fair.c 268.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

355 356 357
/* Iterate through all leaf cfs_rq's on a runqueue: */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
358 359

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
360
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
361 362 363
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
364
		return se->cfs_rq;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	return NULL;
P
Peter Zijlstra 已提交
367 368 369 370 371 372 373
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

374 375 376 377 378 379 380 381 382 383 384 385 386
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
387 388
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

406 407 408 409 410 411
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
412

413 414 415
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
416 417 418
}


P
Peter Zijlstra 已提交
419 420
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
421

P
Peter Zijlstra 已提交
422
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
423
{
P
Peter Zijlstra 已提交
424
	return &task_rq(p)->cfs;
425 426
}

P
Peter Zijlstra 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

441 442 443 444 445 446 447 448
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

449 450
#define for_each_leaf_cfs_rq(rq, cfs_rq)	\
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
P
Peter Zijlstra 已提交
451 452 453 454 455 456

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

457 458 459 460 461
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
462 463
#endif	/* CONFIG_FAIR_GROUP_SCHED */

464
static __always_inline
465
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
466 467 468 469 470

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

471
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
472
{
473
	s64 delta = (s64)(vruntime - max_vruntime);
474
	if (delta > 0)
475
		max_vruntime = vruntime;
476

477
	return max_vruntime;
478 479
}

480
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
481 482 483 484 485 486 487 488
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

489 490 491 492 493 494
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

495 496
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
497
	struct sched_entity *curr = cfs_rq->curr;
498
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
499

500 501
	u64 vruntime = cfs_rq->min_vruntime;

502 503 504 505 506 507
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
508

509 510 511
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
512

513
		if (!curr)
514 515 516 517 518
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

519
	/* ensure we never gain time by being placed backwards. */
520
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
521 522 523 524
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
525 526
}

527 528 529
/*
 * Enqueue an entity into the rb-tree:
 */
530
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
531
{
532
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
533 534
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
535
	bool leftmost = true;
536 537 538 539 540 541 542 543 544 545 546

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
547
		if (entity_before(se, entry)) {
548 549 550
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
551
			leftmost = false;
552 553 554 555
		}
	}

	rb_link_node(&se->run_node, parent, link);
556 557
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
558 559
}

560
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
561
{
562
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
563 564
}

565
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
566
{
567
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
568 569 570 571 572

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
573 574
}

575 576 577 578 579 580 581 582 583 584 585
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
586
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
587
{
588
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
589

590 591
	if (!last)
		return NULL;
592 593

	return rb_entry(last, struct sched_entity, run_node);
594 595
}

596 597 598 599
/**************************************************************
 * Scheduling class statistics methods:
 */

600
int sched_proc_update_handler(struct ctl_table *table, int write,
601
		void __user *buffer, size_t *lenp,
602 603
		loff_t *ppos)
{
604
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
605
	unsigned int factor = get_update_sysctl_factor();
606 607 608 609 610 611 612

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

613 614 615 616 617 618 619
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

620 621 622
	return 0;
}
#endif
623

624
/*
625
 * delta /= w
626
 */
627
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
628
{
629
	if (unlikely(se->load.weight != NICE_0_LOAD))
630
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
631 632 633 634

	return delta;
}

635 636 637
/*
 * The idea is to set a period in which each task runs once.
 *
638
 * When there are too many tasks (sched_nr_latency) we have to stretch
639 640 641 642
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
643 644
static u64 __sched_period(unsigned long nr_running)
{
645 646 647 648
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
649 650
}

651 652 653 654
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
655
 * s = p*P[w/rw]
656
 */
P
Peter Zijlstra 已提交
657
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
658
{
M
Mike Galbraith 已提交
659
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
660

M
Mike Galbraith 已提交
661
	for_each_sched_entity(se) {
L
Lin Ming 已提交
662
		struct load_weight *load;
663
		struct load_weight lw;
L
Lin Ming 已提交
664 665 666

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
667

M
Mike Galbraith 已提交
668
		if (unlikely(!se->on_rq)) {
669
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
670 671 672 673

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
674
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
675 676
	}
	return slice;
677 678
}

679
/*
A
Andrei Epure 已提交
680
 * We calculate the vruntime slice of a to-be-inserted task.
681
 *
682
 * vs = s/w
683
 */
684
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
685
{
686
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
687 688
}

689
#ifdef CONFIG_SMP
690
#include "pelt.h"
691 692
#include "sched-pelt.h"

693
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
694 695
static unsigned long task_h_load(struct task_struct *p);

696 697
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
698
{
699
	struct sched_avg *sa = &se->avg;
700

701 702
	memset(sa, 0, sizeof(*sa));

703 704 705 706 707 708 709
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
710 711
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

712 713
	se->runnable_weight = se->load.weight;

714
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
715
}
716

717
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
718
static void attach_entity_cfs_rq(struct sched_entity *se);
719

720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
733
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
734
 *
735
 * where n denotes the nth task and cpu_scale the CPU capacity.
736
 *
737 738
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
739 740 741 742 743 744 745 746 747 748 749
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
750 751
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
752 753 754 755 756 757 758 759 760 761 762 763

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
764 765 766 767 768 769 770

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
771
			update_cfs_rq_load_avg(now, cfs_rq);
772
			attach_entity_load_avg(cfs_rq, se, 0);
773 774 775 776 777
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
778
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
779 780 781 782
			return;
		}
	}

783
	attach_entity_cfs_rq(se);
784 785
}

786
#else /* !CONFIG_SMP */
787
void init_entity_runnable_average(struct sched_entity *se)
788 789
{
}
790 791 792
void post_init_entity_util_avg(struct sched_entity *se)
{
}
793 794 795
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
796
#endif /* CONFIG_SMP */
797

798
/*
799
 * Update the current task's runtime statistics.
800
 */
801
static void update_curr(struct cfs_rq *cfs_rq)
802
{
803
	struct sched_entity *curr = cfs_rq->curr;
804
	u64 now = rq_clock_task(rq_of(cfs_rq));
805
	u64 delta_exec;
806 807 808 809

	if (unlikely(!curr))
		return;

810 811
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
812
		return;
813

I
Ingo Molnar 已提交
814
	curr->exec_start = now;
815

816 817 818 819
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
820
	schedstat_add(cfs_rq->exec_clock, delta_exec);
821 822 823 824

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

825 826 827
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

828
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
829
		cgroup_account_cputime(curtask, delta_exec);
830
		account_group_exec_runtime(curtask, delta_exec);
831
	}
832 833

	account_cfs_rq_runtime(cfs_rq, delta_exec);
834 835
}

836 837 838 839 840
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

841
static inline void
842
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
843
{
844 845 846 847 848 849 850
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
851 852

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
853 854
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
855

856
	__schedstat_set(se->statistics.wait_start, wait_start);
857 858
}

859
static inline void
860 861 862
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
863 864
	u64 delta;

865 866 867 868
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
869 870 871 872 873 874 875 876 877

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
878
			__schedstat_set(se->statistics.wait_start, delta);
879 880 881 882 883
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

884
	__schedstat_set(se->statistics.wait_max,
885
		      max(schedstat_val(se->statistics.wait_max), delta));
886 887 888
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
889 890
}

891
static inline void
892 893 894
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
895 896 897 898 899 900 901
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
902 903 904 905

	if (entity_is_task(se))
		tsk = task_of(se);

906 907
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
908 909 910 911

		if ((s64)delta < 0)
			delta = 0;

912
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
913
			__schedstat_set(se->statistics.sleep_max, delta);
914

915 916
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
917 918 919 920 921 922

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
923 924
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
925 926 927 928

		if ((s64)delta < 0)
			delta = 0;

929
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
930
			__schedstat_set(se->statistics.block_max, delta);
931

932 933
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
934 935 936

		if (tsk) {
			if (tsk->in_iowait) {
937 938
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
957 958
}

959 960 961
/*
 * Task is being enqueued - update stats:
 */
962
static inline void
963
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
964
{
965 966 967
	if (!schedstat_enabled())
		return;

968 969 970 971
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
972
	if (se != cfs_rq->curr)
973
		update_stats_wait_start(cfs_rq, se);
974 975 976

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
977 978 979
}

static inline void
980
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
981
{
982 983 984 985

	if (!schedstat_enabled())
		return;

986 987 988 989
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
990
	if (se != cfs_rq->curr)
991
		update_stats_wait_end(cfs_rq, se);
992

993 994
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
995

996
		if (tsk->state & TASK_INTERRUPTIBLE)
997
			__schedstat_set(se->statistics.sleep_start,
998 999
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1000
			__schedstat_set(se->statistics.block_start,
1001
				      rq_clock(rq_of(cfs_rq)));
1002 1003 1004
	}
}

1005 1006 1007 1008
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1009
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1010 1011 1012 1013
{
	/*
	 * We are starting a new run period:
	 */
1014
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1015 1016 1017 1018 1019 1020
}

/**************************************************
 * Scheduling class queueing methods:
 */

1021 1022
#ifdef CONFIG_NUMA_BALANCING
/*
1023 1024 1025
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1026
 */
1027 1028
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1029 1030 1031

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1032

1033 1034 1035
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1083
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1084 1085 1086
	unsigned int scan, floor;
	unsigned int windows = 1;

1087 1088
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1089 1090 1091 1092 1093 1094
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1114 1115
static unsigned int task_scan_max(struct task_struct *p)
{
1116 1117
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1118 1119 1120

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1136 1137 1138
	return max(smin, smax);
}

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1192 1193 1194 1195 1196 1197 1198 1199 1200
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1201 1202 1203 1204 1205
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1206
/*
1207
 * The averaged statistics, shared & private, memory & CPU,
1208 1209 1210 1211 1212
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1213
{
1214
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1215 1216 1217 1218
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1219
	if (!p->numa_faults)
1220 1221
		return 0;

1222 1223
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1224 1225
}

1226 1227 1228 1229 1230
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1231 1232
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1233 1234
}

1235 1236
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1237 1238
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1314
					dist >= maxdist)
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1342 1343 1344 1345 1346 1347
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1348 1349
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1350
{
1351
	unsigned long faults, total_faults;
1352

1353
	if (!p->numa_faults)
1354 1355 1356 1357 1358 1359 1360
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1361
	faults = task_faults(p, nid);
1362 1363
	faults += score_nearby_nodes(p, nid, dist, true);

1364
	return 1000 * faults / total_faults;
1365 1366
}

1367 1368
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1369
{
1370 1371 1372 1373 1374 1375 1376 1377
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1378 1379
		return 0;

1380
	faults = group_faults(p, nid);
1381 1382
	faults += score_nearby_nodes(p, nid, dist, false);

1383
	return 1000 * faults / total_faults;
1384 1385
}

1386 1387 1388 1389 1390 1391 1392 1393
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);

	/*
	 * Allow first faults or private faults to migrate immediately early in
	 * the lifetime of a task. The magic number 4 is based on waiting for
	 * two full passes of the "multi-stage node selection" test that is
	 * executed below.
	 */
	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
		return true;
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1436 1437
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1438
	 */
1439 1440
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1441 1442 1443
		return true;

	/*
1444 1445 1446 1447 1448 1449
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1450
	 */
1451 1452
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1453 1454
}

1455
static unsigned long weighted_cpuload(struct rq *rq);
1456 1457
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1458
static unsigned long capacity_of(int cpu);
1459

1460
/* Cached statistics for all CPUs within a node */
1461 1462
struct numa_stats {
	unsigned long load;
1463 1464

	/* Total compute capacity of CPUs on a node */
1465
	unsigned long compute_capacity;
1466

1467
	unsigned int nr_running;
1468
};
1469

1470 1471 1472 1473 1474
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1475 1476
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1477 1478 1479 1480 1481 1482

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1483
		ns->load += weighted_cpuload(rq);
1484
		ns->compute_capacity += capacity_of(cpu);
1485 1486

		cpus++;
1487 1488
	}

1489 1490 1491 1492 1493
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1494
	 * We'll detect a huge imbalance and bail there.
1495 1496 1497 1498
	 */
	if (!cpus)
		return;

1499 1500 1501 1502
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

1503
	capacity = min_t(unsigned, capacity,
1504
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1505 1506
}

1507 1508
struct task_numa_env {
	struct task_struct *p;
1509

1510 1511
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1512

1513
	struct numa_stats src_stats, dst_stats;
1514

1515
	int imbalance_pct;
1516
	int dist;
1517 1518 1519

	struct task_struct *best_task;
	long best_imp;
1520 1521 1522
	int best_cpu;
};

1523 1524 1525
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	struct rq *rq = cpu_rq(env->dst_cpu);

	/* Bail out if run-queue part of active NUMA balance. */
	if (xchg(&rq->numa_migrate_on, 1))
		return;

	/*
	 * Clear previous best_cpu/rq numa-migrate flag, since task now
	 * found a better CPU to move/swap.
	 */
	if (env->best_cpu != -1) {
		rq = cpu_rq(env->best_cpu);
		WRITE_ONCE(rq->numa_migrate_on, 0);
	}

1541 1542
	if (env->best_task)
		put_task_struct(env->best_task);
1543 1544
	if (p)
		get_task_struct(p);
1545 1546 1547 1548 1549 1550

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1551
static bool load_too_imbalanced(long src_load, long dst_load,
1552 1553
				struct task_numa_env *env)
{
1554 1555
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1567

1568
	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1569

1570
	orig_src_load = env->src_stats.load;
1571
	orig_dst_load = env->dst_stats.load;
1572

1573
	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1574 1575 1576

	/* Would this change make things worse? */
	return (imb > old_imb);
1577 1578
}

1579 1580 1581 1582 1583 1584 1585
/*
 * Maximum NUMA importance can be 1998 (2*999);
 * SMALLIMP @ 30 would be close to 1998/64.
 * Used to deter task migration.
 */
#define SMALLIMP	30

1586 1587 1588 1589 1590 1591
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1592
static void task_numa_compare(struct task_numa_env *env,
1593
			      long taskimp, long groupimp, bool maymove)
1594 1595 1596
{
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1597
	long src_load, dst_load;
1598
	long load;
1599
	long imp = env->p->numa_group ? groupimp : taskimp;
1600
	long moveimp = imp;
1601
	int dist = env->dist;
1602

1603 1604 1605
	if (READ_ONCE(dst_rq->numa_migrate_on))
		return;

1606
	rcu_read_lock();
1607 1608
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1609 1610
		cur = NULL;

1611 1612 1613 1614 1615 1616 1617
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1618
	if (!cur) {
1619
		if (maymove && moveimp >= env->best_imp)
1620 1621 1622 1623 1624
			goto assign;
		else
			goto unlock;
	}

1625 1626 1627 1628
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1629
	 * the value is, the more remote accesses that would be expected to
1630 1631
	 * be incurred if the tasks were swapped.
	 */
1632 1633 1634
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1635

1636 1637 1638 1639 1640 1641 1642
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
	if (cur->numa_group == env->p->numa_group) {
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1643
		/*
1644 1645
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1646
		 */
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		if (cur->numa_group)
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
		if (cur->numa_group && env->p->numa_group)
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1660 1661
	}

1662
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1663
		imp = moveimp;
1664
		cur = NULL;
1665
		goto assign;
1666
	}
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676
	/*
	 * If the NUMA importance is less than SMALLIMP,
	 * task migration might only result in ping pong
	 * of tasks and also hurt performance due to cache
	 * misses.
	 */
	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
		goto unlock;

1677 1678 1679
	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1680 1681 1682 1683
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1684 1685
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1686

1687
	if (load_too_imbalanced(src_load, dst_load, env))
1688 1689
		goto unlock;

1690
assign:
1691 1692 1693 1694
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1695 1696
	if (!cur) {
		/*
1697
		 * select_idle_siblings() uses an per-CPU cpumask that
1698 1699 1700
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1701 1702
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1703 1704
		local_irq_enable();
	}
1705

1706 1707 1708 1709 1710
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1711 1712
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1713
{
1714 1715
	long src_load, dst_load, load;
	bool maymove = false;
1716 1717
	int cpu;

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1728 1729
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1730
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1731 1732 1733
			continue;

		env->dst_cpu = cpu;
1734
		task_numa_compare(env, taskimp, groupimp, maymove);
1735 1736 1737
	}
}

1738 1739 1740 1741
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1742

1743
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1744
		.src_nid = task_node(p),
1745 1746 1747 1748 1749

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1750
		.best_cpu = -1,
1751 1752
	};
	struct sched_domain *sd;
1753
	struct rq *best_rq;
1754
	unsigned long taskweight, groupweight;
1755
	int nid, ret, dist;
1756
	long taskimp, groupimp;
1757

1758
	/*
1759 1760 1761 1762 1763 1764
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1765 1766
	 */
	rcu_read_lock();
1767
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1768 1769
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1770 1771
	rcu_read_unlock();

1772 1773 1774 1775 1776 1777 1778
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1779
		sched_setnuma(p, task_node(p));
1780 1781 1782
		return -EINVAL;
	}

1783
	env.dst_nid = p->numa_preferred_nid;
1784 1785 1786 1787 1788 1789
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1790
	update_numa_stats(&env.dst_stats, env.dst_nid);
1791

1792
	/* Try to find a spot on the preferred nid. */
1793
	task_numa_find_cpu(&env, taskimp, groupimp);
1794

1795 1796 1797 1798 1799 1800 1801
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1802
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1803 1804 1805
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1806

1807
			dist = node_distance(env.src_nid, env.dst_nid);
1808 1809 1810 1811 1812
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1813

1814
			/* Only consider nodes where both task and groups benefit */
1815 1816
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1817
			if (taskimp < 0 && groupimp < 0)
1818 1819
				continue;

1820
			env.dist = dist;
1821 1822
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1823
			task_numa_find_cpu(&env, taskimp, groupimp);
1824 1825 1826
		}
	}

1827 1828 1829 1830 1831 1832 1833 1834
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1835 1836 1837 1838
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
1839
			nid = cpu_to_node(env.best_cpu);
1840

1841 1842
		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
1843 1844 1845 1846 1847
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1848

1849
	best_rq = cpu_rq(env.best_cpu);
1850
	if (env.best_task == NULL) {
1851
		ret = migrate_task_to(p, env.best_cpu);
1852
		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1853 1854
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1855 1856 1857
		return ret;
	}

1858
	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1859
	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1860

1861 1862
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1863 1864
	put_task_struct(env.best_task);
	return ret;
1865 1866
}

1867 1868 1869
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1870 1871
	unsigned long interval = HZ;

1872
	/* This task has no NUMA fault statistics yet */
1873
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1874 1875
		return;

1876
	/* Periodically retry migrating the task to the preferred node */
1877
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1878
	p->numa_migrate_retry = jiffies + interval;
1879 1880

	/* Success if task is already running on preferred CPU */
1881
	if (task_node(p) == p->numa_preferred_nid)
1882 1883 1884
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1885
	task_numa_migrate(p);
1886 1887
}

1888
/*
1889
 * Find out how many nodes on the workload is actively running on. Do this by
1890 1891 1892 1893
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1894
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1895 1896
{
	unsigned long faults, max_faults = 0;
1897
	int nid, active_nodes = 0;
1898 1899 1900 1901 1902 1903 1904 1905 1906

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1907 1908
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1909
	}
1910 1911 1912

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1913 1914
}

1915 1916 1917
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1918 1919 1920
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1921 1922
 */
#define NUMA_PERIOD_SLOTS 10
1923
#define NUMA_PERIOD_THRESHOLD 7
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1935
	int lr_ratio, ps_ratio;
1936 1937 1938 1939 1940 1941 1942 1943
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1944 1945 1946
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1947
	 */
1948
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1984 1985 1986 1987 1988
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1989 1990 1991
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
1992
		 */
1993 1994
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1995 1996 1997 1998 1999 2000 2001
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2020
		delta = p->se.avg.load_sum;
2021
		*period = LOAD_AVG_MAX;
2022 2023 2024 2025 2026 2027 2028 2029
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2077
		nodemask_t max_group = NODE_MASK_NONE;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2111 2112
		if (!max_faults)
			break;
2113 2114 2115 2116 2117
		nodes = max_group;
	}
	return nid;
}

2118 2119
static void task_numa_placement(struct task_struct *p)
{
2120 2121
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
2122
	unsigned long fault_types[2] = { 0, 0 };
2123 2124
	unsigned long total_faults;
	u64 runtime, period;
2125
	spinlock_t *group_lock = NULL;
2126

2127 2128 2129 2130 2131
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2132
	seq = READ_ONCE(p->mm->numa_scan_seq);
2133 2134 2135
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2136
	p->numa_scan_period_max = task_scan_max(p);
2137

2138 2139 2140 2141
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2142 2143 2144
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2145
		spin_lock_irq(group_lock);
2146 2147
	}

2148 2149
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2150 2151
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2152
		unsigned long faults = 0, group_faults = 0;
2153
		int priv;
2154

2155
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2156
			long diff, f_diff, f_weight;
2157

2158 2159 2160 2161
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2162

2163
			/* Decay existing window, copy faults since last scan */
2164 2165 2166
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2167

2168 2169 2170 2171 2172 2173 2174 2175
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2176
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2177
				   (total_faults + 1);
2178 2179
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2180

2181 2182 2183
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2184
			p->total_numa_faults += diff;
2185
			if (p->numa_group) {
2186 2187 2188 2189 2190 2191 2192 2193 2194
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2195
				p->numa_group->total_faults += diff;
2196
				group_faults += p->numa_group->faults[mem_idx];
2197
			}
2198 2199
		}

2200 2201 2202 2203 2204 2205 2206
		if (!p->numa_group) {
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
2207 2208
			max_nid = nid;
		}
2209 2210
	}

2211
	if (p->numa_group) {
2212
		numa_group_count_active_nodes(p->numa_group);
2213
		spin_unlock_irq(group_lock);
2214
		max_nid = preferred_group_nid(p, max_nid);
2215 2216
	}

2217 2218 2219 2220
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);
2221
	}
2222 2223

	update_task_scan_period(p, fault_types[0], fault_types[1]);
2224 2225
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2237 2238
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2239 2240 2241 2242 2243 2244 2245 2246 2247
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2248
				    4*nr_node_ids*sizeof(unsigned long);
2249 2250 2251 2252 2253 2254

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2255 2256
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2257
		spin_lock_init(&grp->lock);
2258
		grp->gid = p->pid;
2259
		/* Second half of the array tracks nids where faults happen */
2260 2261
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2262

2263
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2264
			grp->faults[i] = p->numa_faults[i];
2265

2266
		grp->total_faults = p->total_numa_faults;
2267

2268 2269 2270 2271 2272
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2273
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2274 2275

	if (!cpupid_match_pid(tsk, cpupid))
2276
		goto no_join;
2277 2278 2279

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2280
		goto no_join;
2281 2282 2283

	my_grp = p->numa_group;
	if (grp == my_grp)
2284
		goto no_join;
2285 2286 2287 2288 2289 2290

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2291
		goto no_join;
2292 2293 2294 2295 2296

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2297
		goto no_join;
2298

2299 2300 2301 2302 2303 2304 2305
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2306

2307 2308 2309
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2310
	if (join && !get_numa_group(grp))
2311
		goto no_join;
2312 2313 2314 2315 2316 2317

	rcu_read_unlock();

	if (!join)
		return;

2318 2319
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2320

2321
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2322 2323
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2324
	}
2325 2326
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2327 2328 2329 2330 2331

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2332
	spin_unlock_irq(&grp->lock);
2333 2334 2335 2336

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2337 2338 2339 2340 2341
	return;

no_join:
	rcu_read_unlock();
	return;
2342 2343 2344 2345 2346
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2347
	void *numa_faults = p->numa_faults;
2348 2349
	unsigned long flags;
	int i;
2350 2351

	if (grp) {
2352
		spin_lock_irqsave(&grp->lock, flags);
2353
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2354
			grp->faults[i] -= p->numa_faults[i];
2355
		grp->total_faults -= p->total_numa_faults;
2356

2357
		grp->nr_tasks--;
2358
		spin_unlock_irqrestore(&grp->lock, flags);
2359
		RCU_INIT_POINTER(p->numa_group, NULL);
2360 2361 2362
		put_numa_group(grp);
	}

2363
	p->numa_faults = NULL;
2364
	kfree(numa_faults);
2365 2366
}

2367 2368 2369
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2370
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2371 2372
{
	struct task_struct *p = current;
2373
	bool migrated = flags & TNF_MIGRATED;
2374
	int cpu_node = task_node(current);
2375
	int local = !!(flags & TNF_FAULT_LOCAL);
2376
	struct numa_group *ng;
2377
	int priv;
2378

2379
	if (!static_branch_likely(&sched_numa_balancing))
2380 2381
		return;

2382 2383 2384 2385
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2386
	/* Allocate buffer to track faults on a per-node basis */
2387 2388
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2389
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2390

2391 2392
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2393
			return;
2394

2395
		p->total_numa_faults = 0;
2396
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2397
	}
2398

2399 2400 2401 2402 2403 2404 2405 2406
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2407
		if (!priv && !(flags & TNF_NO_GROUP))
2408
			task_numa_group(p, last_cpupid, flags, &priv);
2409 2410
	}

2411 2412 2413 2414 2415 2416
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2417 2418 2419 2420
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2421 2422
		local = 1;

2423 2424 2425 2426
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
2427 2428
	if (time_after(jiffies, p->numa_migrate_retry)) {
		task_numa_placement(p);
2429
		numa_migrate_preferred(p);
2430
	}
2431

I
Ingo Molnar 已提交
2432 2433
	if (migrated)
		p->numa_pages_migrated += pages;
2434 2435
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2436

2437 2438
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2439
	p->numa_faults_locality[local] += pages;
2440 2441
}

2442 2443
static void reset_ptenuma_scan(struct task_struct *p)
{
2444 2445 2446 2447 2448 2449 2450 2451
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2452
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2453 2454 2455
	p->mm->numa_scan_offset = 0;
}

2456 2457 2458 2459 2460 2461 2462 2463 2464
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2465
	u64 runtime = p->se.sum_exec_runtime;
2466
	struct vm_area_struct *vma;
2467
	unsigned long start, end;
2468
	unsigned long nr_pte_updates = 0;
2469
	long pages, virtpages;
2470

2471
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2485
	if (!mm->numa_next_scan) {
2486 2487
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2488 2489
	}

2490 2491 2492 2493 2494 2495 2496
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2497 2498
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2499
		p->numa_scan_period = task_scan_start(p);
2500
	}
2501

2502
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2503 2504 2505
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2506 2507 2508 2509 2510 2511
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2512 2513 2514
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2515
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2516 2517
	if (!pages)
		return;
2518

2519

2520 2521
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2522
	vma = find_vma(mm, start);
2523 2524
	if (!vma) {
		reset_ptenuma_scan(p);
2525
		start = 0;
2526 2527
		vma = mm->mmap;
	}
2528
	for (; vma; vma = vma->vm_next) {
2529
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2530
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2531
			continue;
2532
		}
2533

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2544 2545 2546 2547 2548 2549
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2550

2551 2552 2553 2554
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2555
			nr_pte_updates = change_prot_numa(vma, start, end);
2556 2557

			/*
2558 2559 2560 2561 2562 2563
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2564 2565 2566
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2567
			virtpages -= (end - start) >> PAGE_SHIFT;
2568

2569
			start = end;
2570
			if (pages <= 0 || virtpages <= 0)
2571
				goto out;
2572 2573

			cond_resched();
2574
		} while (end != vma->vm_end);
2575
	}
2576

2577
out:
2578
	/*
P
Peter Zijlstra 已提交
2579 2580 2581 2582
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2583 2584
	 */
	if (vma)
2585
		mm->numa_scan_offset = start;
2586 2587 2588
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2625
	if (now > curr->node_stamp + period) {
2626
		if (!curr->node_stamp)
2627
			curr->numa_scan_period = task_scan_start(curr);
2628
		curr->node_stamp += period;
2629 2630 2631 2632 2633 2634 2635

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2636

2637 2638 2639 2640 2641
static void update_scan_period(struct task_struct *p, int new_cpu)
{
	int src_nid = cpu_to_node(task_cpu(p));
	int dst_nid = cpu_to_node(new_cpu);

2642 2643 2644
	if (!static_branch_likely(&sched_numa_balancing))
		return;

2645 2646 2647
	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
		return;

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (src_nid == dst_nid)
		return;

	/*
	 * Allow resets if faults have been trapped before one scan
	 * has completed. This is most likely due to a new task that
	 * is pulled cross-node due to wakeups or load balancing.
	 */
	if (p->numa_scan_seq) {
		/*
		 * Avoid scan adjustments if moving to the preferred
		 * node or if the task was not previously running on
		 * the preferred node.
		 */
		if (dst_nid == p->numa_preferred_nid ||
		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
			return;
	}

	p->numa_scan_period = task_scan_start(p);
2668 2669
}

2670 2671 2672 2673
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2674 2675 2676 2677 2678 2679 2680 2681

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2682

2683 2684 2685 2686
static inline void update_scan_period(struct task_struct *p, int new_cpu)
{
}

2687 2688
#endif /* CONFIG_NUMA_BALANCING */

2689 2690 2691 2692
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2693
	if (!parent_entity(se))
2694
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2695
#ifdef CONFIG_SMP
2696 2697 2698 2699 2700 2701
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2702
#endif
2703 2704 2705 2706 2707 2708 2709
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2710
	if (!parent_entity(se))
2711
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2712
#ifdef CONFIG_SMP
2713 2714
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2715
		list_del_init(&se->group_node);
2716
	}
2717
#endif
2718 2719 2720
	cfs_rq->nr_running--;
}

2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2762 2763 2764 2765
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2766 2767 2768 2769 2770
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2771 2772 2773 2774 2775
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2802
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2803
			    unsigned long weight, unsigned long runnable)
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2814
	se->runnable_weight = runnable;
2815 2816 2817
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2818 2819 2820 2821 2822 2823 2824
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2841
	reweight_entity(cfs_rq, se, weight, weight);
2842 2843 2844
	load->inv_weight = sched_prio_to_wmult[prio];
}

2845
#ifdef CONFIG_FAIR_GROUP_SCHED
2846
#ifdef CONFIG_SMP
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2885
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2911 2912 2913 2914 2915 2916 2917 2918 2919
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2920
static long calc_group_shares(struct cfs_rq *cfs_rq)
2921
{
2922 2923 2924 2925
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2926

2927
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2928

2929
	tg_weight = atomic_long_read(&tg->load_avg);
2930

2931 2932 2933
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2934

2935
	shares = (tg_shares * load);
2936 2937
	if (tg_weight)
		shares /= tg_weight;
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2951
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2952
}
2953 2954

/*
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2980 2981 2982
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2983 2984 2985 2986 2987 2988 2989
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2990 2991 2992 2993

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2994

2995 2996
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2997
#endif /* CONFIG_SMP */
2998

2999 3000
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

3001 3002 3003 3004 3005
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3006
{
3007 3008
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
3009

3010
	if (!gcfs_rq)
3011 3012
		return;

3013
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
3014
		return;
3015

3016
#ifndef CONFIG_SMP
3017
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3018 3019

	if (likely(se->load.weight == shares))
3020
		return;
3021
#else
3022 3023
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3024
#endif
P
Peter Zijlstra 已提交
3025

3026
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3027
}
3028

P
Peter Zijlstra 已提交
3029
#else /* CONFIG_FAIR_GROUP_SCHED */
3030
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3031 3032 3033 3034
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3035
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3036
{
3037 3038
	struct rq *rq = rq_of(cfs_rq);

3039
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3040 3041 3042
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3043
		 * a real problem.
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3054
		cpufreq_update_util(rq, flags);
3055 3056 3057
	}
}

3058
#ifdef CONFIG_SMP
3059
#ifdef CONFIG_FAIR_GROUP_SCHED
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3073
 * Updating tg's load_avg is necessary before update_cfs_share().
3074
 */
3075
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3076
{
3077
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3078

3079 3080 3081 3082 3083 3084
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3085 3086 3087
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3088
	}
3089
}
3090

3091
/*
3092
 * Called within set_task_rq() right before setting a task's CPU. The
3093 3094 3095 3096 3097 3098
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3099 3100 3101
	u64 p_last_update_time;
	u64 n_last_update_time;

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3112 3113
	if (!(se->avg.last_update_time && prev))
		return;
3114 3115

#ifndef CONFIG_64BIT
3116
	{
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3131
	}
3132
#else
3133 3134
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3135
#endif
3136 3137
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3138
}
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3151 3152 3153
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3154 3155 3156 3157 3158 3159 3160 3161
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3162
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3163 3164 3165
 *
 * And per (1) we have:
 *
3166
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3185 3186 3187 3188 3189 3190
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3191
 *
3192
 * So we'll have to approximate.. :/
3193
 *
3194
 * Given the constraint:
3195
 *
3196
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3197
 *
3198 3199
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3200
 *
3201
 * On removal, we'll assume each task is equally runnable; which yields:
3202
 *
3203
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3204
 *
3205
 * XXX: only do this for the part of runnable > running ?
3206 3207 3208
 *
 */

3209
static inline void
3210
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3211 3212 3213 3214 3215 3216 3217
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3218 3219 3220 3221 3222 3223 3224 3225
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3236
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3237
{
3238 3239 3240 3241
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3242

3243 3244
	if (!runnable_sum)
		return;
3245

3246
	gcfs_rq->prop_runnable_sum = 0;
3247

3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3271
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3272 3273 3274 3275 3276 3277
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3278 3279
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3280

3281 3282
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3283

3284 3285 3286 3287
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3288

3289 3290
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3291 3292
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3293

3294 3295
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3296

3297
	if (se->on_rq) {
3298 3299
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3300 3301 3302
	}
}

3303
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3304
{
3305 3306
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3307 3308 3309 3310 3311
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3312
	struct cfs_rq *cfs_rq, *gcfs_rq;
3313 3314 3315 3316

	if (entity_is_task(se))
		return 0;

3317 3318
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3319 3320
		return 0;

3321 3322
	gcfs_rq->propagate = 0;

3323 3324
	cfs_rq = cfs_rq_of(se);

3325
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3326

3327 3328
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3329 3330 3331 3332

	return 1;
}

3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3352
	if (gcfs_rq->propagate)
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3363
#else /* CONFIG_FAIR_GROUP_SCHED */
3364

3365
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3366 3367 3368 3369 3370 3371

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3372
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3373

3374
#endif /* CONFIG_FAIR_GROUP_SCHED */
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3387 3388 3389 3390
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3391
 */
3392
static inline int
3393
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3394
{
3395
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3396
	struct sched_avg *sa = &cfs_rq->avg;
3397
	int decayed = 0;
3398

3399 3400
	if (cfs_rq->removed.nr) {
		unsigned long r;
3401
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3402 3403 3404 3405

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3406
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3407 3408 3409 3410
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3411
		sub_positive(&sa->load_avg, r);
3412
		sub_positive(&sa->load_sum, r * divider);
3413

3414
		r = removed_util;
3415
		sub_positive(&sa->util_avg, r);
3416
		sub_positive(&sa->util_sum, r * divider);
3417

3418
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3419 3420

		decayed = 1;
3421
	}
3422

3423
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3424

3425 3426 3427 3428
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3429

3430
	if (decayed)
3431
		cfs_rq_util_change(cfs_rq, 0);
3432

3433
	return decayed;
3434 3435
}

3436 3437 3438 3439
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
3440
 * @flags: migration hints
3441 3442 3443 3444
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3445
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3446
{
3447 3448 3449 3450 3451 3452 3453 3454 3455
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3456
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3475
	enqueue_load_avg(cfs_rq, se);
3476 3477
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3478 3479

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3480

3481
	cfs_rq_util_change(cfs_rq, flags);
3482 3483
}

3484 3485 3486 3487 3488 3489 3490 3491
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3492 3493
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3494
	dequeue_load_avg(cfs_rq, se);
3495 3496
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3497 3498

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3499

3500
	cfs_rq_util_change(cfs_rq, 0);
3501 3502
}

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3530 3531 3532 3533 3534 3535 3536 3537
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3538 3539 3540 3541 3542 3543
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3544
#ifndef CONFIG_64BIT
3545 3546
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3547
	u64 last_update_time_copy;
3548
	u64 last_update_time;
3549

3550 3551 3552 3553 3554
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3555 3556 3557

	return last_update_time;
}
3558
#else
3559 3560 3561 3562
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3563 3564
#endif

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3575
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3576 3577
}

3578 3579 3580 3581 3582 3583 3584
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3585
	unsigned long flags;
3586 3587

	/*
3588 3589 3590 3591 3592 3593 3594
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3595 3596
	 */

3597
	sync_entity_load_avg(se);
3598 3599 3600 3601 3602

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3603
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3604
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3605
}
3606

3607 3608
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3609
	return cfs_rq->avg.runnable_load_avg;
3610 3611 3612 3613 3614 3615 3616
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3617
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3618

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3646
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3672 3673 3674 3675
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3676 3677 3678 3679 3680 3681 3682 3683 3684
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3685 3686 3687 3688 3689 3690 3691 3692
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3693 3694 3695 3696
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3697
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3725 3726
#else /* CONFIG_SMP */

3727 3728
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3729
#define DO_ATTACH	0x0
3730

3731
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3732
{
3733
	cfs_rq_util_change(cfs_rq, 0);
3734 3735
}

3736
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3737

3738
static inline void
3739
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3740 3741 3742
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3743
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3744 3745 3746 3747
{
	return 0;
}

3748 3749 3750 3751 3752 3753 3754
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3755
#endif /* CONFIG_SMP */
3756

P
Peter Zijlstra 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3766
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3767 3768 3769
#endif
}

3770 3771 3772
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3773
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3774

3775 3776 3777 3778 3779 3780
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3781
	if (initial && sched_feat(START_DEBIT))
3782
		vruntime += sched_vslice(cfs_rq, se);
3783

3784
	/* sleeps up to a single latency don't count. */
3785
	if (!initial) {
3786
		unsigned long thresh = sysctl_sched_latency;
3787

3788 3789 3790 3791 3792 3793
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3794

3795
		vruntime -= thresh;
3796 3797
	}

3798
	/* ensure we never gain time by being placed backwards. */
3799
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3800 3801
}

3802 3803
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3816
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3817
			     "stat_blocked and stat_runtime require the "
3818
			     "kernel parameter schedstats=enable or "
3819 3820 3821 3822 3823
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3843
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3855
static void
3856
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3857
{
3858 3859 3860
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3861
	/*
3862 3863
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3864
	 */
3865
	if (renorm && curr)
3866 3867
		se->vruntime += cfs_rq->min_vruntime;

3868 3869
	update_curr(cfs_rq);

3870
	/*
3871 3872 3873 3874
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3875
	 */
3876 3877 3878
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3879 3880 3881 3882 3883 3884 3885 3886
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3887
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3888
	update_cfs_group(se);
3889
	enqueue_runnable_load_avg(cfs_rq, se);
3890
	account_entity_enqueue(cfs_rq, se);
3891

3892
	if (flags & ENQUEUE_WAKEUP)
3893
		place_entity(cfs_rq, se, 0);
3894

3895
	check_schedstat_required();
3896 3897
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3898
	if (!curr)
3899
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3900
	se->on_rq = 1;
3901

3902
	if (cfs_rq->nr_running == 1) {
3903
		list_add_leaf_cfs_rq(cfs_rq);
3904 3905
		check_enqueue_throttle(cfs_rq);
	}
3906 3907
}

3908
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3909
{
3910 3911
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3912
		if (cfs_rq->last != se)
3913
			break;
3914 3915

		cfs_rq->last = NULL;
3916 3917
	}
}
P
Peter Zijlstra 已提交
3918

3919 3920 3921 3922
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3923
		if (cfs_rq->next != se)
3924
			break;
3925 3926

		cfs_rq->next = NULL;
3927
	}
P
Peter Zijlstra 已提交
3928 3929
}

3930 3931 3932 3933
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3934
		if (cfs_rq->skip != se)
3935
			break;
3936 3937

		cfs_rq->skip = NULL;
3938 3939 3940
	}
}

P
Peter Zijlstra 已提交
3941 3942
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3943 3944 3945 3946 3947
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3948 3949 3950

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3951 3952
}

3953
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3954

3955
static void
3956
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3957
{
3958 3959 3960 3961
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3962 3963 3964 3965 3966 3967 3968 3969 3970

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3971
	update_load_avg(cfs_rq, se, UPDATE_TG);
3972
	dequeue_runnable_load_avg(cfs_rq, se);
3973

3974
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3975

P
Peter Zijlstra 已提交
3976
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3977

3978
	if (se != cfs_rq->curr)
3979
		__dequeue_entity(cfs_rq, se);
3980
	se->on_rq = 0;
3981
	account_entity_dequeue(cfs_rq, se);
3982 3983

	/*
3984 3985 3986 3987
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3988
	 */
3989
	if (!(flags & DEQUEUE_SLEEP))
3990
		se->vruntime -= cfs_rq->min_vruntime;
3991

3992 3993 3994
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3995
	update_cfs_group(se);
3996 3997 3998 3999 4000 4001 4002

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
4003
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4004
		update_min_vruntime(cfs_rq);
4005 4006 4007 4008 4009
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4010
static void
I
Ingo Molnar 已提交
4011
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4012
{
4013
	unsigned long ideal_runtime, delta_exec;
4014 4015
	struct sched_entity *se;
	s64 delta;
4016

P
Peter Zijlstra 已提交
4017
	ideal_runtime = sched_slice(cfs_rq, curr);
4018
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4019
	if (delta_exec > ideal_runtime) {
4020
		resched_curr(rq_of(cfs_rq));
4021 4022 4023 4024 4025
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4037 4038
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4039

4040 4041
	if (delta < 0)
		return;
4042

4043
	if (delta > ideal_runtime)
4044
		resched_curr(rq_of(cfs_rq));
4045 4046
}

4047
static void
4048
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4049
{
4050 4051 4052 4053 4054 4055 4056
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4057
		update_stats_wait_end(cfs_rq, se);
4058
		__dequeue_entity(cfs_rq, se);
4059
		update_load_avg(cfs_rq, se, UPDATE_TG);
4060 4061
	}

4062
	update_stats_curr_start(cfs_rq, se);
4063
	cfs_rq->curr = se;
4064

I
Ingo Molnar 已提交
4065 4066 4067 4068 4069
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4070
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4071 4072 4073
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4074
	}
4075

4076
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4077 4078
}

4079 4080 4081
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4082 4083 4084 4085 4086 4087 4088
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4089 4090
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4091
{
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4103

4104 4105 4106 4107 4108
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4119 4120 4121
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4122

4123 4124 4125 4126 4127 4128
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4129 4130 4131 4132 4133 4134
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4135
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4136 4137

	return se;
4138 4139
}

4140
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4141

4142
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4143 4144 4145 4146 4147 4148
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4149
		update_curr(cfs_rq);
4150

4151 4152 4153
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4154
	check_spread(cfs_rq, prev);
4155

4156
	if (prev->on_rq) {
4157
		update_stats_wait_start(cfs_rq, prev);
4158 4159
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4160
		/* in !on_rq case, update occurred at dequeue */
4161
		update_load_avg(cfs_rq, prev, 0);
4162
	}
4163
	cfs_rq->curr = NULL;
4164 4165
}

P
Peter Zijlstra 已提交
4166 4167
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4168 4169
{
	/*
4170
	 * Update run-time statistics of the 'current'.
4171
	 */
4172
	update_curr(cfs_rq);
4173

4174 4175 4176
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4177
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4178
	update_cfs_group(curr);
4179

P
Peter Zijlstra 已提交
4180 4181 4182 4183 4184
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4185
	if (queued) {
4186
		resched_curr(rq_of(cfs_rq));
4187 4188
		return;
	}
P
Peter Zijlstra 已提交
4189 4190 4191 4192 4193 4194 4195 4196
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4197
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4198
		check_preempt_tick(cfs_rq, curr);
4199 4200
}

4201 4202 4203 4204 4205 4206

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4207 4208

#ifdef HAVE_JUMP_LABEL
4209
static struct static_key __cfs_bandwidth_used;
4210 4211 4212

static inline bool cfs_bandwidth_used(void)
{
4213
	return static_key_false(&__cfs_bandwidth_used);
4214 4215
}

4216
void cfs_bandwidth_usage_inc(void)
4217
{
4218
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4219 4220 4221 4222
}

void cfs_bandwidth_usage_dec(void)
{
4223
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4224 4225 4226 4227 4228 4229 4230
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4231 4232
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4233 4234
#endif /* HAVE_JUMP_LABEL */

4235 4236 4237 4238 4239 4240 4241 4242
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4243 4244 4245 4246 4247 4248

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4249 4250 4251 4252 4253 4254 4255
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4256
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4266
	cfs_b->expires_seq++;
P
Paul Turner 已提交
4267 4268
}

4269 4270 4271 4272 4273
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4274 4275 4276 4277
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4278
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4279

4280
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4281 4282
}

4283 4284
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4285 4286 4287
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4288
	u64 amount = 0, min_amount, expires;
4289
	int expires_seq;
4290 4291 4292 4293 4294 4295 4296

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4297
	else {
P
Peter Zijlstra 已提交
4298
		start_cfs_bandwidth(cfs_b);
4299 4300 4301 4302 4303 4304

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4305
	}
4306
	expires_seq = cfs_b->expires_seq;
P
Paul Turner 已提交
4307
	expires = cfs_b->runtime_expires;
4308 4309 4310
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4311 4312 4313 4314 4315
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
4316 4317
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
P
Paul Turner 已提交
4318
		cfs_rq->runtime_expires = expires;
4319
	}
4320 4321

	return cfs_rq->runtime_remaining > 0;
4322 4323
}

P
Paul Turner 已提交
4324 4325 4326 4327 4328
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4329
{
P
Paul Turner 已提交
4330 4331 4332
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4333
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4334 4335
		return;

P
Paul Turner 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4345
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
P
Paul Turner 已提交
4346
	 */
4347
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
P
Paul Turner 已提交
4348 4349 4350 4351 4352 4353 4354 4355
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4356
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4357 4358
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4359
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4360 4361 4362
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4363 4364
		return;

4365 4366 4367 4368 4369
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4370
		resched_curr(rq_of(cfs_rq));
4371 4372
}

4373
static __always_inline
4374
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4375
{
4376
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4377 4378 4379 4380 4381
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4382 4383
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4384
	return cfs_bandwidth_used() && cfs_rq->throttled;
4385 4386
}

4387 4388 4389
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4390
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4417
		/* adjust cfs_rq_clock_task() */
4418
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4419
					     cfs_rq->throttled_clock_task;
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4430 4431
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4432
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4433 4434 4435 4436 4437
	cfs_rq->throttle_count++;

	return 0;
}

4438
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4439 4440 4441 4442 4443
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4444
	bool empty;
4445 4446 4447

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4448
	/* freeze hierarchy runnable averages while throttled */
4449 4450 4451
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4469
		sub_nr_running(rq, task_delta);
4470 4471

	cfs_rq->throttled = 1;
4472
	cfs_rq->throttled_clock = rq_clock(rq);
4473
	raw_spin_lock(&cfs_b->lock);
4474
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4475

4476 4477
	/*
	 * Add to the _head_ of the list, so that an already-started
4478 4479
	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
	 * not running add to the tail so that later runqueues don't get starved.
4480
	 */
4481 4482 4483 4484
	if (cfs_b->distribute_running)
		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
	else
		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4485 4486 4487 4488 4489 4490 4491 4492

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4493 4494 4495
	raw_spin_unlock(&cfs_b->lock);
}

4496
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4497 4498 4499 4500 4501 4502 4503
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4504
	se = cfs_rq->tg->se[cpu_of(rq)];
4505 4506

	cfs_rq->throttled = 0;
4507 4508 4509

	update_rq_clock(rq);

4510
	raw_spin_lock(&cfs_b->lock);
4511
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4512 4513 4514
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4515 4516 4517
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4536
		add_nr_running(rq, task_delta);
4537

4538
	/* Determine whether we need to wake up potentially idle CPU: */
4539
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4540
		resched_curr(rq);
4541 4542 4543 4544 4545 4546
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4547 4548
	u64 runtime;
	u64 starting_runtime = remaining;
4549 4550 4551 4552 4553

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4554
		struct rq_flags rf;
4555

4556
		rq_lock(rq, &rf);
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4573
		rq_unlock(rq, &rf);
4574 4575 4576 4577 4578 4579

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4580
	return starting_runtime - remaining;
4581 4582
}

4583 4584 4585 4586 4587 4588 4589 4590
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4591
	u64 runtime, runtime_expires;
4592
	int throttled;
4593 4594 4595

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4596
		goto out_deactivate;
4597

4598
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4599
	cfs_b->nr_periods += overrun;
4600

4601 4602 4603 4604 4605 4606
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4607 4608 4609

	__refill_cfs_bandwidth_runtime(cfs_b);

4610 4611 4612
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4613
		return 0;
4614 4615
	}

4616 4617 4618
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4619 4620 4621
	runtime_expires = cfs_b->runtime_expires;

	/*
4622 4623 4624 4625 4626
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4627
	 */
4628
	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4629
		runtime = cfs_b->runtime;
4630
		cfs_b->distribute_running = 1;
4631 4632 4633 4634 4635 4636
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

4637
		cfs_b->distribute_running = 0;
4638
		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4639 4640

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4641
	}
4642

4643 4644 4645 4646 4647 4648 4649
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4650

4651 4652 4653 4654
	return 0;

out_deactivate:
	return 1;
4655
}
4656

4657 4658 4659 4660 4661 4662 4663
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4664 4665 4666 4667
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4668
 * hrtimer base being cleared by hrtimer_start. In the case of
4669 4670
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4696 4697 4698
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4728 4729 4730
	if (!cfs_bandwidth_used())
		return;

4731
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4747
	raw_spin_lock(&cfs_b->lock);
4748 4749 4750 4751 4752
	if (cfs_b->distribute_running) {
		raw_spin_unlock(&cfs_b->lock);
		return;
	}

4753 4754
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4755
		return;
4756
	}
4757

4758
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4759
		runtime = cfs_b->runtime;
4760

4761
	expires = cfs_b->runtime_expires;
4762 4763 4764
	if (runtime)
		cfs_b->distribute_running = 1;

4765 4766 4767 4768 4769 4770 4771 4772 4773
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4774
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4775
	cfs_b->distribute_running = 0;
4776 4777 4778
	raw_spin_unlock(&cfs_b->lock);
}

4779 4780 4781 4782 4783 4784 4785
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4786 4787 4788
	if (!cfs_bandwidth_used())
		return;

4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4817
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4818 4819
}

4820
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4821
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4822
{
4823
	if (!cfs_bandwidth_used())
4824
		return false;
4825

4826
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4827
		return false;
4828 4829 4830 4831 4832 4833

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4834
		return true;
4835 4836

	throttle_cfs_rq(cfs_rq);
4837
	return true;
4838
}
4839 4840 4841 4842 4843

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4844

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4857
	raw_spin_lock(&cfs_b->lock);
4858
	for (;;) {
P
Peter Zijlstra 已提交
4859
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4860 4861 4862 4863 4864
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4865 4866
	if (idle)
		cfs_b->period_active = 0;
4867
	raw_spin_unlock(&cfs_b->lock);
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4880
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4881 4882 4883
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4884
	cfs_b->distribute_running = 0;
4885 4886 4887 4888 4889 4890 4891 4892
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4893
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4894
{
4895 4896
	u64 overrun;

P
Peter Zijlstra 已提交
4897
	lockdep_assert_held(&cfs_b->lock);
4898

4899 4900 4901 4902 4903 4904 4905 4906
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4907 4908 4909 4910
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4911 4912 4913 4914
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4915 4916 4917 4918
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4919
/*
4920
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4921 4922 4923 4924 4925 4926
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4927 4928
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4929
	struct task_group *tg;
4930

4931 4932 4933 4934 4935 4936
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4937 4938 4939 4940 4941

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4942
	rcu_read_unlock();
4943 4944
}

4945
/* cpu offline callback */
4946
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4947
{
4948 4949 4950 4951 4952 4953 4954
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4955 4956 4957 4958 4959 4960 4961 4962

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4963
		cfs_rq->runtime_remaining = 1;
4964
		/*
4965
		 * Offline rq is schedulable till CPU is completely disabled
4966 4967 4968 4969
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4970 4971 4972
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4973
	rcu_read_unlock();
4974 4975 4976
}

#else /* CONFIG_CFS_BANDWIDTH */
4977 4978
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4979
	return rq_clock_task(rq_of(cfs_rq));
4980 4981
}

4982
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4983
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4984
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4985
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4986
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4987 4988 4989 4990 4991

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5003 5004 5005 5006 5007

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5008 5009
#endif

5010 5011 5012 5013 5014
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5015
static inline void update_runtime_enabled(struct rq *rq) {}
5016
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5017 5018 5019

#endif /* CONFIG_CFS_BANDWIDTH */

5020 5021 5022 5023
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5024 5025 5026 5027 5028 5029
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5030
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5031

5032
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5033 5034 5035 5036 5037 5038
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5039
				resched_curr(rq);
P
Peter Zijlstra 已提交
5040 5041
			return;
		}
5042
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5043 5044
	}
}
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5055
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5056 5057 5058 5059 5060
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5061
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5062 5063 5064 5065
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5066 5067 5068 5069

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5070 5071
#endif

5072 5073 5074 5075 5076
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5077
static void
5078
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5079 5080
{
	struct cfs_rq *cfs_rq;
5081
	struct sched_entity *se = &p->se;
5082

5083 5084 5085 5086 5087 5088 5089 5090
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5091 5092 5093 5094 5095 5096
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5097
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5098

5099
	for_each_sched_entity(se) {
5100
		if (se->on_rq)
5101 5102
			break;
		cfs_rq = cfs_rq_of(se);
5103
		enqueue_entity(cfs_rq, se, flags);
5104 5105 5106 5107 5108 5109

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5110
		 */
5111 5112
		if (cfs_rq_throttled(cfs_rq))
			break;
5113
		cfs_rq->h_nr_running++;
5114

5115
		flags = ENQUEUE_WAKEUP;
5116
	}
P
Peter Zijlstra 已提交
5117

P
Peter Zijlstra 已提交
5118
	for_each_sched_entity(se) {
5119
		cfs_rq = cfs_rq_of(se);
5120
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5121

5122 5123 5124
		if (cfs_rq_throttled(cfs_rq))
			break;

5125
		update_load_avg(cfs_rq, se, UPDATE_TG);
5126
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5127 5128
	}

Y
Yuyang Du 已提交
5129
	if (!se)
5130
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5131

5132
	hrtick_update(rq);
5133 5134
}

5135 5136
static void set_next_buddy(struct sched_entity *se);

5137 5138 5139 5140 5141
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5142
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5143 5144
{
	struct cfs_rq *cfs_rq;
5145
	struct sched_entity *se = &p->se;
5146
	int task_sleep = flags & DEQUEUE_SLEEP;
5147 5148 5149

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5150
		dequeue_entity(cfs_rq, se, flags);
5151 5152 5153 5154 5155 5156 5157 5158 5159

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5160
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5161

5162
		/* Don't dequeue parent if it has other entities besides us */
5163
		if (cfs_rq->load.weight) {
5164 5165
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5166 5167 5168 5169
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5170 5171
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5172
			break;
5173
		}
5174
		flags |= DEQUEUE_SLEEP;
5175
	}
P
Peter Zijlstra 已提交
5176

P
Peter Zijlstra 已提交
5177
	for_each_sched_entity(se) {
5178
		cfs_rq = cfs_rq_of(se);
5179
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5180

5181 5182 5183
		if (cfs_rq_throttled(cfs_rq))
			break;

5184
		update_load_avg(cfs_rq, se, UPDATE_TG);
5185
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5186 5187
	}

Y
Yuyang Du 已提交
5188
	if (!se)
5189
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5190

5191
	util_est_dequeue(&rq->cfs, p, task_sleep);
5192
	hrtick_update(rq);
5193 5194
}

5195
#ifdef CONFIG_SMP
5196 5197 5198 5199 5200

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5201
#ifdef CONFIG_NO_HZ_COMMON
5202 5203 5204 5205 5206
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5207
 * The exact cpuload calculated at every tick would be:
5208
 *
5209 5210
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5211 5212
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5213 5214 5215
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5216 5217 5218
 *
 * decay_load_missed() below does efficient calculation of
 *
5219 5220 5221 5222 5223 5224
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5225
 *
5226
 * The calculation is approximated on a 128 point scale.
5227 5228
 */
#define DEGRADE_SHIFT		7
5229 5230 5231 5232 5233 5234 5235 5236 5237

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5267 5268 5269 5270

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5271
	int has_blocked;		/* Idle CPUS has blocked load */
5272
	unsigned long next_balance;     /* in jiffy units */
5273
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5274 5275
} nohz ____cacheline_aligned;

5276
#endif /* CONFIG_NO_HZ_COMMON */
5277

5278
/**
5279
 * __cpu_load_update - update the rq->cpu_load[] statistics
5280 5281 5282 5283
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5284
 * Update rq->cpu_load[] statistics. This function is usually called every
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5311
 * term.
5312
 */
5313 5314
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5315
{
5316
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5328
		old_load = this_rq->cpu_load[i];
5329
#ifdef CONFIG_NO_HZ_COMMON
5330
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5331 5332 5333 5334 5335 5336 5337 5338 5339
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5340
#endif
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5354
/* Used instead of source_load when we know the type == 0 */
5355
static unsigned long weighted_cpuload(struct rq *rq)
5356
{
5357
	return cfs_rq_runnable_load_avg(&rq->cfs);
5358 5359
}

5360
#ifdef CONFIG_NO_HZ_COMMON
5361 5362
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5363
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5389
		cpu_load_update(this_rq, load, pending_updates);
5390 5391 5392
	}
}

5393 5394 5395 5396
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5397
static void cpu_load_update_idle(struct rq *this_rq)
5398 5399 5400 5401
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5402
	if (weighted_cpuload(this_rq))
5403 5404
		return;

5405
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5406 5407 5408
}

/*
5409 5410 5411 5412
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5413
 */
5414
void cpu_load_update_nohz_start(void)
5415 5416
{
	struct rq *this_rq = this_rq();
5417 5418 5419 5420 5421 5422

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5423
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5424 5425 5426 5427 5428 5429 5430
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5431
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5432 5433
	struct rq *this_rq = this_rq();
	unsigned long load;
5434
	struct rq_flags rf;
5435 5436 5437 5438

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5439
	load = weighted_cpuload(this_rq);
5440
	rq_lock(this_rq, &rf);
5441
	update_rq_clock(this_rq);
5442
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5443
	rq_unlock(this_rq, &rf);
5444
}
5445 5446 5447 5448 5449 5450 5451 5452
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5453
#ifdef CONFIG_NO_HZ_COMMON
5454 5455
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5456
#endif
5457 5458
	cpu_load_update(this_rq, load, 1);
}
5459 5460 5461 5462

/*
 * Called from scheduler_tick()
 */
5463
void cpu_load_update_active(struct rq *this_rq)
5464
{
5465
	unsigned long load = weighted_cpuload(this_rq);
5466 5467 5468 5469 5470

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5471 5472
}

5473
/*
5474
 * Return a low guess at the load of a migration-source CPU weighted
5475 5476 5477 5478 5479 5480 5481 5482
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5483
	unsigned long total = weighted_cpuload(rq);
5484 5485 5486 5487 5488 5489 5490 5491

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5492
 * Return a high guess at the load of a migration-target CPU weighted
5493 5494 5495 5496 5497
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5498
	unsigned long total = weighted_cpuload(rq);
5499 5500 5501 5502 5503 5504 5505

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5506
static unsigned long capacity_of(int cpu)
5507
{
5508
	return cpu_rq(cpu)->cpu_capacity;
5509 5510
}

5511 5512 5513 5514 5515
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5516 5517 5518
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5519
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5520
	unsigned long load_avg = weighted_cpuload(rq);
5521 5522

	if (nr_running)
5523
		return load_avg / nr_running;
5524 5525 5526 5527

	return 0;
}

P
Peter Zijlstra 已提交
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5545 5546
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5547
 *
M
Mike Galbraith 已提交
5548
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5561
 */
5562 5563
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5564 5565
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5566
	int factor = this_cpu_read(sd_llc_size);
5567

M
Mike Galbraith 已提交
5568 5569 5570 5571 5572
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5573 5574
}

5575
/*
5576 5577 5578
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5579
 *
5580 5581
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5582 5583 5584 5585
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5586
 */
5587
static int
5588
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5589
{
5590 5591 5592 5593 5594
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5595 5596 5597 5598 5599 5600
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5601
	 */
5602 5603
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5604

5605
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5606
		return this_cpu;
5607

5608
	return nr_cpumask_bits;
5609 5610
}

5611
static int
5612 5613
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5614 5615 5616 5617
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5618
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5619 5620 5621 5622

	if (sync) {
		unsigned long current_load = task_h_load(current);

5623
		if (current_load > this_eff_load)
5624
			return this_cpu;
5625

5626
		this_eff_load -= current_load;
5627 5628 5629 5630
	}

	task_load = task_h_load(p);

5631 5632 5633 5634
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5635

5636
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5637 5638 5639 5640
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5641

5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5652 5653
}

5654
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5655
		       int this_cpu, int prev_cpu, int sync)
5656
{
5657
	int target = nr_cpumask_bits;
5658

5659
	if (sched_feat(WA_IDLE))
5660
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5661

5662 5663
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5664

5665
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5666 5667
	if (target == nr_cpumask_bits)
		return prev_cpu;
5668

5669 5670 5671
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5672 5673
}

5674
static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5675

5676
static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5677
{
5678
	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5679 5680
}

5681 5682 5683
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5684 5685
 *
 * Assumes p is allowed on at least one CPU in sd.
5686 5687
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5688
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5689
		  int this_cpu, int sd_flag)
5690
{
5691
	struct sched_group *idlest = NULL, *group = sd->groups;
5692
	struct sched_group *most_spare_sg = NULL;
5693 5694 5695
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5696
	unsigned long most_spare = 0, this_spare = 0;
5697
	int load_idx = sd->forkexec_idx;
5698 5699 5700
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5701

5702 5703 5704
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5705
	do {
5706 5707
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5708 5709
		int local_group;
		int i;
5710

5711
		/* Skip over this group if it has no CPUs allowed */
5712
		if (!cpumask_intersects(sched_group_span(group),
5713
					&p->cpus_allowed))
5714 5715 5716
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5717
					       sched_group_span(group));
5718

5719 5720 5721 5722
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5723
		avg_load = 0;
5724
		runnable_load = 0;
5725
		max_spare_cap = 0;
5726

5727
		for_each_cpu(i, sched_group_span(group)) {
5728
			/* Bias balancing toward CPUs of our domain */
5729 5730 5731 5732 5733
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5734 5735 5736
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5737

5738
			spare_cap = capacity_spare_without(i, p);
5739 5740 5741

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5742 5743
		}

5744
		/* Adjust by relative CPU capacity of the group */
5745 5746 5747 5748
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5749 5750

		if (local_group) {
5751 5752
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5753 5754
			this_spare = max_spare_cap;
		} else {
5755 5756 5757
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5758
				 * so we can pick this new CPU:
5759 5760 5761 5762 5763 5764 5765 5766
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5767
				 * blocked load into account through avg_load:
5768 5769
				 */
				min_avg_load = avg_load;
5770 5771 5772 5773 5774 5775 5776
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5777 5778 5779
		}
	} while (group = group->next, group != sd->groups);

5780 5781 5782 5783 5784 5785
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5786 5787 5788 5789
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5790
	 */
5791 5792 5793
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5794
	if (this_spare > task_util(p) / 2 &&
5795
	    imbalance_scale*this_spare > 100*most_spare)
5796
		return NULL;
5797 5798

	if (most_spare > task_util(p) / 2)
5799 5800
		return most_spare_sg;

5801
skip_spare:
5802 5803 5804
	if (!idlest)
		return NULL;

5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5817
	if (min_runnable_load > (this_runnable_load + imbalance))
5818
		return NULL;
5819 5820 5821 5822 5823

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5824 5825 5826 5827
	return idlest;
}

/*
5828
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5829 5830
 */
static int
5831
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5832 5833
{
	unsigned long load, min_load = ULONG_MAX;
5834 5835 5836 5837
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5838 5839
	int i;

5840 5841
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5842
		return cpumask_first(sched_group_span(group));
5843

5844
	/* Traverse only the allowed CPUs */
5845
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5846
		if (available_idle_cpu(i)) {
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5868
		} else if (shallowest_idle_cpu == -1) {
5869
			load = weighted_cpuload(cpu_rq(i));
5870
			if (load < min_load) {
5871 5872 5873
				min_load = load;
				least_loaded_cpu = i;
			}
5874 5875 5876
		}
	}

5877
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5878
}
5879

5880 5881 5882
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5883
	int new_cpu = cpu;
5884

5885 5886 5887
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5888
	/*
5889 5890
	 * We need task's util for capacity_spare_without, sync it up to
	 * prev_cpu's last_update_time.
5891 5892 5893 5894
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5912
		if (new_cpu == cpu) {
5913
			/* Now try balancing at a lower domain level of 'cpu': */
5914 5915 5916 5917
			sd = sd->child;
			continue;
		}

5918
		/* Now try balancing at a lower domain level of 'new_cpu': */
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5933
#ifdef CONFIG_SCHED_SMT
5934
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5935
EXPORT_SYMBOL_GPL(sched_smt_present);
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5964
void __update_idle_core(struct rq *rq)
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5977
		if (!available_idle_cpu(cpu))
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5994
	int core, cpu;
5995

P
Peter Zijlstra 已提交
5996 5997 5998
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5999 6000 6001
	if (!test_idle_cores(target, false))
		return -1;

6002
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6003

6004
	for_each_cpu_wrap(core, cpus, target) {
6005 6006 6007 6008
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
6009
			if (!available_idle_cpu(cpu))
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6032 6033 6034
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6035
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6036
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6037
			continue;
6038
		if (available_idle_cpu(cpu))
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6063
 */
6064 6065
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6066
	struct sched_domain *this_sd;
6067
	u64 avg_cost, avg_idle;
6068 6069
	u64 time, cost;
	s64 delta;
6070
	int cpu, nr = INT_MAX;
6071

6072 6073 6074 6075
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6076 6077 6078 6079
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6080 6081 6082 6083
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6084 6085
		return -1;

6086 6087 6088 6089 6090 6091 6092 6093
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6094 6095
	time = local_clock();

6096
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6097 6098
		if (!--nr)
			return -1;
6099
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6100
			continue;
6101
		if (available_idle_cpu(cpu))
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6115
 */
6116
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6117
{
6118
	struct sched_domain *sd;
6119
	int i, recent_used_cpu;
6120

6121
	if (available_idle_cpu(target))
6122
		return target;
6123 6124

	/*
6125
	 * If the previous CPU is cache affine and idle, don't be stupid:
6126
	 */
6127
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6128
		return prev;
6129

6130
	/* Check a recently used CPU as a potential idle candidate: */
6131 6132 6133 6134
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6135
	    available_idle_cpu(recent_used_cpu) &&
6136 6137 6138
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6139
		 * candidate for the next wake:
6140 6141 6142 6143 6144
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6145
	sd = rcu_dereference(per_cpu(sd_llc, target));
6146 6147
	if (!sd)
		return target;
6148

6149 6150 6151
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6152

6153 6154 6155 6156 6157 6158 6159
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6160

6161 6162
	return target;
}
6163

6164 6165 6166 6167 6168 6169 6170
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6181 6182 6183 6184 6185 6186 6187 6188
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6199 6200
 *
 * Return: the (estimated) utilization for the specified CPU
6201
 */
6202
static inline unsigned long cpu_util(int cpu)
6203
{
6204 6205 6206 6207 6208 6209 6210 6211
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6212

6213
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6214
}
6215

6216
/*
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
 * cpu_util_without: compute cpu utilization without any contributions from *p
 * @cpu: the CPU which utilization is requested
 * @p: the task which utilization should be discounted
 *
 * The utilization of a CPU is defined by the utilization of tasks currently
 * enqueued on that CPU as well as tasks which are currently sleeping after an
 * execution on that CPU.
 *
 * This method returns the utilization of the specified CPU by discounting the
 * utilization of the specified task, whenever the task is currently
 * contributing to the CPU utilization.
6228
 */
6229
static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6230
{
6231 6232
	struct cfs_rq *cfs_rq;
	unsigned int util;
6233 6234

	/* Task has no contribution or is new */
6235
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6236 6237
		return cpu_util(cpu);

6238 6239 6240
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

6241
	/* Discount task's util from CPU's util */
6242
	util -= min_t(unsigned int, util, task_util(p));
6243

6244 6245 6246 6247 6248 6249
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
6250
	 *      cpu_util_without = (cpu_util - task_util) = 0
6251 6252 6253 6254 6255 6256
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
6257
	 *      cpu_util_without = (cpu_util - task_util) >= 0
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
	if (sched_feat(UTIL_EST)) {
		unsigned int estimated =
			READ_ONCE(cfs_rq->avg.util_est.enqueued);

		/*
		 * Despite the following checks we still have a small window
		 * for a possible race, when an execl's select_task_rq_fair()
		 * races with LB's detach_task():
		 *
		 *   detach_task()
		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
		 *     ---------------------------------- A
		 *     deactivate_task()                   \
		 *       dequeue_task()                     + RaceTime
		 *         util_est_dequeue()              /
		 *     ---------------------------------- B
		 *
		 * The additional check on "current == p" it's required to
		 * properly fix the execl regression and it helps in further
		 * reducing the chances for the above race.
		 */
		if (unlikely(task_on_rq_queued(p) || current == p)) {
			estimated -= min_t(unsigned int, estimated,
					   (_task_util_est(p) | UTIL_AVG_UNCHANGED));
		}
		util = max(util, estimated);
	}
6297 6298 6299 6300 6301 6302 6303

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6304 6305
}

6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6324 6325 6326
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6327 6328 6329
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6330
/*
6331 6332 6333
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6334
 *
6335 6336
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6337
 *
6338
 * Returns the target CPU number.
6339 6340 6341
 *
 * preempt must be disabled.
 */
6342
static int
6343
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6344
{
6345
	struct sched_domain *tmp, *sd = NULL;
6346
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6347
	int new_cpu = prev_cpu;
6348
	int want_affine = 0;
6349
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6350

P
Peter Zijlstra 已提交
6351 6352
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6353
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6354
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6355
	}
6356

6357
	rcu_read_lock();
6358
	for_each_domain(cpu, tmp) {
6359
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6360
			break;
6361

6362
		/*
6363
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6364
		 * cpu is a valid SD_WAKE_AFFINE target.
6365
		 */
6366 6367
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6368 6369 6370 6371
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6372
			break;
6373
		}
6374

6375
		if (tmp->flags & sd_flag)
6376
			sd = tmp;
M
Mike Galbraith 已提交
6377 6378
		else if (!want_affine)
			break;
6379 6380
	}

6381 6382
	if (unlikely(sd)) {
		/* Slow path */
6383
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6384 6385 6386 6387 6388 6389 6390
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6391
	}
6392
	rcu_read_unlock();
6393

6394
	return new_cpu;
6395
}
6396

6397 6398
static void detach_entity_cfs_rq(struct sched_entity *se);

6399
/*
6400
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6401
 * cfs_rq_of(p) references at time of call are still valid and identify the
6402
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6403
 */
6404
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6405
{
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6451 6452 6453

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6454 6455

	/* We have migrated, no longer consider this task hot */
6456
	p->se.exec_start = 0;
6457 6458

	update_scan_period(p, new_cpu);
6459
}
6460 6461 6462 6463 6464

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6465 6466
#endif /* CONFIG_SMP */

6467
static unsigned long wakeup_gran(struct sched_entity *se)
6468 6469 6470 6471
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6472 6473
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6483
	 */
6484
	return calc_delta_fair(gran, se);
6485 6486
}

6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6509
	gran = wakeup_gran(se);
6510 6511 6512 6513 6514 6515
	if (vdiff > gran)
		return 1;

	return 0;
}

6516 6517
static void set_last_buddy(struct sched_entity *se)
{
6518 6519 6520
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6521 6522 6523
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6524
		cfs_rq_of(se)->last = se;
6525
	}
6526 6527 6528 6529
}

static void set_next_buddy(struct sched_entity *se)
{
6530 6531 6532
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6533 6534 6535
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6536
		cfs_rq_of(se)->next = se;
6537
	}
6538 6539
}

6540 6541
static void set_skip_buddy(struct sched_entity *se)
{
6542 6543
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6544 6545
}

6546 6547 6548
/*
 * Preempt the current task with a newly woken task if needed:
 */
6549
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6550 6551
{
	struct task_struct *curr = rq->curr;
6552
	struct sched_entity *se = &curr->se, *pse = &p->se;
6553
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6554
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6555
	int next_buddy_marked = 0;
6556

I
Ingo Molnar 已提交
6557 6558 6559
	if (unlikely(se == pse))
		return;

6560
	/*
6561
	 * This is possible from callers such as attach_tasks(), in which we
6562 6563 6564 6565 6566 6567 6568
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6569
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6570
		set_next_buddy(pse);
6571 6572
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6573

6574 6575 6576
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6577 6578 6579 6580 6581 6582
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6583 6584 6585 6586
	 */
	if (test_tsk_need_resched(curr))
		return;

6587 6588 6589 6590 6591
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6592
	/*
6593 6594
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6595
	 */
6596
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6597
		return;
6598

6599
	find_matching_se(&se, &pse);
6600
	update_curr(cfs_rq_of(se));
6601
	BUG_ON(!pse);
6602 6603 6604 6605 6606 6607 6608
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6609
		goto preempt;
6610
	}
6611

6612
	return;
6613

6614
preempt:
6615
	resched_curr(rq);
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6630 6631
}

6632
static struct task_struct *
6633
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6634 6635 6636
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6637
	struct task_struct *p;
6638
	int new_tasks;
6639

6640
again:
6641
	if (!cfs_rq->nr_running)
6642
		goto idle;
6643

6644
#ifdef CONFIG_FAIR_GROUP_SCHED
6645
	if (prev->sched_class != &fair_sched_class)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6665 6666 6667 6668 6669
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6670

6671 6672 6673
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6674
			 * Therefore the nr_running test will indeed
6675 6676
			 * be correct.
			 */
6677 6678 6679 6680 6681 6682
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6683
				goto simple;
6684
			}
6685
		}
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6719
	goto done;
6720 6721
simple:
#endif
6722

6723
	put_prev_task(rq, prev);
6724

6725
	do {
6726
		se = pick_next_entity(cfs_rq, NULL);
6727
		set_next_entity(cfs_rq, se);
6728 6729 6730
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6731
	p = task_of(se);
6732

6733
done: __maybe_unused;
6734 6735 6736 6737 6738 6739 6740 6741 6742
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6743 6744
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6745 6746

	return p;
6747 6748

idle:
6749 6750
	new_tasks = idle_balance(rq, rf);

6751 6752 6753 6754 6755
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6756
	if (new_tasks < 0)
6757 6758
		return RETRY_TASK;

6759
	if (new_tasks > 0)
6760 6761 6762
		goto again;

	return NULL;
6763 6764 6765 6766 6767
}

/*
 * Account for a descheduled task:
 */
6768
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6769 6770 6771 6772 6773 6774
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6775
		put_prev_entity(cfs_rq, se);
6776 6777 6778
	}
}

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6804 6805 6806 6807 6808
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6809
		rq_clock_skip_update(rq);
6810 6811 6812 6813 6814
	}

	set_skip_buddy(se);
}

6815 6816 6817 6818
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6819 6820
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6831
#ifdef CONFIG_SMP
6832
/**************************************************
P
Peter Zijlstra 已提交
6833 6834 6835 6836 6837
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6838
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6839 6840 6841 6842
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6843
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6844 6845 6846 6847
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6848
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6849
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6850 6851 6852 6853 6854 6855
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6856
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6857 6858 6859 6860 6861 6862
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6863
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6877
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6878
 * topology where each level pairs two lower groups (or better). This results
6879
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6880
 * tree to only the first of the previous level and we decrease the frequency
6881
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6882 6883 6884 6885 6886 6887 6888 6889
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6890
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6891 6892 6893 6894 6895 6896 6897
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6898
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6899 6900 6901
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6902
 *             log_2 n
P
Peter Zijlstra 已提交
6903 6904 6905 6906 6907 6908 6909
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6910
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6911 6912 6913 6914 6915 6916 6917 6918 6919
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6920
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6941
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6942 6943 6944 6945 6946 6947
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6948
 */
6949

6950 6951
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6952 6953
enum fbq_type { regular, remote, all };

6954
#define LBF_ALL_PINNED	0x01
6955
#define LBF_NEED_BREAK	0x02
6956 6957
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6958
#define LBF_NOHZ_STATS	0x10
6959
#define LBF_NOHZ_AGAIN	0x20
6960 6961 6962 6963 6964

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6965
	int			src_cpu;
6966 6967 6968 6969

	int			dst_cpu;
	struct rq		*dst_rq;

6970 6971
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6972
	enum cpu_idle_type	idle;
6973
	long			imbalance;
6974 6975 6976
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6977
	unsigned int		flags;
6978 6979 6980 6981

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6982 6983

	enum fbq_type		fbq_type;
6984
	struct list_head	tasks;
6985 6986
};

6987 6988 6989
/*
 * Is this task likely cache-hot:
 */
6990
static int task_hot(struct task_struct *p, struct lb_env *env)
6991 6992 6993
{
	s64 delta;

6994 6995
	lockdep_assert_held(&env->src_rq->lock);

6996 6997 6998 6999 7000 7001 7002 7003 7004
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
7005
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7006 7007 7008 7009 7010 7011 7012 7013 7014
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

7015
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7016 7017 7018 7019

	return delta < (s64)sysctl_sched_migration_cost;
}

7020
#ifdef CONFIG_NUMA_BALANCING
7021
/*
7022 7023 7024
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
7025
 */
7026
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7027
{
7028
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7029 7030
	unsigned long src_weight, dst_weight;
	int src_nid, dst_nid, dist;
7031

7032
	if (!static_branch_likely(&sched_numa_balancing))
7033 7034
		return -1;

7035
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7036
		return -1;
7037 7038 7039 7040

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

7041
	if (src_nid == dst_nid)
7042
		return -1;
7043

7044 7045 7046 7047 7048 7049 7050
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
7051

7052 7053
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
7054
		return 0;
7055

7056
	/* Leaving a core idle is often worse than degrading locality. */
7057
	if (env->idle == CPU_IDLE)
7058 7059
		return -1;

7060
	dist = node_distance(src_nid, dst_nid);
7061
	if (numa_group) {
7062 7063
		src_weight = group_weight(p, src_nid, dist);
		dst_weight = group_weight(p, dst_nid, dist);
7064
	} else {
7065 7066
		src_weight = task_weight(p, src_nid, dist);
		dst_weight = task_weight(p, dst_nid, dist);
7067 7068
	}

7069
	return dst_weight < src_weight;
7070 7071
}

7072
#else
7073
static inline int migrate_degrades_locality(struct task_struct *p,
7074 7075
					     struct lb_env *env)
{
7076
	return -1;
7077
}
7078 7079
#endif

7080 7081 7082 7083
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7084
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7085
{
7086
	int tsk_cache_hot;
7087 7088 7089

	lockdep_assert_held(&env->src_rq->lock);

7090 7091
	/*
	 * We do not migrate tasks that are:
7092
	 * 1) throttled_lb_pair, or
7093
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7094 7095
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7096
	 */
7097 7098 7099
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7100
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7101
		int cpu;
7102

7103
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7104

7105 7106
		env->flags |= LBF_SOME_PINNED;

7107
		/*
7108
		 * Remember if this task can be migrated to any other CPU in
7109 7110 7111
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7112 7113
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7114
		 */
7115
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7116 7117
			return 0;

7118
		/* Prevent to re-select dst_cpu via env's CPUs: */
7119
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7120
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7121
				env->flags |= LBF_DST_PINNED;
7122 7123 7124
				env->new_dst_cpu = cpu;
				break;
			}
7125
		}
7126

7127 7128
		return 0;
	}
7129 7130

	/* Record that we found atleast one task that could run on dst_cpu */
7131
	env->flags &= ~LBF_ALL_PINNED;
7132

7133
	if (task_running(env->src_rq, p)) {
7134
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7135 7136 7137 7138 7139
		return 0;
	}

	/*
	 * Aggressive migration if:
7140 7141 7142
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7143
	 */
7144 7145 7146
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7147

7148
	if (tsk_cache_hot <= 0 ||
7149
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7150
		if (tsk_cache_hot == 1) {
7151 7152
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7153
		}
7154 7155 7156
		return 1;
	}

7157
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7158
	return 0;
7159 7160
}

7161
/*
7162 7163 7164 7165 7166 7167 7168
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7169
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7170 7171 7172
	set_task_cpu(p, env->dst_cpu);
}

7173
/*
7174
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7175 7176
 * part of active balancing operations within "domain".
 *
7177
 * Returns a task if successful and NULL otherwise.
7178
 */
7179
static struct task_struct *detach_one_task(struct lb_env *env)
7180
{
7181
	struct task_struct *p;
7182

7183 7184
	lockdep_assert_held(&env->src_rq->lock);

7185 7186
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7187 7188
		if (!can_migrate_task(p, env))
			continue;
7189

7190
		detach_task(p, env);
7191

7192
		/*
7193
		 * Right now, this is only the second place where
7194
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7195
		 * so we can safely collect stats here rather than
7196
		 * inside detach_tasks().
7197
		 */
7198
		schedstat_inc(env->sd->lb_gained[env->idle]);
7199
		return p;
7200
	}
7201
	return NULL;
7202 7203
}

7204 7205
static const unsigned int sched_nr_migrate_break = 32;

7206
/*
7207 7208
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7209
 *
7210
 * Returns number of detached tasks if successful and 0 otherwise.
7211
 */
7212
static int detach_tasks(struct lb_env *env)
7213
{
7214 7215
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7216
	unsigned long load;
7217 7218 7219
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7220

7221
	if (env->imbalance <= 0)
7222
		return 0;
7223

7224
	while (!list_empty(tasks)) {
7225 7226 7227 7228 7229 7230 7231
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7232
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7233

7234 7235
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7236
		if (env->loop > env->loop_max)
7237
			break;
7238 7239

		/* take a breather every nr_migrate tasks */
7240
		if (env->loop > env->loop_break) {
7241
			env->loop_break += sched_nr_migrate_break;
7242
			env->flags |= LBF_NEED_BREAK;
7243
			break;
7244
		}
7245

7246
		if (!can_migrate_task(p, env))
7247 7248 7249
			goto next;

		load = task_h_load(p);
7250

7251
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7252 7253
			goto next;

7254
		if ((load / 2) > env->imbalance)
7255
			goto next;
7256

7257 7258 7259 7260
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7261
		env->imbalance -= load;
7262 7263

#ifdef CONFIG_PREEMPT
7264 7265
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7266
		 * kernels will stop after the first task is detached to minimize
7267 7268
		 * the critical section.
		 */
7269
		if (env->idle == CPU_NEWLY_IDLE)
7270
			break;
7271 7272
#endif

7273 7274 7275 7276
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7277
		if (env->imbalance <= 0)
7278
			break;
7279 7280 7281

		continue;
next:
7282
		list_move(&p->se.group_node, tasks);
7283
	}
7284

7285
	/*
7286 7287 7288
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7289
	 */
7290
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7291

7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7303
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7304
	p->on_rq = TASK_ON_RQ_QUEUED;
7305 7306 7307 7308 7309 7310 7311 7312 7313
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7314 7315 7316
	struct rq_flags rf;

	rq_lock(rq, &rf);
7317
	update_rq_clock(rq);
7318
	attach_task(rq, p);
7319
	rq_unlock(rq, &rf);
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7330
	struct rq_flags rf;
7331

7332
	rq_lock(env->dst_rq, &rf);
7333
	update_rq_clock(env->dst_rq);
7334 7335 7336 7337

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7338

7339 7340 7341
		attach_task(env->dst_rq, p);
	}

7342
	rq_unlock(env->dst_rq, &rf);
7343 7344
}

7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7356
static inline bool others_have_blocked(struct rq *rq)
7357 7358 7359 7360
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7361 7362 7363
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7364
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7365 7366 7367 7368
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7369 7370 7371
	return false;
}

7372 7373
#ifdef CONFIG_FAIR_GROUP_SCHED

7374
static void update_blocked_averages(int cpu)
7375 7376
{
	struct rq *rq = cpu_rq(cpu);
7377
	struct cfs_rq *cfs_rq;
7378
	const struct sched_class *curr_class;
7379
	struct rq_flags rf;
7380
	bool done = true;
7381

7382
	rq_lock_irqsave(rq, &rf);
7383
	update_rq_clock(rq);
7384

7385 7386 7387 7388
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7389
	for_each_leaf_cfs_rq(rq, cfs_rq) {
7390 7391
		struct sched_entity *se;

7392 7393 7394
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7395

7396
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7397
			update_tg_load_avg(cfs_rq, 0);
7398

7399 7400 7401
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7402
			update_load_avg(cfs_rq_of(se), se, 0);
7403

7404 7405
		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7406
			done = false;
7407
	}
7408 7409 7410 7411

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7412
	update_irq_load_avg(rq, 0);
7413
	/* Don't need periodic decay once load/util_avg are null */
7414
	if (others_have_blocked(rq))
7415
		done = false;
7416 7417 7418

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7419 7420
	if (done)
		rq->has_blocked_load = 0;
7421
#endif
7422
	rq_unlock_irqrestore(rq, &rf);
7423 7424
}

7425
/*
7426
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7427 7428 7429
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7430
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7431
{
7432 7433
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7434
	unsigned long now = jiffies;
7435
	unsigned long load;
7436

7437
	if (cfs_rq->last_h_load_update == now)
7438 7439
		return;

7440
	WRITE_ONCE(cfs_rq->h_load_next, NULL);
7441 7442
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
7443
		WRITE_ONCE(cfs_rq->h_load_next, se);
7444 7445 7446
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7447

7448
	if (!se) {
7449
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7450 7451 7452
		cfs_rq->last_h_load_update = now;
	}

7453
	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7454
		load = cfs_rq->h_load;
7455 7456
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7457 7458 7459 7460
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7461 7462
}

7463
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7464
{
7465
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7466

7467
	update_cfs_rq_h_load(cfs_rq);
7468
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7469
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7470 7471
}
#else
7472
static inline void update_blocked_averages(int cpu)
7473
{
7474 7475
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7476
	const struct sched_class *curr_class;
7477
	struct rq_flags rf;
7478

7479
	rq_lock_irqsave(rq, &rf);
7480
	update_rq_clock(rq);
7481
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7482 7483 7484 7485

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7486
	update_irq_load_avg(rq, 0);
7487 7488
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7489
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7490
		rq->has_blocked_load = 0;
7491
#endif
7492
	rq_unlock_irqrestore(rq, &rf);
7493 7494
}

7495
static unsigned long task_h_load(struct task_struct *p)
7496
{
7497
	return p->se.avg.load_avg;
7498
}
P
Peter Zijlstra 已提交
7499
#endif
7500 7501

/********** Helpers for find_busiest_group ************************/
7502 7503 7504 7505 7506 7507 7508

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7509 7510 7511 7512 7513 7514 7515
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7516
	unsigned long load_per_task;
7517
	unsigned long group_capacity;
7518
	unsigned long group_util; /* Total utilization of the group */
7519 7520 7521
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7522
	enum group_type group_type;
7523
	int group_no_capacity;
7524 7525 7526 7527
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7528 7529
};

J
Joonsoo Kim 已提交
7530 7531 7532 7533 7534 7535 7536
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7537
	unsigned long total_running;
J
Joonsoo Kim 已提交
7538
	unsigned long total_load;	/* Total load of all groups in sd */
7539
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7540 7541 7542
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7543
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7544 7545
};

7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7557
		.total_running = 0UL,
7558
		.total_load = 0UL,
7559
		.total_capacity = 0UL,
7560 7561
		.busiest_stat = {
			.avg_load = 0UL,
7562 7563
			.sum_nr_running = 0,
			.group_type = group_other,
7564 7565 7566 7567
		},
	};
}

7568 7569 7570
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7571
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7572 7573
 *
 * Return: The load index.
7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7596
static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7597 7598
{
	struct rq *rq = cpu_rq(cpu);
7599
	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7600 7601
	unsigned long used, free;
	unsigned long irq;
7602

7603
	irq = cpu_util_irq(rq);
7604

7605 7606
	if (unlikely(irq >= max))
		return 1;
7607

7608 7609
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7610

7611 7612
	if (unlikely(used >= max))
		return 1;
7613

7614
	free = max - used;
7615 7616

	return scale_irq_capacity(free, irq, max);
7617 7618
}

7619
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7620
{
7621
	unsigned long capacity = scale_rt_capacity(sd, cpu);
7622 7623
	struct sched_group *sdg = sd->groups;

7624
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7625

7626 7627
	if (!capacity)
		capacity = 1;
7628

7629 7630
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7631
	sdg->sgc->min_capacity = capacity;
7632 7633
}

7634
void update_group_capacity(struct sched_domain *sd, int cpu)
7635 7636 7637
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7638
	unsigned long capacity, min_capacity;
7639 7640 7641 7642
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7643
	sdg->sgc->next_update = jiffies + interval;
7644 7645

	if (!child) {
7646
		update_cpu_capacity(sd, cpu);
7647 7648 7649
		return;
	}

7650
	capacity = 0;
7651
	min_capacity = ULONG_MAX;
7652

P
Peter Zijlstra 已提交
7653 7654 7655 7656 7657 7658
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7659
		for_each_cpu(cpu, sched_group_span(sdg)) {
7660
			struct sched_group_capacity *sgc;
7661
			struct rq *rq = cpu_rq(cpu);
7662

7663
			/*
7664
			 * build_sched_domains() -> init_sched_groups_capacity()
7665 7666 7667
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7668 7669
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7670
			 *
7671
			 * This avoids capacity from being 0 and
7672 7673 7674
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7675
				capacity += capacity_of(cpu);
7676 7677 7678
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7679
			}
7680

7681
			min_capacity = min(capacity, min_capacity);
7682
		}
P
Peter Zijlstra 已提交
7683 7684 7685 7686
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7687
		 */
P
Peter Zijlstra 已提交
7688 7689 7690

		group = child->groups;
		do {
7691 7692 7693 7694
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7695 7696 7697
			group = group->next;
		} while (group != child->groups);
	}
7698

7699
	sdg->sgc->capacity = capacity;
7700
	sdg->sgc->min_capacity = min_capacity;
7701 7702
}

7703
/*
7704 7705 7706
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7707 7708
 */
static inline int
7709
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7710
{
7711 7712
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7713 7714
}

7715 7716
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7717
 * groups is inadequate due to ->cpus_allowed constraints.
7718
 *
7719 7720
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7721 7722
 * Something like:
 *
7723 7724
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7725 7726 7727
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7728
 * cpu 3 and leave one of the CPUs in the second group unused.
7729 7730
 *
 * The current solution to this issue is detecting the skew in the first group
7731 7732
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7733 7734
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7735
 * update_sd_pick_busiest(). And calculate_imbalance() and
7736
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7737 7738 7739 7740 7741 7742 7743
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7744
static inline int sg_imbalanced(struct sched_group *group)
7745
{
7746
	return group->sgc->imbalance;
7747 7748
}

7749
/*
7750 7751 7752
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7753 7754
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7755 7756 7757 7758 7759
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7760
 */
7761 7762
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7763
{
7764 7765
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7766

7767
	if ((sgs->group_capacity * 100) >
7768
			(sgs->group_util * env->sd->imbalance_pct))
7769
		return true;
7770

7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7787

7788
	if ((sgs->group_capacity * 100) <
7789
			(sgs->group_util * env->sd->imbalance_pct))
7790
		return true;
7791

7792
	return false;
7793 7794
}

7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7806 7807 7808
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7809
{
7810
	if (sgs->group_no_capacity)
7811 7812 7813 7814 7815 7816 7817 7818
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7819
static bool update_nohz_stats(struct rq *rq, bool force)
7820 7821 7822 7823
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7824 7825 7826
	if (!rq->has_blocked_load)
		return false;

7827
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7828
		return false;
7829

7830
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7831
		return true;
7832 7833

	update_blocked_averages(cpu);
7834 7835 7836 7837

	return rq->has_blocked_load;
#else
	return false;
7838 7839 7840
#endif
}

7841 7842
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7843
 * @env: The load balancing environment.
7844 7845 7846 7847
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7848
 * @overload: Indicate more than one runnable task for any CPU.
7849
 */
7850 7851
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7852 7853
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7854
{
7855
	unsigned long load;
7856
	int i, nr_running;
7857

7858 7859
	memset(sgs, 0, sizeof(*sgs));

7860
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7861 7862
		struct rq *rq = cpu_rq(i);

7863
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7864
			env->flags |= LBF_NOHZ_AGAIN;
7865

7866
		/* Bias balancing toward CPUs of our domain: */
7867
		if (local_group)
7868
			load = target_load(i, load_idx);
7869
		else
7870 7871 7872
			load = source_load(i, load_idx);

		sgs->group_load += load;
7873
		sgs->group_util += cpu_util(i);
7874
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7875

7876 7877
		nr_running = rq->nr_running;
		if (nr_running > 1)
7878 7879
			*overload = true;

7880 7881 7882 7883
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7884
		sgs->sum_weighted_load += weighted_cpuload(rq);
7885 7886 7887 7888
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7889
			sgs->idle_cpus++;
7890 7891
	}

7892 7893
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7894
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7895

7896
	if (sgs->sum_nr_running)
7897
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7898

7899
	sgs->group_weight = group->group_weight;
7900

7901
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7902
	sgs->group_type = group_classify(group, sgs);
7903 7904
}

7905 7906
/**
 * update_sd_pick_busiest - return 1 on busiest group
7907
 * @env: The load balancing environment.
7908 7909
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7910
 * @sgs: sched_group statistics
7911 7912 7913
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7914 7915 7916
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7917
 */
7918
static bool update_sd_pick_busiest(struct lb_env *env,
7919 7920
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7921
				   struct sg_lb_stats *sgs)
7922
{
7923
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7924

7925
	if (sgs->group_type > busiest->group_type)
7926 7927
		return true;

7928 7929 7930 7931 7932 7933
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7948 7949
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7950 7951
		return true;

7952
	/* No ASYM_PACKING if target CPU is already busy */
7953 7954
	if (env->idle == CPU_NOT_IDLE)
		return true;
7955
	/*
T
Tim Chen 已提交
7956 7957 7958
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7959
	 */
T
Tim Chen 已提交
7960 7961
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7962 7963 7964
		if (!sds->busiest)
			return true;

7965
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7966 7967
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7968 7969 7970 7971 7972 7973
			return true;
	}

	return false;
}

7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

8004
/**
8005
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8006
 * @env: The load balancing environment.
8007 8008
 * @sds: variable to hold the statistics for this sched_domain.
 */
8009
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8010
{
8011 8012
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
8013
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
8014
	struct sg_lb_stats tmp_sgs;
8015
	int load_idx, prefer_sibling = 0;
8016
	bool overload = false;
8017 8018 8019 8020

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

8021
#ifdef CONFIG_NO_HZ_COMMON
8022
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8023 8024 8025
		env->flags |= LBF_NOHZ_STATS;
#endif

8026
	load_idx = get_sd_load_idx(env->sd, env->idle);
8027 8028

	do {
J
Joonsoo Kim 已提交
8029
		struct sg_lb_stats *sgs = &tmp_sgs;
8030 8031
		int local_group;

8032
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
8033 8034
		if (local_group) {
			sds->local = sg;
8035
			sgs = local;
8036 8037

			if (env->idle != CPU_NEWLY_IDLE ||
8038 8039
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
8040
		}
8041

8042 8043
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
8044

8045 8046 8047
		if (local_group)
			goto next_group;

8048 8049
		/*
		 * In case the child domain prefers tasks go to siblings
8050
		 * first, lower the sg capacity so that we'll try
8051 8052
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
8053 8054 8055 8056
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
8057
		 */
8058
		if (prefer_sibling && sds->local &&
8059 8060
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8061
			sgs->group_no_capacity = 1;
8062
			sgs->group_type = group_classify(sg, sgs);
8063
		}
8064

8065
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8066
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8067
			sds->busiest_stat = *sgs;
8068 8069
		}

8070 8071
next_group:
		/* Now, start updating sd_lb_stats */
8072
		sds->total_running += sgs->sum_nr_running;
8073
		sds->total_load += sgs->group_load;
8074
		sds->total_capacity += sgs->group_capacity;
8075

8076
		sg = sg->next;
8077
	} while (sg != env->sd->groups);
8078

8079 8080 8081 8082 8083 8084 8085 8086 8087
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8088 8089
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8090 8091 8092 8093 8094 8095

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8096 8097 8098 8099
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8100
 *			sched domain.
8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8115
 * Return: 1 when packing is required and a task should be moved to
8116
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8117
 *
8118
 * @env: The load balancing environment.
8119 8120
 * @sds: Statistics of the sched_domain which is to be packed
 */
8121
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8122 8123 8124
{
	int busiest_cpu;

8125
	if (!(env->sd->flags & SD_ASYM_PACKING))
8126 8127
		return 0;

8128 8129 8130
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8131 8132 8133
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8134 8135
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8136 8137
		return 0;

8138
	env->imbalance = DIV_ROUND_CLOSEST(
8139
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8140
		SCHED_CAPACITY_SCALE);
8141

8142
	return 1;
8143 8144 8145 8146 8147 8148
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8149
 * @env: The load balancing environment.
8150 8151
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8152 8153
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8154
{
8155
	unsigned long tmp, capa_now = 0, capa_move = 0;
8156
	unsigned int imbn = 2;
8157
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8158
	struct sg_lb_stats *local, *busiest;
8159

J
Joonsoo Kim 已提交
8160 8161
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8162

J
Joonsoo Kim 已提交
8163 8164 8165 8166
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8167

J
Joonsoo Kim 已提交
8168
	scaled_busy_load_per_task =
8169
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8170
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8171

8172 8173
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8174
		env->imbalance = busiest->load_per_task;
8175 8176 8177 8178 8179
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8180
	 * however we may be able to increase total CPU capacity used by
8181 8182 8183
	 * moving them.
	 */

8184
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8185
			min(busiest->load_per_task, busiest->avg_load);
8186
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8187
			min(local->load_per_task, local->avg_load);
8188
	capa_now /= SCHED_CAPACITY_SCALE;
8189 8190

	/* Amount of load we'd subtract */
8191
	if (busiest->avg_load > scaled_busy_load_per_task) {
8192
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8193
			    min(busiest->load_per_task,
8194
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8195
	}
8196 8197

	/* Amount of load we'd add */
8198
	if (busiest->avg_load * busiest->group_capacity <
8199
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8200 8201
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8202
	} else {
8203
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8204
		      local->group_capacity;
J
Joonsoo Kim 已提交
8205
	}
8206
	capa_move += local->group_capacity *
8207
		    min(local->load_per_task, local->avg_load + tmp);
8208
	capa_move /= SCHED_CAPACITY_SCALE;
8209 8210

	/* Move if we gain throughput */
8211
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8212
		env->imbalance = busiest->load_per_task;
8213 8214 8215 8216 8217
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8218
 * @env: load balance environment
8219 8220
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8221
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8222
{
8223
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8224 8225 8226 8227
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8228

8229
	if (busiest->group_type == group_imbalanced) {
8230 8231
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8232
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8233
		 */
J
Joonsoo Kim 已提交
8234 8235
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8236 8237
	}

8238
	/*
8239 8240 8241 8242
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8243
	 */
8244 8245
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8246 8247
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8248 8249
	}

8250
	/*
8251
	 * If there aren't any idle CPUs, avoid creating some.
8252 8253 8254
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8255
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8256
		if (load_above_capacity > busiest->group_capacity) {
8257
			load_above_capacity -= busiest->group_capacity;
8258
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8259 8260
			load_above_capacity /= busiest->group_capacity;
		} else
8261
			load_above_capacity = ~0UL;
8262 8263 8264
	}

	/*
8265
	 * We're trying to get all the CPUs to the average_load, so we don't
8266
	 * want to push ourselves above the average load, nor do we wish to
8267
	 * reduce the max loaded CPU below the average load. At the same time,
8268 8269
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8270
	 */
8271
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8272 8273

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8274
	env->imbalance = min(
8275 8276
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8277
	) / SCHED_CAPACITY_SCALE;
8278 8279 8280

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8281
	 * there is no guarantee that any tasks will be moved so we'll have
8282 8283 8284
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8285
	if (env->imbalance < busiest->load_per_task)
8286
		return fix_small_imbalance(env, sds);
8287
}
8288

8289 8290 8291 8292
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8293
 * if there is an imbalance.
8294 8295 8296 8297
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8298
 * @env: The load balancing environment.
8299
 *
8300
 * Return:	- The busiest group if imbalance exists.
8301
 */
J
Joonsoo Kim 已提交
8302
static struct sched_group *find_busiest_group(struct lb_env *env)
8303
{
J
Joonsoo Kim 已提交
8304
	struct sg_lb_stats *local, *busiest;
8305 8306
	struct sd_lb_stats sds;

8307
	init_sd_lb_stats(&sds);
8308 8309 8310 8311 8312

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8313
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8314 8315
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8316

8317
	/* ASYM feature bypasses nice load balance check */
8318
	if (check_asym_packing(env, &sds))
8319 8320
		return sds.busiest;

8321
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8322
	if (!sds.busiest || busiest->sum_nr_running == 0)
8323 8324
		goto out_balanced;

8325
	/* XXX broken for overlapping NUMA groups */
8326 8327
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8328

P
Peter Zijlstra 已提交
8329 8330
	/*
	 * If the busiest group is imbalanced the below checks don't
8331
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8332 8333
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8334
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8335 8336
		goto force_balance;

8337 8338 8339 8340 8341
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8342
	    busiest->group_no_capacity)
8343 8344
		goto force_balance;

8345
	/*
8346
	 * If the local group is busier than the selected busiest group
8347 8348
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8349
	if (local->avg_load >= busiest->avg_load)
8350 8351
		goto out_balanced;

8352 8353 8354 8355
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8356
	if (local->avg_load >= sds.avg_load)
8357 8358
		goto out_balanced;

8359
	if (env->idle == CPU_IDLE) {
8360
		/*
8361
		 * This CPU is idle. If the busiest group is not overloaded
8362
		 * and there is no imbalance between this and busiest group
8363
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8364 8365
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8366
		 */
8367 8368
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8369
			goto out_balanced;
8370 8371 8372 8373 8374
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8375 8376
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8377
			goto out_balanced;
8378
	}
8379

8380
force_balance:
8381
	/* Looks like there is an imbalance. Compute it */
8382
	calculate_imbalance(env, &sds);
8383
	return env->imbalance ? sds.busiest : NULL;
8384 8385

out_balanced:
8386
	env->imbalance = 0;
8387 8388 8389 8390
	return NULL;
}

/*
8391
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8392
 */
8393
static struct rq *find_busiest_queue(struct lb_env *env,
8394
				     struct sched_group *group)
8395 8396
{
	struct rq *busiest = NULL, *rq;
8397
	unsigned long busiest_load = 0, busiest_capacity = 1;
8398 8399
	int i;

8400
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8401
		unsigned long capacity, wl;
8402 8403 8404 8405
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8406

8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8429
		capacity = capacity_of(i);
8430

8431
		wl = weighted_cpuload(rq);
8432

8433 8434
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8435
		 * which is not scaled with the CPU capacity.
8436
		 */
8437 8438 8439

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8440 8441
			continue;

8442
		/*
8443 8444 8445
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8446
		 * potentially running at a lower capacity.
8447
		 *
8448
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8449
		 * multiplication to rid ourselves of the division works out
8450 8451
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8452
		 */
8453
		if (wl * busiest_capacity > busiest_load * capacity) {
8454
			busiest_load = wl;
8455
			busiest_capacity = capacity;
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8469
static int need_active_balance(struct lb_env *env)
8470
{
8471 8472 8473
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8474 8475 8476

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8477 8478
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8479
		 */
T
Tim Chen 已提交
8480 8481
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8482
			return 1;
8483 8484
	}

8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8498 8499 8500
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8501 8502
static int active_load_balance_cpu_stop(void *data);

8503 8504 8505 8506 8507
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8508 8509 8510 8511 8512 8513 8514
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8515
	/*
8516
	 * In the newly idle case, we will allow all the CPUs
8517 8518 8519 8520 8521
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8522
	/* Try to find first idle CPU */
8523
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8524
		if (!idle_cpu(cpu))
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8535
	 * First idle CPU or the first CPU(busiest) in this sched group
8536 8537
	 * is eligible for doing load balancing at this and above domains.
	 */
8538
	return balance_cpu == env->dst_cpu;
8539 8540
}

8541 8542 8543 8544 8545 8546
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8547
			int *continue_balancing)
8548
{
8549
	int ld_moved, cur_ld_moved, active_balance = 0;
8550
	struct sched_domain *sd_parent = sd->parent;
8551 8552
	struct sched_group *group;
	struct rq *busiest;
8553
	struct rq_flags rf;
8554
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8555

8556 8557
	struct lb_env env = {
		.sd		= sd,
8558 8559
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8560
		.dst_grpmask    = sched_group_span(sd->groups),
8561
		.idle		= idle,
8562
		.loop_break	= sched_nr_migrate_break,
8563
		.cpus		= cpus,
8564
		.fbq_type	= all,
8565
		.tasks		= LIST_HEAD_INIT(env.tasks),
8566 8567
	};

8568
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8569

8570
	schedstat_inc(sd->lb_count[idle]);
8571 8572

redo:
8573 8574
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8575
		goto out_balanced;
8576
	}
8577

8578
	group = find_busiest_group(&env);
8579
	if (!group) {
8580
		schedstat_inc(sd->lb_nobusyg[idle]);
8581 8582 8583
		goto out_balanced;
	}

8584
	busiest = find_busiest_queue(&env, group);
8585
	if (!busiest) {
8586
		schedstat_inc(sd->lb_nobusyq[idle]);
8587 8588 8589
		goto out_balanced;
	}

8590
	BUG_ON(busiest == env.dst_rq);
8591

8592
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8593

8594 8595 8596
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8597 8598 8599 8600 8601 8602 8603 8604
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8605
		env.flags |= LBF_ALL_PINNED;
8606
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8607

8608
more_balance:
8609
		rq_lock_irqsave(busiest, &rf);
8610
		update_rq_clock(busiest);
8611 8612 8613 8614 8615

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8616
		cur_ld_moved = detach_tasks(&env);
8617 8618

		/*
8619 8620 8621 8622 8623
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8624
		 */
8625

8626
		rq_unlock(busiest, &rf);
8627 8628 8629 8630 8631 8632

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8633
		local_irq_restore(rf.flags);
8634

8635 8636 8637 8638 8639
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8640 8641 8642 8643
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8644
		 * iterate on same src_cpu is dependent on number of CPUs in our
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8659
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8660

8661
			/* Prevent to re-select dst_cpu via env's CPUs */
8662 8663
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8664
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8665
			env.dst_cpu	 = env.new_dst_cpu;
8666
			env.flags	&= ~LBF_DST_PINNED;
8667 8668
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8669

8670 8671 8672 8673 8674 8675
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8676

8677 8678 8679 8680
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8681
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8682

8683
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8684 8685 8686
				*group_imbalance = 1;
		}

8687
		/* All tasks on this runqueue were pinned by CPU affinity */
8688
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8689
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8690 8691 8692 8693 8694 8695 8696 8697 8698
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8699 8700
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8701
				goto redo;
8702
			}
8703
			goto out_all_pinned;
8704 8705 8706 8707
		}
	}

	if (!ld_moved) {
8708
		schedstat_inc(sd->lb_failed[idle]);
8709 8710 8711 8712 8713 8714 8715 8716
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8717

8718
		if (need_active_balance(&env)) {
8719 8720
			unsigned long flags;

8721 8722
			raw_spin_lock_irqsave(&busiest->lock, flags);

8723 8724 8725 8726
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8727
			 */
8728
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8729 8730
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8731
				env.flags |= LBF_ALL_PINNED;
8732 8733 8734
				goto out_one_pinned;
			}

8735 8736 8737 8738 8739
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8740 8741 8742 8743 8744 8745
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8746

8747
			if (active_balance) {
8748 8749 8750
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8751
			}
8752

8753
			/* We've kicked active balancing, force task migration. */
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8767
		 * detach_tasks).
8768 8769 8770 8771 8772 8773 8774 8775
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8793
	schedstat_inc(sd->lb_balanced[idle]);
8794 8795 8796 8797 8798

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8799
	if (((env.flags & LBF_ALL_PINNED) &&
8800
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8801 8802 8803
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8804
	ld_moved = 0;
8805 8806 8807 8808
out:
	return ld_moved;
}

8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8825
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8826 8827 8828
{
	unsigned long interval, next;

8829 8830
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8831 8832 8833 8834 8835 8836
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8837
/*
8838
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8839 8840 8841
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8842
 */
8843
static int active_load_balance_cpu_stop(void *data)
8844
{
8845 8846
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8847
	int target_cpu = busiest_rq->push_cpu;
8848
	struct rq *target_rq = cpu_rq(target_cpu);
8849
	struct sched_domain *sd;
8850
	struct task_struct *p = NULL;
8851
	struct rq_flags rf;
8852

8853
	rq_lock_irq(busiest_rq, &rf);
8854 8855 8856 8857 8858 8859 8860
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8861

8862
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8863 8864 8865
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8866 8867 8868

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8869
		goto out_unlock;
8870 8871 8872 8873

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8874
	 * Bjorn Helgaas on a 128-CPU setup.
8875 8876 8877 8878
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8879
	rcu_read_lock();
8880 8881 8882 8883 8884 8885 8886
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8887 8888
		struct lb_env env = {
			.sd		= sd,
8889 8890 8891 8892
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8893
			.idle		= CPU_IDLE,
8894 8895 8896 8897 8898 8899 8900
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8901 8902
		};

8903
		schedstat_inc(sd->alb_count);
8904
		update_rq_clock(busiest_rq);
8905

8906
		p = detach_one_task(&env);
8907
		if (p) {
8908
			schedstat_inc(sd->alb_pushed);
8909 8910 8911
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8912
			schedstat_inc(sd->alb_failed);
8913
		}
8914
	}
8915
	rcu_read_unlock();
8916 8917
out_unlock:
	busiest_rq->active_balance = 0;
8918
	rq_unlock(busiest_rq, &rf);
8919 8920 8921 8922 8923 8924

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8925
	return 0;
8926 8927
}

8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

9046 9047 9048 9049 9050
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

9051
#ifdef CONFIG_NO_HZ_COMMON
9052 9053 9054 9055 9056 9057
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
9058

9059
static inline int find_new_ilb(void)
9060
{
9061
	int ilb = cpumask_first(nohz.idle_cpus_mask);
9062

9063 9064 9065 9066
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
9067 9068
}

9069 9070 9071 9072 9073
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
9074
static void kick_ilb(unsigned int flags)
9075 9076 9077 9078 9079
{
	int ilb_cpu;

	nohz.next_balance++;

9080
	ilb_cpu = find_new_ilb();
9081

9082 9083
	if (ilb_cpu >= nr_cpu_ids)
		return;
9084

9085
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9086
	if (flags & NOHZ_KICK_MASK)
9087
		return;
9088

9089 9090
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9091
	 * This way we generate a sched IPI on the target CPU which
9092 9093 9094 9095
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9115
	unsigned int flags = 0;
9116 9117 9118 9119 9120 9121 9122 9123

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9124
	nohz_balance_exit_idle(rq);
9125 9126 9127 9128 9129 9130 9131 9132

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9133 9134
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9135 9136
		flags = NOHZ_STATS_KICK;

9137
	if (time_before(now, nohz.next_balance))
9138
		goto out;
9139 9140

	if (rq->nr_running >= 2) {
9141
		flags = NOHZ_KICK_MASK;
9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9154
			flags = NOHZ_KICK_MASK;
9155 9156 9157 9158 9159 9160 9161 9162 9163
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9164
			flags = NOHZ_KICK_MASK;
9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9177
				flags = NOHZ_KICK_MASK;
9178 9179 9180 9181 9182 9183 9184
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9185 9186
	if (flags)
		kick_ilb(flags);
9187 9188
}

9189
static void set_cpu_sd_state_busy(int cpu)
9190
{
9191
	struct sched_domain *sd;
9192

9193 9194
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9195

9196 9197 9198 9199 9200 9201 9202
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9203 9204
}

9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9220 9221 9222 9223
{
	struct sched_domain *sd;

	rcu_read_lock();
9224
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9225 9226 9227 9228 9229

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9230
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9231
unlock:
9232 9233 9234
	rcu_read_unlock();
}

9235
/*
9236
 * This routine will record that the CPU is going idle with tick stopped.
9237
 * This info will be used in performing idle load balancing in the future.
9238
 */
9239
void nohz_balance_enter_idle(int cpu)
9240
{
9241 9242 9243 9244
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9245
	/* If this CPU is going down, then nothing needs to be done: */
9246 9247 9248
	if (!cpu_active(cpu))
		return;

9249
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9250
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9251 9252
		return;

9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9266
	if (rq->nohz_tick_stopped)
9267
		goto out;
9268

9269
	/* If we're a completely isolated CPU, we don't play: */
9270
	if (on_null_domain(rq))
9271 9272
		return;

9273 9274
	rq->nohz_tick_stopped = 1;

9275 9276
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9277

9278 9279 9280 9281 9282 9283 9284
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9285
	set_cpu_sd_state_idle(cpu);
9286 9287 9288 9289 9290 9291 9292

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9293 9294 9295
}

/*
9296 9297 9298 9299 9300
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9301
 */
9302 9303
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9304
{
9305
	/* Earliest time when we have to do rebalance again */
9306 9307
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9308
	bool has_blocked_load = false;
9309
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9310 9311
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9312
	int ret = false;
P
Peter Zijlstra 已提交
9313
	struct rq *rq;
9314

P
Peter Zijlstra 已提交
9315
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9316

9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9333
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9334
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9335 9336 9337
			continue;

		/*
9338 9339
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9340 9341
		 * balancing owner will pick it up.
		 */
9342 9343 9344 9345
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9346

V
Vincent Guittot 已提交
9347 9348
		rq = cpu_rq(balance_cpu);

9349
		has_blocked_load |= update_nohz_stats(rq, true);
9350

9351 9352 9353 9354 9355
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9356 9357
			struct rq_flags rf;

9358
			rq_lock_irqsave(rq, &rf);
9359
			update_rq_clock(rq);
9360
			cpu_load_update_idle(rq);
9361
			rq_unlock_irqrestore(rq, &rf);
9362

P
Peter Zijlstra 已提交
9363 9364
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9365
		}
9366

9367 9368 9369 9370
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9371
	}
9372

9373 9374 9375 9376 9377 9378
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9379 9380 9381
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9382 9383 9384
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9385 9386 9387
	/* The full idle balance loop has been done */
	ret = true;

9388 9389 9390 9391
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9392

9393 9394 9395 9396 9397 9398 9399
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9400

9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9430
	return true;
9431
}
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9465 9466 9467
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9468
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9469 9470 9471
{
	return false;
}
9472 9473

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9474
#endif /* CONFIG_NO_HZ_COMMON */
9475

P
Peter Zijlstra 已提交
9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9510

P
Peter Zijlstra 已提交
9511 9512 9513 9514 9515 9516
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9517 9518
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9568
out:
P
Peter Zijlstra 已提交
9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9593 9594 9595 9596
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9597
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9598
{
9599
	struct rq *this_rq = this_rq();
9600
	enum cpu_idle_type idle = this_rq->idle_balance ?
9601 9602 9603
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9604 9605
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9606
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9607
	 * give the idle CPUs a chance to load balance. Else we may
9608 9609
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9610
	 */
P
Peter Zijlstra 已提交
9611 9612 9613 9614 9615
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9616
	rebalance_domains(this_rq, idle);
9617 9618 9619 9620 9621
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9622
void trigger_load_balance(struct rq *rq)
9623 9624
{
	/* Don't need to rebalance while attached to NULL domain */
9625 9626 9627 9628
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9629
		raise_softirq(SCHED_SOFTIRQ);
9630 9631

	nohz_balancer_kick(rq);
9632 9633
}

9634 9635 9636
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9637 9638

	update_runtime_enabled(rq);
9639 9640 9641 9642 9643
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9644 9645 9646

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9647 9648
}

9649
#endif /* CONFIG_SMP */
9650

9651
/*
9652 9653 9654 9655 9656 9657
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9658
 */
P
Peter Zijlstra 已提交
9659
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9660 9661 9662 9663 9664 9665
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9666
		entity_tick(cfs_rq, se, queued);
9667
	}
9668

9669
	if (static_branch_unlikely(&sched_numa_balancing))
9670
		task_tick_numa(rq, curr);
9671 9672 9673
}

/*
P
Peter Zijlstra 已提交
9674 9675 9676
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9677
 */
P
Peter Zijlstra 已提交
9678
static void task_fork_fair(struct task_struct *p)
9679
{
9680 9681
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9682
	struct rq *rq = this_rq();
9683
	struct rq_flags rf;
9684

9685
	rq_lock(rq, &rf);
9686 9687
	update_rq_clock(rq);

9688 9689
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9690 9691
	if (curr) {
		update_curr(cfs_rq);
9692
		se->vruntime = curr->vruntime;
9693
	}
9694
	place_entity(cfs_rq, se, 1);
9695

P
Peter Zijlstra 已提交
9696
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9697
		/*
9698 9699 9700
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9701
		swap(curr->vruntime, se->vruntime);
9702
		resched_curr(rq);
9703
	}
9704

9705
	se->vruntime -= cfs_rq->min_vruntime;
9706
	rq_unlock(rq, &rf);
9707 9708
}

9709 9710 9711 9712
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9713 9714
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9715
{
9716
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9717 9718
		return;

9719 9720 9721 9722 9723
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9724
	if (rq->curr == p) {
9725
		if (p->prio > oldprio)
9726
			resched_curr(rq);
9727
	} else
9728
		check_preempt_curr(rq, p, 0);
9729 9730
}

9731
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9732 9733 9734 9735
{
	struct sched_entity *se = &p->se;

	/*
9736 9737 9738 9739 9740 9741 9742 9743 9744 9745
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9746
	 *
9747 9748 9749 9750
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9751
	 */
9752 9753
	if (!se->sum_exec_runtime ||
	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9754 9755 9756 9757 9758
		return true;

	return false;
}

9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9777
		update_load_avg(cfs_rq, se, UPDATE_TG);
9778 9779 9780 9781 9782 9783
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9784
static void detach_entity_cfs_rq(struct sched_entity *se)
9785 9786 9787
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9788
	/* Catch up with the cfs_rq and remove our load when we leave */
9789
	update_load_avg(cfs_rq, se, 0);
9790
	detach_entity_load_avg(cfs_rq, se);
9791
	update_tg_load_avg(cfs_rq, false);
9792
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9793 9794
}

9795
static void attach_entity_cfs_rq(struct sched_entity *se)
9796
{
9797
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9798 9799

#ifdef CONFIG_FAIR_GROUP_SCHED
9800 9801 9802 9803 9804 9805
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9806

9807
	/* Synchronize entity with its cfs_rq */
9808
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9809
	attach_entity_load_avg(cfs_rq, se, 0);
9810
	update_tg_load_avg(cfs_rq, false);
9811
	propagate_entity_cfs_rq(se);
9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9837 9838 9839 9840

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9841

9842 9843 9844 9845 9846 9847 9848 9849
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9850

9851
	if (task_on_rq_queued(p)) {
9852
		/*
9853 9854 9855
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9856
		 */
9857 9858 9859 9860
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9861
	}
9862 9863
}

9864 9865 9866 9867 9868 9869 9870 9871 9872
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9873 9874 9875 9876 9877 9878 9879
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9880 9881
}

9882 9883
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9884
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9885 9886 9887 9888
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9889
#ifdef CONFIG_SMP
9890
	raw_spin_lock_init(&cfs_rq->removed.lock);
9891
#endif
9892 9893
}

P
Peter Zijlstra 已提交
9894
#ifdef CONFIG_FAIR_GROUP_SCHED
9895 9896 9897 9898 9899 9900 9901 9902
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9903
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9904
{
9905
	detach_task_cfs_rq(p);
9906
	set_task_rq(p, task_cpu(p));
9907 9908 9909 9910 9911

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9912
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9913
}
9914

9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9928 9929 9930 9931 9932 9933 9934 9935 9936
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9937
		if (tg->se)
9938 9939 9940 9941 9942 9943 9944 9945 9946 9947
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9948
	struct cfs_rq *cfs_rq;
9949 9950
	int i;

K
Kees Cook 已提交
9951
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9952 9953
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9954
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9975
		init_entity_runnable_average(se);
9976 9977 9978 9979 9980 9981 9982 9983 9984 9985
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9997
		update_rq_clock(rq);
9998
		attach_entity_cfs_rq(se);
9999
		sync_throttle(tg, i);
10000 10001 10002 10003
		raw_spin_unlock_irq(&rq->lock);
	}
}

10004
void unregister_fair_sched_group(struct task_group *tg)
10005 10006
{
	unsigned long flags;
10007 10008
	struct rq *rq;
	int cpu;
10009

10010 10011 10012
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
10013

10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
10046
	if (!parent) {
10047
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
10048 10049
		se->depth = 0;
	} else {
10050
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
10051 10052
		se->depth = parent->depth + 1;
	}
10053 10054

	se->my_q = cfs_rq;
10055 10056
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
10081 10082
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10083 10084

		/* Propagate contribution to hierarchy */
10085
		rq_lock_irqsave(rq, &rf);
10086
		update_rq_clock(rq);
10087
		for_each_sched_entity(se) {
10088
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10089
			update_cfs_group(se);
10090
		}
10091
		rq_unlock_irqrestore(rq, &rf);
10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10107 10108
void online_fair_sched_group(struct task_group *tg) { }

10109
void unregister_fair_sched_group(struct task_group *tg) { }
10110 10111 10112

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10113

10114
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10115 10116 10117 10118 10119 10120 10121 10122 10123
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10124
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10125 10126 10127 10128

	return rr_interval;
}

10129 10130 10131
/*
 * All the scheduling class methods:
 */
10132
const struct sched_class fair_sched_class = {
10133
	.next			= &idle_sched_class,
10134 10135 10136
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10137
	.yield_to_task		= yield_to_task_fair,
10138

I
Ingo Molnar 已提交
10139
	.check_preempt_curr	= check_preempt_wakeup,
10140 10141 10142 10143

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10144
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10145
	.select_task_rq		= select_task_rq_fair,
10146
	.migrate_task_rq	= migrate_task_rq_fair,
10147

10148 10149
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10150

10151
	.task_dead		= task_dead_fair,
10152
	.set_cpus_allowed	= set_cpus_allowed_common,
10153
#endif
10154

10155
	.set_curr_task          = set_curr_task_fair,
10156
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10157
	.task_fork		= task_fork_fair,
10158 10159

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10160
	.switched_from		= switched_from_fair,
10161
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10162

10163 10164
	.get_rr_interval	= get_rr_interval_fair,

10165 10166
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10167
#ifdef CONFIG_FAIR_GROUP_SCHED
10168
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10169
#endif
10170 10171 10172
};

#ifdef CONFIG_SCHED_DEBUG
10173
void print_cfs_stats(struct seq_file *m, int cpu)
10174
{
10175
	struct cfs_rq *cfs_rq;
10176

10177
	rcu_read_lock();
10178
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
10179
		print_cfs_rq(m, cpu, cfs_rq);
10180
	rcu_read_unlock();
10181
}
10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10203 10204 10205 10206 10207 10208

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10209
#ifdef CONFIG_NO_HZ_COMMON
10210
	nohz.next_balance = jiffies;
10211
	nohz.next_blocked = jiffies;
10212 10213 10214 10215 10216
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}