249 8250 8251 8252 8253 8254 8255 8256
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8257

8258
		if (need_active_balance(&env)) {
8259 8260
			unsigned long flags;

8261 8262
			raw_spin_lock_irqsave(&busiest->lock, flags);

8263 8264 8265
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8266
			 */
8267
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8268 8269
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8270
				env.flags |= LBF_ALL_PINNED;
8271 8272 8273
				goto out_one_pinned;
			}

8274 8275 8276 8277 8278
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8279 8280 8281 8282 8283 8284
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8285

8286
			if (active_balance) {
8287 8288 8289
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8290
			}
8291

8292
			/* We've kicked active balancing, force task migration. */
8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8306
		 * detach_tasks).
8307 8308 8309 8310 8311 8312 8313 8314
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8332
	schedstat_inc(sd->lb_balanced[idle]);
8333 8334 8335 8336 8337

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8338
	if (((env.flags & LBF_ALL_PINNED) &&
8339
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8340 8341 8342
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8343
	ld_moved = 0;
8344 8345 8346 8347
out:
	return ld_moved;
}

8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8364
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8365 8366 8367
{
	unsigned long interval, next;

8368 8369
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8370 8371 8372 8373 8374 8375
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8376 8377 8378 8379
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8380
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8381
{
8382 8383
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8384 8385
	struct sched_domain *sd;
	int pulled_task = 0;
8386
	u64 curr_cost = 0;
8387

8388 8389 8390 8391 8392 8393
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8394 8395 8396 8397 8398 8399 8400 8401
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8402 8403
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8404 8405 8406
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8407
			update_next_balance(sd, &next_balance);
8408 8409
		rcu_read_unlock();

8410
		goto out;
8411
	}
8412

8413 8414
	raw_spin_unlock(&this_rq->lock);

8415
	update_blocked_averages(this_cpu);
8416
	rcu_read_lock();
8417
	for_each_domain(this_cpu, sd) {
8418
		int continue_balancing = 1;
8419
		u64 t0, domain_cost;
8420 8421 8422 8423

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8424
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8425
			update_next_balance(sd, &next_balance);
8426
			break;
8427
		}
8428

8429
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8430 8431
			t0 = sched_clock_cpu(this_cpu);

8432
			pulled_task = load_balance(this_cpu, this_rq,
8433 8434
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8435 8436 8437 8438 8439 8440

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8441
		}
8442

8443
		update_next_balance(sd, &next_balance);
8444 8445 8446 8447 8448 8449

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8450 8451
			break;
	}
8452
	rcu_read_unlock();
8453 8454 8455

	raw_spin_lock(&this_rq->lock);

8456 8457 8458
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8459
	/*
8460 8461 8462
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8463
	 */
8464
	if (this_rq->cfs.h_nr_running && !pulled_task)
8465
		pulled_task = 1;
8466

8467 8468 8469
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8470
		this_rq->next_balance = next_balance;
8471

8472
	/* Is there a task of a high priority class? */
8473
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8474 8475
		pulled_task = -1;

8476
	if (pulled_task)
8477 8478
		this_rq->idle_stamp = 0;

8479 8480
	rq_repin_lock(this_rq, rf);

8481
	return pulled_task;
8482 8483 8484
}

/*
8485 8486 8487 8488
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8489
 */
8490
static int active_load_balance_cpu_stop(void *data)
8491
{
8492 8493
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8494
	int target_cpu = busiest_rq->push_cpu;
8495
	struct rq *target_rq = cpu_rq(target_cpu);
8496
	struct sched_domain *sd;
8497
	struct task_struct *p = NULL;
8498
	struct rq_flags rf;
8499

8500
	rq_lock_irq(busiest_rq, &rf);
8501 8502 8503 8504 8505

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8506 8507 8508

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8509
		goto out_unlock;
8510 8511 8512 8513 8514 8515 8516 8517 8518

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8519
	rcu_read_lock();
8520 8521 8522 8523 8524 8525 8526
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8527 8528
		struct lb_env env = {
			.sd		= sd,
8529 8530 8531 8532
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8533 8534 8535
			.idle		= CPU_IDLE,
		};

8536
		schedstat_inc(sd->alb_count);
8537
		update_rq_clock(busiest_rq);
8538

8539
		p = detach_one_task(&env);
8540
		if (p) {
8541
			schedstat_inc(sd->alb_pushed);
8542 8543 8544
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8545
			schedstat_inc(sd->alb_failed);
8546
		}
8547
	}
8548
	rcu_read_unlock();
8549 8550
out_unlock:
	busiest_rq->active_balance = 0;
8551
	rq_unlock(busiest_rq, &rf);
8552 8553 8554 8555 8556 8557

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8558
	return 0;
8559 8560
}

8561 8562 8563 8564 8565
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8566
#ifdef CONFIG_NO_HZ_COMMON
8567 8568 8569 8570 8571 8572
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8573
static struct {
8574
	cpumask_var_t idle_cpus_mask;
8575
	atomic_t nr_cpus;
8576 8577
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8578

8579
static inline int find_new_ilb(void)
8580
{
8581
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8582

8583 8584 8585 8586
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8587 8588
}

8589 8590 8591 8592 8593
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8594
static void nohz_balancer_kick(void)
8595 8596 8597 8598 8599
{
	int ilb_cpu;

	nohz.next_balance++;

8600
	ilb_cpu = find_new_ilb();
8601

8602 8603
	if (ilb_cpu >= nr_cpu_ids)
		return;
8604

8605
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8606 8607 8608 8609 8610 8611 8612 8613
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8614 8615 8616
	return;
}

8617
void nohz_balance_exit_idle(unsigned int cpu)
8618 8619
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8620 8621 8622 8623 8624 8625 8626
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8627 8628 8629 8630
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8631 8632 8633
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8634
	int cpu = smp_processor_id();
8635 8636

	rcu_read_lock();
8637
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8638 8639 8640 8641 8642

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8643
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8644
unlock:
8645 8646 8647 8648 8649 8650
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8651
	int cpu = smp_processor_id();
8652 8653

	rcu_read_lock();
8654
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8655 8656 8657 8658 8659

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8660
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8661
unlock:
8662 8663 8664
	rcu_read_unlock();
}

8665
/*
8666
 * This routine will record that the cpu is going idle with tick stopped.
8667
 * This info will be used in performing idle load balancing in the future.
8668
 */
8669
void nohz_balance_enter_idle(int cpu)
8670
{
8671 8672 8673 8674 8675 8676
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8677 8678
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8679

8680 8681 8682 8683 8684 8685
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8686 8687 8688
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8689 8690 8691 8692 8693
}
#endif

static DEFINE_SPINLOCK(balancing);

8694 8695 8696 8697
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8698
void update_max_interval(void)
8699 8700 8701 8702
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8703 8704 8705 8706
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8707
 * Balancing parameters are set up in init_sched_domains.
8708
 */
8709
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8710
{
8711
	int continue_balancing = 1;
8712
	int cpu = rq->cpu;
8713
	unsigned long interval;
8714
	struct sched_domain *sd;
8715 8716 8717
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8718 8719
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8720

8721
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8722

8723
	rcu_read_lock();
8724
	for_each_domain(cpu, sd) {
8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8737 8738 8739
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8751
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8752 8753 8754 8755 8756 8757 8758 8759

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8760
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8761
				/*
8762
				 * The LBF_DST_PINNED logic could have changed
8763 8764
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8765
				 */
8766
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8767 8768
			}
			sd->last_balance = jiffies;
8769
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8770 8771 8772 8773 8774 8775 8776 8777
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8778 8779
	}
	if (need_decay) {
8780
		/*
8781 8782
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8783
		 */
8784 8785
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8786
	}
8787
	rcu_read_unlock();
8788 8789 8790 8791 8792 8793

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8794
	if (likely(update_next_balance)) {
8795
		rq->next_balance = next_balance;
8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8810 8811
}

8812
#ifdef CONFIG_NO_HZ_COMMON
8813
/*
8814
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8815 8816
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8817
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8818
{
8819
	int this_cpu = this_rq->cpu;
8820 8821
	struct rq *rq;
	int balance_cpu;
8822 8823 8824
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8825

8826 8827 8828
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8829 8830

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8831
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8832 8833 8834 8835 8836 8837 8838
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8839
		if (need_resched())
8840 8841
			break;

V
Vincent Guittot 已提交
8842 8843
		rq = cpu_rq(balance_cpu);

8844 8845 8846 8847 8848
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8849 8850 8851
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8852
			update_rq_clock(rq);
8853
			cpu_load_update_idle(rq);
8854 8855
			rq_unlock_irq(rq, &rf);

8856 8857
			rebalance_domains(rq, CPU_IDLE);
		}
8858

8859 8860 8861 8862
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8863
	}
8864 8865 8866 8867 8868 8869 8870 8871

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8872 8873
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8874 8875 8876
}

/*
8877
 * Current heuristic for kicking the idle load balancer in the presence
8878
 * of an idle cpu in the system.
8879
 *   - This rq has more than one task.
8880 8881 8882 8883
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8884 8885
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8886
 */
8887
static inline bool nohz_kick_needed(struct rq *rq)
8888 8889
{
	unsigned long now = jiffies;
8890
	struct sched_domain_shared *sds;
8891
	struct sched_domain *sd;
T
Tim Chen 已提交
8892
	int nr_busy, i, cpu = rq->cpu;
8893
	bool kick = false;
8894

8895
	if (unlikely(rq->idle_balance))
8896
		return false;
8897

8898 8899 8900 8901
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8902
	set_cpu_sd_state_busy();
8903
	nohz_balance_exit_idle(cpu);
8904 8905 8906 8907 8908 8909

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8910
		return false;
8911 8912

	if (time_before(now, nohz.next_balance))
8913
		return false;
8914

8915
	if (rq->nr_running >= 2)
8916
		return true;
8917

8918
	rcu_read_lock();
8919 8920 8921 8922 8923 8924 8925
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8926 8927 8928 8929 8930
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8931
	}
8932

8933 8934 8935 8936 8937 8938 8939 8940
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8941

8942
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8943 8944 8945 8946 8947
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8948

T
Tim Chen 已提交
8949 8950 8951 8952 8953 8954
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8955
unlock:
8956
	rcu_read_unlock();
8957
	return kick;
8958 8959
}
#else
8960
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8961 8962 8963 8964 8965 8966
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8967
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8968
{
8969
	struct rq *this_rq = this_rq();
8970
	enum cpu_idle_type idle = this_rq->idle_balance ?
8971 8972 8973
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8974
	 * If this cpu has a pending nohz_balance_kick, then do the
8975
	 * balancing on behalf of the other idle cpus whose ticks are
8976 8977 8978 8979
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8980
	 */
8981
	nohz_idle_balance(this_rq, idle);
8982
	rebalance_domains(this_rq, idle);
8983 8984 8985 8986 8987
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8988
void trigger_load_balance(struct rq *rq)
8989 8990
{
	/* Don't need to rebalance while attached to NULL domain */
8991 8992 8993 8994
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8995
		raise_softirq(SCHED_SOFTIRQ);
8996
#ifdef CONFIG_NO_HZ_COMMON
8997
	if (nohz_kick_needed(rq))
8998
		nohz_balancer_kick();
8999
#endif
9000 9001
}

9002 9003 9004
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9005 9006

	update_runtime_enabled(rq);
9007 9008 9009 9010 9011
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9012 9013 9014

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9015 9016
}

9017
#endif /* CONFIG_SMP */
9018

9019 9020 9021
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9022
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9023 9024 9025 9026 9027 9028
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9029
		entity_tick(cfs_rq, se, queued);
9030
	}
9031

9032
	if (static_branch_unlikely(&sched_numa_balancing))
9033
		task_tick_numa(rq, curr);
9034 9035 9036
}

/*
P
Peter Zijlstra 已提交
9037 9038 9039
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9040
 */
P
Peter Zijlstra 已提交
9041
static void task_fork_fair(struct task_struct *p)
9042
{
9043 9044
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9045
	struct rq *rq = this_rq();
9046
	struct rq_flags rf;
9047

9048
	rq_lock(rq, &rf);
9049 9050
	update_rq_clock(rq);

9051 9052
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9053 9054
	if (curr) {
		update_curr(cfs_rq);
9055
		se->vruntime = curr->vruntime;
9056
	}
9057
	place_entity(cfs_rq, se, 1);
9058

P
Peter Zijlstra 已提交
9059
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9060
		/*
9061 9062 9063
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9064
		swap(curr->vruntime, se->vruntime);
9065
		resched_curr(rq);
9066
	}
9067

9068
	se->vruntime -= cfs_rq->min_vruntime;
9069
	rq_unlock(rq, &rf);
9070 9071
}

9072 9073 9074 9075
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9076 9077
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9078
{
9079
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9080 9081
		return;

9082 9083 9084 9085 9086
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9087
	if (rq->curr == p) {
9088
		if (p->prio > oldprio)
9089
			resched_curr(rq);
9090
	} else
9091
		check_preempt_curr(rq, p, 0);
9092 9093
}

9094
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9095 9096 9097 9098
{
	struct sched_entity *se = &p->se;

	/*
9099 9100 9101 9102 9103 9104 9105 9106 9107 9108
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9109
	 *
9110 9111 9112 9113
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9114
	 */
9115 9116 9117 9118 9119 9120
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9146
static void detach_entity_cfs_rq(struct sched_entity *se)
9147 9148 9149
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9150
	/* Catch up with the cfs_rq and remove our load when we leave */
9151
	update_load_avg(se, 0);
9152
	detach_entity_load_avg(cfs_rq, se);
9153
	update_tg_load_avg(cfs_rq, false);
9154
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9155 9156
}

9157
static void attach_entity_cfs_rq(struct sched_entity *se)
9158
{
9159
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9160 9161

#ifdef CONFIG_FAIR_GROUP_SCHED
9162 9163 9164 9165 9166 9167
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9168

9169
	/* Synchronize entity with its cfs_rq */
9170
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9171
	attach_entity_load_avg(cfs_rq, se);
9172
	update_tg_load_avg(cfs_rq, false);
9173
	propagate_entity_cfs_rq(se);
9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9199 9200 9201 9202

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9203

9204 9205 9206 9207 9208 9209 9210 9211
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9212

9213
	if (task_on_rq_queued(p)) {
9214
		/*
9215 9216 9217
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9218
		 */
9219 9220 9221 9222
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9223
	}
9224 9225
}

9226 9227 9228 9229 9230 9231 9232 9233 9234
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9235 9236 9237 9238 9239 9240 9241
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9242 9243
}

9244 9245 9246 9247 9248 9249 9250
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9251
#ifdef CONFIG_SMP
9252 9253 9254
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9255 9256
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9257
#endif
9258 9259
}

P
Peter Zijlstra 已提交
9260
#ifdef CONFIG_FAIR_GROUP_SCHED
9261 9262 9263 9264 9265 9266 9267 9268
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9269
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9270
{
9271
	detach_task_cfs_rq(p);
9272
	set_task_rq(p, task_cpu(p));
9273 9274 9275 9276 9277

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9278
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9279
}
9280

9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9294 9295 9296 9297 9298 9299 9300 9301 9302
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9303
		if (tg->se)
9304 9305 9306 9307 9308 9309 9310 9311 9312 9313
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9314
	struct cfs_rq *cfs_rq;
9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9341
		init_entity_runnable_average(se);
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9363
		update_rq_clock(rq);
9364
		attach_entity_cfs_rq(se);
9365
		sync_throttle(tg, i);
9366 9367 9368 9369
		raw_spin_unlock_irq(&rq->lock);
	}
}

9370
void unregister_fair_sched_group(struct task_group *tg)
9371 9372
{
	unsigned long flags;
9373 9374
	struct rq *rq;
	int cpu;
9375

9376 9377 9378
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9379

9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9412
	if (!parent) {
9413
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9414 9415
		se->depth = 0;
	} else {
9416
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9417 9418
		se->depth = parent->depth + 1;
	}
9419 9420

	se->my_q = cfs_rq;
9421 9422
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9447 9448
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9449 9450

		/* Propagate contribution to hierarchy */
9451
		rq_lock_irqsave(rq, &rf);
9452
		update_rq_clock(rq);
9453 9454 9455 9456
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9457
		rq_unlock_irqrestore(rq, &rf);
9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9473 9474
void online_fair_sched_group(struct task_group *tg) { }

9475
void unregister_fair_sched_group(struct task_group *tg) { }
9476 9477 9478

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9479

9480
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9481 9482 9483 9484 9485 9486 9487 9488 9489
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9490
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9491 9492 9493 9494

	return rr_interval;
}

9495 9496 9497
/*
 * All the scheduling class methods:
 */
9498
const struct sched_class fair_sched_class = {
9499
	.next			= &idle_sched_class,
9500 9501 9502
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9503
	.yield_to_task		= yield_to_task_fair,
9504

I
Ingo Molnar 已提交
9505
	.check_preempt_curr	= check_preempt_wakeup,
9506 9507 9508 9509

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9510
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9511
	.select_task_rq		= select_task_rq_fair,
9512
	.migrate_task_rq	= migrate_task_rq_fair,
9513

9514 9515
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9516

9517
	.task_dead		= task_dead_fair,
9518
	.set_cpus_allowed	= set_cpus_allowed_common,
9519
#endif
9520

9521
	.set_curr_task          = set_curr_task_fair,
9522
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9523
	.task_fork		= task_fork_fair,
9524 9525

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9526
	.switched_from		= switched_from_fair,
9527
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9528

9529 9530
	.get_rr_interval	= get_rr_interval_fair,

9531 9532
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9533
#ifdef CONFIG_FAIR_GROUP_SCHED
9534
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9535
#endif
9536 9537 9538
};

#ifdef CONFIG_SCHED_DEBUG
9539
void print_cfs_stats(struct seq_file *m, int cpu)
9540 9541 9542
{
	struct cfs_rq *cfs_rq;

9543
	rcu_read_lock();
9544
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9545
		print_cfs_rq(m, cpu, cfs_rq);
9546
	rcu_read_unlock();
9547
}
9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9569 9570 9571 9572 9573 9574

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9575
#ifdef CONFIG_NO_HZ_COMMON
9576
	nohz.next_balance = jiffies;
9577 9578 9579 9580 9581
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}