fair.c 267.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
355
/* Iterate thr' all leaf cfs_rq's on a runqueue */
356 357 358
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
359 360

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
361
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
362 363 364
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
365
		return se->cfs_rq;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	return NULL;
P
Peter Zijlstra 已提交
368 369 370 371 372 373 374
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

375 376 377 378 379 380 381 382 383 384 385 386 387
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
388 389
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

407 408 409 410 411 412
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
413

414 415 416
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
417 418 419
}


P
Peter Zijlstra 已提交
420 421
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
422

P
Peter Zijlstra 已提交
423
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424
{
P
Peter Zijlstra 已提交
425
	return &task_rq(p)->cfs;
426 427
}

P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

442 443 444 445 446 447 448 449
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

450 451
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
452 453 454 455 456 457

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

458 459 460 461 462
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
463 464
#endif	/* CONFIG_FAIR_GROUP_SCHED */

465
static __always_inline
466
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 468 469 470 471

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

472
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473
{
474
	s64 delta = (s64)(vruntime - max_vruntime);
475
	if (delta > 0)
476
		max_vruntime = vruntime;
477

478
	return max_vruntime;
479 480
}

481
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

490 491 492 493 494 495
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

496 497
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
498
	struct sched_entity *curr = cfs_rq->curr;
499
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500

501 502
	u64 vruntime = cfs_rq->min_vruntime;

503 504 505 506 507 508
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
509

510 511 512
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
513

514
		if (!curr)
515 516 517 518 519
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

520
	/* ensure we never gain time by being placed backwards. */
521
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 523 524 525
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
526 527
}

528 529 530
/*
 * Enqueue an entity into the rb-tree:
 */
531
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532
{
533
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 535
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
536
	bool leftmost = true;
537 538 539 540 541 542 543 544 545 546 547

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
548
		if (entity_before(se, entry)) {
549 550 551
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
552
			leftmost = false;
553 554 555 556
		}
	}

	rb_link_node(&se->run_node, parent, link);
557 558
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
559 560
}

561
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562
{
563
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 565
}

566
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567
{
568
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 570 571 572 573

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
574 575
}

576 577 578 579 580 581 582 583 584 585 586
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
587
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588
{
589
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590

591 592
	if (!last)
		return NULL;
593 594

	return rb_entry(last, struct sched_entity, run_node);
595 596
}

597 598 599 600
/**************************************************************
 * Scheduling class statistics methods:
 */

601
int sched_proc_update_handler(struct ctl_table *table, int write,
602
		void __user *buffer, size_t *lenp,
603 604
		loff_t *ppos)
{
605
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606
	unsigned int factor = get_update_sysctl_factor();
607 608 609 610 611 612 613

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

614 615 616 617 618 619 620
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

621 622 623
	return 0;
}
#endif
624

625
/*
626
 * delta /= w
627
 */
628
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629
{
630
	if (unlikely(se->load.weight != NICE_0_LOAD))
631
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 633 634 635

	return delta;
}

636 637 638
/*
 * The idea is to set a period in which each task runs once.
 *
639
 * When there are too many tasks (sched_nr_latency) we have to stretch
640 641 642 643
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
644 645
static u64 __sched_period(unsigned long nr_running)
{
646 647 648 649
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
650 651
}

652 653 654 655
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
656
 * s = p*P[w/rw]
657
 */
P
Peter Zijlstra 已提交
658
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659
{
M
Mike Galbraith 已提交
660
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661

M
Mike Galbraith 已提交
662
	for_each_sched_entity(se) {
L
Lin Ming 已提交
663
		struct load_weight *load;
664
		struct load_weight lw;
L
Lin Ming 已提交
665 666 667

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
668

M
Mike Galbraith 已提交
669
		if (unlikely(!se->on_rq)) {
670
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
671 672 673 674

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
675
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
676 677
	}
	return slice;
678 679
}

680
/*
A
Andrei Epure 已提交
681
 * We calculate the vruntime slice of a to-be-inserted task.
682
 *
683
 * vs = s/w
684
 */
685
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
686
{
687
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 689
}

690
#ifdef CONFIG_SMP
691
#include "pelt.h"
692 693
#include "sched-pelt.h"

694
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 696
static unsigned long task_h_load(struct task_struct *p);

697 698
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
699
{
700
	struct sched_avg *sa = &se->avg;
701

702 703
	memset(sa, 0, sizeof(*sa));

704 705 706 707 708 709 710
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
711 712
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

713 714
	se->runnable_weight = se->load.weight;

715
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716
}
717

718
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719
static void attach_entity_cfs_rq(struct sched_entity *se);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
734
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735
 *
736
 * where n denotes the nth task and cpu_scale the CPU capacity.
737
 *
738 739
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
740 741 742 743 744 745 746 747 748 749 750
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
751 752
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 754 755 756 757 758 759 760 761 762 763 764

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
765 766 767 768 769 770 771

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
772
			update_cfs_rq_load_avg(now, cfs_rq);
773
			attach_entity_load_avg(cfs_rq, se, 0);
774 775 776 777 778
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
779
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 781 782 783
			return;
		}
	}

784
	attach_entity_cfs_rq(se);
785 786
}

787
#else /* !CONFIG_SMP */
788
void init_entity_runnable_average(struct sched_entity *se)
789 790
{
}
791 792 793
void post_init_entity_util_avg(struct sched_entity *se)
{
}
794 795 796
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
797
#endif /* CONFIG_SMP */
798

799
/*
800
 * Update the current task's runtime statistics.
801
 */
802
static void update_curr(struct cfs_rq *cfs_rq)
803
{
804
	struct sched_entity *curr = cfs_rq->curr;
805
	u64 now = rq_clock_task(rq_of(cfs_rq));
806
	u64 delta_exec;
807 808 809 810

	if (unlikely(!curr))
		return;

811 812
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
813
		return;
814

I
Ingo Molnar 已提交
815
	curr->exec_start = now;
816

817 818 819 820
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
821
	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 823 824 825

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

826 827 828
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

829
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830
		cgroup_account_cputime(curtask, delta_exec);
831
		account_group_exec_runtime(curtask, delta_exec);
832
	}
833 834

	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 836
}

837 838 839 840 841
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

842
static inline void
843
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844
{
845 846 847 848 849 850 851
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 853

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 855
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
856

857
	__schedstat_set(se->statistics.wait_start, wait_start);
858 859
}

860
static inline void
861 862 863
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
864 865
	u64 delta;

866 867 868 869
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 871 872 873 874 875 876 877 878

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
879
			__schedstat_set(se->statistics.wait_start, delta);
880 881 882 883 884
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

885
	__schedstat_set(se->statistics.wait_max,
886
		      max(schedstat_val(se->statistics.wait_max), delta));
887 888 889
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
890 891
}

892
static inline void
893 894 895
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
896 897 898 899 900 901 902
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
903 904 905 906

	if (entity_is_task(se))
		tsk = task_of(se);

907 908
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 910 911 912

		if ((s64)delta < 0)
			delta = 0;

913
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914
			__schedstat_set(se->statistics.sleep_max, delta);
915

916 917
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 919 920 921 922 923

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
924 925
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931
			__schedstat_set(se->statistics.block_max, delta);
932

933 934
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937

		if (tsk) {
			if (tsk->in_iowait) {
938 939
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
958 959
}

960 961 962
/*
 * Task is being enqueued - update stats:
 */
963
static inline void
964
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965
{
966 967 968
	if (!schedstat_enabled())
		return;

969 970 971 972
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
973
	if (se != cfs_rq->curr)
974
		update_stats_wait_start(cfs_rq, se);
975 976 977

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
978 979 980
}

static inline void
981
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985 986

	if (!schedstat_enabled())
		return;

987 988 989 990
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
991
	if (se != cfs_rq->curr)
992
		update_stats_wait_end(cfs_rq, se);
993

994 995
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
996

997
		if (tsk->state & TASK_INTERRUPTIBLE)
998
			__schedstat_set(se->statistics.sleep_start,
999 1000
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001
			__schedstat_set(se->statistics.block_start,
1002
				      rq_clock(rq_of(cfs_rq)));
1003 1004 1005
	}
}

1006 1007 1008 1009
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1010
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 1012 1013 1014
{
	/*
	 * We are starting a new run period:
	 */
1015
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 1017 1018 1019 1020 1021
}

/**************************************************
 * Scheduling class queueing methods:
 */

1022 1023
#ifdef CONFIG_NUMA_BALANCING
/*
1024 1025 1026
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1027
 */
1028 1029
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 1031 1032

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1033

1034 1035 1036
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1084
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 1086 1087
	unsigned int scan, floor;
	unsigned int windows = 1;

1088 1089
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1090 1091 1092 1093 1094 1095
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1115 1116
static unsigned int task_scan_max(struct task_struct *p)
{
1117 1118
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1119 1120 1121

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1137 1138 1139
	return max(smin, smax);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1202 1203 1204 1205 1206
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1207
/*
1208
 * The averaged statistics, shared & private, memory & CPU,
1209 1210 1211 1212 1213
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214
{
1215
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 1217 1218 1219
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1220
	if (!p->numa_faults)
1221 1222
		return 0;

1223 1224
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 1226
}

1227 1228 1229 1230 1231
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1232 1233
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 1235
}

1236 1237
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1238 1239
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1343 1344 1345 1346 1347 1348
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1349 1350
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1351
{
1352
	unsigned long faults, total_faults;
1353

1354
	if (!p->numa_faults)
1355 1356 1357 1358 1359 1360 1361
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1362
	faults = task_faults(p, nid);
1363 1364
	faults += score_nearby_nodes(p, nid, dist, true);

1365
	return 1000 * faults / total_faults;
1366 1367
}

1368 1369
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1370
{
1371 1372 1373 1374 1375 1376 1377 1378
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1379 1380
		return 0;

1381
	faults = group_faults(p, nid);
1382 1383
	faults += score_nearby_nodes(p, nid, dist, false);

1384
	return 1000 * faults / total_faults;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1427 1428
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1429
	 */
1430 1431
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1432 1433 1434
		return true;

	/*
1435 1436 1437 1438 1439 1440
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1441
	 */
1442 1443
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 1445
}

1446
static unsigned long weighted_cpuload(struct rq *rq);
1447 1448
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1449
static unsigned long capacity_of(int cpu);
1450

1451
/* Cached statistics for all CPUs within a node */
1452
struct numa_stats {
1453
	unsigned long nr_running;
1454
	unsigned long load;
1455 1456

	/* Total compute capacity of CPUs on a node */
1457
	unsigned long compute_capacity;
1458 1459

	/* Approximate capacity in terms of runnable tasks on a node */
1460
	unsigned long task_capacity;
1461
	int has_free_capacity;
1462
};
1463

1464 1465 1466 1467 1468
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1469 1470
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1471 1472 1473 1474 1475 1476

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1477
		ns->load += weighted_cpuload(rq);
1478
		ns->compute_capacity += capacity_of(cpu);
1479 1480

		cpus++;
1481 1482
	}

1483 1484 1485 1486 1487
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1488 1489
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1490 1491 1492 1493
	 */
	if (!cpus)
		return;

1494 1495 1496 1497 1498 1499
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1500
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1501 1502
}

1503 1504
struct task_numa_env {
	struct task_struct *p;
1505

1506 1507
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1508

1509
	struct numa_stats src_stats, dst_stats;
1510

1511
	int imbalance_pct;
1512
	int dist;
1513 1514 1515

	struct task_struct *best_task;
	long best_imp;
1516 1517 1518
	int best_cpu;
};

1519 1520 1521 1522 1523
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1524 1525
	if (p)
		get_task_struct(p);
1526 1527 1528 1529 1530 1531

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1532
static bool load_too_imbalanced(long src_load, long dst_load,
1533 1534
				struct task_numa_env *env)
{
1535 1536
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1548 1549

	/* We care about the slope of the imbalance, not the direction. */
1550 1551
	if (dst_load < src_load)
		swap(dst_load, src_load);
1552 1553

	/* Is the difference below the threshold? */
1554 1555
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1556 1557 1558 1559 1560
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1561
	 * Compare it with the old imbalance.
1562
	 */
1563
	orig_src_load = env->src_stats.load;
1564
	orig_dst_load = env->dst_stats.load;
1565

1566 1567
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1568

1569 1570 1571 1572 1573
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1574 1575
}

1576 1577 1578 1579 1580 1581
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1582 1583
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1584 1585 1586 1587
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1588
	long src_load, dst_load;
1589
	long load;
1590
	long imp = env->p->numa_group ? groupimp : taskimp;
1591
	long moveimp = imp;
1592
	int dist = env->dist;
1593 1594

	rcu_read_lock();
1595 1596
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1597 1598
		cur = NULL;

1599 1600 1601 1602 1603 1604 1605
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1606 1607 1608 1609 1610 1611 1612 1613
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
1614
		/* Skip this swap candidate if cannot move to the source CPU: */
1615
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1616 1617
			goto unlock;

1618 1619
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1620
		 * in any group then look only at task weights.
1621
		 */
1622
		if (cur->numa_group == env->p->numa_group) {
1623 1624
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1625 1626 1627 1628 1629 1630
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1631
		} else {
1632 1633 1634 1635 1636 1637
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1638 1639
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1640
			else
1641 1642
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1643
		}
1644 1645
	}

1646
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1647 1648 1649 1650
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1651
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1652
		    !env->dst_stats.has_free_capacity)
1653 1654 1655 1656 1657
			goto unlock;

		goto balance;
	}

1658
	/* Balance doesn't matter much if we're running a task per CPU: */
1659 1660
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1661 1662 1663 1664 1665 1666
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1667 1668 1669
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1670

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1688
	if (cur) {
1689 1690 1691
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1692 1693
	}

1694
	if (load_too_imbalanced(src_load, dst_load, env))
1695 1696
		goto unlock;

1697 1698 1699 1700
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1701 1702
	if (!cur) {
		/*
1703
		 * select_idle_siblings() uses an per-CPU cpumask that
1704 1705 1706
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1707 1708
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1709 1710
		local_irq_enable();
	}
1711

1712 1713 1714 1715 1716 1717
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1718 1719
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1720 1721 1722 1723 1724
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1725
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1726 1727 1728
			continue;

		env->dst_cpu = cpu;
1729
		task_numa_compare(env, taskimp, groupimp);
1730 1731 1732
	}
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1750 1751 1752
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1753 1754 1755 1756 1757
		return true;

	return false;
}

1758 1759 1760 1761
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1762

1763
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1764
		.src_nid = task_node(p),
1765 1766 1767 1768 1769

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1770
		.best_cpu = -1,
1771 1772
	};
	struct sched_domain *sd;
1773
	unsigned long taskweight, groupweight;
1774
	int nid, ret, dist;
1775
	long taskimp, groupimp;
1776

1777
	/*
1778 1779 1780 1781 1782 1783
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1784 1785
	 */
	rcu_read_lock();
1786
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1787 1788
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1789 1790
	rcu_read_unlock();

1791 1792 1793 1794 1795 1796 1797
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1798
		p->numa_preferred_nid = task_node(p);
1799 1800 1801
		return -EINVAL;
	}

1802
	env.dst_nid = p->numa_preferred_nid;
1803 1804 1805 1806 1807 1808
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1809
	update_numa_stats(&env.dst_stats, env.dst_nid);
1810

1811
	/* Try to find a spot on the preferred nid. */
1812 1813
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1814

1815 1816 1817 1818 1819 1820 1821
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1822
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1823 1824 1825
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1826

1827
			dist = node_distance(env.src_nid, env.dst_nid);
1828 1829 1830 1831 1832
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1833

1834
			/* Only consider nodes where both task and groups benefit */
1835 1836
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1837
			if (taskimp < 0 && groupimp < 0)
1838 1839
				continue;

1840
			env.dist = dist;
1841 1842
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1843 1844
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1845 1846 1847
		}
	}

1848 1849 1850 1851 1852 1853 1854 1855
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1856
	if (p->numa_group) {
1857 1858
		struct numa_group *ng = p->numa_group;

1859 1860 1861 1862 1863
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1864
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1865 1866 1867 1868 1869 1870
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1871

1872 1873 1874 1875
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1876
	p->numa_scan_period = task_scan_start(p);
1877

1878
	if (env.best_task == NULL) {
1879 1880 1881
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1882 1883 1884 1885
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1886 1887
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1888 1889
	put_task_struct(env.best_task);
	return ret;
1890 1891
}

1892 1893 1894
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1895 1896
	unsigned long interval = HZ;

1897
	/* This task has no NUMA fault statistics yet */
1898
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1899 1900
		return;

1901
	/* Periodically retry migrating the task to the preferred node */
1902
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1903
	p->numa_migrate_retry = jiffies + interval;
1904 1905

	/* Success if task is already running on preferred CPU */
1906
	if (task_node(p) == p->numa_preferred_nid)
1907 1908 1909
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1910
	task_numa_migrate(p);
1911 1912
}

1913
/*
1914
 * Find out how many nodes on the workload is actively running on. Do this by
1915 1916 1917 1918
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1919
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1920 1921
{
	unsigned long faults, max_faults = 0;
1922
	int nid, active_nodes = 0;
1923 1924 1925 1926 1927 1928 1929 1930 1931

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1932 1933
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1934
	}
1935 1936 1937

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1938 1939
}

1940 1941 1942
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1943 1944 1945
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1946 1947
 */
#define NUMA_PERIOD_SLOTS 10
1948
#define NUMA_PERIOD_THRESHOLD 7
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1960
	int lr_ratio, ps_ratio;
1961 1962 1963 1964 1965 1966 1967 1968
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1969 1970 1971
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1972
	 */
1973
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2009 2010 2011 2012 2013
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2014 2015 2016
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2017
		 */
2018 2019
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2020 2021 2022 2023 2024 2025 2026
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2045
		delta = p->se.avg.load_sum;
2046
		*period = LOAD_AVG_MAX;
2047 2048 2049 2050 2051 2052 2053 2054
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2102
		nodemask_t max_group = NODE_MASK_NONE;
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2136 2137
		if (!max_faults)
			break;
2138 2139 2140 2141 2142
		nodes = max_group;
	}
	return nid;
}

2143 2144
static void task_numa_placement(struct task_struct *p)
{
2145 2146
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2147
	unsigned long fault_types[2] = { 0, 0 };
2148 2149
	unsigned long total_faults;
	u64 runtime, period;
2150
	spinlock_t *group_lock = NULL;
2151

2152 2153 2154 2155 2156
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2157
	seq = READ_ONCE(p->mm->numa_scan_seq);
2158 2159 2160
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2161
	p->numa_scan_period_max = task_scan_max(p);
2162

2163 2164 2165 2166
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2167 2168 2169
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2170
		spin_lock_irq(group_lock);
2171 2172
	}

2173 2174
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2175 2176
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2177
		unsigned long faults = 0, group_faults = 0;
2178
		int priv;
2179

2180
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2181
			long diff, f_diff, f_weight;
2182

2183 2184 2185 2186
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2187

2188
			/* Decay existing window, copy faults since last scan */
2189 2190 2191
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2192

2193 2194 2195 2196 2197 2198 2199 2200
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2201
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2202
				   (total_faults + 1);
2203 2204
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2205

2206 2207 2208
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2209
			p->total_numa_faults += diff;
2210
			if (p->numa_group) {
2211 2212 2213 2214 2215 2216 2217 2218 2219
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2220
				p->numa_group->total_faults += diff;
2221
				group_faults += p->numa_group->faults[mem_idx];
2222
			}
2223 2224
		}

2225 2226 2227 2228
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2229 2230 2231 2232 2233 2234 2235

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2236 2237
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2238
	if (p->numa_group) {
2239
		numa_group_count_active_nodes(p->numa_group);
2240
		spin_unlock_irq(group_lock);
2241
		max_nid = preferred_group_nid(p, max_group_nid);
2242 2243
	}

2244 2245 2246 2247 2248 2249 2250
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2251
	}
2252 2253
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2265 2266
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2267 2268 2269 2270 2271 2272 2273 2274 2275
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2276
				    4*nr_node_ids*sizeof(unsigned long);
2277 2278 2279 2280 2281 2282

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2283 2284
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2285
		spin_lock_init(&grp->lock);
2286
		grp->gid = p->pid;
2287
		/* Second half of the array tracks nids where faults happen */
2288 2289
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2290

2291
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2292
			grp->faults[i] = p->numa_faults[i];
2293

2294
		grp->total_faults = p->total_numa_faults;
2295

2296 2297 2298 2299 2300
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2301
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2302 2303

	if (!cpupid_match_pid(tsk, cpupid))
2304
		goto no_join;
2305 2306 2307

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2308
		goto no_join;
2309 2310 2311

	my_grp = p->numa_group;
	if (grp == my_grp)
2312
		goto no_join;
2313 2314 2315 2316 2317 2318

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2319
		goto no_join;
2320 2321 2322 2323 2324

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2325
		goto no_join;
2326

2327 2328 2329 2330 2331 2332 2333
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2334

2335 2336 2337
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2338
	if (join && !get_numa_group(grp))
2339
		goto no_join;
2340 2341 2342 2343 2344 2345

	rcu_read_unlock();

	if (!join)
		return;

2346 2347
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2348

2349
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2350 2351
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2352
	}
2353 2354
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2355 2356 2357 2358 2359

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2360
	spin_unlock_irq(&grp->lock);
2361 2362 2363 2364

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2365 2366 2367 2368 2369
	return;

no_join:
	rcu_read_unlock();
	return;
2370 2371 2372 2373 2374
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2375
	void *numa_faults = p->numa_faults;
2376 2377
	unsigned long flags;
	int i;
2378 2379

	if (grp) {
2380
		spin_lock_irqsave(&grp->lock, flags);
2381
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2382
			grp->faults[i] -= p->numa_faults[i];
2383
		grp->total_faults -= p->total_numa_faults;
2384

2385
		grp->nr_tasks--;
2386
		spin_unlock_irqrestore(&grp->lock, flags);
2387
		RCU_INIT_POINTER(p->numa_group, NULL);
2388 2389 2390
		put_numa_group(grp);
	}

2391
	p->numa_faults = NULL;
2392
	kfree(numa_faults);
2393 2394
}

2395 2396 2397
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2398
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2399 2400
{
	struct task_struct *p = current;
2401
	bool migrated = flags & TNF_MIGRATED;
2402
	int cpu_node = task_node(current);
2403
	int local = !!(flags & TNF_FAULT_LOCAL);
2404
	struct numa_group *ng;
2405
	int priv;
2406

2407
	if (!static_branch_likely(&sched_numa_balancing))
2408 2409
		return;

2410 2411 2412 2413
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2414
	/* Allocate buffer to track faults on a per-node basis */
2415 2416
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2417
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2418

2419 2420
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2421
			return;
2422

2423
		p->total_numa_faults = 0;
2424
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2425
	}
2426

2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2435
		if (!priv && !(flags & TNF_NO_GROUP))
2436
			task_numa_group(p, last_cpupid, flags, &priv);
2437 2438
	}

2439 2440 2441 2442 2443 2444
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2445 2446 2447 2448
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2449 2450
		local = 1;

2451
	task_numa_placement(p);
2452

2453 2454 2455 2456 2457
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2458 2459
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2460 2461
	if (migrated)
		p->numa_pages_migrated += pages;
2462 2463
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2464

2465 2466
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2467
	p->numa_faults_locality[local] += pages;
2468 2469
}

2470 2471
static void reset_ptenuma_scan(struct task_struct *p)
{
2472 2473 2474 2475 2476 2477 2478 2479
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2480
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2481 2482 2483
	p->mm->numa_scan_offset = 0;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2493
	u64 runtime = p->se.sum_exec_runtime;
2494
	struct vm_area_struct *vma;
2495
	unsigned long start, end;
2496
	unsigned long nr_pte_updates = 0;
2497
	long pages, virtpages;
2498

2499
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2513
	if (!mm->numa_next_scan) {
2514 2515
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2516 2517
	}

2518 2519 2520 2521 2522 2523 2524
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2525 2526
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2527
		p->numa_scan_period = task_scan_start(p);
2528
	}
2529

2530
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2531 2532 2533
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2534 2535 2536 2537 2538 2539
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2540 2541 2542
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2543
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2544 2545
	if (!pages)
		return;
2546

2547

2548 2549
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2550
	vma = find_vma(mm, start);
2551 2552
	if (!vma) {
		reset_ptenuma_scan(p);
2553
		start = 0;
2554 2555
		vma = mm->mmap;
	}
2556
	for (; vma; vma = vma->vm_next) {
2557
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2558
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2559
			continue;
2560
		}
2561

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2572 2573 2574 2575 2576 2577
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2578

2579 2580 2581 2582
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2583
			nr_pte_updates = change_prot_numa(vma, start, end);
2584 2585

			/*
2586 2587 2588 2589 2590 2591
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2592 2593 2594
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2595
			virtpages -= (end - start) >> PAGE_SHIFT;
2596

2597
			start = end;
2598
			if (pages <= 0 || virtpages <= 0)
2599
				goto out;
2600 2601

			cond_resched();
2602
		} while (end != vma->vm_end);
2603
	}
2604

2605
out:
2606
	/*
P
Peter Zijlstra 已提交
2607 2608 2609 2610
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2611 2612
	 */
	if (vma)
2613
		mm->numa_scan_offset = start;
2614 2615 2616
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2653
	if (now > curr->node_stamp + period) {
2654
		if (!curr->node_stamp)
2655
			curr->numa_scan_period = task_scan_start(curr);
2656
		curr->node_stamp += period;
2657 2658 2659 2660 2661 2662 2663

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2664

2665 2666 2667 2668
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2669 2670 2671 2672 2673 2674 2675 2676

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2677

2678 2679
#endif /* CONFIG_NUMA_BALANCING */

2680 2681 2682 2683
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2684
	if (!parent_entity(se))
2685
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2686
#ifdef CONFIG_SMP
2687 2688 2689 2690 2691 2692
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2693
#endif
2694 2695 2696 2697 2698 2699 2700
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2701
	if (!parent_entity(se))
2702
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2703
#ifdef CONFIG_SMP
2704 2705
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2706
		list_del_init(&se->group_node);
2707
	}
2708
#endif
2709 2710 2711
	cfs_rq->nr_running--;
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2753 2754 2755 2756
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2757 2758 2759 2760 2761
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2762 2763 2764 2765 2766
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2793
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2794
			    unsigned long weight, unsigned long runnable)
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2805
	se->runnable_weight = runnable;
2806 2807 2808
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2809 2810 2811 2812 2813 2814 2815
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2832
	reweight_entity(cfs_rq, se, weight, weight);
2833 2834 2835
	load->inv_weight = sched_prio_to_wmult[prio];
}

2836
#ifdef CONFIG_FAIR_GROUP_SCHED
2837
#ifdef CONFIG_SMP
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2876
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2902 2903 2904 2905 2906 2907 2908 2909 2910
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2911
static long calc_group_shares(struct cfs_rq *cfs_rq)
2912
{
2913 2914 2915 2916
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2917

2918
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2919

2920
	tg_weight = atomic_long_read(&tg->load_avg);
2921

2922 2923 2924
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2925

2926
	shares = (tg_shares * load);
2927 2928
	if (tg_weight)
		shares /= tg_weight;
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2942
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2943
}
2944 2945

/*
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2971 2972 2973
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2974 2975 2976 2977 2978 2979 2980
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2981 2982 2983 2984

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2985

2986 2987
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2988
#endif /* CONFIG_SMP */
2989

2990 2991
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2992 2993 2994 2995 2996
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2997
{
2998 2999
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
3000

3001
	if (!gcfs_rq)
3002 3003
		return;

3004
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
3005
		return;
3006

3007
#ifndef CONFIG_SMP
3008
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3009 3010

	if (likely(se->load.weight == shares))
3011
		return;
3012
#else
3013 3014
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3015
#endif
P
Peter Zijlstra 已提交
3016

3017
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3018
}
3019

P
Peter Zijlstra 已提交
3020
#else /* CONFIG_FAIR_GROUP_SCHED */
3021
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3022 3023 3024 3025
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3026
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3027
{
3028 3029
	struct rq *rq = rq_of(cfs_rq);

3030
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3031 3032 3033
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3034
		 * a real problem.
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3045
		cpufreq_update_util(rq, flags);
3046 3047 3048
	}
}

3049
#ifdef CONFIG_SMP
3050
#ifdef CONFIG_FAIR_GROUP_SCHED
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3064
 * Updating tg's load_avg is necessary before update_cfs_share().
3065
 */
3066
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3067
{
3068
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3069

3070 3071 3072 3073 3074 3075
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3076 3077 3078
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3079
	}
3080
}
3081

3082
/*
3083
 * Called within set_task_rq() right before setting a task's CPU. The
3084 3085 3086 3087 3088 3089
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3090 3091 3092
	u64 p_last_update_time;
	u64 n_last_update_time;

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3103 3104
	if (!(se->avg.last_update_time && prev))
		return;
3105 3106

#ifndef CONFIG_64BIT
3107
	{
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3122
	}
3123
#else
3124 3125
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3126
#endif
3127 3128
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3129
}
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3142 3143 3144
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3145 3146 3147 3148 3149 3150 3151 3152
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3153
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3154 3155 3156
 *
 * And per (1) we have:
 *
3157
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3176 3177 3178 3179 3180 3181
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3182
 *
3183
 * So we'll have to approximate.. :/
3184
 *
3185
 * Given the constraint:
3186
 *
3187
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3188
 *
3189 3190
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3191
 *
3192
 * On removal, we'll assume each task is equally runnable; which yields:
3193
 *
3194
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3195
 *
3196
 * XXX: only do this for the part of runnable > running ?
3197 3198 3199
 *
 */

3200
static inline void
3201
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3202 3203 3204 3205 3206 3207 3208
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3209 3210 3211 3212 3213 3214 3215 3216
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3227
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3228
{
3229 3230 3231 3232
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3233

3234 3235
	if (!runnable_sum)
		return;
3236

3237
	gcfs_rq->prop_runnable_sum = 0;
3238

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3262
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3263 3264 3265 3266 3267 3268
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3269 3270
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3271

3272 3273
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3274

3275 3276 3277 3278
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3279

3280 3281
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3282 3283
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3284

3285 3286
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3287

3288
	if (se->on_rq) {
3289 3290
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3291 3292 3293
	}
}

3294
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3295
{
3296 3297
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3298 3299 3300 3301 3302
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3303
	struct cfs_rq *cfs_rq, *gcfs_rq;
3304 3305 3306 3307

	if (entity_is_task(se))
		return 0;

3308 3309
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3310 3311
		return 0;

3312 3313
	gcfs_rq->propagate = 0;

3314 3315
	cfs_rq = cfs_rq_of(se);

3316
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3317

3318 3319
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3320 3321 3322 3323

	return 1;
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3343
	if (gcfs_rq->propagate)
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3354
#else /* CONFIG_FAIR_GROUP_SCHED */
3355

3356
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3357 3358 3359 3360 3361 3362

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3363
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3364

3365
#endif /* CONFIG_FAIR_GROUP_SCHED */
3366

3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3378 3379 3380 3381
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3382
 */
3383
static inline int
3384
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3385
{
3386
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3387
	struct sched_avg *sa = &cfs_rq->avg;
3388
	int decayed = 0;
3389

3390 3391
	if (cfs_rq->removed.nr) {
		unsigned long r;
3392
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3393 3394 3395 3396

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3397
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3398 3399 3400 3401
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3402
		sub_positive(&sa->load_avg, r);
3403
		sub_positive(&sa->load_sum, r * divider);
3404

3405
		r = removed_util;
3406
		sub_positive(&sa->util_avg, r);
3407
		sub_positive(&sa->util_sum, r * divider);
3408

3409
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3410 3411

		decayed = 1;
3412
	}
3413

3414
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3415

3416 3417 3418 3419
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3420

3421
	if (decayed)
3422
		cfs_rq_util_change(cfs_rq, 0);
3423

3424
	return decayed;
3425 3426
}

3427 3428 3429 3430 3431 3432 3433 3434
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3435
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3436
{
3437 3438 3439 3440 3441 3442 3443 3444 3445
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3446
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3465
	enqueue_load_avg(cfs_rq, se);
3466 3467
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3468 3469

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3470

3471
	cfs_rq_util_change(cfs_rq, flags);
3472 3473
}

3474 3475 3476 3477 3478 3479 3480 3481
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3482 3483
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3484
	dequeue_load_avg(cfs_rq, se);
3485 3486
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3487 3488

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3489

3490
	cfs_rq_util_change(cfs_rq, 0);
3491 3492
}

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3520 3521 3522 3523 3524 3525 3526 3527
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3528 3529 3530 3531 3532 3533
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3534
#ifndef CONFIG_64BIT
3535 3536
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3537
	u64 last_update_time_copy;
3538
	u64 last_update_time;
3539

3540 3541 3542 3543 3544
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3545 3546 3547

	return last_update_time;
}
3548
#else
3549 3550 3551 3552
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3553 3554
#endif

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3565
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3566 3567
}

3568 3569 3570 3571 3572 3573 3574
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3575
	unsigned long flags;
3576 3577

	/*
3578 3579 3580 3581 3582 3583 3584
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3585 3586
	 */

3587
	sync_entity_load_avg(se);
3588 3589 3590 3591 3592

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3593
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3594
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3595
}
3596

3597 3598
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3599
	return cfs_rq->avg.runnable_load_avg;
3600 3601 3602 3603 3604 3605 3606
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3607
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3608

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3636
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3662 3663 3664 3665
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3666 3667 3668 3669 3670 3671 3672 3673 3674
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3675 3676 3677 3678 3679 3680 3681 3682
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3683 3684 3685 3686
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3687
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3715 3716
#else /* CONFIG_SMP */

3717 3718
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3719
#define DO_ATTACH	0x0
3720

3721
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3722
{
3723
	cfs_rq_util_change(cfs_rq, 0);
3724 3725
}

3726
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3727

3728
static inline void
3729
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3730 3731 3732
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3733
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3734 3735 3736 3737
{
	return 0;
}

3738 3739 3740 3741 3742 3743 3744
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3745
#endif /* CONFIG_SMP */
3746

P
Peter Zijlstra 已提交
3747 3748 3749 3750 3751 3752 3753 3754 3755
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3756
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3757 3758 3759
#endif
}

3760 3761 3762
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3763
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3764

3765 3766 3767 3768 3769 3770
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3771
	if (initial && sched_feat(START_DEBIT))
3772
		vruntime += sched_vslice(cfs_rq, se);
3773

3774
	/* sleeps up to a single latency don't count. */
3775
	if (!initial) {
3776
		unsigned long thresh = sysctl_sched_latency;
3777

3778 3779 3780 3781 3782 3783
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3784

3785
		vruntime -= thresh;
3786 3787
	}

3788
	/* ensure we never gain time by being placed backwards. */
3789
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3790 3791
}

3792 3793
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3806
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3807
			     "stat_blocked and stat_runtime require the "
3808
			     "kernel parameter schedstats=enable or "
3809 3810 3811 3812 3813
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3833
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3845
static void
3846
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3847
{
3848 3849 3850
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3851
	/*
3852 3853
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3854
	 */
3855
	if (renorm && curr)
3856 3857
		se->vruntime += cfs_rq->min_vruntime;

3858 3859
	update_curr(cfs_rq);

3860
	/*
3861 3862 3863 3864
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3865
	 */
3866 3867 3868
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3869 3870 3871 3872 3873 3874 3875 3876
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3877
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3878
	update_cfs_group(se);
3879
	enqueue_runnable_load_avg(cfs_rq, se);
3880
	account_entity_enqueue(cfs_rq, se);
3881

3882
	if (flags & ENQUEUE_WAKEUP)
3883
		place_entity(cfs_rq, se, 0);
3884

3885
	check_schedstat_required();
3886 3887
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3888
	if (!curr)
3889
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3890
	se->on_rq = 1;
3891

3892
	if (cfs_rq->nr_running == 1) {
3893
		list_add_leaf_cfs_rq(cfs_rq);
3894 3895
		check_enqueue_throttle(cfs_rq);
	}
3896 3897
}

3898
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3899
{
3900 3901
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3902
		if (cfs_rq->last != se)
3903
			break;
3904 3905

		cfs_rq->last = NULL;
3906 3907
	}
}
P
Peter Zijlstra 已提交
3908

3909 3910 3911 3912
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3913
		if (cfs_rq->next != se)
3914
			break;
3915 3916

		cfs_rq->next = NULL;
3917
	}
P
Peter Zijlstra 已提交
3918 3919
}

3920 3921 3922 3923
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3924
		if (cfs_rq->skip != se)
3925
			break;
3926 3927

		cfs_rq->skip = NULL;
3928 3929 3930
	}
}

P
Peter Zijlstra 已提交
3931 3932
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3933 3934 3935 3936 3937
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3938 3939 3940

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3941 3942
}

3943
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3944

3945
static void
3946
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3947
{
3948 3949 3950 3951
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3952 3953 3954 3955 3956 3957 3958 3959 3960

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3961
	update_load_avg(cfs_rq, se, UPDATE_TG);
3962
	dequeue_runnable_load_avg(cfs_rq, se);
3963

3964
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3965

P
Peter Zijlstra 已提交
3966
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3967

3968
	if (se != cfs_rq->curr)
3969
		__dequeue_entity(cfs_rq, se);
3970
	se->on_rq = 0;
3971
	account_entity_dequeue(cfs_rq, se);
3972 3973

	/*
3974 3975 3976 3977
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3978
	 */
3979
	if (!(flags & DEQUEUE_SLEEP))
3980
		se->vruntime -= cfs_rq->min_vruntime;
3981

3982 3983 3984
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3985
	update_cfs_group(se);
3986 3987 3988 3989 3990 3991 3992 3993 3994

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3995 3996 3997 3998 3999
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4000
static void
I
Ingo Molnar 已提交
4001
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4002
{
4003
	unsigned long ideal_runtime, delta_exec;
4004 4005
	struct sched_entity *se;
	s64 delta;
4006

P
Peter Zijlstra 已提交
4007
	ideal_runtime = sched_slice(cfs_rq, curr);
4008
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4009
	if (delta_exec > ideal_runtime) {
4010
		resched_curr(rq_of(cfs_rq));
4011 4012 4013 4014 4015
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4027 4028
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4029

4030 4031
	if (delta < 0)
		return;
4032

4033
	if (delta > ideal_runtime)
4034
		resched_curr(rq_of(cfs_rq));
4035 4036
}

4037
static void
4038
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4039
{
4040 4041 4042 4043 4044 4045 4046
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4047
		update_stats_wait_end(cfs_rq, se);
4048
		__dequeue_entity(cfs_rq, se);
4049
		update_load_avg(cfs_rq, se, UPDATE_TG);
4050 4051
	}

4052
	update_stats_curr_start(cfs_rq, se);
4053
	cfs_rq->curr = se;
4054

I
Ingo Molnar 已提交
4055 4056 4057 4058 4059
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4060
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4061 4062 4063
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4064
	}
4065

4066
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4067 4068
}

4069 4070 4071
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4072 4073 4074 4075 4076 4077 4078
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4079 4080
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4081
{
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4093

4094 4095 4096 4097 4098
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4109 4110 4111
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4112

4113 4114 4115 4116 4117 4118
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4119 4120 4121 4122 4123 4124
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4125
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4126 4127

	return se;
4128 4129
}

4130
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4131

4132
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4133 4134 4135 4136 4137 4138
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4139
		update_curr(cfs_rq);
4140

4141 4142 4143
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4144
	check_spread(cfs_rq, prev);
4145

4146
	if (prev->on_rq) {
4147
		update_stats_wait_start(cfs_rq, prev);
4148 4149
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4150
		/* in !on_rq case, update occurred at dequeue */
4151
		update_load_avg(cfs_rq, prev, 0);
4152
	}
4153
	cfs_rq->curr = NULL;
4154 4155
}

P
Peter Zijlstra 已提交
4156 4157
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4158 4159
{
	/*
4160
	 * Update run-time statistics of the 'current'.
4161
	 */
4162
	update_curr(cfs_rq);
4163

4164 4165 4166
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4167
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4168
	update_cfs_group(curr);
4169

P
Peter Zijlstra 已提交
4170 4171 4172 4173 4174
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4175
	if (queued) {
4176
		resched_curr(rq_of(cfs_rq));
4177 4178
		return;
	}
P
Peter Zijlstra 已提交
4179 4180 4181 4182 4183 4184 4185 4186
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4187
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4188
		check_preempt_tick(cfs_rq, curr);
4189 4190
}

4191 4192 4193 4194 4195 4196

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4197 4198

#ifdef HAVE_JUMP_LABEL
4199
static struct static_key __cfs_bandwidth_used;
4200 4201 4202

static inline bool cfs_bandwidth_used(void)
{
4203
	return static_key_false(&__cfs_bandwidth_used);
4204 4205
}

4206
void cfs_bandwidth_usage_inc(void)
4207
{
4208
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4209 4210 4211 4212
}

void cfs_bandwidth_usage_dec(void)
{
4213
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4214 4215 4216 4217 4218 4219 4220
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4221 4222
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4223 4224
#endif /* HAVE_JUMP_LABEL */

4225 4226 4227 4228 4229 4230 4231 4232
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4233 4234 4235 4236 4237 4238

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4239 4240 4241 4242 4243 4244 4245
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4246
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4256
	cfs_b->expires_seq++;
P
Paul Turner 已提交
4257 4258
}

4259 4260 4261 4262 4263
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4264 4265 4266 4267
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4268
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4269

4270
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4271 4272
}

4273 4274
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4275 4276 4277
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4278
	u64 amount = 0, min_amount, expires;
4279
	int expires_seq;
4280 4281 4282 4283 4284 4285 4286

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4287
	else {
P
Peter Zijlstra 已提交
4288
		start_cfs_bandwidth(cfs_b);
4289 4290 4291 4292 4293 4294

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4295
	}
4296
	expires_seq = cfs_b->expires_seq;
P
Paul Turner 已提交
4297
	expires = cfs_b->runtime_expires;
4298 4299 4300
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4301 4302 4303 4304 4305
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
4306 4307
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
P
Paul Turner 已提交
4308
		cfs_rq->runtime_expires = expires;
4309
	}
4310 4311

	return cfs_rq->runtime_remaining > 0;
4312 4313
}

P
Paul Turner 已提交
4314 4315 4316 4317 4318
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4319
{
P
Paul Turner 已提交
4320 4321 4322
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4323
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4324 4325
		return;

P
Paul Turner 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4335
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
P
Paul Turner 已提交
4336
	 */
4337
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
P
Paul Turner 已提交
4338 4339 4340 4341 4342 4343 4344 4345
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4346
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4347 4348
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4349
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4350 4351 4352
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4353 4354
		return;

4355 4356 4357 4358 4359
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4360
		resched_curr(rq_of(cfs_rq));
4361 4362
}

4363
static __always_inline
4364
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4365
{
4366
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4367 4368 4369 4370 4371
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4372 4373
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4374
	return cfs_bandwidth_used() && cfs_rq->throttled;
4375 4376
}

4377 4378 4379
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4380
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4407
		/* adjust cfs_rq_clock_task() */
4408
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4409
					     cfs_rq->throttled_clock_task;
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4420 4421
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4422
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4423 4424 4425 4426 4427
	cfs_rq->throttle_count++;

	return 0;
}

4428
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4429 4430 4431 4432 4433
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4434
	bool empty;
4435 4436 4437

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4438
	/* freeze hierarchy runnable averages while throttled */
4439 4440 4441
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4459
		sub_nr_running(rq, task_delta);
4460 4461

	cfs_rq->throttled = 1;
4462
	cfs_rq->throttled_clock = rq_clock(rq);
4463
	raw_spin_lock(&cfs_b->lock);
4464
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4465

4466 4467 4468 4469 4470
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4471 4472 4473 4474 4475 4476 4477 4478

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4479 4480 4481
	raw_spin_unlock(&cfs_b->lock);
}

4482
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4483 4484 4485 4486 4487 4488 4489
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4490
	se = cfs_rq->tg->se[cpu_of(rq)];
4491 4492

	cfs_rq->throttled = 0;
4493 4494 4495

	update_rq_clock(rq);

4496
	raw_spin_lock(&cfs_b->lock);
4497
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4498 4499 4500
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4501 4502 4503
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4522
		add_nr_running(rq, task_delta);
4523

4524
	/* Determine whether we need to wake up potentially idle CPU: */
4525
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4526
		resched_curr(rq);
4527 4528 4529 4530 4531 4532
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4533 4534
	u64 runtime;
	u64 starting_runtime = remaining;
4535 4536 4537 4538 4539

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4540
		struct rq_flags rf;
4541

4542
		rq_lock(rq, &rf);
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4559
		rq_unlock(rq, &rf);
4560 4561 4562 4563 4564 4565

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4566
	return starting_runtime - remaining;
4567 4568
}

4569 4570 4571 4572 4573 4574 4575 4576
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4577
	u64 runtime, runtime_expires;
4578
	int throttled;
4579 4580 4581

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4582
		goto out_deactivate;
4583

4584
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4585
	cfs_b->nr_periods += overrun;
4586

4587 4588 4589 4590 4591 4592
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4593 4594 4595

	__refill_cfs_bandwidth_runtime(cfs_b);

4596 4597 4598
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4599
		return 0;
4600 4601
	}

4602 4603 4604
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4605 4606 4607
	runtime_expires = cfs_b->runtime_expires;

	/*
4608 4609 4610 4611 4612
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4613
	 */
4614 4615
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4616 4617 4618 4619 4620 4621 4622
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4623 4624

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4625
	}
4626

4627 4628 4629 4630 4631 4632 4633
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4634

4635 4636 4637 4638
	return 0;

out_deactivate:
	return 1;
4639
}
4640

4641 4642 4643 4644 4645 4646 4647
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4648 4649 4650 4651
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4652
 * hrtimer base being cleared by hrtimer_start. In the case of
4653 4654
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4680 4681 4682
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4712 4713 4714
	if (!cfs_bandwidth_used())
		return;

4715
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4731 4732 4733
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4734
		return;
4735
	}
4736

4737
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4738
		runtime = cfs_b->runtime;
4739

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4750
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4751 4752 4753
	raw_spin_unlock(&cfs_b->lock);
}

4754 4755 4756 4757 4758 4759 4760
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4761 4762 4763
	if (!cfs_bandwidth_used())
		return;

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4792
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4793 4794
}

4795
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4796
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4797
{
4798
	if (!cfs_bandwidth_used())
4799
		return false;
4800

4801
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4802
		return false;
4803 4804 4805 4806 4807 4808

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4809
		return true;
4810 4811

	throttle_cfs_rq(cfs_rq);
4812
	return true;
4813
}
4814 4815 4816 4817 4818

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4819

4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4832
	raw_spin_lock(&cfs_b->lock);
4833
	for (;;) {
P
Peter Zijlstra 已提交
4834
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4835 4836 4837 4838 4839
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4840 4841
	if (idle)
		cfs_b->period_active = 0;
4842
	raw_spin_unlock(&cfs_b->lock);
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4855
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4867
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4868
{
4869 4870
	u64 overrun;

P
Peter Zijlstra 已提交
4871
	lockdep_assert_held(&cfs_b->lock);
4872

4873 4874 4875 4876 4877 4878 4879 4880
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4881 4882 4883 4884
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4885 4886 4887 4888
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4889 4890 4891 4892
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4893
/*
4894
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4895 4896 4897 4898 4899 4900
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4901 4902
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4903
	struct task_group *tg;
4904

4905 4906 4907 4908 4909 4910
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4911 4912 4913 4914 4915

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4916
	rcu_read_unlock();
4917 4918
}

4919
/* cpu offline callback */
4920
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4921
{
4922 4923 4924 4925 4926 4927 4928
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4929 4930 4931 4932 4933 4934 4935 4936

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4937
		cfs_rq->runtime_remaining = 1;
4938
		/*
4939
		 * Offline rq is schedulable till CPU is completely disabled
4940 4941 4942 4943
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4944 4945 4946
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4947
	rcu_read_unlock();
4948 4949 4950
}

#else /* CONFIG_CFS_BANDWIDTH */
4951 4952
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4953
	return rq_clock_task(rq_of(cfs_rq));
4954 4955
}

4956
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4957
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4958
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4959
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4960
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4961 4962 4963 4964 4965

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4977 4978 4979 4980 4981

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4982 4983
#endif

4984 4985 4986 4987 4988
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4989
static inline void update_runtime_enabled(struct rq *rq) {}
4990
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4991 4992 4993

#endif /* CONFIG_CFS_BANDWIDTH */

4994 4995 4996 4997
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4998 4999 5000 5001 5002 5003
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5004
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5005

5006
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5007 5008 5009 5010 5011 5012
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5013
				resched_curr(rq);
P
Peter Zijlstra 已提交
5014 5015
			return;
		}
5016
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5017 5018
	}
}
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5029
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5030 5031 5032 5033 5034
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5035
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5036 5037 5038 5039
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5040 5041 5042 5043

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5044 5045
#endif

5046 5047 5048 5049 5050
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5051
static void
5052
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5053 5054
{
	struct cfs_rq *cfs_rq;
5055
	struct sched_entity *se = &p->se;
5056

5057 5058 5059 5060 5061 5062 5063 5064
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5065 5066 5067 5068 5069 5070
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5071
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5072

5073
	for_each_sched_entity(se) {
5074
		if (se->on_rq)
5075 5076
			break;
		cfs_rq = cfs_rq_of(se);
5077
		enqueue_entity(cfs_rq, se, flags);
5078 5079 5080 5081 5082 5083

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5084
		 */
5085 5086
		if (cfs_rq_throttled(cfs_rq))
			break;
5087
		cfs_rq->h_nr_running++;
5088

5089
		flags = ENQUEUE_WAKEUP;
5090
	}
P
Peter Zijlstra 已提交
5091

P
Peter Zijlstra 已提交
5092
	for_each_sched_entity(se) {
5093
		cfs_rq = cfs_rq_of(se);
5094
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5095

5096 5097 5098
		if (cfs_rq_throttled(cfs_rq))
			break;

5099
		update_load_avg(cfs_rq, se, UPDATE_TG);
5100
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5101 5102
	}

Y
Yuyang Du 已提交
5103
	if (!se)
5104
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5105

5106
	hrtick_update(rq);
5107 5108
}

5109 5110
static void set_next_buddy(struct sched_entity *se);

5111 5112 5113 5114 5115
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5116
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5117 5118
{
	struct cfs_rq *cfs_rq;
5119
	struct sched_entity *se = &p->se;
5120
	int task_sleep = flags & DEQUEUE_SLEEP;
5121 5122 5123

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5124
		dequeue_entity(cfs_rq, se, flags);
5125 5126 5127 5128 5129 5130 5131 5132 5133

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5134
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5135

5136
		/* Don't dequeue parent if it has other entities besides us */
5137
		if (cfs_rq->load.weight) {
5138 5139
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5140 5141 5142 5143
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5144 5145
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5146
			break;
5147
		}
5148
		flags |= DEQUEUE_SLEEP;
5149
	}
P
Peter Zijlstra 已提交
5150

P
Peter Zijlstra 已提交
5151
	for_each_sched_entity(se) {
5152
		cfs_rq = cfs_rq_of(se);
5153
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5154

5155 5156 5157
		if (cfs_rq_throttled(cfs_rq))
			break;

5158
		update_load_avg(cfs_rq, se, UPDATE_TG);
5159
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5160 5161
	}

Y
Yuyang Du 已提交
5162
	if (!se)
5163
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5164

5165
	util_est_dequeue(&rq->cfs, p, task_sleep);
5166
	hrtick_update(rq);
5167 5168
}

5169
#ifdef CONFIG_SMP
5170 5171 5172 5173 5174

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5175
#ifdef CONFIG_NO_HZ_COMMON
5176 5177 5178 5179 5180
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5181
 * The exact cpuload calculated at every tick would be:
5182
 *
5183 5184
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5185 5186
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5187 5188 5189
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5190 5191 5192
 *
 * decay_load_missed() below does efficient calculation of
 *
5193 5194 5195 5196 5197 5198
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5199
 *
5200
 * The calculation is approximated on a 128 point scale.
5201 5202
 */
#define DEGRADE_SHIFT		7
5203 5204 5205 5206 5207 5208 5209 5210 5211

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5241 5242 5243 5244

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5245
	int has_blocked;		/* Idle CPUS has blocked load */
5246
	unsigned long next_balance;     /* in jiffy units */
5247
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5248 5249
} nohz ____cacheline_aligned;

5250
#endif /* CONFIG_NO_HZ_COMMON */
5251

5252
/**
5253
 * __cpu_load_update - update the rq->cpu_load[] statistics
5254 5255 5256 5257
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5258
 * Update rq->cpu_load[] statistics. This function is usually called every
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5285
 * term.
5286
 */
5287 5288
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5289
{
5290
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5302
		old_load = this_rq->cpu_load[i];
5303
#ifdef CONFIG_NO_HZ_COMMON
5304
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5305 5306 5307 5308 5309 5310 5311 5312 5313
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5314
#endif
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5328
/* Used instead of source_load when we know the type == 0 */
5329
static unsigned long weighted_cpuload(struct rq *rq)
5330
{
5331
	return cfs_rq_runnable_load_avg(&rq->cfs);
5332 5333
}

5334
#ifdef CONFIG_NO_HZ_COMMON
5335 5336
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5337
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5363
		cpu_load_update(this_rq, load, pending_updates);
5364 5365 5366
	}
}

5367 5368 5369 5370
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5371
static void cpu_load_update_idle(struct rq *this_rq)
5372 5373 5374 5375
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5376
	if (weighted_cpuload(this_rq))
5377 5378
		return;

5379
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5380 5381 5382
}

/*
5383 5384 5385 5386
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5387
 */
5388
void cpu_load_update_nohz_start(void)
5389 5390
{
	struct rq *this_rq = this_rq();
5391 5392 5393 5394 5395 5396

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5397
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5398 5399 5400 5401 5402 5403 5404
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5405
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5406 5407
	struct rq *this_rq = this_rq();
	unsigned long load;
5408
	struct rq_flags rf;
5409 5410 5411 5412

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5413
	load = weighted_cpuload(this_rq);
5414
	rq_lock(this_rq, &rf);
5415
	update_rq_clock(this_rq);
5416
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5417
	rq_unlock(this_rq, &rf);
5418
}
5419 5420 5421 5422 5423 5424 5425 5426
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5427
#ifdef CONFIG_NO_HZ_COMMON
5428 5429
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5430
#endif
5431 5432
	cpu_load_update(this_rq, load, 1);
}
5433 5434 5435 5436

/*
 * Called from scheduler_tick()
 */
5437
void cpu_load_update_active(struct rq *this_rq)
5438
{
5439
	unsigned long load = weighted_cpuload(this_rq);
5440 5441 5442 5443 5444

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5445 5446
}

5447
/*
5448
 * Return a low guess at the load of a migration-source CPU weighted
5449 5450 5451 5452 5453 5454 5455 5456
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5457
	unsigned long total = weighted_cpuload(rq);
5458 5459 5460 5461 5462 5463 5464 5465

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5466
 * Return a high guess at the load of a migration-target CPU weighted
5467 5468 5469 5470 5471
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5472
	unsigned long total = weighted_cpuload(rq);
5473 5474 5475 5476 5477 5478 5479

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5480
static unsigned long capacity_of(int cpu)
5481
{
5482
	return cpu_rq(cpu)->cpu_capacity;
5483 5484
}

5485 5486 5487 5488 5489
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5490 5491 5492
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5493
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5494
	unsigned long load_avg = weighted_cpuload(rq);
5495 5496

	if (nr_running)
5497
		return load_avg / nr_running;
5498 5499 5500 5501

	return 0;
}

P
Peter Zijlstra 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5519 5520
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5521
 *
M
Mike Galbraith 已提交
5522
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5535
 */
5536 5537
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5538 5539
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5540
	int factor = this_cpu_read(sd_llc_size);
5541

M
Mike Galbraith 已提交
5542 5543 5544 5545 5546
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5547 5548
}

5549
/*
5550 5551 5552
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5553
 *
5554 5555
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5556 5557 5558 5559
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5560
 */
5561
static int
5562
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5563
{
5564 5565 5566 5567 5568
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5569 5570 5571 5572 5573 5574
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5575
	 */
5576 5577
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5578

5579
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5580
		return this_cpu;
5581

5582
	return nr_cpumask_bits;
5583 5584
}

5585
static int
5586 5587
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5588 5589 5590 5591
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5592
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5593 5594 5595 5596

	if (sync) {
		unsigned long current_load = task_h_load(current);

5597
		if (current_load > this_eff_load)
5598
			return this_cpu;
5599

5600
		this_eff_load -= current_load;
5601 5602 5603 5604
	}

	task_load = task_h_load(p);

5605 5606 5607 5608
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5609

5610
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5611 5612 5613 5614
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5615

5616 5617 5618 5619 5620 5621 5622 5623 5624 5625
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5626 5627
}

5628
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5629
		       int this_cpu, int prev_cpu, int sync)
5630
{
5631
	int target = nr_cpumask_bits;
5632

5633
	if (sched_feat(WA_IDLE))
5634
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5635

5636 5637
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5638

5639
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5640 5641
	if (target == nr_cpumask_bits)
		return prev_cpu;
5642

5643 5644 5645
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5646 5647
}

5648
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5649 5650 5651

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5652
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5653 5654
}

5655 5656 5657
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5658 5659
 *
 * Assumes p is allowed on at least one CPU in sd.
5660 5661
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5662
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5663
		  int this_cpu, int sd_flag)
5664
{
5665
	struct sched_group *idlest = NULL, *group = sd->groups;
5666
	struct sched_group *most_spare_sg = NULL;
5667 5668 5669
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5670
	unsigned long most_spare = 0, this_spare = 0;
5671
	int load_idx = sd->forkexec_idx;
5672 5673 5674
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5675

5676 5677 5678
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5679
	do {
5680 5681
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5682 5683
		int local_group;
		int i;
5684

5685
		/* Skip over this group if it has no CPUs allowed */
5686
		if (!cpumask_intersects(sched_group_span(group),
5687
					&p->cpus_allowed))
5688 5689 5690
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5691
					       sched_group_span(group));
5692

5693 5694 5695 5696
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5697
		avg_load = 0;
5698
		runnable_load = 0;
5699
		max_spare_cap = 0;
5700

5701
		for_each_cpu(i, sched_group_span(group)) {
5702
			/* Bias balancing toward CPUs of our domain */
5703 5704 5705 5706 5707
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5708 5709 5710
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5711 5712 5713 5714 5715

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5716 5717
		}

5718
		/* Adjust by relative CPU capacity of the group */
5719 5720 5721 5722
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5723 5724

		if (local_group) {
5725 5726
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5727 5728
			this_spare = max_spare_cap;
		} else {
5729 5730 5731
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5732
				 * so we can pick this new CPU:
5733 5734 5735 5736 5737 5738 5739 5740
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5741
				 * blocked load into account through avg_load:
5742 5743
				 */
				min_avg_load = avg_load;
5744 5745 5746 5747 5748 5749 5750
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5751 5752 5753
		}
	} while (group = group->next, group != sd->groups);

5754 5755 5756 5757 5758 5759
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5760 5761 5762 5763
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5764
	 */
5765 5766 5767
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5768
	if (this_spare > task_util(p) / 2 &&
5769
	    imbalance_scale*this_spare > 100*most_spare)
5770
		return NULL;
5771 5772

	if (most_spare > task_util(p) / 2)
5773 5774
		return most_spare_sg;

5775
skip_spare:
5776 5777 5778
	if (!idlest)
		return NULL;

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5791
	if (min_runnable_load > (this_runnable_load + imbalance))
5792
		return NULL;
5793 5794 5795 5796 5797

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5798 5799 5800 5801
	return idlest;
}

/*
5802
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5803 5804
 */
static int
5805
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5806 5807
{
	unsigned long load, min_load = ULONG_MAX;
5808 5809 5810 5811
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5812 5813
	int i;

5814 5815
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5816
		return cpumask_first(sched_group_span(group));
5817

5818
	/* Traverse only the allowed CPUs */
5819
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5820
		if (available_idle_cpu(i)) {
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5842
		} else if (shallowest_idle_cpu == -1) {
5843
			load = weighted_cpuload(cpu_rq(i));
5844
			if (load < min_load) {
5845 5846 5847
				min_load = load;
				least_loaded_cpu = i;
			}
5848 5849 5850
		}
	}

5851
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5852
}
5853

5854 5855 5856
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5857
	int new_cpu = cpu;
5858

5859 5860 5861
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5862 5863 5864 5865 5866 5867 5868
	/*
	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
	 * last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5886
		if (new_cpu == cpu) {
5887
			/* Now try balancing at a lower domain level of 'cpu': */
5888 5889 5890 5891
			sd = sd->child;
			continue;
		}

5892
		/* Now try balancing at a lower domain level of 'new_cpu': */
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5936
void __update_idle_core(struct rq *rq)
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5949
		if (!available_idle_cpu(cpu))
5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5966
	int core, cpu;
5967

P
Peter Zijlstra 已提交
5968 5969 5970
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5971 5972 5973
	if (!test_idle_cores(target, false))
		return -1;

5974
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5975

5976
	for_each_cpu_wrap(core, cpus, target) {
5977 5978 5979 5980
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
5981
			if (!available_idle_cpu(cpu))
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6004 6005 6006
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6007
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6008
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6009
			continue;
6010
		if (available_idle_cpu(cpu))
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6035
 */
6036 6037
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6038
	struct sched_domain *this_sd;
6039
	u64 avg_cost, avg_idle;
6040 6041
	u64 time, cost;
	s64 delta;
6042
	int cpu, nr = INT_MAX;
6043

6044 6045 6046 6047
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6048 6049 6050 6051
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6052 6053 6054 6055
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6056 6057
		return -1;

6058 6059 6060 6061 6062 6063 6064 6065
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6066 6067
	time = local_clock();

6068
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6069 6070
		if (!--nr)
			return -1;
6071
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6072
			continue;
6073
		if (available_idle_cpu(cpu))
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6087
 */
6088
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6089
{
6090
	struct sched_domain *sd;
6091
	int i, recent_used_cpu;
6092

6093
	if (available_idle_cpu(target))
6094
		return target;
6095 6096

	/*
6097
	 * If the previous CPU is cache affine and idle, don't be stupid:
6098
	 */
6099
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6100
		return prev;
6101

6102
	/* Check a recently used CPU as a potential idle candidate: */
6103 6104 6105 6106
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6107
	    available_idle_cpu(recent_used_cpu) &&
6108 6109 6110
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6111
		 * candidate for the next wake:
6112 6113 6114 6115 6116
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6117
	sd = rcu_dereference(per_cpu(sd_llc, target));
6118 6119
	if (!sd)
		return target;
6120

6121 6122 6123
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6124

6125 6126 6127 6128 6129 6130 6131
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6132

6133 6134
	return target;
}
6135

6136 6137 6138 6139 6140 6141 6142
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6153 6154 6155 6156 6157 6158 6159 6160
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6171 6172
 *
 * Return: the (estimated) utilization for the specified CPU
6173
 */
6174
static inline unsigned long cpu_util(int cpu)
6175
{
6176 6177 6178 6179 6180 6181 6182 6183
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6184

6185
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6186
}
6187

6188
/*
6189
 * cpu_util_wake: Compute CPU utilization with any contributions from
6190 6191
 * the waking task p removed.
 */
6192
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6193
{
6194 6195
	struct cfs_rq *cfs_rq;
	unsigned int util;
6196 6197

	/* Task has no contribution or is new */
6198
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6199 6200
		return cpu_util(cpu);

6201 6202 6203 6204 6205
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's blocked util from CPU's util */
	util -= min_t(unsigned int, util, task_util(p));
6206

6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_wake = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_wake = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6242 6243
}

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6262 6263 6264
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6265 6266 6267
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6268
/*
6269 6270 6271
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6272
 *
6273 6274
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6275
 *
6276
 * Returns the target CPU number.
6277 6278 6279
 *
 * preempt must be disabled.
 */
6280
static int
6281
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6282
{
6283
	struct sched_domain *tmp, *sd = NULL;
6284
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6285
	int new_cpu = prev_cpu;
6286
	int want_affine = 0;
6287
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6288

P
Peter Zijlstra 已提交
6289 6290
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6291
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6292
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6293
	}
6294

6295
	rcu_read_lock();
6296
	for_each_domain(cpu, tmp) {
6297
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6298
			break;
6299

6300
		/*
6301
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6302
		 * cpu is a valid SD_WAKE_AFFINE target.
6303
		 */
6304 6305
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6306 6307 6308 6309
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6310
			break;
6311
		}
6312

6313
		if (tmp->flags & sd_flag)
6314
			sd = tmp;
M
Mike Galbraith 已提交
6315 6316
		else if (!want_affine)
			break;
6317 6318
	}

6319 6320
	if (unlikely(sd)) {
		/* Slow path */
6321
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6322 6323 6324 6325 6326 6327 6328
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6329
	}
6330
	rcu_read_unlock();
6331

6332
	return new_cpu;
6333
}
6334

6335 6336
static void detach_entity_cfs_rq(struct sched_entity *se);

6337
/*
6338
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6339
 * cfs_rq_of(p) references at time of call are still valid and identify the
6340
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6341
 */
6342
static void migrate_task_rq_fair(struct task_struct *p)
6343
{
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6389 6390 6391

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6392 6393

	/* We have migrated, no longer consider this task hot */
6394
	p->se.exec_start = 0;
6395
}
6396 6397 6398 6399 6400

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6401 6402
#endif /* CONFIG_SMP */

6403
static unsigned long wakeup_gran(struct sched_entity *se)
6404 6405 6406 6407
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6408 6409
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6410 6411 6412 6413 6414 6415 6416 6417 6418
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6419
	 */
6420
	return calc_delta_fair(gran, se);
6421 6422
}

6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6445
	gran = wakeup_gran(se);
6446 6447 6448 6449 6450 6451
	if (vdiff > gran)
		return 1;

	return 0;
}

6452 6453
static void set_last_buddy(struct sched_entity *se)
{
6454 6455 6456
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6457 6458 6459
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6460
		cfs_rq_of(se)->last = se;
6461
	}
6462 6463 6464 6465
}

static void set_next_buddy(struct sched_entity *se)
{
6466 6467 6468
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6469 6470 6471
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6472
		cfs_rq_of(se)->next = se;
6473
	}
6474 6475
}

6476 6477
static void set_skip_buddy(struct sched_entity *se)
{
6478 6479
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6480 6481
}

6482 6483 6484
/*
 * Preempt the current task with a newly woken task if needed:
 */
6485
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6486 6487
{
	struct task_struct *curr = rq->curr;
6488
	struct sched_entity *se = &curr->se, *pse = &p->se;
6489
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6490
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6491
	int next_buddy_marked = 0;
6492

I
Ingo Molnar 已提交
6493 6494 6495
	if (unlikely(se == pse))
		return;

6496
	/*
6497
	 * This is possible from callers such as attach_tasks(), in which we
6498 6499 6500 6501 6502 6503 6504
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6505
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6506
		set_next_buddy(pse);
6507 6508
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6509

6510 6511 6512
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6513 6514 6515 6516 6517 6518
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6519 6520 6521 6522
	 */
	if (test_tsk_need_resched(curr))
		return;

6523 6524 6525 6526 6527
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6528
	/*
6529 6530
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6531
	 */
6532
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6533
		return;
6534

6535
	find_matching_se(&se, &pse);
6536
	update_curr(cfs_rq_of(se));
6537
	BUG_ON(!pse);
6538 6539 6540 6541 6542 6543 6544
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6545
		goto preempt;
6546
	}
6547

6548
	return;
6549

6550
preempt:
6551
	resched_curr(rq);
6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6566 6567
}

6568
static struct task_struct *
6569
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6570 6571 6572
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6573
	struct task_struct *p;
6574
	int new_tasks;
6575

6576
again:
6577
	if (!cfs_rq->nr_running)
6578
		goto idle;
6579

6580
#ifdef CONFIG_FAIR_GROUP_SCHED
6581
	if (prev->sched_class != &fair_sched_class)
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6601 6602 6603 6604 6605
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6606

6607 6608 6609
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6610
			 * Therefore the nr_running test will indeed
6611 6612
			 * be correct.
			 */
6613 6614 6615 6616 6617 6618
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6619
				goto simple;
6620
			}
6621
		}
6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6655
	goto done;
6656 6657
simple:
#endif
6658

6659
	put_prev_task(rq, prev);
6660

6661
	do {
6662
		se = pick_next_entity(cfs_rq, NULL);
6663
		set_next_entity(cfs_rq, se);
6664 6665 6666
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6667
	p = task_of(se);
6668

6669
done: __maybe_unused;
6670 6671 6672 6673 6674 6675 6676 6677 6678
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6679 6680
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6681 6682

	return p;
6683 6684

idle:
6685 6686
	new_tasks = idle_balance(rq, rf);

6687 6688 6689 6690 6691
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6692
	if (new_tasks < 0)
6693 6694
		return RETRY_TASK;

6695
	if (new_tasks > 0)
6696 6697 6698
		goto again;

	return NULL;
6699 6700 6701 6702 6703
}

/*
 * Account for a descheduled task:
 */
6704
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6705 6706 6707 6708 6709 6710
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6711
		put_prev_entity(cfs_rq, se);
6712 6713 6714
	}
}

6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6740 6741 6742 6743 6744
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6745
		rq_clock_skip_update(rq);
6746 6747 6748 6749 6750
	}

	set_skip_buddy(se);
}

6751 6752 6753 6754
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6755 6756
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6767
#ifdef CONFIG_SMP
6768
/**************************************************
P
Peter Zijlstra 已提交
6769 6770 6771 6772 6773
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6774
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6775 6776 6777 6778
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6779
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6780 6781 6782 6783
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6784
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6785
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6786 6787 6788 6789 6790 6791
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6792
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6793 6794 6795 6796 6797 6798
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6799
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6813
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6814
 * topology where each level pairs two lower groups (or better). This results
6815
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6816
 * tree to only the first of the previous level and we decrease the frequency
6817
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6818 6819 6820 6821 6822 6823 6824 6825
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6826
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6827 6828 6829 6830 6831 6832 6833
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6834
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6835 6836 6837
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6838
 *             log_2 n
P
Peter Zijlstra 已提交
6839 6840 6841 6842 6843 6844 6845
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6846
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6856
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6877
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6878 6879 6880 6881 6882 6883
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6884
 */
6885

6886 6887
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6888 6889
enum fbq_type { regular, remote, all };

6890
#define LBF_ALL_PINNED	0x01
6891
#define LBF_NEED_BREAK	0x02
6892 6893
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6894
#define LBF_NOHZ_STATS	0x10
6895
#define LBF_NOHZ_AGAIN	0x20
6896 6897 6898 6899 6900

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6901
	int			src_cpu;
6902 6903 6904 6905

	int			dst_cpu;
	struct rq		*dst_rq;

6906 6907
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6908
	enum cpu_idle_type	idle;
6909
	long			imbalance;
6910 6911 6912
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6913
	unsigned int		flags;
6914 6915 6916 6917

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6918 6919

	enum fbq_type		fbq_type;
6920
	struct list_head	tasks;
6921 6922
};

6923 6924 6925
/*
 * Is this task likely cache-hot:
 */
6926
static int task_hot(struct task_struct *p, struct lb_env *env)
6927 6928 6929
{
	s64 delta;

6930 6931
	lockdep_assert_held(&env->src_rq->lock);

6932 6933 6934 6935 6936 6937 6938 6939 6940
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6941
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6942 6943 6944 6945 6946 6947 6948 6949 6950
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6951
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6952 6953 6954 6955

	return delta < (s64)sysctl_sched_migration_cost;
}

6956
#ifdef CONFIG_NUMA_BALANCING
6957
/*
6958 6959 6960
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6961
 */
6962
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6963
{
6964
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6965
	unsigned long src_faults, dst_faults;
6966 6967
	int src_nid, dst_nid;

6968
	if (!static_branch_likely(&sched_numa_balancing))
6969 6970
		return -1;

6971
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6972
		return -1;
6973 6974 6975 6976

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6977
	if (src_nid == dst_nid)
6978
		return -1;
6979

6980 6981 6982 6983 6984 6985 6986
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6987

6988 6989
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6990
		return 0;
6991

6992 6993 6994 6995
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6996 6997 6998 6999 7000 7001
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
7002 7003
	}

7004
	return dst_faults < src_faults;
7005 7006
}

7007
#else
7008
static inline int migrate_degrades_locality(struct task_struct *p,
7009 7010
					     struct lb_env *env)
{
7011
	return -1;
7012
}
7013 7014
#endif

7015 7016 7017 7018
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7019
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7020
{
7021
	int tsk_cache_hot;
7022 7023 7024

	lockdep_assert_held(&env->src_rq->lock);

7025 7026
	/*
	 * We do not migrate tasks that are:
7027
	 * 1) throttled_lb_pair, or
7028
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7029 7030
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7031
	 */
7032 7033 7034
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7035
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7036
		int cpu;
7037

7038
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7039

7040 7041
		env->flags |= LBF_SOME_PINNED;

7042
		/*
7043
		 * Remember if this task can be migrated to any other CPU in
7044 7045 7046
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7047 7048
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7049
		 */
7050
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7051 7052
			return 0;

7053
		/* Prevent to re-select dst_cpu via env's CPUs: */
7054
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7055
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7056
				env->flags |= LBF_DST_PINNED;
7057 7058 7059
				env->new_dst_cpu = cpu;
				break;
			}
7060
		}
7061

7062 7063
		return 0;
	}
7064 7065

	/* Record that we found atleast one task that could run on dst_cpu */
7066
	env->flags &= ~LBF_ALL_PINNED;
7067

7068
	if (task_running(env->src_rq, p)) {
7069
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7070 7071 7072 7073 7074
		return 0;
	}

	/*
	 * Aggressive migration if:
7075 7076 7077
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7078
	 */
7079 7080 7081
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7082

7083
	if (tsk_cache_hot <= 0 ||
7084
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7085
		if (tsk_cache_hot == 1) {
7086 7087
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7088
		}
7089 7090 7091
		return 1;
	}

7092
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7093
	return 0;
7094 7095
}

7096
/*
7097 7098 7099 7100 7101 7102 7103
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7104
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7105 7106 7107
	set_task_cpu(p, env->dst_cpu);
}

7108
/*
7109
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7110 7111
 * part of active balancing operations within "domain".
 *
7112
 * Returns a task if successful and NULL otherwise.
7113
 */
7114
static struct task_struct *detach_one_task(struct lb_env *env)
7115
{
7116
	struct task_struct *p;
7117

7118 7119
	lockdep_assert_held(&env->src_rq->lock);

7120 7121
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7122 7123
		if (!can_migrate_task(p, env))
			continue;
7124

7125
		detach_task(p, env);
7126

7127
		/*
7128
		 * Right now, this is only the second place where
7129
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7130
		 * so we can safely collect stats here rather than
7131
		 * inside detach_tasks().
7132
		 */
7133
		schedstat_inc(env->sd->lb_gained[env->idle]);
7134
		return p;
7135
	}
7136
	return NULL;
7137 7138
}

7139 7140
static const unsigned int sched_nr_migrate_break = 32;

7141
/*
7142 7143
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7144
 *
7145
 * Returns number of detached tasks if successful and 0 otherwise.
7146
 */
7147
static int detach_tasks(struct lb_env *env)
7148
{
7149 7150
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7151
	unsigned long load;
7152 7153 7154
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7155

7156
	if (env->imbalance <= 0)
7157
		return 0;
7158

7159
	while (!list_empty(tasks)) {
7160 7161 7162 7163 7164 7165 7166
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7167
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7168

7169 7170
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7171
		if (env->loop > env->loop_max)
7172
			break;
7173 7174

		/* take a breather every nr_migrate tasks */
7175
		if (env->loop > env->loop_break) {
7176
			env->loop_break += sched_nr_migrate_break;
7177
			env->flags |= LBF_NEED_BREAK;
7178
			break;
7179
		}
7180

7181
		if (!can_migrate_task(p, env))
7182 7183 7184
			goto next;

		load = task_h_load(p);
7185

7186
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7187 7188
			goto next;

7189
		if ((load / 2) > env->imbalance)
7190
			goto next;
7191

7192 7193 7194 7195
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7196
		env->imbalance -= load;
7197 7198

#ifdef CONFIG_PREEMPT
7199 7200
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7201
		 * kernels will stop after the first task is detached to minimize
7202 7203
		 * the critical section.
		 */
7204
		if (env->idle == CPU_NEWLY_IDLE)
7205
			break;
7206 7207
#endif

7208 7209 7210 7211
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7212
		if (env->imbalance <= 0)
7213
			break;
7214 7215 7216

		continue;
next:
7217
		list_move(&p->se.group_node, tasks);
7218
	}
7219

7220
	/*
7221 7222 7223
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7224
	 */
7225
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7226

7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7238
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7239
	p->on_rq = TASK_ON_RQ_QUEUED;
7240 7241 7242 7243 7244 7245 7246 7247 7248
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7249 7250 7251
	struct rq_flags rf;

	rq_lock(rq, &rf);
7252
	update_rq_clock(rq);
7253
	attach_task(rq, p);
7254
	rq_unlock(rq, &rf);
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7265
	struct rq_flags rf;
7266

7267
	rq_lock(env->dst_rq, &rf);
7268
	update_rq_clock(env->dst_rq);
7269 7270 7271 7272

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7273

7274 7275 7276
		attach_task(env->dst_rq, p);
	}

7277
	rq_unlock(env->dst_rq, &rf);
7278 7279
}

7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7291
static inline bool others_have_blocked(struct rq *rq)
7292 7293 7294 7295
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7296 7297 7298
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7299 7300 7301 7302 7303
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7304 7305 7306
	return false;
}

7307 7308
#ifdef CONFIG_FAIR_GROUP_SCHED

7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7320
	if (cfs_rq->avg.runnable_load_sum)
7321 7322 7323 7324 7325
		return false;

	return true;
}

7326
static void update_blocked_averages(int cpu)
7327 7328
{
	struct rq *rq = cpu_rq(cpu);
7329
	struct cfs_rq *cfs_rq, *pos;
7330
	struct rq_flags rf;
7331
	bool done = true;
7332

7333
	rq_lock_irqsave(rq, &rf);
7334
	update_rq_clock(rq);
7335

7336 7337 7338 7339
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7340
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7341 7342
		struct sched_entity *se;

7343 7344 7345
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7346

7347
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7348
			update_tg_load_avg(cfs_rq, 0);
7349

7350 7351 7352
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7353
			update_load_avg(cfs_rq_of(se), se, 0);
7354 7355 7356 7357 7358 7359 7360

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7361 7362 7363

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7364
			done = false;
7365
	}
7366
	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7367
	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7368
	update_irq_load_avg(rq, 0);
7369
	/* Don't need periodic decay once load/util_avg are null */
7370
	if (others_have_blocked(rq))
7371
		done = false;
7372 7373 7374

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7375 7376
	if (done)
		rq->has_blocked_load = 0;
7377
#endif
7378
	rq_unlock_irqrestore(rq, &rf);
7379 7380
}

7381
/*
7382
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7383 7384 7385
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7386
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7387
{
7388 7389
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7390
	unsigned long now = jiffies;
7391
	unsigned long load;
7392

7393
	if (cfs_rq->last_h_load_update == now)
7394 7395
		return;

7396 7397 7398 7399 7400 7401 7402
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7403

7404
	if (!se) {
7405
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7406 7407 7408 7409 7410
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7411 7412
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7413 7414 7415 7416
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7417 7418
}

7419
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7420
{
7421
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7422

7423
	update_cfs_rq_h_load(cfs_rq);
7424
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7425
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7426 7427
}
#else
7428
static inline void update_blocked_averages(int cpu)
7429
{
7430 7431
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7432
	struct rq_flags rf;
7433

7434
	rq_lock_irqsave(rq, &rf);
7435
	update_rq_clock(rq);
7436
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7437
	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7438
	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7439
	update_irq_load_avg(rq, 0);
7440 7441
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7442
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7443
		rq->has_blocked_load = 0;
7444
#endif
7445
	rq_unlock_irqrestore(rq, &rf);
7446 7447
}

7448
static unsigned long task_h_load(struct task_struct *p)
7449
{
7450
	return p->se.avg.load_avg;
7451
}
P
Peter Zijlstra 已提交
7452
#endif
7453 7454

/********** Helpers for find_busiest_group ************************/
7455 7456 7457 7458 7459 7460 7461

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7462 7463 7464 7465 7466 7467 7468
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7469
	unsigned long load_per_task;
7470
	unsigned long group_capacity;
7471
	unsigned long group_util; /* Total utilization of the group */
7472 7473 7474
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7475
	enum group_type group_type;
7476
	int group_no_capacity;
7477 7478 7479 7480
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7481 7482
};

J
Joonsoo Kim 已提交
7483 7484 7485 7486 7487 7488 7489
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7490
	unsigned long total_running;
J
Joonsoo Kim 已提交
7491
	unsigned long total_load;	/* Total load of all groups in sd */
7492
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7493 7494 7495
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7496
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7497 7498
};

7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7510
		.total_running = 0UL,
7511
		.total_load = 0UL,
7512
		.total_capacity = 0UL,
7513 7514
		.busiest_stat = {
			.avg_load = 0UL,
7515 7516
			.sum_nr_running = 0,
			.group_type = group_other,
7517 7518 7519 7520
		},
	};
}

7521 7522 7523
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7524
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7525 7526
 *
 * Return: The load index.
7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7549
static unsigned long scale_rt_capacity(int cpu)
7550 7551
{
	struct rq *rq = cpu_rq(cpu);
7552 7553 7554 7555 7556
	unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
	unsigned long used, free;
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	unsigned long irq;
#endif
7557

7558 7559
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	irq = READ_ONCE(rq->avg_irq.util_avg);
7560

7561 7562 7563
	if (unlikely(irq >= max))
		return 1;
#endif
7564

7565 7566
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7567

7568 7569
	if (unlikely(used >= max))
		return 1;
7570

7571 7572 7573 7574 7575 7576
	free = max - used;
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	free *= (max - irq);
	free /= max;
#endif
	return free;
7577 7578
}

7579
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7580
{
7581
	unsigned long capacity = scale_rt_capacity(cpu);
7582 7583
	struct sched_group *sdg = sd->groups;

7584
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7585

7586 7587
	if (!capacity)
		capacity = 1;
7588

7589 7590
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7591
	sdg->sgc->min_capacity = capacity;
7592 7593
}

7594
void update_group_capacity(struct sched_domain *sd, int cpu)
7595 7596 7597
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7598
	unsigned long capacity, min_capacity;
7599 7600 7601 7602
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7603
	sdg->sgc->next_update = jiffies + interval;
7604 7605

	if (!child) {
7606
		update_cpu_capacity(sd, cpu);
7607 7608 7609
		return;
	}

7610
	capacity = 0;
7611
	min_capacity = ULONG_MAX;
7612

P
Peter Zijlstra 已提交
7613 7614 7615 7616 7617 7618
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7619
		for_each_cpu(cpu, sched_group_span(sdg)) {
7620
			struct sched_group_capacity *sgc;
7621
			struct rq *rq = cpu_rq(cpu);
7622

7623
			/*
7624
			 * build_sched_domains() -> init_sched_groups_capacity()
7625 7626 7627
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7628 7629
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7630
			 *
7631
			 * This avoids capacity from being 0 and
7632 7633 7634
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7635
				capacity += capacity_of(cpu);
7636 7637 7638
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7639
			}
7640

7641
			min_capacity = min(capacity, min_capacity);
7642
		}
P
Peter Zijlstra 已提交
7643 7644 7645 7646
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7647
		 */
P
Peter Zijlstra 已提交
7648 7649 7650

		group = child->groups;
		do {
7651 7652 7653 7654
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7655 7656 7657
			group = group->next;
		} while (group != child->groups);
	}
7658

7659
	sdg->sgc->capacity = capacity;
7660
	sdg->sgc->min_capacity = min_capacity;
7661 7662
}

7663
/*
7664 7665 7666
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7667 7668
 */
static inline int
7669
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7670
{
7671 7672
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7673 7674
}

7675 7676
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7677
 * groups is inadequate due to ->cpus_allowed constraints.
7678
 *
7679 7680
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7681 7682
 * Something like:
 *
7683 7684
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7685 7686 7687
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7688
 * cpu 3 and leave one of the CPUs in the second group unused.
7689 7690
 *
 * The current solution to this issue is detecting the skew in the first group
7691 7692
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7693 7694
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7695
 * update_sd_pick_busiest(). And calculate_imbalance() and
7696
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7697 7698 7699 7700 7701 7702 7703
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7704
static inline int sg_imbalanced(struct sched_group *group)
7705
{
7706
	return group->sgc->imbalance;
7707 7708
}

7709
/*
7710 7711 7712
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7713 7714
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7715 7716 7717 7718 7719
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7720
 */
7721 7722
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7723
{
7724 7725
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7726

7727
	if ((sgs->group_capacity * 100) >
7728
			(sgs->group_util * env->sd->imbalance_pct))
7729
		return true;
7730

7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7747

7748
	if ((sgs->group_capacity * 100) <
7749
			(sgs->group_util * env->sd->imbalance_pct))
7750
		return true;
7751

7752
	return false;
7753 7754
}

7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7766 7767 7768
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7769
{
7770
	if (sgs->group_no_capacity)
7771 7772 7773 7774 7775 7776 7777 7778
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7779
static bool update_nohz_stats(struct rq *rq, bool force)
7780 7781 7782 7783
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7784 7785 7786
	if (!rq->has_blocked_load)
		return false;

7787
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7788
		return false;
7789

7790
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7791
		return true;
7792 7793

	update_blocked_averages(cpu);
7794 7795 7796 7797

	return rq->has_blocked_load;
#else
	return false;
7798 7799 7800
#endif
}

7801 7802
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7803
 * @env: The load balancing environment.
7804 7805 7806 7807
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7808
 * @overload: Indicate more than one runnable task for any CPU.
7809
 */
7810 7811
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7812 7813
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7814
{
7815
	unsigned long load;
7816
	int i, nr_running;
7817

7818 7819
	memset(sgs, 0, sizeof(*sgs));

7820
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7821 7822
		struct rq *rq = cpu_rq(i);

7823
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7824
			env->flags |= LBF_NOHZ_AGAIN;
7825

7826
		/* Bias balancing toward CPUs of our domain: */
7827
		if (local_group)
7828
			load = target_load(i, load_idx);
7829
		else
7830 7831 7832
			load = source_load(i, load_idx);

		sgs->group_load += load;
7833
		sgs->group_util += cpu_util(i);
7834
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7835

7836 7837
		nr_running = rq->nr_running;
		if (nr_running > 1)
7838 7839
			*overload = true;

7840 7841 7842 7843
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7844
		sgs->sum_weighted_load += weighted_cpuload(rq);
7845 7846 7847 7848
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7849
			sgs->idle_cpus++;
7850 7851
	}

7852 7853
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7854
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7855

7856
	if (sgs->sum_nr_running)
7857
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7858

7859
	sgs->group_weight = group->group_weight;
7860

7861
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7862
	sgs->group_type = group_classify(group, sgs);
7863 7864
}

7865 7866
/**
 * update_sd_pick_busiest - return 1 on busiest group
7867
 * @env: The load balancing environment.
7868 7869
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7870
 * @sgs: sched_group statistics
7871 7872 7873
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7874 7875 7876
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7877
 */
7878
static bool update_sd_pick_busiest(struct lb_env *env,
7879 7880
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7881
				   struct sg_lb_stats *sgs)
7882
{
7883
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7884

7885
	if (sgs->group_type > busiest->group_type)
7886 7887
		return true;

7888 7889 7890 7891 7892 7893
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7908 7909
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7910 7911
		return true;

7912
	/* No ASYM_PACKING if target CPU is already busy */
7913 7914
	if (env->idle == CPU_NOT_IDLE)
		return true;
7915
	/*
T
Tim Chen 已提交
7916 7917 7918
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7919
	 */
T
Tim Chen 已提交
7920 7921
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7922 7923 7924
		if (!sds->busiest)
			return true;

7925
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7926 7927
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7928 7929 7930 7931 7932 7933
			return true;
	}

	return false;
}

7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7964
/**
7965
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7966
 * @env: The load balancing environment.
7967 7968
 * @sds: variable to hold the statistics for this sched_domain.
 */
7969
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7970
{
7971 7972
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7973
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7974
	struct sg_lb_stats tmp_sgs;
7975
	int load_idx, prefer_sibling = 0;
7976
	bool overload = false;
7977 7978 7979 7980

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7981
#ifdef CONFIG_NO_HZ_COMMON
7982
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7983 7984 7985
		env->flags |= LBF_NOHZ_STATS;
#endif

7986
	load_idx = get_sd_load_idx(env->sd, env->idle);
7987 7988

	do {
J
Joonsoo Kim 已提交
7989
		struct sg_lb_stats *sgs = &tmp_sgs;
7990 7991
		int local_group;

7992
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7993 7994
		if (local_group) {
			sds->local = sg;
7995
			sgs = local;
7996 7997

			if (env->idle != CPU_NEWLY_IDLE ||
7998 7999
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
8000
		}
8001

8002 8003
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
8004

8005 8006 8007
		if (local_group)
			goto next_group;

8008 8009
		/*
		 * In case the child domain prefers tasks go to siblings
8010
		 * first, lower the sg capacity so that we'll try
8011 8012
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
8013 8014 8015 8016
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
8017
		 */
8018
		if (prefer_sibling && sds->local &&
8019 8020
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8021
			sgs->group_no_capacity = 1;
8022
			sgs->group_type = group_classify(sg, sgs);
8023
		}
8024

8025
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8026
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8027
			sds->busiest_stat = *sgs;
8028 8029
		}

8030 8031
next_group:
		/* Now, start updating sd_lb_stats */
8032
		sds->total_running += sgs->sum_nr_running;
8033
		sds->total_load += sgs->group_load;
8034
		sds->total_capacity += sgs->group_capacity;
8035

8036
		sg = sg->next;
8037
	} while (sg != env->sd->groups);
8038

8039 8040 8041 8042 8043 8044 8045 8046 8047
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8048 8049
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8050 8051 8052 8053 8054 8055

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8056 8057 8058 8059
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8060
 *			sched domain.
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8075
 * Return: 1 when packing is required and a task should be moved to
8076
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8077
 *
8078
 * @env: The load balancing environment.
8079 8080
 * @sds: Statistics of the sched_domain which is to be packed
 */
8081
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8082 8083 8084
{
	int busiest_cpu;

8085
	if (!(env->sd->flags & SD_ASYM_PACKING))
8086 8087
		return 0;

8088 8089 8090
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8091 8092 8093
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8094 8095
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8096 8097
		return 0;

8098
	env->imbalance = DIV_ROUND_CLOSEST(
8099
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8100
		SCHED_CAPACITY_SCALE);
8101

8102
	return 1;
8103 8104 8105 8106 8107 8108
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8109
 * @env: The load balancing environment.
8110 8111
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8112 8113
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8114
{
8115
	unsigned long tmp, capa_now = 0, capa_move = 0;
8116
	unsigned int imbn = 2;
8117
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8118
	struct sg_lb_stats *local, *busiest;
8119

J
Joonsoo Kim 已提交
8120 8121
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8122

J
Joonsoo Kim 已提交
8123 8124 8125 8126
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8127

J
Joonsoo Kim 已提交
8128
	scaled_busy_load_per_task =
8129
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8130
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8131

8132 8133
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8134
		env->imbalance = busiest->load_per_task;
8135 8136 8137 8138 8139
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8140
	 * however we may be able to increase total CPU capacity used by
8141 8142 8143
	 * moving them.
	 */

8144
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8145
			min(busiest->load_per_task, busiest->avg_load);
8146
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8147
			min(local->load_per_task, local->avg_load);
8148
	capa_now /= SCHED_CAPACITY_SCALE;
8149 8150

	/* Amount of load we'd subtract */
8151
	if (busiest->avg_load > scaled_busy_load_per_task) {
8152
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8153
			    min(busiest->load_per_task,
8154
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8155
	}
8156 8157

	/* Amount of load we'd add */
8158
	if (busiest->avg_load * busiest->group_capacity <
8159
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8160 8161
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8162
	} else {
8163
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8164
		      local->group_capacity;
J
Joonsoo Kim 已提交
8165
	}
8166
	capa_move += local->group_capacity *
8167
		    min(local->load_per_task, local->avg_load + tmp);
8168
	capa_move /= SCHED_CAPACITY_SCALE;
8169 8170

	/* Move if we gain throughput */
8171
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8172
		env->imbalance = busiest->load_per_task;
8173 8174 8175 8176 8177
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8178
 * @env: load balance environment
8179 8180
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8181
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8182
{
8183
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8184 8185 8186 8187
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8188

8189
	if (busiest->group_type == group_imbalanced) {
8190 8191
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8192
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8193
		 */
J
Joonsoo Kim 已提交
8194 8195
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8196 8197
	}

8198
	/*
8199 8200 8201 8202
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8203
	 */
8204 8205
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8206 8207
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8208 8209
	}

8210
	/*
8211
	 * If there aren't any idle CPUs, avoid creating some.
8212 8213 8214
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8215
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8216
		if (load_above_capacity > busiest->group_capacity) {
8217
			load_above_capacity -= busiest->group_capacity;
8218
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8219 8220
			load_above_capacity /= busiest->group_capacity;
		} else
8221
			load_above_capacity = ~0UL;
8222 8223 8224
	}

	/*
8225
	 * We're trying to get all the CPUs to the average_load, so we don't
8226
	 * want to push ourselves above the average load, nor do we wish to
8227
	 * reduce the max loaded CPU below the average load. At the same time,
8228 8229
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8230
	 */
8231
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8232 8233

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8234
	env->imbalance = min(
8235 8236
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8237
	) / SCHED_CAPACITY_SCALE;
8238 8239 8240

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8241
	 * there is no guarantee that any tasks will be moved so we'll have
8242 8243 8244
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8245
	if (env->imbalance < busiest->load_per_task)
8246
		return fix_small_imbalance(env, sds);
8247
}
8248

8249 8250 8251 8252
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8253
 * if there is an imbalance.
8254 8255 8256 8257
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8258
 * @env: The load balancing environment.
8259
 *
8260
 * Return:	- The busiest group if imbalance exists.
8261
 */
J
Joonsoo Kim 已提交
8262
static struct sched_group *find_busiest_group(struct lb_env *env)
8263
{
J
Joonsoo Kim 已提交
8264
	struct sg_lb_stats *local, *busiest;
8265 8266
	struct sd_lb_stats sds;

8267
	init_sd_lb_stats(&sds);
8268 8269 8270 8271 8272

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8273
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8274 8275
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8276

8277
	/* ASYM feature bypasses nice load balance check */
8278
	if (check_asym_packing(env, &sds))
8279 8280
		return sds.busiest;

8281
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8282
	if (!sds.busiest || busiest->sum_nr_running == 0)
8283 8284
		goto out_balanced;

8285
	/* XXX broken for overlapping NUMA groups */
8286 8287
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8288

P
Peter Zijlstra 已提交
8289 8290
	/*
	 * If the busiest group is imbalanced the below checks don't
8291
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8292 8293
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8294
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8295 8296
		goto force_balance;

8297 8298 8299 8300 8301
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8302
	    busiest->group_no_capacity)
8303 8304
		goto force_balance;

8305
	/*
8306
	 * If the local group is busier than the selected busiest group
8307 8308
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8309
	if (local->avg_load >= busiest->avg_load)
8310 8311
		goto out_balanced;

8312 8313 8314 8315
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8316
	if (local->avg_load >= sds.avg_load)
8317 8318
		goto out_balanced;

8319
	if (env->idle == CPU_IDLE) {
8320
		/*
8321
		 * This CPU is idle. If the busiest group is not overloaded
8322
		 * and there is no imbalance between this and busiest group
8323
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8324 8325
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8326
		 */
8327 8328
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8329
			goto out_balanced;
8330 8331 8332 8333 8334
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8335 8336
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8337
			goto out_balanced;
8338
	}
8339

8340
force_balance:
8341
	/* Looks like there is an imbalance. Compute it */
8342
	calculate_imbalance(env, &sds);
8343 8344 8345
	return sds.busiest;

out_balanced:
8346
	env->imbalance = 0;
8347 8348 8349 8350
	return NULL;
}

/*
8351
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8352
 */
8353
static struct rq *find_busiest_queue(struct lb_env *env,
8354
				     struct sched_group *group)
8355 8356
{
	struct rq *busiest = NULL, *rq;
8357
	unsigned long busiest_load = 0, busiest_capacity = 1;
8358 8359
	int i;

8360
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8361
		unsigned long capacity, wl;
8362 8363 8364 8365
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8366

8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8389
		capacity = capacity_of(i);
8390

8391
		wl = weighted_cpuload(rq);
8392

8393 8394
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8395
		 * which is not scaled with the CPU capacity.
8396
		 */
8397 8398 8399

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8400 8401
			continue;

8402
		/*
8403 8404 8405
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8406
		 * potentially running at a lower capacity.
8407
		 *
8408
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8409
		 * multiplication to rid ourselves of the division works out
8410 8411
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8412
		 */
8413
		if (wl * busiest_capacity > busiest_load * capacity) {
8414
			busiest_load = wl;
8415
			busiest_capacity = capacity;
8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8429
static int need_active_balance(struct lb_env *env)
8430
{
8431 8432 8433
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8434 8435 8436

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8437 8438
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8439
		 */
T
Tim Chen 已提交
8440 8441
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8442
			return 1;
8443 8444
	}

8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8458 8459 8460
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8461 8462
static int active_load_balance_cpu_stop(void *data);

8463 8464 8465 8466 8467
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8468 8469 8470 8471 8472 8473 8474
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8475
	/*
8476
	 * In the newly idle case, we will allow all the CPUs
8477 8478 8479 8480 8481
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8482
	/* Try to find first idle CPU */
8483
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8484
		if (!idle_cpu(cpu))
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8495
	 * First idle CPU or the first CPU(busiest) in this sched group
8496 8497
	 * is eligible for doing load balancing at this and above domains.
	 */
8498
	return balance_cpu == env->dst_cpu;
8499 8500
}

8501 8502 8503 8504 8505 8506
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8507
			int *continue_balancing)
8508
{
8509
	int ld_moved, cur_ld_moved, active_balance = 0;
8510
	struct sched_domain *sd_parent = sd->parent;
8511 8512
	struct sched_group *group;
	struct rq *busiest;
8513
	struct rq_flags rf;
8514
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8515

8516 8517
	struct lb_env env = {
		.sd		= sd,
8518 8519
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8520
		.dst_grpmask    = sched_group_span(sd->groups),
8521
		.idle		= idle,
8522
		.loop_break	= sched_nr_migrate_break,
8523
		.cpus		= cpus,
8524
		.fbq_type	= all,
8525
		.tasks		= LIST_HEAD_INIT(env.tasks),
8526 8527
	};

8528
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8529

8530
	schedstat_inc(sd->lb_count[idle]);
8531 8532

redo:
8533 8534
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8535
		goto out_balanced;
8536
	}
8537

8538
	group = find_busiest_group(&env);
8539
	if (!group) {
8540
		schedstat_inc(sd->lb_nobusyg[idle]);
8541 8542 8543
		goto out_balanced;
	}

8544
	busiest = find_busiest_queue(&env, group);
8545
	if (!busiest) {
8546
		schedstat_inc(sd->lb_nobusyq[idle]);
8547 8548 8549
		goto out_balanced;
	}

8550
	BUG_ON(busiest == env.dst_rq);
8551

8552
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8553

8554 8555 8556
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8557 8558 8559 8560 8561 8562 8563 8564
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8565
		env.flags |= LBF_ALL_PINNED;
8566
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8567

8568
more_balance:
8569
		rq_lock_irqsave(busiest, &rf);
8570
		update_rq_clock(busiest);
8571 8572 8573 8574 8575

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8576
		cur_ld_moved = detach_tasks(&env);
8577 8578

		/*
8579 8580 8581 8582 8583
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8584
		 */
8585

8586
		rq_unlock(busiest, &rf);
8587 8588 8589 8590 8591 8592

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8593
		local_irq_restore(rf.flags);
8594

8595 8596 8597 8598 8599
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8600 8601 8602 8603
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8604
		 * iterate on same src_cpu is dependent on number of CPUs in our
8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8619
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8620

8621
			/* Prevent to re-select dst_cpu via env's CPUs */
8622 8623
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8624
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8625
			env.dst_cpu	 = env.new_dst_cpu;
8626
			env.flags	&= ~LBF_DST_PINNED;
8627 8628
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8629

8630 8631 8632 8633 8634 8635
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8636

8637 8638 8639 8640
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8641
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8642

8643
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8644 8645 8646
				*group_imbalance = 1;
		}

8647
		/* All tasks on this runqueue were pinned by CPU affinity */
8648
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8649
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8650 8651 8652 8653 8654 8655 8656 8657 8658
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8659 8660
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8661
				goto redo;
8662
			}
8663
			goto out_all_pinned;
8664 8665 8666 8667
		}
	}

	if (!ld_moved) {
8668
		schedstat_inc(sd->lb_failed[idle]);
8669 8670 8671 8672 8673 8674 8675 8676
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8677

8678
		if (need_active_balance(&env)) {
8679 8680
			unsigned long flags;

8681 8682
			raw_spin_lock_irqsave(&busiest->lock, flags);

8683 8684 8685 8686
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8687
			 */
8688
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8689 8690
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8691
				env.flags |= LBF_ALL_PINNED;
8692 8693 8694
				goto out_one_pinned;
			}

8695 8696 8697 8698 8699
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8700 8701 8702 8703 8704 8705
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8706

8707
			if (active_balance) {
8708 8709 8710
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8711
			}
8712

8713
			/* We've kicked active balancing, force task migration. */
8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8727
		 * detach_tasks).
8728 8729 8730 8731 8732 8733 8734 8735
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8753
	schedstat_inc(sd->lb_balanced[idle]);
8754 8755 8756 8757 8758

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8759
	if (((env.flags & LBF_ALL_PINNED) &&
8760
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8761 8762 8763
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8764
	ld_moved = 0;
8765 8766 8767 8768
out:
	return ld_moved;
}

8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8785
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8786 8787 8788
{
	unsigned long interval, next;

8789 8790
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8791 8792 8793 8794 8795 8796
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8797
/*
8798
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8799 8800 8801
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8802
 */
8803
static int active_load_balance_cpu_stop(void *data)
8804
{
8805 8806
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8807
	int target_cpu = busiest_rq->push_cpu;
8808
	struct rq *target_rq = cpu_rq(target_cpu);
8809
	struct sched_domain *sd;
8810
	struct task_struct *p = NULL;
8811
	struct rq_flags rf;
8812

8813
	rq_lock_irq(busiest_rq, &rf);
8814 8815 8816 8817 8818 8819 8820
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8821

8822
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8823 8824 8825
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8826 8827 8828

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8829
		goto out_unlock;
8830 8831 8832 8833

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8834
	 * Bjorn Helgaas on a 128-CPU setup.
8835 8836 8837 8838
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8839
	rcu_read_lock();
8840 8841 8842 8843 8844 8845 8846
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8847 8848
		struct lb_env env = {
			.sd		= sd,
8849 8850 8851 8852
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8853
			.idle		= CPU_IDLE,
8854 8855 8856 8857 8858 8859 8860
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8861 8862
		};

8863
		schedstat_inc(sd->alb_count);
8864
		update_rq_clock(busiest_rq);
8865

8866
		p = detach_one_task(&env);
8867
		if (p) {
8868
			schedstat_inc(sd->alb_pushed);
8869 8870 8871
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8872
			schedstat_inc(sd->alb_failed);
8873
		}
8874
	}
8875
	rcu_read_unlock();
8876 8877
out_unlock:
	busiest_rq->active_balance = 0;
8878
	rq_unlock(busiest_rq, &rf);
8879 8880 8881 8882 8883 8884

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8885
	return 0;
8886 8887
}

8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

9006 9007 9008 9009 9010
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

9011
#ifdef CONFIG_NO_HZ_COMMON
9012 9013 9014 9015 9016 9017
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
9018

9019
static inline int find_new_ilb(void)
9020
{
9021
	int ilb = cpumask_first(nohz.idle_cpus_mask);
9022

9023 9024 9025 9026
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
9027 9028
}

9029 9030 9031 9032 9033
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
9034
static void kick_ilb(unsigned int flags)
9035 9036 9037 9038 9039
{
	int ilb_cpu;

	nohz.next_balance++;

9040
	ilb_cpu = find_new_ilb();
9041

9042 9043
	if (ilb_cpu >= nr_cpu_ids)
		return;
9044

9045
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9046
	if (flags & NOHZ_KICK_MASK)
9047
		return;
9048

9049 9050
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9051
	 * This way we generate a sched IPI on the target CPU which
9052 9053 9054 9055
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9075
	unsigned int flags = 0;
9076 9077 9078 9079 9080 9081 9082 9083

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9084
	nohz_balance_exit_idle(rq);
9085 9086 9087 9088 9089 9090 9091 9092

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9093 9094
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9095 9096
		flags = NOHZ_STATS_KICK;

9097
	if (time_before(now, nohz.next_balance))
9098
		goto out;
9099 9100

	if (rq->nr_running >= 2) {
9101
		flags = NOHZ_KICK_MASK;
9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9114
			flags = NOHZ_KICK_MASK;
9115 9116 9117 9118 9119 9120 9121 9122 9123
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9124
			flags = NOHZ_KICK_MASK;
9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9137
				flags = NOHZ_KICK_MASK;
9138 9139 9140 9141 9142 9143 9144
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9145 9146
	if (flags)
		kick_ilb(flags);
9147 9148
}

9149
static void set_cpu_sd_state_busy(int cpu)
9150
{
9151
	struct sched_domain *sd;
9152

9153 9154
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9155

9156 9157 9158 9159 9160 9161 9162
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9163 9164
}

9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9180 9181 9182 9183
{
	struct sched_domain *sd;

	rcu_read_lock();
9184
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9185 9186 9187 9188 9189

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9190
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9191
unlock:
9192 9193 9194
	rcu_read_unlock();
}

9195
/*
9196
 * This routine will record that the CPU is going idle with tick stopped.
9197
 * This info will be used in performing idle load balancing in the future.
9198
 */
9199
void nohz_balance_enter_idle(int cpu)
9200
{
9201 9202 9203 9204
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9205
	/* If this CPU is going down, then nothing needs to be done: */
9206 9207 9208
	if (!cpu_active(cpu))
		return;

9209
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9210
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9211 9212
		return;

9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9226
	if (rq->nohz_tick_stopped)
9227
		goto out;
9228

9229
	/* If we're a completely isolated CPU, we don't play: */
9230
	if (on_null_domain(rq))
9231 9232
		return;

9233 9234
	rq->nohz_tick_stopped = 1;

9235 9236
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9237

9238 9239 9240 9241 9242 9243 9244
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9245
	set_cpu_sd_state_idle(cpu);
9246 9247 9248 9249 9250 9251 9252

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9253 9254 9255
}

/*
9256 9257 9258 9259 9260
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9261
 */
9262 9263
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9264
{
9265
	/* Earliest time when we have to do rebalance again */
9266 9267
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9268
	bool has_blocked_load = false;
9269
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9270 9271
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9272
	int ret = false;
P
Peter Zijlstra 已提交
9273
	struct rq *rq;
9274

P
Peter Zijlstra 已提交
9275
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9276

9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9293
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9294
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9295 9296 9297
			continue;

		/*
9298 9299
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9300 9301
		 * balancing owner will pick it up.
		 */
9302 9303 9304 9305
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9306

V
Vincent Guittot 已提交
9307 9308
		rq = cpu_rq(balance_cpu);

9309
		has_blocked_load |= update_nohz_stats(rq, true);
9310

9311 9312 9313 9314 9315
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9316 9317
			struct rq_flags rf;

9318
			rq_lock_irqsave(rq, &rf);
9319
			update_rq_clock(rq);
9320
			cpu_load_update_idle(rq);
9321
			rq_unlock_irqrestore(rq, &rf);
9322

P
Peter Zijlstra 已提交
9323 9324
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9325
		}
9326

9327 9328 9329 9330
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9331
	}
9332

9333 9334 9335 9336 9337 9338
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9339 9340 9341
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9342 9343 9344
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9345 9346 9347
	/* The full idle balance loop has been done */
	ret = true;

9348 9349 9350 9351
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9352

9353 9354 9355 9356 9357 9358 9359
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9360

9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9390
	return true;
9391
}
9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9425 9426 9427
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9428
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9429 9430 9431
{
	return false;
}
9432 9433

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9434
#endif /* CONFIG_NO_HZ_COMMON */
9435

P
Peter Zijlstra 已提交
9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9470

P
Peter Zijlstra 已提交
9471 9472 9473 9474 9475 9476
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9477 9478
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9528
out:
P
Peter Zijlstra 已提交
9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9553 9554 9555 9556
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9557
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9558
{
9559
	struct rq *this_rq = this_rq();
9560
	enum cpu_idle_type idle = this_rq->idle_balance ?
9561 9562 9563
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9564 9565
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9566
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9567
	 * give the idle CPUs a chance to load balance. Else we may
9568 9569
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9570
	 */
P
Peter Zijlstra 已提交
9571 9572 9573 9574 9575
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9576
	rebalance_domains(this_rq, idle);
9577 9578 9579 9580 9581
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9582
void trigger_load_balance(struct rq *rq)
9583 9584
{
	/* Don't need to rebalance while attached to NULL domain */
9585 9586 9587 9588
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9589
		raise_softirq(SCHED_SOFTIRQ);
9590 9591

	nohz_balancer_kick(rq);
9592 9593
}

9594 9595 9596
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9597 9598

	update_runtime_enabled(rq);
9599 9600 9601 9602 9603
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9604 9605 9606

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9607 9608
}

9609
#endif /* CONFIG_SMP */
9610

9611
/*
9612 9613 9614 9615 9616 9617
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9618
 */
P
Peter Zijlstra 已提交
9619
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9620 9621 9622 9623 9624 9625
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9626
		entity_tick(cfs_rq, se, queued);
9627
	}
9628

9629
	if (static_branch_unlikely(&sched_numa_balancing))
9630
		task_tick_numa(rq, curr);
9631 9632 9633
}

/*
P
Peter Zijlstra 已提交
9634 9635 9636
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9637
 */
P
Peter Zijlstra 已提交
9638
static void task_fork_fair(struct task_struct *p)
9639
{
9640 9641
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9642
	struct rq *rq = this_rq();
9643
	struct rq_flags rf;
9644

9645
	rq_lock(rq, &rf);
9646 9647
	update_rq_clock(rq);

9648 9649
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9650 9651
	if (curr) {
		update_curr(cfs_rq);
9652
		se->vruntime = curr->vruntime;
9653
	}
9654
	place_entity(cfs_rq, se, 1);
9655

P
Peter Zijlstra 已提交
9656
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9657
		/*
9658 9659 9660
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9661
		swap(curr->vruntime, se->vruntime);
9662
		resched_curr(rq);
9663
	}
9664

9665
	se->vruntime -= cfs_rq->min_vruntime;
9666
	rq_unlock(rq, &rf);
9667 9668
}

9669 9670 9671 9672
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9673 9674
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9675
{
9676
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9677 9678
		return;

9679 9680 9681 9682 9683
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9684
	if (rq->curr == p) {
9685
		if (p->prio > oldprio)
9686
			resched_curr(rq);
9687
	} else
9688
		check_preempt_curr(rq, p, 0);
9689 9690
}

9691
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9692 9693 9694 9695
{
	struct sched_entity *se = &p->se;

	/*
9696 9697 9698 9699 9700 9701 9702 9703 9704 9705
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9706
	 *
9707 9708 9709 9710
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9711
	 */
9712 9713 9714 9715 9716 9717
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9736
		update_load_avg(cfs_rq, se, UPDATE_TG);
9737 9738 9739 9740 9741 9742
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9743
static void detach_entity_cfs_rq(struct sched_entity *se)
9744 9745 9746
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9747
	/* Catch up with the cfs_rq and remove our load when we leave */
9748
	update_load_avg(cfs_rq, se, 0);
9749
	detach_entity_load_avg(cfs_rq, se);
9750
	update_tg_load_avg(cfs_rq, false);
9751
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9752 9753
}

9754
static void attach_entity_cfs_rq(struct sched_entity *se)
9755
{
9756
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9757 9758

#ifdef CONFIG_FAIR_GROUP_SCHED
9759 9760 9761 9762 9763 9764
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9765

9766
	/* Synchronize entity with its cfs_rq */
9767
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9768
	attach_entity_load_avg(cfs_rq, se, 0);
9769
	update_tg_load_avg(cfs_rq, false);
9770
	propagate_entity_cfs_rq(se);
9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9796 9797 9798 9799

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9800

9801 9802 9803 9804 9805 9806 9807 9808
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9809

9810
	if (task_on_rq_queued(p)) {
9811
		/*
9812 9813 9814
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9815
		 */
9816 9817 9818 9819
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9820
	}
9821 9822
}

9823 9824 9825 9826 9827 9828 9829 9830 9831
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9832 9833 9834 9835 9836 9837 9838
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9839 9840
}

9841 9842
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9843
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9844 9845 9846 9847
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9848
#ifdef CONFIG_SMP
9849
	raw_spin_lock_init(&cfs_rq->removed.lock);
9850
#endif
9851 9852
}

P
Peter Zijlstra 已提交
9853
#ifdef CONFIG_FAIR_GROUP_SCHED
9854 9855 9856 9857 9858 9859 9860 9861
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9862
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9863
{
9864
	detach_task_cfs_rq(p);
9865
	set_task_rq(p, task_cpu(p));
9866 9867 9868 9869 9870

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9871
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9872
}
9873

9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9887 9888 9889 9890 9891 9892 9893 9894 9895
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9896
		if (tg->se)
9897 9898 9899 9900 9901 9902 9903 9904 9905 9906
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9907
	struct cfs_rq *cfs_rq;
9908 9909
	int i;

K
Kees Cook 已提交
9910
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9911 9912
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9913
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9934
		init_entity_runnable_average(se);
9935 9936 9937 9938 9939 9940 9941 9942 9943 9944
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9956
		update_rq_clock(rq);
9957
		attach_entity_cfs_rq(se);
9958
		sync_throttle(tg, i);
9959 9960 9961 9962
		raw_spin_unlock_irq(&rq->lock);
	}
}

9963
void unregister_fair_sched_group(struct task_group *tg)
9964 9965
{
	unsigned long flags;
9966 9967
	struct rq *rq;
	int cpu;
9968

9969 9970 9971
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9972

9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
10005
	if (!parent) {
10006
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
10007 10008
		se->depth = 0;
	} else {
10009
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
10010 10011
		se->depth = parent->depth + 1;
	}
10012 10013

	se->my_q = cfs_rq;
10014 10015
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
10040 10041
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10042 10043

		/* Propagate contribution to hierarchy */
10044
		rq_lock_irqsave(rq, &rf);
10045
		update_rq_clock(rq);
10046
		for_each_sched_entity(se) {
10047
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10048
			update_cfs_group(se);
10049
		}
10050
		rq_unlock_irqrestore(rq, &rf);
10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10066 10067
void online_fair_sched_group(struct task_group *tg) { }

10068
void unregister_fair_sched_group(struct task_group *tg) { }
10069 10070 10071

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10072

10073
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10074 10075 10076 10077 10078 10079 10080 10081 10082
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10083
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10084 10085 10086 10087

	return rr_interval;
}

10088 10089 10090
/*
 * All the scheduling class methods:
 */
10091
const struct sched_class fair_sched_class = {
10092
	.next			= &idle_sched_class,
10093 10094 10095
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10096
	.yield_to_task		= yield_to_task_fair,
10097

I
Ingo Molnar 已提交
10098
	.check_preempt_curr	= check_preempt_wakeup,
10099 10100 10101 10102

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10103
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10104
	.select_task_rq		= select_task_rq_fair,
10105
	.migrate_task_rq	= migrate_task_rq_fair,
10106

10107 10108
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10109

10110
	.task_dead		= task_dead_fair,
10111
	.set_cpus_allowed	= set_cpus_allowed_common,
10112
#endif
10113

10114
	.set_curr_task          = set_curr_task_fair,
10115
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10116
	.task_fork		= task_fork_fair,
10117 10118

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10119
	.switched_from		= switched_from_fair,
10120
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10121

10122 10123
	.get_rr_interval	= get_rr_interval_fair,

10124 10125
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10126
#ifdef CONFIG_FAIR_GROUP_SCHED
10127
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10128
#endif
10129 10130 10131
};

#ifdef CONFIG_SCHED_DEBUG
10132
void print_cfs_stats(struct seq_file *m, int cpu)
10133
{
10134
	struct cfs_rq *cfs_rq, *pos;
10135

10136
	rcu_read_lock();
10137
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10138
		print_cfs_rq(m, cpu, cfs_rq);
10139
	rcu_read_unlock();
10140
}
10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10162 10163 10164 10165 10166 10167

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10168
#ifdef CONFIG_NO_HZ_COMMON
10169
	nohz.next_balance = jiffies;
10170
	nohz.next_blocked = jiffies;
10171 10172 10173 10174 10175
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}