fair.c 203.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23
#include <linux/latencytop.h>
24
#include <linux/sched.h>
25
#include <linux/cpumask.h>
26 27 28
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
29
#include <linux/mempolicy.h>
30
#include <linux/migrate.h>
31
#include <linux/task_work.h>
32 33 34 35

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
36

37
/*
38
 * Targeted preemption latency for CPU-bound tasks:
39
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48
 */
49 50
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51

52 53 54 55 56 57 58 59 60 61 62 63
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

64
/*
65
 * Minimal preemption granularity for CPU-bound tasks:
66
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67
 */
68 69
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70 71

/*
72 73
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
74
static unsigned int sched_nr_latency = 8;
75 76

/*
77
 * After fork, child runs first. If set to 0 (default) then
78
 * parent will (try to) run first.
79
 */
80
unsigned int sysctl_sched_child_runs_first __read_mostly;
81 82 83

/*
 * SCHED_OTHER wake-up granularity.
84
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 86 87 88 89
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
90
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92

93 94
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

95 96 97 98 99 100 101
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

102 103 104 105 106 107 108 109 110 111 112 113 114 115
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static int get_update_sysctl_factor(void)
{
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

181
#define WMULT_CONST	(~0U)
182 183
#define WMULT_SHIFT	32

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
200 201

/*
202 203 204 205 206 207 208 209 210 211
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212
 */
213
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214
{
215 216
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
217

218
	__update_inv_weight(lw);
219

220 221 222 223 224
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
225 226
	}

227 228
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
229

230 231 232 233
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
234

235
	return mul_u64_u32_shr(delta_exec, fact, shift);
236 237 238 239
}


const struct sched_class fair_sched_class;
240

241 242 243 244
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

245
#ifdef CONFIG_FAIR_GROUP_SCHED
246

247
/* cpu runqueue to which this cfs_rq is attached */
248 249
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
250
	return cfs_rq->rq;
251 252
}

253 254
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
255

256 257 258 259 260 261 262 263
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
				       int force_update);
287

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292 293 294 295 296 297 298 299 300 301 302
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
304
		}
305 306

		cfs_rq->on_list = 1;
307
		/* We should have no load, but we need to update last_decay. */
308
		update_cfs_rq_blocked_load(cfs_rq, 0);
309 310 311 312 313 314 315 316 317 318 319
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464 465 466 467 468 469 470 471 472
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
473
		if (!cfs_rq->curr)
474 475 476 477 478
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617 618
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
619
	unsigned long nr_latency = sched_nr_latency;
620 621

	if (unlikely(nr_running > nr_latency)) {
622
		period = sysctl_sched_min_granularity;
623 624 625 626 627 628
		period *= nr_running;
	}

	return period;
}

629 630 631 632
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
633
 * s = p*P[w/rw]
634
 */
P
Peter Zijlstra 已提交
635
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636
{
M
Mike Galbraith 已提交
637
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638

M
Mike Galbraith 已提交
639
	for_each_sched_entity(se) {
L
Lin Ming 已提交
640
		struct load_weight *load;
641
		struct load_weight lw;
L
Lin Ming 已提交
642 643 644

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
645

M
Mike Galbraith 已提交
646
		if (unlikely(!se->on_rq)) {
647
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
648 649 650 651

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
652
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
653 654
	}
	return slice;
655 656
}

657
/*
A
Andrei Epure 已提交
658
 * We calculate the vruntime slice of a to-be-inserted task.
659
 *
660
 * vs = s/w
661
 */
662
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
663
{
664
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 666
}

667
#ifdef CONFIG_SMP
668 669
static unsigned long task_h_load(struct task_struct *p);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static inline void __update_task_entity_contrib(struct sched_entity *se);

/* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p)
{
	u32 slice;

	p->se.avg.decay_count = 0;
	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
	p->se.avg.runnable_avg_sum = slice;
	p->se.avg.runnable_avg_period = slice;
	__update_task_entity_contrib(&p->se);
}
#else
void init_task_runnable_average(struct task_struct *p)
{
}
#endif

689
/*
690
 * Update the current task's runtime statistics.
691
 */
692
static void update_curr(struct cfs_rq *cfs_rq)
693
{
694
	struct sched_entity *curr = cfs_rq->curr;
695
	u64 now = rq_clock_task(rq_of(cfs_rq));
696
	u64 delta_exec;
697 698 699 700

	if (unlikely(!curr))
		return;

701 702
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
703
		return;
704

I
Ingo Molnar 已提交
705
	curr->exec_start = now;
706

707 708 709 710 711 712 713 714 715
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

716 717 718
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

719
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720
		cpuacct_charge(curtask, delta_exec);
721
		account_group_exec_runtime(curtask, delta_exec);
722
	}
723 724

	account_cfs_rq_runtime(cfs_rq, delta_exec);
725 726 727
}

static inline void
728
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729
{
730
	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 732 733 734 735
}

/*
 * Task is being enqueued - update stats:
 */
736
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 738 739 740 741
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
742
	if (se != cfs_rq->curr)
743
		update_stats_wait_start(cfs_rq, se);
744 745 746
}

static void
747
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748
{
749
	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 752
	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 755 756
#ifdef CONFIG_SCHEDSTATS
	if (entity_is_task(se)) {
		trace_sched_stat_wait(task_of(se),
757
			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 759
	}
#endif
760
	schedstat_set(se->statistics.wait_start, 0);
761 762 763
}

static inline void
764
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 766 767 768 769
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
770
	if (se != cfs_rq->curr)
771
		update_stats_wait_end(cfs_rq, se);
772 773 774 775 776 777
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
778
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 780 781 782
{
	/*
	 * We are starting a new run period:
	 */
783
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 785 786 787 788 789
}

/**************************************************
 * Scheduling class queueing methods:
 */

790 791
#ifdef CONFIG_NUMA_BALANCING
/*
792 793 794
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
795
 */
796 797
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798 799 800

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
801

802 803 804
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
	unsigned int scan, floor;
	unsigned int windows = 1;

	if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

850 851 852 853 854 855 856 857 858 859 860 861
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

862 863 864 865 866
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
867
	pid_t gid;
868 869 870
	struct list_head task_list;

	struct rcu_head rcu;
871
	nodemask_t active_nodes;
872
	unsigned long total_faults;
873 874 875 876 877
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
878
	unsigned long *faults_cpu;
879
	unsigned long faults[0];
880 881
};

882 883 884 885 886 887 888 889 890
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

891 892 893 894 895
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

896 897
static inline int task_faults_idx(int nid, int priv)
{
898
	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 900 901 902
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
903
	if (!p->numa_faults_memory)
904 905
		return 0;

906 907
	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
		p->numa_faults_memory[task_faults_idx(nid, 1)];
908 909
}

910 911 912 913 914
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

915 916
	return p->numa_group->faults[task_faults_idx(nid, 0)] +
		p->numa_group->faults[task_faults_idx(nid, 1)];
917 918
}

919 920 921 922 923 924
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
	return group->faults_cpu[task_faults_idx(nid, 0)] +
		group->faults_cpu[task_faults_idx(nid, 1)];
}

925 926 927 928 929 930 931 932 933 934
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
static inline unsigned long task_weight(struct task_struct *p, int nid)
{
	unsigned long total_faults;

935
	if (!p->numa_faults_memory)
936 937 938 939 940 941 942 943 944 945 946 947
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

	return 1000 * task_faults(p, nid) / total_faults;
}

static inline unsigned long group_weight(struct task_struct *p, int nid)
{
948
	if (!p->numa_group || !p->numa_group->total_faults)
949 950
		return 0;

951
	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 953
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
	 * Do not migrate if the destination is not a node that
	 * is actively used by this numa group.
	 */
	if (!node_isset(dst_nid, ng->active_nodes))
		return false;

	/*
	 * Source is a node that is not actively used by this
	 * numa group, while the destination is. Migrate.
	 */
	if (!node_isset(src_nid, ng->active_nodes))
		return true;

	/*
	 * Both source and destination are nodes in active
	 * use by this numa group. Maximize memory bandwidth
	 * by migrating from more heavily used groups, to less
	 * heavily used ones, spreading the load around.
	 * Use a 1/4 hysteresis to avoid spurious page movement.
	 */
	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
}

1017
static unsigned long weighted_cpuload(const int cpu);
1018 1019
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1020
static unsigned long capacity_of(int cpu);
1021 1022
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1023
/* Cached statistics for all CPUs within a node */
1024
struct numa_stats {
1025
	unsigned long nr_running;
1026
	unsigned long load;
1027 1028

	/* Total compute capacity of CPUs on a node */
1029
	unsigned long compute_capacity;
1030 1031

	/* Approximate capacity in terms of runnable tasks on a node */
1032
	unsigned long task_capacity;
1033
	int has_free_capacity;
1034
};
1035

1036 1037 1038 1039 1040
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1041
	int cpu, cpus = 0;
1042 1043 1044 1045 1046 1047 1048

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1049
		ns->compute_capacity += capacity_of(cpu);
1050 1051

		cpus++;
1052 1053
	}

1054 1055 1056 1057 1058
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1059 1060
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1061 1062 1063 1064
	 */
	if (!cpus)
		return;

1065
	ns->task_capacity =
1066
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1067
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1068 1069
}

1070 1071
struct task_numa_env {
	struct task_struct *p;
1072

1073 1074
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1075

1076
	struct numa_stats src_stats, dst_stats;
1077

1078
	int imbalance_pct;
1079 1080 1081

	struct task_struct *best_task;
	long best_imp;
1082 1083 1084
	int best_cpu;
};

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
	if (p)
		get_task_struct(p);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1098
static bool load_too_imbalanced(long src_load, long dst_load,
1099 1100 1101
				struct task_numa_env *env)
{
	long imb, old_imb;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	long orig_src_load, orig_dst_load;
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1114 1115 1116 1117 1118 1119

	/* We care about the slope of the imbalance, not the direction. */
	if (dst_load < src_load)
		swap(dst_load, src_load);

	/* Is the difference below the threshold? */
1120 1121
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1122 1123 1124 1125 1126 1127 1128
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
	 * Compare it with the old imbalance.
	 */
1129 1130 1131
	orig_src_load = env->src_stats.load;
	orig_dst_load = env->dst_stats.load;

1132 1133 1134
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);

1135 1136
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;
1137 1138

	/* Would this change make things worse? */
1139
	return (imb > old_imb);
1140 1141
}

1142 1143 1144 1145 1146 1147
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1148 1149
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1150 1151 1152 1153
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1154
	long src_load, dst_load;
1155
	long load;
1156
	long imp = env->p->numa_group ? groupimp : taskimp;
1157
	long moveimp = imp;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

	rcu_read_lock();
	cur = ACCESS_ONCE(dst_rq->curr);
	if (cur->pid == 0) /* idle */
		cur = NULL;

	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1176 1177
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1178
		 * in any group then look only at task weights.
1179
		 */
1180
		if (cur->numa_group == env->p->numa_group) {
1181 1182
			imp = taskimp + task_weight(cur, env->src_nid) -
			      task_weight(cur, env->dst_nid);
1183 1184 1185 1186 1187 1188
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1189
		} else {
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
				imp += group_weight(cur, env->src_nid) -
				       group_weight(cur, env->dst_nid);
			else
				imp += task_weight(cur, env->src_nid) -
				       task_weight(cur, env->dst_nid);
1201
		}
1202 1203
	}

1204
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1205 1206 1207 1208
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1209 1210
		if (env->src_stats.has_free_capacity &&
		    !env->dst_stats.has_free_capacity)
1211 1212 1213 1214 1215 1216
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1217 1218
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1219 1220 1221 1222 1223 1224
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1225 1226 1227
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1246
	if (cur) {
1247 1248 1249
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1250 1251
	}

1252
	if (load_too_imbalanced(src_load, dst_load, env))
1253 1254 1255 1256 1257 1258 1259 1260
		goto unlock;

assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1261 1262
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1263 1264 1265 1266 1267 1268 1269 1270 1271
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1272
		task_numa_compare(env, taskimp, groupimp);
1273 1274 1275
	}
}

1276 1277 1278 1279
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1280

1281
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1282
		.src_nid = task_node(p),
1283 1284 1285 1286 1287 1288

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
		.best_cpu = -1
1289 1290
	};
	struct sched_domain *sd;
1291
	unsigned long taskweight, groupweight;
1292
	int nid, ret;
1293
	long taskimp, groupimp;
1294

1295
	/*
1296 1297 1298 1299 1300 1301
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1302 1303
	 */
	rcu_read_lock();
1304
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1305 1306
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1307 1308
	rcu_read_unlock();

1309 1310 1311 1312 1313 1314 1315
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1316
		p->numa_preferred_nid = task_node(p);
1317 1318 1319
		return -EINVAL;
	}

1320 1321
	taskweight = task_weight(p, env.src_nid);
	groupweight = group_weight(p, env.src_nid);
1322
	update_numa_stats(&env.src_stats, env.src_nid);
1323
	env.dst_nid = p->numa_preferred_nid;
1324 1325
	taskimp = task_weight(p, env.dst_nid) - taskweight;
	groupimp = group_weight(p, env.dst_nid) - groupweight;
1326
	update_numa_stats(&env.dst_stats, env.dst_nid);
1327

1328 1329
	/* Try to find a spot on the preferred nid. */
	task_numa_find_cpu(&env, taskimp, groupimp);
1330 1331 1332

	/* No space available on the preferred nid. Look elsewhere. */
	if (env.best_cpu == -1) {
1333 1334 1335
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1336

1337
			/* Only consider nodes where both task and groups benefit */
1338 1339 1340
			taskimp = task_weight(p, nid) - taskweight;
			groupimp = group_weight(p, nid) - groupweight;
			if (taskimp < 0 && groupimp < 0)
1341 1342
				continue;

1343 1344
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1345
			task_numa_find_cpu(&env, taskimp, groupimp);
1346 1347 1348
		}
	}

1349 1350 1351 1352 1353 1354 1355 1356
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

		if (node_isset(nid, p->numa_group->active_nodes))
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1370

1371 1372 1373 1374 1375 1376
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1377
	if (env.best_task == NULL) {
1378 1379 1380
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1381 1382 1383 1384
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1385 1386
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1387 1388
	put_task_struct(env.best_task);
	return ret;
1389 1390
}

1391 1392 1393
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1394 1395
	unsigned long interval = HZ;

1396
	/* This task has no NUMA fault statistics yet */
1397
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1398 1399
		return;

1400
	/* Periodically retry migrating the task to the preferred node */
1401 1402
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1403 1404

	/* Success if task is already running on preferred CPU */
1405
	if (task_node(p) == p->numa_preferred_nid)
1406 1407 1408
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1409
	task_numa_migrate(p);
1410 1411
}

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/*
 * Find the nodes on which the workload is actively running. We do this by
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 *
 * The bitmask is used to make smarter decisions on when to do NUMA page
 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
 * are added when they cause over 6/16 of the maximum number of faults, but
 * only removed when they drop below 3/16.
 */
static void update_numa_active_node_mask(struct numa_group *numa_group)
{
	unsigned long faults, max_faults = 0;
	int nid;

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (!node_isset(nid, numa_group->active_nodes)) {
			if (faults > max_faults * 6 / 16)
				node_set(nid, numa_group->active_nodes);
		} else if (faults < max_faults * 3 / 16)
			node_clear(nid, numa_group->active_nodes);
	}
}

1444 1445 1446
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1447 1448 1449
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1450 1451
 */
#define NUMA_PERIOD_SLOTS 10
1452
#define NUMA_PERIOD_THRESHOLD 7
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
	 * to automatic numa balancing. Scan slower
	 */
	if (local + shared == 0) {
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
		delta = p->se.avg.runnable_avg_sum;
		*period = p->se.avg.runnable_avg_period;
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1546 1547
static void task_numa_placement(struct task_struct *p)
{
1548 1549
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1550
	unsigned long fault_types[2] = { 0, 0 };
1551 1552
	unsigned long total_faults;
	u64 runtime, period;
1553
	spinlock_t *group_lock = NULL;
1554

1555
	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1556 1557 1558
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1559
	p->numa_scan_period_max = task_scan_max(p);
1560

1561 1562 1563 1564
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1565 1566 1567
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1568
		spin_lock_irq(group_lock);
1569 1570
	}

1571 1572
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1573
		unsigned long faults = 0, group_faults = 0;
1574
		int priv, i;
1575

1576
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1577
			long diff, f_diff, f_weight;
1578

1579
			i = task_faults_idx(nid, priv);
1580

1581
			/* Decay existing window, copy faults since last scan */
1582
			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1583 1584
			fault_types[priv] += p->numa_faults_buffer_memory[i];
			p->numa_faults_buffer_memory[i] = 0;
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
				   (total_faults + 1);
1596
			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1597 1598
			p->numa_faults_buffer_cpu[i] = 0;

1599 1600
			p->numa_faults_memory[i] += diff;
			p->numa_faults_cpu[i] += f_diff;
1601
			faults += p->numa_faults_memory[i];
1602
			p->total_numa_faults += diff;
1603 1604
			if (p->numa_group) {
				/* safe because we can only change our own group */
1605
				p->numa_group->faults[i] += diff;
1606
				p->numa_group->faults_cpu[i] += f_diff;
1607 1608
				p->numa_group->total_faults += diff;
				group_faults += p->numa_group->faults[i];
1609
			}
1610 1611
		}

1612 1613 1614 1615
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1616 1617 1618 1619 1620 1621 1622

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1623 1624
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1625
	if (p->numa_group) {
1626
		update_numa_active_node_mask(p->numa_group);
1627
		spin_unlock_irq(group_lock);
1628
		max_nid = max_group_nid;
1629 1630
	}

1631 1632 1633 1634 1635 1636 1637
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1638
	}
1639 1640
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

1652 1653
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
1654 1655 1656 1657 1658 1659 1660 1661 1662
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
1663
				    4*nr_node_ids*sizeof(unsigned long);
1664 1665 1666 1667 1668 1669 1670 1671

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
		spin_lock_init(&grp->lock);
		INIT_LIST_HEAD(&grp->task_list);
1672
		grp->gid = p->pid;
1673
		/* Second half of the array tracks nids where faults happen */
1674 1675
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
1676

1677 1678
		node_set(task_node(current), grp->active_nodes);

1679
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1680
			grp->faults[i] = p->numa_faults_memory[i];
1681

1682
		grp->total_faults = p->total_numa_faults;
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692
		list_add(&p->numa_entry, &grp->task_list);
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);

	if (!cpupid_match_pid(tsk, cpupid))
1693
		goto no_join;
1694 1695 1696

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
1697
		goto no_join;
1698 1699 1700

	my_grp = p->numa_group;
	if (grp == my_grp)
1701
		goto no_join;
1702 1703 1704 1705 1706 1707

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
1708
		goto no_join;
1709 1710 1711 1712 1713

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1714
		goto no_join;
1715

1716 1717 1718 1719 1720 1721 1722
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
1723

1724 1725 1726
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

1727
	if (join && !get_numa_group(grp))
1728
		goto no_join;
1729 1730 1731 1732 1733 1734

	rcu_read_unlock();

	if (!join)
		return;

1735 1736
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
1737

1738
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1739 1740
		my_grp->faults[i] -= p->numa_faults_memory[i];
		grp->faults[i] += p->numa_faults_memory[i];
1741
	}
1742 1743
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
1744 1745 1746 1747 1748 1749

	list_move(&p->numa_entry, &grp->task_list);
	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
1750
	spin_unlock_irq(&grp->lock);
1751 1752 1753 1754

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
1755 1756 1757 1758 1759
	return;

no_join:
	rcu_read_unlock();
	return;
1760 1761 1762 1763 1764
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
1765
	void *numa_faults = p->numa_faults_memory;
1766 1767
	unsigned long flags;
	int i;
1768 1769

	if (grp) {
1770
		spin_lock_irqsave(&grp->lock, flags);
1771
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1772
			grp->faults[i] -= p->numa_faults_memory[i];
1773
		grp->total_faults -= p->total_numa_faults;
1774

1775 1776
		list_del(&p->numa_entry);
		grp->nr_tasks--;
1777
		spin_unlock_irqrestore(&grp->lock, flags);
1778 1779 1780 1781
		rcu_assign_pointer(p->numa_group, NULL);
		put_numa_group(grp);
	}

1782 1783
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1784 1785
	p->numa_faults_cpu= NULL;
	p->numa_faults_buffer_cpu = NULL;
1786
	kfree(numa_faults);
1787 1788
}

1789 1790 1791
/*
 * Got a PROT_NONE fault for a page on @node.
 */
1792
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1793 1794
{
	struct task_struct *p = current;
1795
	bool migrated = flags & TNF_MIGRATED;
1796
	int cpu_node = task_node(current);
1797
	int local = !!(flags & TNF_FAULT_LOCAL);
1798
	int priv;
1799

1800
	if (!numabalancing_enabled)
1801 1802
		return;

1803 1804 1805 1806
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

1807 1808 1809 1810
	/* Do not worry about placement if exiting */
	if (p->state == TASK_DEAD)
		return;

1811
	/* Allocate buffer to track faults on a per-node basis */
1812
	if (unlikely(!p->numa_faults_memory)) {
1813 1814
		int size = sizeof(*p->numa_faults_memory) *
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1815

1816
		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1817
		if (!p->numa_faults_memory)
1818
			return;
1819

1820
		BUG_ON(p->numa_faults_buffer_memory);
1821 1822 1823 1824 1825 1826
		/*
		 * The averaged statistics, shared & private, memory & cpu,
		 * occupy the first half of the array. The second half of the
		 * array is for current counters, which are averaged into the
		 * first set by task_numa_placement.
		 */
1827 1828 1829
		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1830
		p->total_numa_faults = 0;
1831
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1832
	}
1833

1834 1835 1836 1837 1838 1839 1840 1841
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
1842
		if (!priv && !(flags & TNF_NO_GROUP))
1843
			task_numa_group(p, last_cpupid, flags, &priv);
1844 1845
	}

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
	if (!priv && !local && p->numa_group &&
			node_isset(cpu_node, p->numa_group->active_nodes) &&
			node_isset(mem_node, p->numa_group->active_nodes))
		local = 1;

1857
	task_numa_placement(p);
1858

1859 1860 1861 1862 1863
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
1864 1865
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
1866 1867 1868
	if (migrated)
		p->numa_pages_migrated += pages;

1869 1870
	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1871
	p->numa_faults_locality[local] += pages;
1872 1873
}

1874 1875 1876 1877 1878 1879
static void reset_ptenuma_scan(struct task_struct *p)
{
	ACCESS_ONCE(p->mm->numa_scan_seq)++;
	p->mm->numa_scan_offset = 0;
}

1880 1881 1882 1883 1884 1885 1886 1887 1888
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
1889
	struct vm_area_struct *vma;
1890
	unsigned long start, end;
1891
	unsigned long nr_pte_updates = 0;
1892
	long pages;
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

1908
	if (!mm->numa_next_scan) {
1909 1910
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1911 1912
	}

1913 1914 1915 1916 1917 1918 1919
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

1920 1921 1922 1923
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
1924

1925
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1926 1927 1928
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

1929 1930 1931 1932 1933 1934
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

1935 1936 1937 1938 1939
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
	if (!pages)
		return;
1940

1941
	down_read(&mm->mmap_sem);
1942
	vma = find_vma(mm, start);
1943 1944
	if (!vma) {
		reset_ptenuma_scan(p);
1945
		start = 0;
1946 1947
		vma = mm->mmap;
	}
1948
	for (; vma; vma = vma->vm_next) {
1949
		if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1950 1951
			continue;

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
1962 1963 1964 1965 1966 1967
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
1968

1969 1970 1971 1972
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
1973 1974 1975 1976 1977 1978 1979 1980 1981
			nr_pte_updates += change_prot_numa(vma, start, end);

			/*
			 * Scan sysctl_numa_balancing_scan_size but ensure that
			 * at least one PTE is updated so that unused virtual
			 * address space is quickly skipped.
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
1982

1983 1984 1985
			start = end;
			if (pages <= 0)
				goto out;
1986 1987

			cond_resched();
1988
		} while (end != vma->vm_end);
1989
	}
1990

1991
out:
1992
	/*
P
Peter Zijlstra 已提交
1993 1994 1995 1996
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
1997 1998
	 */
	if (vma)
1999
		mm->numa_scan_offset = start;
2000 2001 2002
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

	if (now - curr->node_stamp > period) {
2029
		if (!curr->node_stamp)
2030
			curr->numa_scan_period = task_scan_min(curr);
2031
		curr->node_stamp += period;
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2043 2044 2045 2046 2047 2048 2049 2050

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2051 2052
#endif /* CONFIG_NUMA_BALANCING */

2053 2054 2055 2056
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2057
	if (!parent_entity(se))
2058
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2059
#ifdef CONFIG_SMP
2060 2061 2062 2063 2064 2065
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2066
#endif
2067 2068 2069 2070 2071 2072 2073
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2074
	if (!parent_entity(se))
2075
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2076 2077
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2078
		list_del_init(&se->group_node);
2079
	}
2080 2081 2082
	cfs_rq->nr_running--;
}

2083 2084
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2085 2086 2087 2088 2089 2090 2091 2092 2093
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
	 * Use this CPU's actual weight instead of the last load_contribution
	 * to gain a more accurate current total weight. See
	 * update_cfs_rq_load_contribution().
	 */
2094
	tg_weight = atomic_long_read(&tg->load_avg);
2095
	tg_weight -= cfs_rq->tg_load_contrib;
2096 2097 2098 2099 2100
	tg_weight += cfs_rq->load.weight;

	return tg_weight;
}

2101
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2102
{
2103
	long tg_weight, load, shares;
2104

2105
	tg_weight = calc_tg_weight(tg, cfs_rq);
2106
	load = cfs_rq->load.weight;
2107 2108

	shares = (tg->shares * load);
2109 2110
	if (tg_weight)
		shares /= tg_weight;
2111 2112 2113 2114 2115 2116 2117 2118 2119

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2120
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2121 2122 2123 2124
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2125 2126 2127
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2128 2129 2130 2131
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2132
		account_entity_dequeue(cfs_rq, se);
2133
	}
P
Peter Zijlstra 已提交
2134 2135 2136 2137 2138 2139 2140

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2141 2142
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2143
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2144 2145 2146
{
	struct task_group *tg;
	struct sched_entity *se;
2147
	long shares;
P
Peter Zijlstra 已提交
2148 2149 2150

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2151
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2152
		return;
2153 2154 2155 2156
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2157
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2158 2159 2160 2161

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2162
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2163 2164 2165 2166
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2167
#ifdef CONFIG_SMP
2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
/*
 * We choose a half-life close to 1 scheduling period.
 * Note: The tables below are dependent on this value.
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */

/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2196 2197 2198 2199 2200 2201
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
	 *    y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
	 * With a look-up table which covers k^n (n<PERIOD)
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2222 2223
	}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	val *= runnable_avg_yN_inv[local_n];
	/* We don't use SRR here since we always want to round down. */
	return val >> 32;
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
}

/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
static __always_inline int __update_entity_runnable_avg(u64 now,
							struct sched_avg *sa,
							int runnable)
{
2289 2290
	u64 delta, periods;
	u32 runnable_contrib;
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
	int delta_w, decayed = 0;

	delta = now - sa->last_runnable_update;
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
		sa->last_runnable_update = now;
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
	sa->last_runnable_update = now;

	/* delta_w is the amount already accumulated against our next period */
	delta_w = sa->runnable_avg_period % 1024;
	if (delta + delta_w >= 1024) {
		/* period roll-over */
		decayed = 1;

		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		if (runnable)
			sa->runnable_avg_sum += delta_w;
		sa->runnable_avg_period += delta_w;

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
						  periods + 1);
		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
						     periods + 1);

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
		runnable_contrib = __compute_runnable_contrib(periods);
		if (runnable)
			sa->runnable_avg_sum += runnable_contrib;
		sa->runnable_avg_period += runnable_contrib;
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	}

	/* Remainder of delta accrued against u_0` */
	if (runnable)
		sa->runnable_avg_sum += delta;
	sa->runnable_avg_period += delta;

	return decayed;
}

2354
/* Synchronize an entity's decay with its parenting cfs_rq.*/
2355
static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2356 2357 2358 2359 2360 2361
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 decays = atomic64_read(&cfs_rq->decay_counter);

	decays -= se->avg.decay_count;
	if (!decays)
2362
		return 0;
2363 2364 2365

	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
	se->avg.decay_count = 0;
2366 2367

	return decays;
2368 2369
}

2370 2371 2372 2373 2374
#ifdef CONFIG_FAIR_GROUP_SCHED
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update)
{
	struct task_group *tg = cfs_rq->tg;
2375
	long tg_contrib;
2376 2377 2378 2379

	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
	tg_contrib -= cfs_rq->tg_load_contrib;

2380 2381
	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
		atomic_long_add(tg_contrib, &tg->load_avg);
2382 2383 2384
		cfs_rq->tg_load_contrib += tg_contrib;
	}
}
2385

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
/*
 * Aggregate cfs_rq runnable averages into an equivalent task_group
 * representation for computing load contributions.
 */
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq)
{
	struct task_group *tg = cfs_rq->tg;
	long contrib;

	/* The fraction of a cpu used by this cfs_rq */
2397
	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2398 2399 2400 2401 2402 2403 2404 2405 2406
			  sa->runnable_avg_period + 1);
	contrib -= cfs_rq->tg_runnable_contrib;

	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
		atomic_add(contrib, &tg->runnable_avg);
		cfs_rq->tg_runnable_contrib += contrib;
	}
}

2407 2408 2409 2410
static inline void __update_group_entity_contrib(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
	struct task_group *tg = cfs_rq->tg;
2411 2412
	int runnable_avg;

2413 2414 2415
	u64 contrib;

	contrib = cfs_rq->tg_load_contrib * tg->shares;
2416 2417
	se->avg.load_avg_contrib = div_u64(contrib,
				     atomic_long_read(&tg->load_avg) + 1);
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446

	/*
	 * For group entities we need to compute a correction term in the case
	 * that they are consuming <1 cpu so that we would contribute the same
	 * load as a task of equal weight.
	 *
	 * Explicitly co-ordinating this measurement would be expensive, but
	 * fortunately the sum of each cpus contribution forms a usable
	 * lower-bound on the true value.
	 *
	 * Consider the aggregate of 2 contributions.  Either they are disjoint
	 * (and the sum represents true value) or they are disjoint and we are
	 * understating by the aggregate of their overlap.
	 *
	 * Extending this to N cpus, for a given overlap, the maximum amount we
	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
	 * cpus that overlap for this interval and w_i is the interval width.
	 *
	 * On a small machine; the first term is well-bounded which bounds the
	 * total error since w_i is a subset of the period.  Whereas on a
	 * larger machine, while this first term can be larger, if w_i is the
	 * of consequential size guaranteed to see n_i*w_i quickly converge to
	 * our upper bound of 1-cpu.
	 */
	runnable_avg = atomic_read(&tg->runnable_avg);
	if (runnable_avg < NICE_0_LOAD) {
		se->avg.load_avg_contrib *= runnable_avg;
		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
	}
2447
}
2448 2449 2450 2451 2452 2453

static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{
	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
}
2454
#else /* CONFIG_FAIR_GROUP_SCHED */
2455 2456
static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
						 int force_update) {}
2457 2458
static inline void __update_tg_runnable_avg(struct sched_avg *sa,
						  struct cfs_rq *cfs_rq) {}
2459
static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2460
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2461
#endif /* CONFIG_FAIR_GROUP_SCHED */
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
static inline void __update_task_entity_contrib(struct sched_entity *se)
{
	u32 contrib;

	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
	contrib /= (se->avg.runnable_avg_period + 1);
	se->avg.load_avg_contrib = scale_load(contrib);
}

2473 2474 2475 2476 2477
/* Compute the current contribution to load_avg by se, return any delta */
static long __update_entity_load_avg_contrib(struct sched_entity *se)
{
	long old_contrib = se->avg.load_avg_contrib;

2478 2479 2480
	if (entity_is_task(se)) {
		__update_task_entity_contrib(se);
	} else {
2481
		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2482 2483
		__update_group_entity_contrib(se);
	}
2484 2485 2486 2487

	return se->avg.load_avg_contrib - old_contrib;
}

2488 2489 2490 2491 2492 2493 2494 2495 2496
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
						 long load_contrib)
{
	if (likely(load_contrib < cfs_rq->blocked_load_avg))
		cfs_rq->blocked_load_avg -= load_contrib;
	else
		cfs_rq->blocked_load_avg = 0;
}

2497 2498
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);

2499
/* Update a sched_entity's runnable average */
2500 2501
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq)
2502
{
2503 2504
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	long contrib_delta;
2505
	u64 now;
2506

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
	/*
	 * For a group entity we need to use their owned cfs_rq_clock_task() in
	 * case they are the parent of a throttled hierarchy.
	 */
	if (entity_is_task(se))
		now = cfs_rq_clock_task(cfs_rq);
	else
		now = cfs_rq_clock_task(group_cfs_rq(se));

	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2517 2518 2519
		return;

	contrib_delta = __update_entity_load_avg_contrib(se);
2520 2521 2522 2523

	if (!update_cfs_rq)
		return;

2524 2525
	if (se->on_rq)
		cfs_rq->runnable_load_avg += contrib_delta;
2526 2527 2528 2529 2530 2531 2532 2533
	else
		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}

/*
 * Decay the load contributed by all blocked children and account this so that
 * their contribution may appropriately discounted when they wake up.
 */
2534
static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2535
{
2536
	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2537 2538 2539
	u64 decays;

	decays = now - cfs_rq->last_decay;
2540
	if (!decays && !force_update)
2541 2542
		return;

2543 2544 2545
	if (atomic_long_read(&cfs_rq->removed_load)) {
		unsigned long removed_load;
		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2546 2547
		subtract_blocked_load_contrib(cfs_rq, removed_load);
	}
2548

2549 2550 2551 2552 2553 2554
	if (decays) {
		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
						      decays);
		atomic64_add(decays, &cfs_rq->decay_counter);
		cfs_rq->last_decay = now;
	}
2555 2556

	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2557
}
2558

2559 2560
/* Add the load generated by se into cfs_rq's child load-average */
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2561 2562
						  struct sched_entity *se,
						  int wakeup)
2563
{
2564 2565 2566 2567
	/*
	 * We track migrations using entity decay_count <= 0, on a wake-up
	 * migration we use a negative decay count to track the remote decays
	 * accumulated while sleeping.
2568 2569 2570 2571
	 *
	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
	 * are seen by enqueue_entity_load_avg() as a migration with an already
	 * constructed load_avg_contrib.
2572 2573
	 */
	if (unlikely(se->avg.decay_count <= 0)) {
2574
		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		if (se->avg.decay_count) {
			/*
			 * In a wake-up migration we have to approximate the
			 * time sleeping.  This is because we can't synchronize
			 * clock_task between the two cpus, and it is not
			 * guaranteed to be read-safe.  Instead, we can
			 * approximate this using our carried decays, which are
			 * explicitly atomically readable.
			 */
			se->avg.last_runnable_update -= (-se->avg.decay_count)
							<< 20;
			update_entity_load_avg(se, 0);
			/* Indicate that we're now synchronized and on-rq */
			se->avg.decay_count = 0;
		}
2590 2591
		wakeup = 0;
	} else {
2592
		__synchronize_entity_decay(se);
2593 2594
	}

2595 2596
	/* migrated tasks did not contribute to our blocked load */
	if (wakeup) {
2597
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2598 2599
		update_entity_load_avg(se, 0);
	}
2600

2601
	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2602 2603
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2604 2605
}

2606 2607 2608 2609 2610
/*
 * Remove se's load from this cfs_rq child load-average, if the entity is
 * transitioning to a blocked state we track its projected decay using
 * blocked_load_avg.
 */
2611
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2612 2613
						  struct sched_entity *se,
						  int sleep)
2614
{
2615
	update_entity_load_avg(se, 1);
2616 2617
	/* we force update consideration on load-balancer moves */
	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2618

2619
	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2620 2621 2622 2623
	if (sleep) {
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2624
}
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

/*
 * Update the rq's load with the elapsed running time before entering
 * idle. if the last scheduled task is not a CFS task, idle_enter will
 * be the only way to update the runnable statistic.
 */
void idle_enter_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 1);
}

/*
 * Update the rq's load with the elapsed idle time before a task is
 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
 * be the only way to update the runnable statistic.
 */
void idle_exit_fair(struct rq *this_rq)
{
	update_rq_runnable_avg(this_rq, 0);
}

2646 2647
static int idle_balance(struct rq *this_rq);

2648 2649
#else /* CONFIG_SMP */

2650 2651
static inline void update_entity_load_avg(struct sched_entity *se,
					  int update_cfs_rq) {}
2652
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2653
static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2654 2655
					   struct sched_entity *se,
					   int wakeup) {}
2656
static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2657 2658
					   struct sched_entity *se,
					   int sleep) {}
2659 2660
static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
					      int force_update) {}
2661 2662 2663 2664 2665 2666

static inline int idle_balance(struct rq *rq)
{
	return 0;
}

2667
#endif /* CONFIG_SMP */
2668

2669
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670 2671
{
#ifdef CONFIG_SCHEDSTATS
2672 2673 2674 2675 2676
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

2677
	if (se->statistics.sleep_start) {
2678
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2679 2680 2681 2682

		if ((s64)delta < 0)
			delta = 0;

2683 2684
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
2685

2686
		se->statistics.sleep_start = 0;
2687
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
2688

2689
		if (tsk) {
2690
			account_scheduler_latency(tsk, delta >> 10, 1);
2691 2692
			trace_sched_stat_sleep(tsk, delta);
		}
2693
	}
2694
	if (se->statistics.block_start) {
2695
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2696 2697 2698 2699

		if ((s64)delta < 0)
			delta = 0;

2700 2701
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
2702

2703
		se->statistics.block_start = 0;
2704
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
2705

2706
		if (tsk) {
2707
			if (tsk->in_iowait) {
2708 2709
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
2710
				trace_sched_stat_iowait(tsk, delta);
2711 2712
			}

2713 2714
			trace_sched_stat_blocked(tsk, delta);

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
2726
		}
2727 2728 2729 2730
	}
#endif
}

P
Peter Zijlstra 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

2744 2745 2746
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
2747
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
2748

2749 2750 2751 2752 2753 2754
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
2755
	if (initial && sched_feat(START_DEBIT))
2756
		vruntime += sched_vslice(cfs_rq, se);
2757

2758
	/* sleeps up to a single latency don't count. */
2759
	if (!initial) {
2760
		unsigned long thresh = sysctl_sched_latency;
2761

2762 2763 2764 2765 2766 2767
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
2768

2769
		vruntime -= thresh;
2770 2771
	}

2772
	/* ensure we never gain time by being placed backwards. */
2773
	se->vruntime = max_vruntime(se->vruntime, vruntime);
2774 2775
}

2776 2777
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

2778
static void
2779
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2780
{
2781 2782
	/*
	 * Update the normalized vruntime before updating min_vruntime
2783
	 * through calling update_curr().
2784
	 */
2785
	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2786 2787
		se->vruntime += cfs_rq->min_vruntime;

2788
	/*
2789
	 * Update run-time statistics of the 'current'.
2790
	 */
2791
	update_curr(cfs_rq);
2792
	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2793 2794
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
2795

2796
	if (flags & ENQUEUE_WAKEUP) {
2797
		place_entity(cfs_rq, se, 0);
2798
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
2799
	}
2800

2801
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
2802
	check_spread(cfs_rq, se);
2803 2804
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
2805
	se->on_rq = 1;
2806

2807
	if (cfs_rq->nr_running == 1) {
2808
		list_add_leaf_cfs_rq(cfs_rq);
2809 2810
		check_enqueue_throttle(cfs_rq);
	}
2811 2812
}

2813
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
2814
{
2815 2816
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2817
		if (cfs_rq->last != se)
2818
			break;
2819 2820

		cfs_rq->last = NULL;
2821 2822
	}
}
P
Peter Zijlstra 已提交
2823

2824 2825 2826 2827
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2828
		if (cfs_rq->next != se)
2829
			break;
2830 2831

		cfs_rq->next = NULL;
2832
	}
P
Peter Zijlstra 已提交
2833 2834
}

2835 2836 2837 2838
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2839
		if (cfs_rq->skip != se)
2840
			break;
2841 2842

		cfs_rq->skip = NULL;
2843 2844 2845
	}
}

P
Peter Zijlstra 已提交
2846 2847
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2848 2849 2850 2851 2852
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
2853 2854 2855

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
2856 2857
}

2858
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2859

2860
static void
2861
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2862
{
2863 2864 2865 2866
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
2867
	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2868

2869
	update_stats_dequeue(cfs_rq, se);
2870
	if (flags & DEQUEUE_SLEEP) {
P
Peter Zijlstra 已提交
2871
#ifdef CONFIG_SCHEDSTATS
2872 2873 2874 2875
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
2876
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2877
			if (tsk->state & TASK_UNINTERRUPTIBLE)
2878
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2879
		}
2880
#endif
P
Peter Zijlstra 已提交
2881 2882
	}

P
Peter Zijlstra 已提交
2883
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
2884

2885
	if (se != cfs_rq->curr)
2886
		__dequeue_entity(cfs_rq, se);
2887
	se->on_rq = 0;
2888
	account_entity_dequeue(cfs_rq, se);
2889 2890 2891 2892 2893 2894

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
2895
	if (!(flags & DEQUEUE_SLEEP))
2896
		se->vruntime -= cfs_rq->min_vruntime;
2897

2898 2899 2900
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

2901
	update_min_vruntime(cfs_rq);
2902
	update_cfs_shares(cfs_rq);
2903 2904 2905 2906 2907
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
2908
static void
I
Ingo Molnar 已提交
2909
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2910
{
2911
	unsigned long ideal_runtime, delta_exec;
2912 2913
	struct sched_entity *se;
	s64 delta;
2914

P
Peter Zijlstra 已提交
2915
	ideal_runtime = sched_slice(cfs_rq, curr);
2916
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2917
	if (delta_exec > ideal_runtime) {
2918
		resched_curr(rq_of(cfs_rq));
2919 2920 2921 2922 2923
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

2935 2936
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
2937

2938 2939
	if (delta < 0)
		return;
2940

2941
	if (delta > ideal_runtime)
2942
		resched_curr(rq_of(cfs_rq));
2943 2944
}

2945
static void
2946
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2947
{
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

2959
	update_stats_curr_start(cfs_rq, se);
2960
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
2961 2962 2963 2964 2965 2966
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
2967
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2968
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
2969 2970 2971
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
2972
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
2973 2974
}

2975 2976 2977
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

2978 2979 2980 2981 2982 2983 2984
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
2985 2986
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2987
{
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
2999

3000 3001 3002 3003 3004
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3015 3016 3017
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3018

3019 3020 3021 3022 3023 3024
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3025 3026 3027 3028 3029 3030
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3031
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3032 3033

	return se;
3034 3035
}

3036
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3037

3038
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3039 3040 3041 3042 3043 3044
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3045
		update_curr(cfs_rq);
3046

3047 3048 3049
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

P
Peter Zijlstra 已提交
3050
	check_spread(cfs_rq, prev);
3051
	if (prev->on_rq) {
3052
		update_stats_wait_start(cfs_rq, prev);
3053 3054
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3055
		/* in !on_rq case, update occurred at dequeue */
3056
		update_entity_load_avg(prev, 1);
3057
	}
3058
	cfs_rq->curr = NULL;
3059 3060
}

P
Peter Zijlstra 已提交
3061 3062
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3063 3064
{
	/*
3065
	 * Update run-time statistics of the 'current'.
3066
	 */
3067
	update_curr(cfs_rq);
3068

3069 3070 3071
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3072
	update_entity_load_avg(curr, 1);
3073
	update_cfs_rq_blocked_load(cfs_rq, 1);
3074
	update_cfs_shares(cfs_rq);
3075

P
Peter Zijlstra 已提交
3076 3077 3078 3079 3080
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3081
	if (queued) {
3082
		resched_curr(rq_of(cfs_rq));
3083 3084
		return;
	}
P
Peter Zijlstra 已提交
3085 3086 3087 3088 3089 3090 3091 3092
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3093
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3094
		check_preempt_tick(cfs_rq, curr);
3095 3096
}

3097 3098 3099 3100 3101 3102

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3103 3104

#ifdef HAVE_JUMP_LABEL
3105
static struct static_key __cfs_bandwidth_used;
3106 3107 3108

static inline bool cfs_bandwidth_used(void)
{
3109
	return static_key_false(&__cfs_bandwidth_used);
3110 3111
}

3112
void cfs_bandwidth_usage_inc(void)
3113
{
3114 3115 3116 3117 3118 3119
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3120 3121 3122 3123 3124 3125 3126
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3127 3128
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3129 3130
#endif /* HAVE_JUMP_LABEL */

3131 3132 3133 3134 3135 3136 3137 3138
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3139 3140 3141 3142 3143 3144

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3145 3146 3147 3148 3149 3150 3151
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3152
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3164 3165 3166 3167 3168
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3169 3170 3171 3172 3173 3174
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3175
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3176 3177
}

3178 3179
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3180 3181 3182
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3183
	u64 amount = 0, min_amount, expires;
3184 3185 3186 3187 3188 3189 3190

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3191
	else {
P
Paul Turner 已提交
3192 3193 3194 3195 3196 3197 3198 3199
		/*
		 * If the bandwidth pool has become inactive, then at least one
		 * period must have elapsed since the last consumption.
		 * Refresh the global state and ensure bandwidth timer becomes
		 * active.
		 */
		if (!cfs_b->timer_active) {
			__refill_cfs_bandwidth_runtime(cfs_b);
3200
			__start_cfs_bandwidth(cfs_b, false);
P
Paul Turner 已提交
3201
		}
3202 3203 3204 3205 3206 3207

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3208
	}
P
Paul Turner 已提交
3209
	expires = cfs_b->runtime_expires;
3210 3211 3212
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3213 3214 3215 3216 3217 3218 3219
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3220 3221

	return cfs_rq->runtime_remaining > 0;
3222 3223
}

P
Paul Turner 已提交
3224 3225 3226 3227 3228
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3229
{
P
Paul Turner 已提交
3230 3231 3232
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3233
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3234 3235
		return;

P
Paul Turner 已提交
3236 3237 3238 3239 3240 3241 3242 3243 3244
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3245 3246 3247
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3248 3249
	 */

3250
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3251 3252 3253 3254 3255 3256 3257 3258
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3259
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3260 3261
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3262
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3263 3264 3265
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3266 3267
		return;

3268 3269 3270 3271 3272
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3273
		resched_curr(rq_of(cfs_rq));
3274 3275
}

3276
static __always_inline
3277
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3278
{
3279
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3280 3281 3282 3283 3284
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3285 3286
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3287
	return cfs_bandwidth_used() && cfs_rq->throttled;
3288 3289
}

3290 3291 3292
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3293
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3322
		/* adjust cfs_rq_clock_task() */
3323
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3324
					     cfs_rq->throttled_clock_task;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3336 3337
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3338
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3339 3340 3341 3342 3343
	cfs_rq->throttle_count++;

	return 0;
}

3344
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3345 3346 3347 3348 3349 3350 3351 3352
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3353
	/* freeze hierarchy runnable averages while throttled */
3354 3355 3356
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3374
		sub_nr_running(rq, task_delta);
3375 3376

	cfs_rq->throttled = 1;
3377
	cfs_rq->throttled_clock = rq_clock(rq);
3378
	raw_spin_lock(&cfs_b->lock);
3379 3380 3381 3382 3383
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3384
	if (!cfs_b->timer_active)
3385
		__start_cfs_bandwidth(cfs_b, false);
3386 3387 3388
	raw_spin_unlock(&cfs_b->lock);
}

3389
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3390 3391 3392 3393 3394 3395 3396
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3397
	se = cfs_rq->tg->se[cpu_of(rq)];
3398 3399

	cfs_rq->throttled = 0;
3400 3401 3402

	update_rq_clock(rq);

3403
	raw_spin_lock(&cfs_b->lock);
3404
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3405 3406 3407
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3408 3409 3410
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3429
		add_nr_running(rq, task_delta);
3430 3431 3432

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3433
		resched_curr(rq);
3434 3435 3436 3437 3438 3439
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3440 3441
	u64 runtime;
	u64 starting_runtime = remaining;
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3472
	return starting_runtime - remaining;
3473 3474
}

3475 3476 3477 3478 3479 3480 3481 3482
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3483
	u64 runtime, runtime_expires;
3484
	int throttled;
3485 3486 3487

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3488
		goto out_deactivate;
3489

3490
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3491
	cfs_b->nr_periods += overrun;
3492

3493 3494 3495 3496 3497 3498
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3499

3500 3501 3502 3503 3504 3505 3506
	/*
	 * if we have relooped after returning idle once, we need to update our
	 * status as actually running, so that other cpus doing
	 * __start_cfs_bandwidth will stop trying to cancel us.
	 */
	cfs_b->timer_active = 1;

P
Paul Turner 已提交
3507 3508
	__refill_cfs_bandwidth_runtime(cfs_b);

3509 3510 3511
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3512
		return 0;
3513 3514
	}

3515 3516 3517
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3518 3519 3520
	runtime_expires = cfs_b->runtime_expires;

	/*
3521 3522 3523 3524 3525
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3526
	 */
3527 3528
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3529 3530 3531 3532 3533 3534 3535
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3536 3537

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3538
	}
3539

3540 3541 3542 3543 3544 3545 3546
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3547

3548 3549 3550 3551 3552
	return 0;

out_deactivate:
	cfs_b->timer_active = 0;
	return 1;
3553
}
3554

3555 3556 3557 3558 3559 3560 3561
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3562 3563 3564 3565 3566 3567 3568
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

	start_bandwidth_timer(&cfs_b->slack_timer,
				ns_to_ktime(cfs_bandwidth_slack_period));
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
3625 3626 3627
	if (!cfs_bandwidth_used())
		return;

3628
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
3644 3645 3646
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
3647
		return;
3648
	}
3649

3650
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3651
		runtime = cfs_b->runtime;
3652

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
3663
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3664 3665 3666
	raw_spin_unlock(&cfs_b->lock);
}

3667 3668 3669 3670 3671 3672 3673
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
3674 3675 3676
	if (!cfs_bandwidth_used())
		return;

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
3692
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3693
{
3694
	if (!cfs_bandwidth_used())
3695
		return false;
3696

3697
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3698
		return false;
3699 3700 3701 3702 3703 3704

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
3705
		return true;
3706 3707

	throttle_cfs_rq(cfs_rq);
3708
	return true;
3709
}
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

3728
	raw_spin_lock(&cfs_b->lock);
3729 3730 3731 3732 3733 3734 3735 3736 3737
	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, cfs_b->period);

		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
3738
	raw_spin_unlock(&cfs_b->lock);
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

/* requires cfs_b->lock, may release to reprogram timer */
3764
void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3765 3766 3767 3768 3769 3770 3771
{
	/*
	 * The timer may be active because we're trying to set a new bandwidth
	 * period or because we're racing with the tear-down path
	 * (timer_active==0 becomes visible before the hrtimer call-back
	 * terminates).  In either case we ensure that it's re-programmed
	 */
3772 3773 3774
	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3775
		raw_spin_unlock(&cfs_b->lock);
3776
		cpu_relax();
3777 3778
		raw_spin_lock(&cfs_b->lock);
		/* if someone else restarted the timer then we're done */
3779
		if (!force && cfs_b->timer_active)
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
			return;
	}

	cfs_b->timer_active = 1;
	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

3806
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
3818
		cfs_rq->runtime_remaining = 1;
3819 3820 3821 3822 3823 3824
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

3825 3826 3827 3828 3829 3830
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
3831 3832
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
3833
	return rq_clock_task(rq_of(cfs_rq));
3834 3835
}

3836
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3837
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3838
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3839
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3840 3841 3842 3843 3844

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
3856 3857 3858 3859 3860

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3861 3862
#endif

3863 3864 3865 3866 3867
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3868
static inline void update_runtime_enabled(struct rq *rq) {}
3869
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3870 3871 3872

#endif /* CONFIG_CFS_BANDWIDTH */

3873 3874 3875 3876
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
3877 3878 3879 3880 3881 3882 3883 3884
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

3885
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
3886 3887 3888 3889 3890 3891
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
3892
				resched_curr(rq);
P
Peter Zijlstra 已提交
3893 3894 3895 3896 3897 3898 3899
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
3900
		if (rq->curr != p)
3901
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
3902

3903
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
3904 3905
	}
}
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

3916
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3917 3918 3919 3920 3921
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
3922
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
3923 3924 3925 3926
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
3927 3928 3929 3930

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
3931 3932
#endif

3933 3934 3935 3936 3937
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
3938
static void
3939
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3940 3941
{
	struct cfs_rq *cfs_rq;
3942
	struct sched_entity *se = &p->se;
3943 3944

	for_each_sched_entity(se) {
3945
		if (se->on_rq)
3946 3947
			break;
		cfs_rq = cfs_rq_of(se);
3948
		enqueue_entity(cfs_rq, se, flags);
3949 3950 3951 3952 3953 3954 3955 3956 3957

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
3958
		cfs_rq->h_nr_running++;
3959

3960
		flags = ENQUEUE_WAKEUP;
3961
	}
P
Peter Zijlstra 已提交
3962

P
Peter Zijlstra 已提交
3963
	for_each_sched_entity(se) {
3964
		cfs_rq = cfs_rq_of(se);
3965
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
3966

3967 3968 3969
		if (cfs_rq_throttled(cfs_rq))
			break;

3970
		update_cfs_shares(cfs_rq);
3971
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
3972 3973
	}

3974 3975
	if (!se) {
		update_rq_runnable_avg(rq, rq->nr_running);
3976
		add_nr_running(rq, 1);
3977
	}
3978
	hrtick_update(rq);
3979 3980
}

3981 3982
static void set_next_buddy(struct sched_entity *se);

3983 3984 3985 3986 3987
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
3988
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3989 3990
{
	struct cfs_rq *cfs_rq;
3991
	struct sched_entity *se = &p->se;
3992
	int task_sleep = flags & DEQUEUE_SLEEP;
3993 3994 3995

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
3996
		dequeue_entity(cfs_rq, se, flags);
3997 3998 3999 4000 4001 4002 4003 4004 4005

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4006
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4007

4008
		/* Don't dequeue parent if it has other entities besides us */
4009 4010 4011 4012 4013 4014 4015
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4016 4017 4018

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4019
			break;
4020
		}
4021
		flags |= DEQUEUE_SLEEP;
4022
	}
P
Peter Zijlstra 已提交
4023

P
Peter Zijlstra 已提交
4024
	for_each_sched_entity(se) {
4025
		cfs_rq = cfs_rq_of(se);
4026
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4027

4028 4029 4030
		if (cfs_rq_throttled(cfs_rq))
			break;

4031
		update_cfs_shares(cfs_rq);
4032
		update_entity_load_avg(se, 1);
P
Peter Zijlstra 已提交
4033 4034
	}

4035
	if (!se) {
4036
		sub_nr_running(rq, 1);
4037 4038
		update_rq_runnable_avg(rq, 1);
	}
4039
	hrtick_update(rq);
4040 4041
}

4042
#ifdef CONFIG_SMP
4043 4044 4045
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
4046
	return cpu_rq(cpu)->cfs.runnable_load_avg;
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4082
static unsigned long capacity_of(int cpu)
4083
{
4084
	return cpu_rq(cpu)->cpu_capacity;
4085 4086 4087 4088 4089 4090
}

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4091
	unsigned long load_avg = rq->cfs.runnable_load_avg;
4092 4093

	if (nr_running)
4094
		return load_avg / nr_running;
4095 4096 4097 4098

	return 0;
}

4099 4100 4101 4102 4103 4104 4105
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4106
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4107
		current->wakee_flips >>= 1;
4108 4109 4110 4111 4112 4113 4114 4115
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4116

4117
static void task_waking_fair(struct task_struct *p)
4118 4119 4120
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4121 4122 4123 4124
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4125

4126 4127 4128 4129 4130 4131 4132 4133
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4134

4135
	se->vruntime -= min_vruntime;
4136
	record_wakee(p);
4137 4138
}

4139
#ifdef CONFIG_FAIR_GROUP_SCHED
4140 4141 4142 4143 4144 4145
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4189
 */
P
Peter Zijlstra 已提交
4190
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4191
{
P
Peter Zijlstra 已提交
4192
	struct sched_entity *se = tg->se[cpu];
4193

4194
	if (!tg->parent)	/* the trivial, non-cgroup case */
4195 4196
		return wl;

P
Peter Zijlstra 已提交
4197
	for_each_sched_entity(se) {
4198
		long w, W;
P
Peter Zijlstra 已提交
4199

4200
		tg = se->my_q->tg;
4201

4202 4203 4204 4205
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4206

4207 4208 4209 4210
		/*
		 * w = rw_i + @wl
		 */
		w = se->my_q->load.weight + wl;
4211

4212 4213 4214 4215 4216
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
			wl = (w * tg->shares) / W;
4217 4218
		else
			wl = tg->shares;
4219

4220 4221 4222 4223 4224
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4225 4226
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4227 4228 4229 4230

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4231
		wl -= se->load.weight;
4232 4233 4234 4235 4236 4237 4238 4239

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4240 4241
		wg = 0;
	}
4242

P
Peter Zijlstra 已提交
4243
	return wl;
4244 4245
}
#else
P
Peter Zijlstra 已提交
4246

4247
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4248
{
4249
	return wl;
4250
}
P
Peter Zijlstra 已提交
4251

4252 4253
#endif

4254 4255
static int wake_wide(struct task_struct *p)
{
4256
	int factor = this_cpu_read(sd_llc_size);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275

	/*
	 * Yeah, it's the switching-frequency, could means many wakee or
	 * rapidly switch, use factor here will just help to automatically
	 * adjust the loose-degree, so bigger node will lead to more pull.
	 */
	if (p->wakee_flips > factor) {
		/*
		 * wakee is somewhat hot, it needs certain amount of cpu
		 * resource, so if waker is far more hot, prefer to leave
		 * it alone.
		 */
		if (current->wakee_flips > (factor * p->wakee_flips))
			return 1;
	}

	return 0;
}

4276
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4277
{
4278
	s64 this_load, load;
4279
	int idx, this_cpu, prev_cpu;
4280
	unsigned long tl_per_task;
4281
	struct task_group *tg;
4282
	unsigned long weight;
4283
	int balanced;
4284

4285 4286 4287 4288 4289 4290 4291
	/*
	 * If we wake multiple tasks be careful to not bounce
	 * ourselves around too much.
	 */
	if (wake_wide(p))
		return 0;

4292 4293 4294 4295 4296
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4297

4298 4299 4300 4301 4302
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4303 4304 4305 4306
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

4307
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4308 4309
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4310

4311 4312
	tg = task_group(p);
	weight = p->se.load.weight;
4313

4314 4315
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4316 4317 4318
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4319 4320 4321 4322
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4323 4324
	if (this_load > 0) {
		s64 this_eff_load, prev_eff_load;
4325 4326

		this_eff_load = 100;
4327
		this_eff_load *= capacity_of(prev_cpu);
4328 4329 4330 4331
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4332
		prev_eff_load *= capacity_of(this_cpu);
4333 4334 4335 4336 4337
		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);

		balanced = this_eff_load <= prev_eff_load;
	} else
		balanced = true;
4338

4339
	/*
I
Ingo Molnar 已提交
4340 4341 4342
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
4343
	 */
4344 4345
	if (sync && balanced)
		return 1;
4346

4347
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4348 4349
	tl_per_task = cpu_avg_load_per_task(this_cpu);

4350 4351 4352
	if (balanced ||
	    (this_load <= load &&
	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4353 4354 4355 4356 4357
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
4358
		schedstat_inc(sd, ttwu_move_affine);
4359
		schedstat_inc(p, se.statistics.nr_wakeups_affine);
4360 4361 4362 4363 4364 4365

		return 1;
	}
	return 0;
}

4366 4367 4368 4369 4370
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4371
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4372
		  int this_cpu, int sd_flag)
4373
{
4374
	struct sched_group *idlest = NULL, *group = sd->groups;
4375
	unsigned long min_load = ULONG_MAX, this_load = 0;
4376
	int load_idx = sd->forkexec_idx;
4377
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4378

4379 4380 4381
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4382 4383 4384 4385
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4386

4387 4388
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4389
					tsk_cpus_allowed(p)))
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4408
		/* Adjust by relative CPU capacity of the group */
4409
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

	/* Traverse only the allowed CPUs */
4435
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4436 4437 4438 4439 4440
		load = weighted_cpuload(i);

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
4441 4442 4443
		}
	}

4444 4445
	return idlest;
}
4446

4447 4448 4449
/*
 * Try and locate an idle CPU in the sched_domain.
 */
4450
static int select_idle_sibling(struct task_struct *p, int target)
4451
{
4452
	struct sched_domain *sd;
4453
	struct sched_group *sg;
4454
	int i = task_cpu(p);
4455

4456 4457
	if (idle_cpu(target))
		return target;
4458 4459

	/*
4460
	 * If the prevous cpu is cache affine and idle, don't be stupid.
4461
	 */
4462 4463
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
4464 4465

	/*
4466
	 * Otherwise, iterate the domains and find an elegible idle cpu.
4467
	 */
4468
	sd = rcu_dereference(per_cpu(sd_llc, target));
4469
	for_each_lower_domain(sd) {
4470 4471 4472 4473 4474 4475 4476
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

			for_each_cpu(i, sched_group_cpus(sg)) {
4477
				if (i == target || !idle_cpu(i))
4478 4479
					goto next;
			}
4480

4481 4482 4483 4484 4485 4486 4487 4488
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
4489 4490 4491
	return target;
}

4492
/*
4493 4494 4495
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4496
 *
4497 4498
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4499
 *
4500
 * Returns the target cpu number.
4501 4502 4503
 *
 * preempt must be disabled.
 */
4504
static int
4505
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4506
{
4507
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4508 4509
	int cpu = smp_processor_id();
	int new_cpu = cpu;
4510
	int want_affine = 0;
4511
	int sync = wake_flags & WF_SYNC;
4512

4513
	if (p->nr_cpus_allowed == 1)
4514 4515
		return prev_cpu;

4516
	if (sd_flag & SD_BALANCE_WAKE) {
4517
		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4518 4519 4520
			want_affine = 1;
		new_cpu = prev_cpu;
	}
4521

4522
	rcu_read_lock();
4523
	for_each_domain(cpu, tmp) {
4524 4525 4526
		if (!(tmp->flags & SD_LOAD_BALANCE))
			continue;

4527
		/*
4528 4529
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
4530
		 */
4531 4532 4533
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
4534
			break;
4535
		}
4536

4537
		if (tmp->flags & sd_flag)
4538 4539 4540
			sd = tmp;
	}

4541 4542
	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
		prev_cpu = cpu;
4543

4544
	if (sd_flag & SD_BALANCE_WAKE) {
4545 4546
		new_cpu = select_idle_sibling(p, prev_cpu);
		goto unlock;
4547
	}
4548

4549 4550
	while (sd) {
		struct sched_group *group;
4551
		int weight;
4552

4553
		if (!(sd->flags & sd_flag)) {
4554 4555 4556
			sd = sd->child;
			continue;
		}
4557

4558
		group = find_idlest_group(sd, p, cpu, sd_flag);
4559 4560 4561 4562
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
4563

4564
		new_cpu = find_idlest_cpu(group, p, cpu);
4565 4566 4567 4568
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
4569
		}
4570 4571 4572

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
4573
		weight = sd->span_weight;
4574 4575
		sd = NULL;
		for_each_domain(cpu, tmp) {
4576
			if (weight <= tmp->span_weight)
4577
				break;
4578
			if (tmp->flags & sd_flag)
4579 4580 4581
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
4582
	}
4583 4584
unlock:
	rcu_read_unlock();
4585

4586
	return new_cpu;
4587
}
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
 * other assumptions, including the state of rq->lock, should be made.
 */
static void
migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
	 * Load tracking: accumulate removed load so that it can be processed
	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
	 * to blocked load iff they have a positive decay-count.  It can never
	 * be negative here since on-rq tasks have decay-count == 0.
	 */
	if (se->avg.decay_count) {
		se->avg.decay_count = -__synchronize_entity_decay(se);
4609 4610
		atomic_long_add(se->avg.load_avg_contrib,
						&cfs_rq->removed_load);
4611
	}
4612 4613 4614

	/* We have migrated, no longer consider this task hot */
	se->exec_start = 0;
4615
}
4616 4617
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
4618 4619
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4620 4621 4622 4623
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
4624 4625
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
4635
	 */
4636
	return calc_delta_fair(gran, se);
4637 4638
}

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
4661
	gran = wakeup_gran(curr, se);
4662 4663 4664 4665 4666 4667
	if (vdiff > gran)
		return 1;

	return 0;
}

4668 4669
static void set_last_buddy(struct sched_entity *se)
{
4670 4671 4672 4673 4674
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
4675 4676 4677 4678
}

static void set_next_buddy(struct sched_entity *se)
{
4679 4680 4681 4682 4683
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
4684 4685
}

4686 4687
static void set_skip_buddy(struct sched_entity *se)
{
4688 4689
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
4690 4691
}

4692 4693 4694
/*
 * Preempt the current task with a newly woken task if needed:
 */
4695
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4696 4697
{
	struct task_struct *curr = rq->curr;
4698
	struct sched_entity *se = &curr->se, *pse = &p->se;
4699
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4700
	int scale = cfs_rq->nr_running >= sched_nr_latency;
4701
	int next_buddy_marked = 0;
4702

I
Ingo Molnar 已提交
4703 4704 4705
	if (unlikely(se == pse))
		return;

4706
	/*
4707
	 * This is possible from callers such as move_task(), in which we
4708 4709 4710 4711 4712 4713 4714
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

4715
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
4716
		set_next_buddy(pse);
4717 4718
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
4719

4720 4721 4722
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
4723 4724 4725 4726 4727 4728
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
4729 4730 4731 4732
	 */
	if (test_tsk_need_resched(curr))
		return;

4733 4734 4735 4736 4737
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

4738
	/*
4739 4740
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
4741
	 */
4742
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4743
		return;
4744

4745
	find_matching_se(&se, &pse);
4746
	update_curr(cfs_rq_of(se));
4747
	BUG_ON(!pse);
4748 4749 4750 4751 4752 4753 4754
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
4755
		goto preempt;
4756
	}
4757

4758
	return;
4759

4760
preempt:
4761
	resched_curr(rq);
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
4776 4777
}

4778 4779
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4780 4781 4782
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
4783
	struct task_struct *p;
4784
	int new_tasks;
4785

4786
again:
4787 4788
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
4789
		goto idle;
4790

4791
	if (prev->sched_class != &fair_sched_class)
4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
		if (curr && curr->on_rq)
			update_curr(cfs_rq);
		else
			curr = NULL;

		/*
		 * This call to check_cfs_rq_runtime() will do the throttle and
		 * dequeue its entity in the parent(s). Therefore the 'simple'
		 * nr_running test will indeed be correct.
		 */
		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
			goto simple;

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
4863

4864
	if (!cfs_rq->nr_running)
4865
		goto idle;
4866

4867
	put_prev_task(rq, prev);
4868

4869
	do {
4870
		se = pick_next_entity(cfs_rq, NULL);
4871
		set_next_entity(cfs_rq, se);
4872 4873 4874
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
4875
	p = task_of(se);
4876

4877 4878
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
4879 4880

	return p;
4881 4882

idle:
4883
	new_tasks = idle_balance(rq);
4884 4885 4886 4887 4888
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
4889
	if (new_tasks < 0)
4890 4891
		return RETRY_TASK;

4892
	if (new_tasks > 0)
4893 4894 4895
		goto again;

	return NULL;
4896 4897 4898 4899 4900
}

/*
 * Account for a descheduled task:
 */
4901
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4902 4903 4904 4905 4906 4907
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4908
		put_prev_entity(cfs_rq, se);
4909 4910 4911
	}
}

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
4937 4938 4939 4940 4941 4942
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
		 rq->skip_clock_update = 1;
4943 4944 4945 4946 4947
	}

	set_skip_buddy(se);
}

4948 4949 4950 4951
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

4952 4953
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

4964
#ifdef CONFIG_SMP
4965
/**************************************************
P
Peter Zijlstra 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
4989
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
4990 4991 4992 4993 4994 4995
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
4996
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5082

5083 5084
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5085 5086
enum fbq_type { regular, remote, all };

5087
#define LBF_ALL_PINNED	0x01
5088
#define LBF_NEED_BREAK	0x02
5089 5090
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5091 5092 5093 5094 5095

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5096
	int			src_cpu;
5097 5098 5099 5100

	int			dst_cpu;
	struct rq		*dst_rq;

5101 5102
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5103
	enum cpu_idle_type	idle;
5104
	long			imbalance;
5105 5106 5107
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5108
	unsigned int		flags;
5109 5110 5111 5112

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5113 5114

	enum fbq_type		fbq_type;
5115 5116
};

5117
/*
5118
 * move_task - move a task from one runqueue to another runqueue.
5119 5120
 * Both runqueues must be locked.
 */
5121
static void move_task(struct task_struct *p, struct lb_env *env)
5122
{
5123 5124 5125 5126
	deactivate_task(env->src_rq, p, 0);
	set_task_cpu(p, env->dst_cpu);
	activate_task(env->dst_rq, p, 0);
	check_preempt_curr(env->dst_rq, p, 0);
5127 5128
}

5129 5130 5131
/*
 * Is this task likely cache-hot:
 */
5132
static int task_hot(struct task_struct *p, struct lb_env *env)
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5145
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5146 5147 5148 5149 5150 5151 5152 5153 5154
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5155
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5156 5157 5158 5159

	return delta < (s64)sysctl_sched_migration_cost;
}

5160 5161 5162 5163
#ifdef CONFIG_NUMA_BALANCING
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
5164
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5165 5166
	int src_nid, dst_nid;

5167
	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5168 5169 5170 5171 5172 5173 5174
	    !(env->sd->flags & SD_NUMA)) {
		return false;
	}

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5175
	if (src_nid == dst_nid)
5176 5177
		return false;

5178 5179 5180 5181
	if (numa_group) {
		/* Task is already in the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return false;
5182

5183 5184 5185
		/* Task is moving into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return true;
5186

5187 5188 5189 5190 5191
		return group_faults(p, dst_nid) > group_faults(p, src_nid);
	}

	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5192 5193
		return true;

5194
	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5195
}
5196 5197 5198 5199


static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
5200
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5201 5202 5203 5204 5205
	int src_nid, dst_nid;

	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
		return false;

5206
	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5207 5208 5209 5210 5211
		return false;

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5212
	if (src_nid == dst_nid)
5213 5214
		return false;

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	if (numa_group) {
		/* Task is moving within/into the group's interleave set. */
		if (node_isset(dst_nid, numa_group->active_nodes))
			return false;

		/* Task is moving out of the group's interleave set. */
		if (node_isset(src_nid, numa_group->active_nodes))
			return true;

		return group_faults(p, dst_nid) < group_faults(p, src_nid);
	}

5227 5228 5229 5230
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid)
		return true;

5231
	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5232 5233
}

5234 5235 5236 5237 5238 5239
#else
static inline bool migrate_improves_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5240 5241 5242 5243 5244 5245

static inline bool migrate_degrades_locality(struct task_struct *p,
					     struct lb_env *env)
{
	return false;
}
5246 5247
#endif

5248 5249 5250 5251
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5252
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5253 5254 5255 5256
{
	int tsk_cache_hot = 0;
	/*
	 * We do not migrate tasks that are:
5257
	 * 1) throttled_lb_pair, or
5258
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5259 5260
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5261
	 */
5262 5263 5264
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5265
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5266
		int cpu;
5267

5268
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5269

5270 5271
		env->flags |= LBF_SOME_PINNED;

5272 5273 5274 5275 5276 5277 5278 5279
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5280
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5281 5282
			return 0;

5283 5284 5285
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5286
				env->flags |= LBF_DST_PINNED;
5287 5288 5289
				env->new_dst_cpu = cpu;
				break;
			}
5290
		}
5291

5292 5293
		return 0;
	}
5294 5295

	/* Record that we found atleast one task that could run on dst_cpu */
5296
	env->flags &= ~LBF_ALL_PINNED;
5297

5298
	if (task_running(env->src_rq, p)) {
5299
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5300 5301 5302 5303 5304
		return 0;
	}

	/*
	 * Aggressive migration if:
5305 5306 5307
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5308
	 */
5309
	tsk_cache_hot = task_hot(p, env);
5310 5311
	if (!tsk_cache_hot)
		tsk_cache_hot = migrate_degrades_locality(p, env);
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322

	if (migrate_improves_locality(p, env)) {
#ifdef CONFIG_SCHEDSTATS
		if (tsk_cache_hot) {
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
#endif
		return 1;
	}

5323
	if (!tsk_cache_hot ||
5324
		env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Z
Zhang Hang 已提交
5325

5326
		if (tsk_cache_hot) {
5327
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5328
			schedstat_inc(p, se.statistics.nr_forced_migrations);
5329
		}
Z
Zhang Hang 已提交
5330

5331 5332 5333
		return 1;
	}

Z
Zhang Hang 已提交
5334 5335
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5336 5337
}

5338 5339 5340 5341 5342 5343 5344
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
5345
static int move_one_task(struct lb_env *env)
5346 5347 5348
{
	struct task_struct *p, *n;

5349 5350 5351
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5352

5353 5354 5355 5356 5357 5358 5359 5360
		move_task(p, env);
		/*
		 * Right now, this is only the second place move_task()
		 * is called, so we can safely collect move_task()
		 * stats here rather than inside move_task().
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
		return 1;
5361 5362 5363 5364
	}
	return 0;
}

5365 5366
static const unsigned int sched_nr_migrate_break = 32;

5367
/*
5368
 * move_tasks tries to move up to imbalance weighted load from busiest to
5369 5370 5371 5372 5373 5374
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct lb_env *env)
5375
{
5376 5377
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
5378 5379
	unsigned long load;
	int pulled = 0;
5380

5381
	if (env->imbalance <= 0)
5382
		return 0;
5383

5384 5385
	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
5386

5387 5388
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
5389
		if (env->loop > env->loop_max)
5390
			break;
5391 5392

		/* take a breather every nr_migrate tasks */
5393
		if (env->loop > env->loop_break) {
5394
			env->loop_break += sched_nr_migrate_break;
5395
			env->flags |= LBF_NEED_BREAK;
5396
			break;
5397
		}
5398

5399
		if (!can_migrate_task(p, env))
5400 5401 5402
			goto next;

		load = task_h_load(p);
5403

5404
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5405 5406
			goto next;

5407
		if ((load / 2) > env->imbalance)
5408
			goto next;
5409

5410
		move_task(p, env);
5411
		pulled++;
5412
		env->imbalance -= load;
5413 5414

#ifdef CONFIG_PREEMPT
5415 5416 5417 5418 5419
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
5420
		if (env->idle == CPU_NEWLY_IDLE)
5421
			break;
5422 5423
#endif

5424 5425 5426 5427
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
5428
		if (env->imbalance <= 0)
5429
			break;
5430 5431 5432

		continue;
next:
5433
		list_move_tail(&p->se.group_node, tasks);
5434
	}
5435

5436
	/*
5437 5438 5439
	 * Right now, this is one of only two places move_task() is called,
	 * so we can safely collect move_task() stats here rather than
	 * inside move_task().
5440
	 */
5441
	schedstat_add(env->sd, lb_gained[env->idle], pulled);
5442

5443
	return pulled;
5444 5445
}

P
Peter Zijlstra 已提交
5446
#ifdef CONFIG_FAIR_GROUP_SCHED
5447 5448 5449
/*
 * update tg->load_weight by folding this cpu's load_avg
 */
5450
static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5451
{
5452 5453
	struct sched_entity *se = tg->se[cpu];
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5454

5455 5456 5457
	/* throttled entities do not contribute to load */
	if (throttled_hierarchy(cfs_rq))
		return;
5458

5459
	update_cfs_rq_blocked_load(cfs_rq, 1);
5460

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	if (se) {
		update_entity_load_avg(se, 1);
		/*
		 * We pivot on our runnable average having decayed to zero for
		 * list removal.  This generally implies that all our children
		 * have also been removed (modulo rounding error or bandwidth
		 * control); however, such cases are rare and we can fix these
		 * at enqueue.
		 *
		 * TODO: fix up out-of-order children on enqueue.
		 */
		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
			list_del_leaf_cfs_rq(cfs_rq);
	} else {
5475
		struct rq *rq = rq_of(cfs_rq);
5476 5477
		update_rq_runnable_avg(rq, rq->nr_running);
	}
5478 5479
}

5480
static void update_blocked_averages(int cpu)
5481 5482
{
	struct rq *rq = cpu_rq(cpu);
5483 5484
	struct cfs_rq *cfs_rq;
	unsigned long flags;
5485

5486 5487
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
5488 5489 5490 5491
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
5492
	for_each_leaf_cfs_rq(rq, cfs_rq) {
5493 5494 5495 5496 5497 5498
		/*
		 * Note: We may want to consider periodically releasing
		 * rq->lock about these updates so that creating many task
		 * groups does not result in continually extending hold time.
		 */
		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5499
	}
5500 5501

	raw_spin_unlock_irqrestore(&rq->lock, flags);
5502 5503
}

5504
/*
5505
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5506 5507 5508
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
5509
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5510
{
5511 5512
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5513
	unsigned long now = jiffies;
5514
	unsigned long load;
5515

5516
	if (cfs_rq->last_h_load_update == now)
5517 5518
		return;

5519 5520 5521 5522 5523 5524 5525
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
5526

5527
	if (!se) {
5528
		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
		load = div64_ul(load * se->avg.load_avg_contrib,
				cfs_rq->runnable_load_avg + 1);
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
5540 5541
}

5542
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
5543
{
5544
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
5545

5546
	update_cfs_rq_h_load(cfs_rq);
5547 5548
	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
			cfs_rq->runnable_load_avg + 1);
P
Peter Zijlstra 已提交
5549 5550
}
#else
5551
static inline void update_blocked_averages(int cpu)
5552 5553 5554
{
}

5555
static unsigned long task_h_load(struct task_struct *p)
5556
{
5557
	return p->se.avg.load_avg_contrib;
5558
}
P
Peter Zijlstra 已提交
5559
#endif
5560 5561 5562 5563 5564 5565 5566 5567 5568

/********** Helpers for find_busiest_group ************************/
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
5569
	unsigned long load_per_task;
5570
	unsigned long group_capacity;
5571
	unsigned int sum_nr_running; /* Nr tasks running in the group */
5572
	unsigned int group_capacity_factor;
5573 5574
	unsigned int idle_cpus;
	unsigned int group_weight;
5575
	int group_imb; /* Is there an imbalance in the group ? */
5576
	int group_has_free_capacity;
5577 5578 5579 5580
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
5581 5582
};

J
Joonsoo Kim 已提交
5583 5584 5585 5586 5587 5588 5589 5590
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
5591
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
5592 5593 5594
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5595
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
5596 5597
};

5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
5610
		.total_capacity = 0UL,
5611 5612 5613 5614 5615 5616
		.busiest_stat = {
			.avg_load = 0UL,
		},
	};
}

5617 5618 5619
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
5620
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5621 5622
 *
 * Return: The load index.
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

5645
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5646
{
5647
	return SCHED_CAPACITY_SCALE;
5648 5649
}

5650
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5651
{
5652
	return default_scale_capacity(sd, cpu);
5653 5654
}

5655
static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5656
{
5657
	unsigned long weight = sd->span_weight;
5658 5659 5660 5661 5662 5663 5664
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

5665
unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5666
{
5667
	return default_scale_smt_capacity(sd, cpu);
5668 5669
}

5670
static unsigned long scale_rt_capacity(int cpu)
5671 5672
{
	struct rq *rq = cpu_rq(cpu);
5673
	u64 total, available, age_stamp, avg;
5674
	s64 delta;
5675

5676 5677 5678 5679 5680 5681 5682
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
	age_stamp = ACCESS_ONCE(rq->age_stamp);
	avg = ACCESS_ONCE(rq->rt_avg);

5683 5684 5685 5686 5687
	delta = rq_clock(rq) - age_stamp;
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
5688

5689
	if (unlikely(total < avg)) {
5690
		/* Ensures that capacity won't end up being negative */
5691 5692
		available = 0;
	} else {
5693
		available = total - avg;
5694
	}
5695

5696 5697
	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
		total = SCHED_CAPACITY_SCALE;
5698

5699
	total >>= SCHED_CAPACITY_SHIFT;
5700 5701 5702 5703

	return div_u64(available, total);
}

5704
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5705
{
5706
	unsigned long weight = sd->span_weight;
5707
	unsigned long capacity = SCHED_CAPACITY_SCALE;
5708 5709
	struct sched_group *sdg = sd->groups;

5710 5711
	if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
		if (sched_feat(ARCH_CAPACITY))
5712
			capacity *= arch_scale_smt_capacity(sd, cpu);
5713
		else
5714
			capacity *= default_scale_smt_capacity(sd, cpu);
5715

5716
		capacity >>= SCHED_CAPACITY_SHIFT;
5717 5718
	}

5719
	sdg->sgc->capacity_orig = capacity;
5720

5721
	if (sched_feat(ARCH_CAPACITY))
5722
		capacity *= arch_scale_freq_capacity(sd, cpu);
5723
	else
5724
		capacity *= default_scale_capacity(sd, cpu);
5725

5726
	capacity >>= SCHED_CAPACITY_SHIFT;
5727

5728
	capacity *= scale_rt_capacity(cpu);
5729
	capacity >>= SCHED_CAPACITY_SHIFT;
5730

5731 5732
	if (!capacity)
		capacity = 1;
5733

5734 5735
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
5736 5737
}

5738
void update_group_capacity(struct sched_domain *sd, int cpu)
5739 5740 5741
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
5742
	unsigned long capacity, capacity_orig;
5743 5744 5745 5746
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
5747
	sdg->sgc->next_update = jiffies + interval;
5748 5749

	if (!child) {
5750
		update_cpu_capacity(sd, cpu);
5751 5752 5753
		return;
	}

5754
	capacity_orig = capacity = 0;
5755

P
Peter Zijlstra 已提交
5756 5757 5758 5759 5760 5761
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

5762
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5763
			struct sched_group_capacity *sgc;
5764
			struct rq *rq = cpu_rq(cpu);
5765

5766
			/*
5767
			 * build_sched_domains() -> init_sched_groups_capacity()
5768 5769 5770
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
5771 5772
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
5773
			 *
5774
			 * This avoids capacity/capacity_orig from being 0 and
5775 5776
			 * causing divide-by-zero issues on boot.
			 *
5777
			 * Runtime updates will correct capacity_orig.
5778 5779
			 */
			if (unlikely(!rq->sd)) {
5780 5781
				capacity_orig += capacity_of(cpu);
				capacity += capacity_of(cpu);
5782 5783
				continue;
			}
5784

5785 5786 5787
			sgc = rq->sd->groups->sgc;
			capacity_orig += sgc->capacity_orig;
			capacity += sgc->capacity;
5788
		}
P
Peter Zijlstra 已提交
5789 5790 5791 5792 5793 5794 5795 5796
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
5797 5798
			capacity_orig += group->sgc->capacity_orig;
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
5799 5800 5801
			group = group->next;
		} while (group != child->groups);
	}
5802

5803 5804
	sdg->sgc->capacity_orig = capacity_orig;
	sdg->sgc->capacity = capacity;
5805 5806
}

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
/*
 * Try and fix up capacity for tiny siblings, this is needed when
 * things like SD_ASYM_PACKING need f_b_g to select another sibling
 * which on its own isn't powerful enough.
 *
 * See update_sd_pick_busiest() and check_asym_packing().
 */
static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
	/*
5818
	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5819
	 */
5820
	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5821 5822 5823
		return 0;

	/*
5824
	 * If ~90% of the cpu_capacity is still there, we're good.
5825
	 */
5826
	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5827 5828 5829 5830 5831
		return 1;

	return 0;
}

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
5848 5849
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
5850 5851
 *
 * When this is so detected; this group becomes a candidate for busiest; see
5852
 * update_sd_pick_busiest(). And calculate_imbalance() and
5853
 * find_busiest_group() avoid some of the usual balance conditions to allow it
5854 5855 5856 5857 5858 5859 5860
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

5861
static inline int sg_imbalanced(struct sched_group *group)
5862
{
5863
	return group->sgc->imbalance;
5864 5865
}

5866
/*
5867
 * Compute the group capacity factor.
5868
 *
5869
 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5870
 * first dividing out the smt factor and computing the actual number of cores
5871
 * and limit unit capacity with that.
5872
 */
5873
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5874
{
5875
	unsigned int capacity_factor, smt, cpus;
5876
	unsigned int capacity, capacity_orig;
5877

5878 5879
	capacity = group->sgc->capacity;
	capacity_orig = group->sgc->capacity_orig;
5880
	cpus = group->group_weight;
5881

5882
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5883
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5884
	capacity_factor = cpus / smt; /* cores */
5885

5886
	capacity_factor = min_t(unsigned,
5887
		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5888 5889
	if (!capacity_factor)
		capacity_factor = fix_small_capacity(env->sd, group);
5890

5891
	return capacity_factor;
5892 5893
}

5894 5895
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5896
 * @env: The load balancing environment.
5897 5898 5899 5900 5901
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
 */
5902 5903
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
5904 5905
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
5906
{
5907
	unsigned long load;
5908
	int i;
5909

5910 5911
	memset(sgs, 0, sizeof(*sgs));

5912
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5913 5914 5915
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
5916
		if (local_group)
5917
			load = target_load(i, load_idx);
5918
		else
5919 5920 5921
			load = source_load(i, load_idx);

		sgs->group_load += load;
5922
		sgs->sum_nr_running += rq->nr_running;
5923 5924 5925 5926

		if (rq->nr_running > 1)
			*overload = true;

5927 5928 5929 5930
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
5931
		sgs->sum_weighted_load += weighted_cpuload(i);
5932 5933
		if (idle_cpu(i))
			sgs->idle_cpus++;
5934 5935
	}

5936 5937
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
5938
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5939

5940
	if (sgs->sum_nr_running)
5941
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5942

5943
	sgs->group_weight = group->group_weight;
5944

5945
	sgs->group_imb = sg_imbalanced(group);
5946
	sgs->group_capacity_factor = sg_capacity_factor(env, group);
5947

5948
	if (sgs->group_capacity_factor > sgs->sum_nr_running)
5949
		sgs->group_has_free_capacity = 1;
5950 5951
}

5952 5953
/**
 * update_sd_pick_busiest - return 1 on busiest group
5954
 * @env: The load balancing environment.
5955 5956
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
5957
 * @sgs: sched_group statistics
5958 5959 5960
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
5961 5962 5963
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
5964
 */
5965
static bool update_sd_pick_busiest(struct lb_env *env,
5966 5967
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
5968
				   struct sg_lb_stats *sgs)
5969
{
J
Joonsoo Kim 已提交
5970
	if (sgs->avg_load <= sds->busiest_stat.avg_load)
5971 5972
		return false;

5973
	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
		return true;

	if (sgs->group_imb)
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
5984 5985
	if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
	    env->dst_cpu < group_first_cpu(sg)) {
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6026
/**
6027
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6028
 * @env: The load balancing environment.
6029 6030
 * @sds: variable to hold the statistics for this sched_domain.
 */
6031
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6032
{
6033 6034
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6035
	struct sg_lb_stats tmp_sgs;
6036
	int load_idx, prefer_sibling = 0;
6037
	bool overload = false;
6038 6039 6040 6041

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6042
	load_idx = get_sd_load_idx(env->sd, env->idle);
6043 6044

	do {
J
Joonsoo Kim 已提交
6045
		struct sg_lb_stats *sgs = &tmp_sgs;
6046 6047
		int local_group;

6048
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6049 6050 6051
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6052 6053

			if (env->idle != CPU_NEWLY_IDLE ||
6054 6055
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6056
		}
6057

6058 6059
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6060

6061 6062 6063
		if (local_group)
			goto next_group;

6064 6065
		/*
		 * In case the child domain prefers tasks go to siblings
6066
		 * first, lower the sg capacity factor to one so that we'll try
6067 6068
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6069
		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6070 6071 6072
		 * extra check prevents the case where you always pull from the
		 * heaviest group when it is already under-utilized (possible
		 * with a large weight task outweighs the tasks on the system).
6073
		 */
6074
		if (prefer_sibling && sds->local &&
6075
		    sds->local_stat.group_has_free_capacity)
6076
			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6077

6078
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6079
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6080
			sds->busiest_stat = *sgs;
6081 6082
		}

6083 6084 6085
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6086
		sds->total_capacity += sgs->group_capacity;
6087

6088
		sg = sg->next;
6089
	} while (sg != env->sd->groups);
6090 6091 6092

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6093 6094 6095 6096 6097 6098 6099

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6119
 * Return: 1 when packing is required and a task should be moved to
6120 6121
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6122
 * @env: The load balancing environment.
6123 6124
 * @sds: Statistics of the sched_domain which is to be packed
 */
6125
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6126 6127 6128
{
	int busiest_cpu;

6129
	if (!(env->sd->flags & SD_ASYM_PACKING))
6130 6131 6132 6133 6134 6135
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6136
	if (env->dst_cpu > busiest_cpu)
6137 6138
		return 0;

6139
	env->imbalance = DIV_ROUND_CLOSEST(
6140
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6141
		SCHED_CAPACITY_SCALE);
6142

6143
	return 1;
6144 6145 6146 6147 6148 6149
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6150
 * @env: The load balancing environment.
6151 6152
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6153 6154
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6155
{
6156
	unsigned long tmp, capa_now = 0, capa_move = 0;
6157
	unsigned int imbn = 2;
6158
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6159
	struct sg_lb_stats *local, *busiest;
6160

J
Joonsoo Kim 已提交
6161 6162
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6163

J
Joonsoo Kim 已提交
6164 6165 6166 6167
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6168

J
Joonsoo Kim 已提交
6169
	scaled_busy_load_per_task =
6170
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6171
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6172

6173 6174
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6175
		env->imbalance = busiest->load_per_task;
6176 6177 6178 6179 6180
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6181
	 * however we may be able to increase total CPU capacity used by
6182 6183 6184
	 * moving them.
	 */

6185
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6186
			min(busiest->load_per_task, busiest->avg_load);
6187
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6188
			min(local->load_per_task, local->avg_load);
6189
	capa_now /= SCHED_CAPACITY_SCALE;
6190 6191

	/* Amount of load we'd subtract */
6192
	if (busiest->avg_load > scaled_busy_load_per_task) {
6193
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6194
			    min(busiest->load_per_task,
6195
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6196
	}
6197 6198

	/* Amount of load we'd add */
6199
	if (busiest->avg_load * busiest->group_capacity <
6200
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6201 6202
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6203
	} else {
6204
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6205
		      local->group_capacity;
J
Joonsoo Kim 已提交
6206
	}
6207
	capa_move += local->group_capacity *
6208
		    min(local->load_per_task, local->avg_load + tmp);
6209
	capa_move /= SCHED_CAPACITY_SCALE;
6210 6211

	/* Move if we gain throughput */
6212
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6213
		env->imbalance = busiest->load_per_task;
6214 6215 6216 6217 6218
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6219
 * @env: load balance environment
6220 6221
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6222
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6223
{
6224
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6225 6226 6227 6228
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6229

J
Joonsoo Kim 已提交
6230
	if (busiest->group_imb) {
6231 6232 6233 6234
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6235 6236
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6237 6238
	}

6239 6240 6241
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6242
	 * its cpu_capacity, while calculating max_load..)
6243
	 */
6244 6245
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6246 6247
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6248 6249
	}

J
Joonsoo Kim 已提交
6250
	if (!busiest->group_imb) {
6251 6252
		/*
		 * Don't want to pull so many tasks that a group would go idle.
6253 6254
		 * Except of course for the group_imb case, since then we might
		 * have to drop below capacity to reach cpu-load equilibrium.
6255
		 */
J
Joonsoo Kim 已提交
6256
		load_above_capacity =
6257
			(busiest->sum_nr_running - busiest->group_capacity_factor);
6258

6259
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6260
		load_above_capacity /= busiest->group_capacity;
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6271
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6272 6273

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6274
	env->imbalance = min(
6275 6276
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6277
	) / SCHED_CAPACITY_SCALE;
6278 6279 6280

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6281
	 * there is no guarantee that any tasks will be moved so we'll have
6282 6283 6284
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6285
	if (env->imbalance < busiest->load_per_task)
6286
		return fix_small_imbalance(env, sds);
6287
}
6288

6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6301
 * @env: The load balancing environment.
6302
 *
6303
 * Return:	- The busiest group if imbalance exists.
6304 6305 6306 6307
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6308
static struct sched_group *find_busiest_group(struct lb_env *env)
6309
{
J
Joonsoo Kim 已提交
6310
	struct sg_lb_stats *local, *busiest;
6311 6312
	struct sd_lb_stats sds;

6313
	init_sd_lb_stats(&sds);
6314 6315 6316 6317 6318

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6319
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6320 6321
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6322

6323 6324
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6325 6326
		return sds.busiest;

6327
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6328
	if (!sds.busiest || busiest->sum_nr_running == 0)
6329 6330
		goto out_balanced;

6331 6332
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6333

P
Peter Zijlstra 已提交
6334 6335
	/*
	 * If the busiest group is imbalanced the below checks don't
6336
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6337 6338
	 * isn't true due to cpus_allowed constraints and the like.
	 */
J
Joonsoo Kim 已提交
6339
	if (busiest->group_imb)
P
Peter Zijlstra 已提交
6340 6341
		goto force_balance;

6342
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6343 6344
	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
	    !busiest->group_has_free_capacity)
6345 6346
		goto force_balance;

6347 6348 6349 6350
	/*
	 * If the local group is more busy than the selected busiest group
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
6351
	if (local->avg_load >= busiest->avg_load)
6352 6353
		goto out_balanced;

6354 6355 6356 6357
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
6358
	if (local->avg_load >= sds.avg_load)
6359 6360
		goto out_balanced;

6361
	if (env->idle == CPU_IDLE) {
6362 6363 6364 6365 6366 6367
		/*
		 * This cpu is idle. If the busiest group load doesn't
		 * have more tasks than the number of available cpu's and
		 * there is no imbalance between this and busiest group
		 * wrt to idle cpu's, it is balanced.
		 */
J
Joonsoo Kim 已提交
6368 6369
		if ((local->idle_cpus < busiest->idle_cpus) &&
		    busiest->sum_nr_running <= busiest->group_weight)
6370
			goto out_balanced;
6371 6372 6373 6374 6375
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
6376 6377
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
6378
			goto out_balanced;
6379
	}
6380

6381
force_balance:
6382
	/* Looks like there is an imbalance. Compute it */
6383
	calculate_imbalance(env, &sds);
6384 6385 6386
	return sds.busiest;

out_balanced:
6387
	env->imbalance = 0;
6388 6389 6390 6391 6392 6393
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
6394
static struct rq *find_busiest_queue(struct lb_env *env,
6395
				     struct sched_group *group)
6396 6397
{
	struct rq *busiest = NULL, *rq;
6398
	unsigned long busiest_load = 0, busiest_capacity = 1;
6399 6400
	int i;

6401
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6402
		unsigned long capacity, capacity_factor, wl;
6403 6404 6405 6406
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
6407

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

6430
		capacity = capacity_of(i);
6431
		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6432 6433
		if (!capacity_factor)
			capacity_factor = fix_small_capacity(env->sd, group);
6434

6435
		wl = weighted_cpuload(i);
6436

6437 6438
		/*
		 * When comparing with imbalance, use weighted_cpuload()
6439
		 * which is not scaled with the cpu capacity.
6440
		 */
6441
		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6442 6443
			continue;

6444 6445
		/*
		 * For the load comparisons with the other cpu's, consider
6446 6447 6448
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
6449
		 *
6450
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6451
		 * multiplication to rid ourselves of the division works out
6452 6453
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
6454
		 */
6455
		if (wl * busiest_capacity > busiest_load * capacity) {
6456
			busiest_load = wl;
6457
			busiest_capacity = capacity;
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
6472
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6473

6474
static int need_active_balance(struct lb_env *env)
6475
{
6476 6477 6478
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
6479 6480 6481 6482 6483 6484

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
6485
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6486
			return 1;
6487 6488 6489 6490 6491
	}

	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

6492 6493
static int active_load_balance_cpu_stop(void *data);

6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
6525
	return balance_cpu == env->dst_cpu;
6526 6527
}

6528 6529 6530 6531 6532 6533
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
6534
			int *continue_balancing)
6535
{
6536
	int ld_moved, cur_ld_moved, active_balance = 0;
6537
	struct sched_domain *sd_parent = sd->parent;
6538 6539 6540
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
6541
	struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6542

6543 6544
	struct lb_env env = {
		.sd		= sd,
6545 6546
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
6547
		.dst_grpmask    = sched_group_cpus(sd->groups),
6548
		.idle		= idle,
6549
		.loop_break	= sched_nr_migrate_break,
6550
		.cpus		= cpus,
6551
		.fbq_type	= all,
6552 6553
	};

6554 6555 6556 6557
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
6558
	if (idle == CPU_NEWLY_IDLE)
6559 6560
		env.dst_grpmask = NULL;

6561 6562 6563 6564 6565
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
6566 6567
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
6568
		goto out_balanced;
6569
	}
6570

6571
	group = find_busiest_group(&env);
6572 6573 6574 6575 6576
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

6577
	busiest = find_busiest_queue(&env, group);
6578 6579 6580 6581 6582
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

6583
	BUG_ON(busiest == env.dst_rq);
6584

6585
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6586 6587 6588 6589 6590 6591 6592 6593 6594

	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
6595
		env.flags |= LBF_ALL_PINNED;
6596 6597 6598
		env.src_cpu   = busiest->cpu;
		env.src_rq    = busiest;
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6599

6600
more_balance:
6601
		local_irq_save(flags);
6602
		double_rq_lock(env.dst_rq, busiest);
6603 6604 6605 6606 6607 6608 6609

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
		cur_ld_moved = move_tasks(&env);
		ld_moved += cur_ld_moved;
6610
		double_rq_unlock(env.dst_rq, busiest);
6611 6612 6613 6614 6615
		local_irq_restore(flags);

		/*
		 * some other cpu did the load balance for us.
		 */
6616 6617 6618
		if (cur_ld_moved && env.dst_cpu != smp_processor_id())
			resched_cpu(env.dst_cpu);

6619 6620 6621 6622 6623
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
6643
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6644

6645 6646 6647
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

6648
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6649
			env.dst_cpu	 = env.new_dst_cpu;
6650
			env.flags	&= ~LBF_DST_PINNED;
6651 6652
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
6653

6654 6655 6656 6657 6658 6659
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
6660

6661 6662 6663 6664
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
6665
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6666 6667 6668 6669 6670 6671 6672

			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
				*group_imbalance = 1;
			} else if (*group_imbalance)
				*group_imbalance = 0;
		}

6673
		/* All tasks on this runqueue were pinned by CPU affinity */
6674
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6675
			cpumask_clear_cpu(cpu_of(busiest), cpus);
6676 6677 6678
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
6679
				goto redo;
6680
			}
6681 6682 6683 6684 6685 6686
			goto out_balanced;
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
6687 6688 6689 6690 6691 6692 6693 6694
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
6695

6696
		if (need_active_balance(&env)) {
6697 6698
			raw_spin_lock_irqsave(&busiest->lock, flags);

6699 6700 6701
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
6702 6703
			 */
			if (!cpumask_test_cpu(this_cpu,
6704
					tsk_cpus_allowed(busiest->curr))) {
6705 6706
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
6707
				env.flags |= LBF_ALL_PINNED;
6708 6709 6710
				goto out_one_pinned;
			}

6711 6712 6713 6714 6715
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
6716 6717 6718 6719 6720 6721
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6722

6723
			if (active_balance) {
6724 6725 6726
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
6727
			}
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
6761
	if (((env.flags & LBF_ALL_PINNED) &&
6762
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6763 6764 6765
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

6766
	ld_moved = 0;
6767 6768 6769 6770
out:
	return ld_moved;
}

6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

6798 6799 6800 6801
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
6802
static int idle_balance(struct rq *this_rq)
6803
{
6804 6805
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
6806 6807
	struct sched_domain *sd;
	int pulled_task = 0;
6808
	u64 curr_cost = 0;
6809

6810
	idle_enter_fair(this_rq);
6811

6812 6813 6814 6815 6816 6817
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

6818 6819
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
6820 6821 6822 6823 6824 6825
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

6826
		goto out;
6827
	}
6828

6829 6830 6831 6832 6833
	/*
	 * Drop the rq->lock, but keep IRQ/preempt disabled.
	 */
	raw_spin_unlock(&this_rq->lock);

6834
	update_blocked_averages(this_cpu);
6835
	rcu_read_lock();
6836
	for_each_domain(this_cpu, sd) {
6837
		int continue_balancing = 1;
6838
		u64 t0, domain_cost;
6839 6840 6841 6842

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

6843 6844
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
6845
			break;
6846
		}
6847

6848
		if (sd->flags & SD_BALANCE_NEWIDLE) {
6849 6850
			t0 = sched_clock_cpu(this_cpu);

6851
			pulled_task = load_balance(this_cpu, this_rq,
6852 6853
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
6854 6855 6856 6857 6858 6859

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
6860
		}
6861

6862
		update_next_balance(sd, 0, &next_balance);
6863 6864 6865 6866 6867 6868

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
6869 6870
			break;
	}
6871
	rcu_read_unlock();
6872 6873 6874

	raw_spin_lock(&this_rq->lock);

6875 6876 6877
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

6878
	/*
6879 6880 6881
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
6882
	 */
6883
	if (this_rq->cfs.h_nr_running && !pulled_task)
6884
		pulled_task = 1;
6885

6886 6887 6888
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
6889
		this_rq->next_balance = next_balance;
6890

6891
	/* Is there a task of a high priority class? */
6892
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6893 6894 6895 6896
		pulled_task = -1;

	if (pulled_task) {
		idle_exit_fair(this_rq);
6897
		this_rq->idle_stamp = 0;
6898
	}
6899

6900
	return pulled_task;
6901 6902 6903
}

/*
6904 6905 6906 6907
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
6908
 */
6909
static int active_load_balance_cpu_stop(void *data)
6910
{
6911 6912
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
6913
	int target_cpu = busiest_rq->push_cpu;
6914
	struct rq *target_rq = cpu_rq(target_cpu);
6915
	struct sched_domain *sd;
6916 6917 6918 6919 6920 6921 6922

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
6923 6924 6925

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
6926
		goto out_unlock;
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);

	/* Search for an sd spanning us and the target CPU. */
6939
	rcu_read_lock();
6940 6941 6942 6943 6944 6945 6946
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
6947 6948
		struct lb_env env = {
			.sd		= sd,
6949 6950 6951 6952
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
6953 6954 6955
			.idle		= CPU_IDLE,
		};

6956 6957
		schedstat_inc(sd, alb_count);

6958
		if (move_one_task(&env))
6959 6960 6961 6962
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
6963
	rcu_read_unlock();
6964
	double_unlock_balance(busiest_rq, target_rq);
6965 6966 6967 6968
out_unlock:
	busiest_rq->active_balance = 0;
	raw_spin_unlock_irq(&busiest_rq->lock);
	return 0;
6969 6970
}

6971 6972 6973 6974 6975
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

6976
#ifdef CONFIG_NO_HZ_COMMON
6977 6978 6979 6980 6981 6982
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
6983
static struct {
6984
	cpumask_var_t idle_cpus_mask;
6985
	atomic_t nr_cpus;
6986 6987
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
6988

6989
static inline int find_new_ilb(void)
6990
{
6991
	int ilb = cpumask_first(nohz.idle_cpus_mask);
6992

6993 6994 6995 6996
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
6997 6998
}

6999 7000 7001 7002 7003
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7004
static void nohz_balancer_kick(void)
7005 7006 7007 7008 7009
{
	int ilb_cpu;

	nohz.next_balance++;

7010
	ilb_cpu = find_new_ilb();
7011

7012 7013
	if (ilb_cpu >= nr_cpu_ids)
		return;
7014

7015
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7016 7017 7018 7019 7020 7021 7022 7023
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7024 7025 7026
	return;
}

7027
static inline void nohz_balance_exit_idle(int cpu)
7028 7029
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7030 7031 7032 7033 7034 7035 7036
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7037 7038 7039 7040
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7041 7042 7043
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7044
	int cpu = smp_processor_id();
7045 7046

	rcu_read_lock();
7047
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7048 7049 7050 7051 7052

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7053
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7054
unlock:
7055 7056 7057 7058 7059 7060
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7061
	int cpu = smp_processor_id();
7062 7063

	rcu_read_lock();
7064
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7065 7066 7067 7068 7069

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7070
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7071
unlock:
7072 7073 7074
	rcu_read_unlock();
}

7075
/*
7076
 * This routine will record that the cpu is going idle with tick stopped.
7077
 * This info will be used in performing idle load balancing in the future.
7078
 */
7079
void nohz_balance_enter_idle(int cpu)
7080
{
7081 7082 7083 7084 7085 7086
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7087 7088
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7089

7090 7091 7092 7093 7094 7095
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7096 7097 7098
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7099
}
7100

7101
static int sched_ilb_notifier(struct notifier_block *nfb,
7102 7103 7104 7105
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7106
		nohz_balance_exit_idle(smp_processor_id());
7107 7108 7109 7110 7111
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7112 7113 7114 7115
#endif

static DEFINE_SPINLOCK(balancing);

7116 7117 7118 7119
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7120
void update_max_interval(void)
7121 7122 7123 7124
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7125 7126 7127 7128
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7129
 * Balancing parameters are set up in init_sched_domains.
7130
 */
7131
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7132
{
7133
	int continue_balancing = 1;
7134
	int cpu = rq->cpu;
7135
	unsigned long interval;
7136
	struct sched_domain *sd;
7137 7138 7139
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7140 7141
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7142

7143
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7144

7145
	rcu_read_lock();
7146
	for_each_domain(cpu, sd) {
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7159 7160 7161
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7173
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7174 7175 7176 7177 7178 7179 7180 7181

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7182
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7183
				/*
7184
				 * The LBF_DST_PINNED logic could have changed
7185 7186
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7187
				 */
7188
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7189 7190
			}
			sd->last_balance = jiffies;
7191
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7192 7193 7194 7195 7196 7197 7198 7199
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7200 7201
	}
	if (need_decay) {
7202
		/*
7203 7204
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7205
		 */
7206 7207
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7208
	}
7209
	rcu_read_unlock();
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
}

7220
#ifdef CONFIG_NO_HZ_COMMON
7221
/*
7222
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7223 7224
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7225
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7226
{
7227
	int this_cpu = this_rq->cpu;
7228 7229 7230
	struct rq *rq;
	int balance_cpu;

7231 7232 7233
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7234 7235

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7236
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7237 7238 7239 7240 7241 7242 7243
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7244
		if (need_resched())
7245 7246
			break;

V
Vincent Guittot 已提交
7247 7248
		rq = cpu_rq(balance_cpu);

7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
			update_idle_cpu_load(rq);
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7260 7261 7262 7263 7264

		if (time_after(this_rq->next_balance, rq->next_balance))
			this_rq->next_balance = rq->next_balance;
	}
	nohz.next_balance = this_rq->next_balance;
7265 7266
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7267 7268 7269
}

/*
7270 7271 7272 7273
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu is the system.
 *   - This rq has more than one task.
 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7274
 *     busy cpu's exceeding the group's capacity.
7275 7276
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7277
 */
7278
static inline int nohz_kick_needed(struct rq *rq)
7279 7280
{
	unsigned long now = jiffies;
7281
	struct sched_domain *sd;
7282
	struct sched_group_capacity *sgc;
7283
	int nr_busy, cpu = rq->cpu;
7284

7285
	if (unlikely(rq->idle_balance))
7286 7287
		return 0;

7288 7289 7290 7291
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
7292
	set_cpu_sd_state_busy();
7293
	nohz_balance_exit_idle(cpu);
7294 7295 7296 7297 7298 7299 7300

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return 0;
7301 7302

	if (time_before(now, nohz.next_balance))
7303 7304
		return 0;

7305 7306
	if (rq->nr_running >= 2)
		goto need_kick;
7307

7308
	rcu_read_lock();
7309
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7310

7311
	if (sd) {
7312 7313
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7314

7315
		if (nr_busy > 1)
7316
			goto need_kick_unlock;
7317
	}
7318 7319 7320 7321 7322 7323 7324

	sd = rcu_dereference(per_cpu(sd_asym, cpu));

	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
				  sched_domain_span(sd)) < cpu))
		goto need_kick_unlock;

7325
	rcu_read_unlock();
7326
	return 0;
7327 7328 7329

need_kick_unlock:
	rcu_read_unlock();
7330 7331
need_kick:
	return 1;
7332 7333
}
#else
7334
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7335 7336 7337 7338 7339 7340
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
7341 7342
static void run_rebalance_domains(struct softirq_action *h)
{
7343
	struct rq *this_rq = this_rq();
7344
	enum cpu_idle_type idle = this_rq->idle_balance ?
7345 7346
						CPU_IDLE : CPU_NOT_IDLE;

7347
	rebalance_domains(this_rq, idle);
7348 7349

	/*
7350
	 * If this cpu has a pending nohz_balance_kick, then do the
7351 7352 7353
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
7354
	nohz_idle_balance(this_rq, idle);
7355 7356 7357 7358 7359
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
7360
void trigger_load_balance(struct rq *rq)
7361 7362
{
	/* Don't need to rebalance while attached to NULL domain */
7363 7364 7365 7366
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
7367
		raise_softirq(SCHED_SOFTIRQ);
7368
#ifdef CONFIG_NO_HZ_COMMON
7369
	if (nohz_kick_needed(rq))
7370
		nohz_balancer_kick();
7371
#endif
7372 7373
}

7374 7375 7376
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
7377 7378

	update_runtime_enabled(rq);
7379 7380 7381 7382 7383
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
7384 7385 7386

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
7387 7388
}

7389
#endif /* CONFIG_SMP */
7390

7391 7392 7393
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
7394
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7395 7396 7397 7398 7399 7400
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
7401
		entity_tick(cfs_rq, se, queued);
7402
	}
7403

7404
	if (numabalancing_enabled)
7405
		task_tick_numa(rq, curr);
7406

7407
	update_rq_runnable_avg(rq, 1);
7408 7409 7410
}

/*
P
Peter Zijlstra 已提交
7411 7412 7413
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
7414
 */
P
Peter Zijlstra 已提交
7415
static void task_fork_fair(struct task_struct *p)
7416
{
7417 7418
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
7419
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
7420 7421 7422
	struct rq *rq = this_rq();
	unsigned long flags;

7423
	raw_spin_lock_irqsave(&rq->lock, flags);
7424

7425 7426
	update_rq_clock(rq);

7427 7428 7429
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

7430 7431 7432 7433 7434 7435 7436 7437 7438
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
7439

7440
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
7441

7442 7443
	if (curr)
		se->vruntime = curr->vruntime;
7444
	place_entity(cfs_rq, se, 1);
7445

P
Peter Zijlstra 已提交
7446
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
7447
		/*
7448 7449 7450
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
7451
		swap(curr->vruntime, se->vruntime);
7452
		resched_curr(rq);
7453
	}
7454

7455 7456
	se->vruntime -= cfs_rq->min_vruntime;

7457
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7458 7459
}

7460 7461 7462 7463
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
7464 7465
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7466
{
P
Peter Zijlstra 已提交
7467 7468 7469
	if (!p->se.on_rq)
		return;

7470 7471 7472 7473 7474
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
7475
	if (rq->curr == p) {
7476
		if (p->prio > oldprio)
7477
			resched_curr(rq);
7478
	} else
7479
		check_preempt_curr(rq, p, 0);
7480 7481
}

P
Peter Zijlstra 已提交
7482 7483 7484 7485 7486 7487
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
7488
	 * Ensure the task's vruntime is normalized, so that when it's
P
Peter Zijlstra 已提交
7489 7490 7491
	 * switched back to the fair class the enqueue_entity(.flags=0) will
	 * do the right thing.
	 *
7492 7493
	 * If it's on_rq, then the dequeue_entity(.flags=0) will already
	 * have normalized the vruntime, if it's !on_rq, then only when
P
Peter Zijlstra 已提交
7494 7495
	 * the task is sleeping will it still have non-normalized vruntime.
	 */
7496
	if (!p->on_rq && p->state != TASK_RUNNING) {
P
Peter Zijlstra 已提交
7497 7498 7499 7500 7501 7502 7503
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
7504

7505
#ifdef CONFIG_SMP
7506 7507 7508 7509 7510
	/*
	* Remove our load from contribution when we leave sched_fair
	* and ensure we don't carry in an old decay_count if we
	* switch back.
	*/
7511 7512 7513
	if (se->avg.decay_count) {
		__synchronize_entity_decay(se);
		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7514 7515
	}
#endif
P
Peter Zijlstra 已提交
7516 7517
}

7518 7519 7520
/*
 * We switched to the sched_fair class.
 */
P
Peter Zijlstra 已提交
7521
static void switched_to_fair(struct rq *rq, struct task_struct *p)
7522
{
7523 7524 7525 7526 7527 7528 7529 7530 7531
	struct sched_entity *se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
	if (!se->on_rq)
P
Peter Zijlstra 已提交
7532 7533
		return;

7534 7535 7536 7537 7538
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
P
Peter Zijlstra 已提交
7539
	if (rq->curr == p)
7540
		resched_curr(rq);
7541
	else
7542
		check_preempt_curr(rq, p, 0);
7543 7544
}

7545 7546 7547 7548 7549 7550 7551 7552 7553
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

7554 7555 7556 7557 7558 7559 7560
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
7561 7562
}

7563 7564 7565 7566 7567 7568 7569
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
7570
#ifdef CONFIG_SMP
7571
	atomic64_set(&cfs_rq->decay_counter, 1);
7572
	atomic_long_set(&cfs_rq->removed_load, 0);
7573
#endif
7574 7575
}

P
Peter Zijlstra 已提交
7576
#ifdef CONFIG_FAIR_GROUP_SCHED
7577
static void task_move_group_fair(struct task_struct *p, int on_rq)
P
Peter Zijlstra 已提交
7578
{
P
Peter Zijlstra 已提交
7579
	struct sched_entity *se = &p->se;
7580
	struct cfs_rq *cfs_rq;
P
Peter Zijlstra 已提交
7581

7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
	/*
	 * If the task was not on the rq at the time of this cgroup movement
	 * it must have been asleep, sleeping tasks keep their ->vruntime
	 * absolute on their old rq until wakeup (needed for the fair sleeper
	 * bonus in place_entity()).
	 *
	 * If it was on the rq, we've just 'preempted' it, which does convert
	 * ->vruntime to a relative base.
	 *
	 * Make sure both cases convert their relative position when migrating
	 * to another cgroup's rq. This does somewhat interfere with the
	 * fair sleeper stuff for the first placement, but who cares.
	 */
7595 7596 7597 7598 7599 7600
	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
	 *
	 * - Moving a forked child which is waiting for being woken up by
	 *   wake_up_new_task().
7601 7602
	 * - Moving a task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
7603 7604 7605 7606
	 *
	 * To prevent boost or penalty in the new cfs_rq caused by delta
	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
	 */
P
Peter Zijlstra 已提交
7607
	if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7608 7609
		on_rq = 1;

7610
	if (!on_rq)
P
Peter Zijlstra 已提交
7611
		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7612
	set_task_rq(p, task_cpu(p));
P
Peter Zijlstra 已提交
7613
	se->depth = se->parent ? se->parent->depth + 1 : 0;
7614
	if (!on_rq) {
P
Peter Zijlstra 已提交
7615 7616
		cfs_rq = cfs_rq_of(se);
		se->vruntime += cfs_rq->min_vruntime;
7617 7618 7619 7620 7621 7622
#ifdef CONFIG_SMP
		/*
		 * migrate_task_rq_fair() will have removed our previous
		 * contribution, but we must synchronize for ongoing future
		 * decay.
		 */
P
Peter Zijlstra 已提交
7623 7624
		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7625 7626
#endif
	}
P
Peter Zijlstra 已提交
7627
}
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/*
	* Only empty task groups can be destroyed; so we can speculatively
	* check on_list without danger of it being re-added.
	*/
	if (!tg->cfs_rq[cpu]->on_list)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
7720
	if (!parent) {
7721
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
7722 7723
		se->depth = 0;
	} else {
7724
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
7725 7726
		se->depth = parent->depth + 1;
	}
7727 7728

	se->my_q = cfs_rq;
7729 7730
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
7761 7762 7763

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
7764
		for_each_sched_entity(se)
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

void unregister_fair_sched_group(struct task_group *tg, int cpu) { }

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
7786

7787
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7788 7789 7790 7791 7792 7793 7794 7795 7796
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
7797
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7798 7799 7800 7801

	return rr_interval;
}

7802 7803 7804
/*
 * All the scheduling class methods:
 */
7805
const struct sched_class fair_sched_class = {
7806
	.next			= &idle_sched_class,
7807 7808 7809
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
7810
	.yield_to_task		= yield_to_task_fair,
7811

I
Ingo Molnar 已提交
7812
	.check_preempt_curr	= check_preempt_wakeup,
7813 7814 7815 7816

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

7817
#ifdef CONFIG_SMP
L
Li Zefan 已提交
7818
	.select_task_rq		= select_task_rq_fair,
7819
	.migrate_task_rq	= migrate_task_rq_fair,
7820

7821 7822
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
7823 7824

	.task_waking		= task_waking_fair,
7825
#endif
7826

7827
	.set_curr_task          = set_curr_task_fair,
7828
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
7829
	.task_fork		= task_fork_fair,
7830 7831

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
7832
	.switched_from		= switched_from_fair,
7833
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
7834

7835 7836
	.get_rr_interval	= get_rr_interval_fair,

P
Peter Zijlstra 已提交
7837
#ifdef CONFIG_FAIR_GROUP_SCHED
7838
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
7839
#endif
7840 7841 7842
};

#ifdef CONFIG_SCHED_DEBUG
7843
void print_cfs_stats(struct seq_file *m, int cpu)
7844 7845 7846
{
	struct cfs_rq *cfs_rq;

7847
	rcu_read_lock();
7848
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7849
		print_cfs_rq(m, cpu, cfs_rq);
7850
	rcu_read_unlock();
7851 7852
}
#endif
7853 7854 7855 7856 7857 7858

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

7859
#ifdef CONFIG_NO_HZ_COMMON
7860
	nohz.next_balance = jiffies;
7861
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7862
	cpu_notifier(sched_ilb_notifier, 0);
7863 7864 7865 7866
#endif
#endif /* SMP */

}