fair.c 265.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
355
/* Iterate thr' all leaf cfs_rq's on a runqueue */
356 357 358
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
359 360

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
361
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
362 363 364
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
365
		return se->cfs_rq;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	return NULL;
P
Peter Zijlstra 已提交
368 369 370 371 372 373 374
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

375 376 377 378 379 380 381 382 383 384 385 386 387
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
388 389
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

407 408 409 410 411 412
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
413

414 415 416
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
417 418 419
}


P
Peter Zijlstra 已提交
420 421
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
422

P
Peter Zijlstra 已提交
423
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424
{
P
Peter Zijlstra 已提交
425
	return &task_rq(p)->cfs;
426 427
}

P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

442 443 444 445 446 447 448 449
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

450 451
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
452 453 454 455 456 457

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

458 459 460 461 462
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
463 464
#endif	/* CONFIG_FAIR_GROUP_SCHED */

465
static __always_inline
466
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 468 469 470 471

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

472
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473
{
474
	s64 delta = (s64)(vruntime - max_vruntime);
475
	if (delta > 0)
476
		max_vruntime = vruntime;
477

478
	return max_vruntime;
479 480
}

481
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

490 491 492 493 494 495
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

496 497
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
498
	struct sched_entity *curr = cfs_rq->curr;
499
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500

501 502
	u64 vruntime = cfs_rq->min_vruntime;

503 504 505 506 507 508
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
509

510 511 512
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
513

514
		if (!curr)
515 516 517 518 519
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

520
	/* ensure we never gain time by being placed backwards. */
521
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 523 524 525
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
526 527
}

528 529 530
/*
 * Enqueue an entity into the rb-tree:
 */
531
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532
{
533
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 535
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
536
	bool leftmost = true;
537 538 539 540 541 542 543 544 545 546 547

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
548
		if (entity_before(se, entry)) {
549 550 551
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
552
			leftmost = false;
553 554 555 556
		}
	}

	rb_link_node(&se->run_node, parent, link);
557 558
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
559 560
}

561
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562
{
563
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 565
}

566
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567
{
568
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 570 571 572 573

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
574 575
}

576 577 578 579 580 581 582 583 584 585 586
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
587
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588
{
589
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590

591 592
	if (!last)
		return NULL;
593 594

	return rb_entry(last, struct sched_entity, run_node);
595 596
}

597 598 599 600
/**************************************************************
 * Scheduling class statistics methods:
 */

601
int sched_proc_update_handler(struct ctl_table *table, int write,
602
		void __user *buffer, size_t *lenp,
603 604
		loff_t *ppos)
{
605
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606
	unsigned int factor = get_update_sysctl_factor();
607 608 609 610 611 612 613

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

614 615 616 617 618 619 620
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

621 622 623
	return 0;
}
#endif
624

625
/*
626
 * delta /= w
627
 */
628
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629
{
630
	if (unlikely(se->load.weight != NICE_0_LOAD))
631
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 633 634 635

	return delta;
}

636 637 638
/*
 * The idea is to set a period in which each task runs once.
 *
639
 * When there are too many tasks (sched_nr_latency) we have to stretch
640 641 642 643
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
644 645
static u64 __sched_period(unsigned long nr_running)
{
646 647 648 649
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
650 651
}

652 653 654 655
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
656
 * s = p*P[w/rw]
657
 */
P
Peter Zijlstra 已提交
658
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659
{
M
Mike Galbraith 已提交
660
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661

M
Mike Galbraith 已提交
662
	for_each_sched_entity(se) {
L
Lin Ming 已提交
663
		struct load_weight *load;
664
		struct load_weight lw;
L
Lin Ming 已提交
665 666 667

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
668

M
Mike Galbraith 已提交
669
		if (unlikely(!se->on_rq)) {
670
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
671 672 673 674

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
675
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
676 677
	}
	return slice;
678 679
}

680
/*
A
Andrei Epure 已提交
681
 * We calculate the vruntime slice of a to-be-inserted task.
682
 *
683
 * vs = s/w
684
 */
685
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
686
{
687
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 689
}

690
#ifdef CONFIG_SMP
691
#include "pelt.h"
692 693
#include "sched-pelt.h"

694
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 696
static unsigned long task_h_load(struct task_struct *p);

697 698
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
699
{
700
	struct sched_avg *sa = &se->avg;
701

702 703
	memset(sa, 0, sizeof(*sa));

704 705 706 707 708 709 710
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
711 712
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

713 714
	se->runnable_weight = se->load.weight;

715
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716
}
717

718
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719
static void attach_entity_cfs_rq(struct sched_entity *se);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
734
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735
 *
736
 * where n denotes the nth task and cpu_scale the CPU capacity.
737
 *
738 739
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
740 741 742 743 744 745 746 747 748 749 750
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
751 752
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 754 755 756 757 758 759 760 761 762 763 764

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
765 766 767 768 769 770 771

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
772
			update_cfs_rq_load_avg(now, cfs_rq);
773
			attach_entity_load_avg(cfs_rq, se, 0);
774 775 776 777 778
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
779
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 781 782 783
			return;
		}
	}

784
	attach_entity_cfs_rq(se);
785 786
}

787
#else /* !CONFIG_SMP */
788
void init_entity_runnable_average(struct sched_entity *se)
789 790
{
}
791 792 793
void post_init_entity_util_avg(struct sched_entity *se)
{
}
794 795 796
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
797
#endif /* CONFIG_SMP */
798

799
/*
800
 * Update the current task's runtime statistics.
801
 */
802
static void update_curr(struct cfs_rq *cfs_rq)
803
{
804
	struct sched_entity *curr = cfs_rq->curr;
805
	u64 now = rq_clock_task(rq_of(cfs_rq));
806
	u64 delta_exec;
807 808 809 810

	if (unlikely(!curr))
		return;

811 812
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
813
		return;
814

I
Ingo Molnar 已提交
815
	curr->exec_start = now;
816

817 818 819 820
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
821
	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 823 824 825

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

826 827 828
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

829
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830
		cgroup_account_cputime(curtask, delta_exec);
831
		account_group_exec_runtime(curtask, delta_exec);
832
	}
833 834

	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 836
}

837 838 839 840 841
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

842
static inline void
843
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844
{
845 846 847 848 849 850 851
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 853

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 855
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
856

857
	__schedstat_set(se->statistics.wait_start, wait_start);
858 859
}

860
static inline void
861 862 863
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
864 865
	u64 delta;

866 867 868 869
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 871 872 873 874 875 876 877 878

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
879
			__schedstat_set(se->statistics.wait_start, delta);
880 881 882 883 884
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

885
	__schedstat_set(se->statistics.wait_max,
886
		      max(schedstat_val(se->statistics.wait_max), delta));
887 888 889
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
890 891
}

892
static inline void
893 894 895
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
896 897 898 899 900 901 902
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
903 904 905 906

	if (entity_is_task(se))
		tsk = task_of(se);

907 908
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 910 911 912

		if ((s64)delta < 0)
			delta = 0;

913
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914
			__schedstat_set(se->statistics.sleep_max, delta);
915

916 917
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 919 920 921 922 923

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
924 925
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931
			__schedstat_set(se->statistics.block_max, delta);
932

933 934
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937

		if (tsk) {
			if (tsk->in_iowait) {
938 939
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
958 959
}

960 961 962
/*
 * Task is being enqueued - update stats:
 */
963
static inline void
964
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965
{
966 967 968
	if (!schedstat_enabled())
		return;

969 970 971 972
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
973
	if (se != cfs_rq->curr)
974
		update_stats_wait_start(cfs_rq, se);
975 976 977

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
978 979 980
}

static inline void
981
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985 986

	if (!schedstat_enabled())
		return;

987 988 989 990
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
991
	if (se != cfs_rq->curr)
992
		update_stats_wait_end(cfs_rq, se);
993

994 995
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
996

997
		if (tsk->state & TASK_INTERRUPTIBLE)
998
			__schedstat_set(se->statistics.sleep_start,
999 1000
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001
			__schedstat_set(se->statistics.block_start,
1002
				      rq_clock(rq_of(cfs_rq)));
1003 1004 1005
	}
}

1006 1007 1008 1009
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1010
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 1012 1013 1014
{
	/*
	 * We are starting a new run period:
	 */
1015
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 1017 1018 1019 1020 1021
}

/**************************************************
 * Scheduling class queueing methods:
 */

1022 1023
#ifdef CONFIG_NUMA_BALANCING
/*
1024 1025 1026
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1027
 */
1028 1029
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 1031 1032

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1033

1034 1035 1036
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1084
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 1086 1087
	unsigned int scan, floor;
	unsigned int windows = 1;

1088 1089
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1090 1091 1092 1093 1094 1095
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1115 1116
static unsigned int task_scan_max(struct task_struct *p)
{
1117 1118
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1119 1120 1121

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1137 1138 1139
	return max(smin, smax);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1202 1203 1204 1205 1206
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1207
/*
1208
 * The averaged statistics, shared & private, memory & CPU,
1209 1210 1211 1212 1213
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214
{
1215
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 1217 1218 1219
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1220
	if (!p->numa_faults)
1221 1222
		return 0;

1223 1224
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 1226
}

1227 1228 1229 1230 1231
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1232 1233
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 1235
}

1236 1237
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1238 1239
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315
					dist >= maxdist)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1343 1344 1345 1346 1347 1348
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1349 1350
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1351
{
1352
	unsigned long faults, total_faults;
1353

1354
	if (!p->numa_faults)
1355 1356 1357 1358 1359 1360 1361
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1362
	faults = task_faults(p, nid);
1363 1364
	faults += score_nearby_nodes(p, nid, dist, true);

1365
	return 1000 * faults / total_faults;
1366 1367
}

1368 1369
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1370
{
1371 1372 1373 1374 1375 1376 1377 1378
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1379 1380
		return 0;

1381
	faults = group_faults(p, nid);
1382 1383
	faults += score_nearby_nodes(p, nid, dist, false);

1384
	return 1000 * faults / total_faults;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1427 1428
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1429
	 */
1430 1431
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1432 1433 1434
		return true;

	/*
1435 1436 1437 1438 1439 1440
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1441
	 */
1442 1443
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 1445
}

1446
static unsigned long weighted_cpuload(struct rq *rq);
1447 1448
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1449
static unsigned long capacity_of(int cpu);
1450

1451
/* Cached statistics for all CPUs within a node */
1452 1453
struct numa_stats {
	unsigned long load;
1454 1455

	/* Total compute capacity of CPUs on a node */
1456
	unsigned long compute_capacity;
1457

1458
	unsigned int nr_running;
1459
};
1460

1461 1462 1463 1464 1465
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1466 1467
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1468 1469 1470 1471 1472 1473

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1474
		ns->load += weighted_cpuload(rq);
1475
		ns->compute_capacity += capacity_of(cpu);
1476 1477

		cpus++;
1478 1479
	}

1480 1481 1482 1483 1484
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1485
	 * We'll detect a huge imbalance and bail there.
1486 1487 1488 1489
	 */
	if (!cpus)
		return;

1490 1491 1492 1493
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

1494
	capacity = min_t(unsigned, capacity,
1495
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 1497
}

1498 1499
struct task_numa_env {
	struct task_struct *p;
1500

1501 1502
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1503

1504
	struct numa_stats src_stats, dst_stats;
1505

1506
	int imbalance_pct;
1507
	int dist;
1508 1509 1510

	struct task_struct *best_task;
	long best_imp;
1511 1512 1513
	int best_cpu;
};

1514 1515 1516
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	struct rq *rq = cpu_rq(env->dst_cpu);

	/* Bail out if run-queue part of active NUMA balance. */
	if (xchg(&rq->numa_migrate_on, 1))
		return;

	/*
	 * Clear previous best_cpu/rq numa-migrate flag, since task now
	 * found a better CPU to move/swap.
	 */
	if (env->best_cpu != -1) {
		rq = cpu_rq(env->best_cpu);
		WRITE_ONCE(rq->numa_migrate_on, 0);
	}

1532 1533
	if (env->best_task)
		put_task_struct(env->best_task);
1534 1535
	if (p)
		get_task_struct(p);
1536 1537 1538 1539 1540 1541

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1542
static bool load_too_imbalanced(long src_load, long dst_load,
1543 1544
				struct task_numa_env *env)
{
1545 1546
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1558

1559
	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1560

1561
	orig_src_load = env->src_stats.load;
1562
	orig_dst_load = env->dst_stats.load;
1563

1564
	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1565 1566 1567

	/* Would this change make things worse? */
	return (imb > old_imb);
1568 1569
}

1570 1571 1572 1573 1574 1575
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1576
static void task_numa_compare(struct task_numa_env *env,
1577
			      long taskimp, long groupimp, bool maymove)
1578 1579 1580
{
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1581
	long src_load, dst_load;
1582
	long load;
1583
	long imp = env->p->numa_group ? groupimp : taskimp;
1584
	long moveimp = imp;
1585
	int dist = env->dist;
1586

1587 1588 1589
	if (READ_ONCE(dst_rq->numa_migrate_on))
		return;

1590
	rcu_read_lock();
1591 1592
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1593 1594
		cur = NULL;

1595 1596 1597 1598 1599 1600 1601
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1602 1603 1604 1605 1606 1607 1608
	if (!cur) {
		if (maymove || imp > env->best_imp)
			goto assign;
		else
			goto unlock;
	}

1609 1610 1611 1612
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1613
	 * the value is, the more remote accesses that would be expected to
1614 1615
	 * be incurred if the tasks were swapped.
	 */
1616 1617 1618
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1619

1620 1621 1622 1623 1624 1625 1626
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
	if (cur->numa_group == env->p->numa_group) {
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1627
		/*
1628 1629
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1630
		 */
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
		if (cur->numa_group)
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
		if (cur->numa_group && env->p->numa_group)
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1644 1645
	}

1646
	if (imp <= env->best_imp)
1647 1648
		goto unlock;

1649 1650 1651
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
		imp = moveimp - 1;
		cur = NULL;
1652
		goto assign;
1653
	}
1654 1655 1656 1657

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1658 1659 1660 1661
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1662 1663
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1664

1665
	if (load_too_imbalanced(src_load, dst_load, env))
1666 1667
		goto unlock;

1668
assign:
1669 1670 1671 1672
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1673 1674
	if (!cur) {
		/*
1675
		 * select_idle_siblings() uses an per-CPU cpumask that
1676 1677 1678
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1679 1680
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1681 1682
		local_irq_enable();
	}
1683

1684 1685 1686 1687 1688
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1689 1690
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1691
{
1692 1693
	long src_load, dst_load, load;
	bool maymove = false;
1694 1695
	int cpu;

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1706 1707
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1708
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1709 1710 1711
			continue;

		env->dst_cpu = cpu;
1712
		task_numa_compare(env, taskimp, groupimp, maymove);
1713 1714 1715
	}
}

1716 1717 1718 1719
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1720

1721
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1722
		.src_nid = task_node(p),
1723 1724 1725 1726 1727

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1728
		.best_cpu = -1,
1729 1730
	};
	struct sched_domain *sd;
1731
	struct rq *best_rq;
1732
	unsigned long taskweight, groupweight;
1733
	int nid, ret, dist;
1734
	long taskimp, groupimp;
1735

1736
	/*
1737 1738 1739 1740 1741 1742
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1743 1744
	 */
	rcu_read_lock();
1745
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1746 1747
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1748 1749
	rcu_read_unlock();

1750 1751 1752 1753 1754 1755 1756
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1757
		sched_setnuma(p, task_node(p));
1758 1759 1760
		return -EINVAL;
	}

1761
	env.dst_nid = p->numa_preferred_nid;
1762 1763 1764 1765 1766 1767
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1768
	update_numa_stats(&env.dst_stats, env.dst_nid);
1769

1770
	/* Try to find a spot on the preferred nid. */
1771
	task_numa_find_cpu(&env, taskimp, groupimp);
1772

1773 1774 1775 1776 1777 1778 1779
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1780
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1781 1782 1783
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1784

1785
			dist = node_distance(env.src_nid, env.dst_nid);
1786 1787 1788 1789 1790
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1791

1792
			/* Only consider nodes where both task and groups benefit */
1793 1794
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1795
			if (taskimp < 0 && groupimp < 0)
1796 1797
				continue;

1798
			env.dist = dist;
1799 1800
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1801
			task_numa_find_cpu(&env, taskimp, groupimp);
1802 1803 1804
		}
	}

1805 1806 1807 1808 1809 1810 1811 1812
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1813 1814 1815 1816
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
1817
			nid = cpu_to_node(env.best_cpu);
1818

1819 1820
		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
1821 1822 1823 1824 1825
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1826

1827 1828 1829 1830
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1831
	p->numa_scan_period = task_scan_start(p);
1832

1833
	best_rq = cpu_rq(env.best_cpu);
1834
	if (env.best_task == NULL) {
1835
		ret = migrate_task_to(p, env.best_cpu);
1836
		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1837 1838
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1839 1840 1841
		return ret;
	}

1842
	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1843
	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1844

1845 1846
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1847 1848
	put_task_struct(env.best_task);
	return ret;
1849 1850
}

1851 1852 1853
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1854 1855
	unsigned long interval = HZ;

1856
	/* This task has no NUMA fault statistics yet */
1857
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1858 1859
		return;

1860
	/* Periodically retry migrating the task to the preferred node */
1861
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1862
	p->numa_migrate_retry = jiffies + interval;
1863 1864

	/* Success if task is already running on preferred CPU */
1865
	if (task_node(p) == p->numa_preferred_nid)
1866 1867 1868
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1869
	task_numa_migrate(p);
1870 1871
}

1872
/*
1873
 * Find out how many nodes on the workload is actively running on. Do this by
1874 1875 1876 1877
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1878
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1879 1880
{
	unsigned long faults, max_faults = 0;
1881
	int nid, active_nodes = 0;
1882 1883 1884 1885 1886 1887 1888 1889 1890

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1891 1892
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1893
	}
1894 1895 1896

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1897 1898
}

1899 1900 1901
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1902 1903 1904
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1905 1906
 */
#define NUMA_PERIOD_SLOTS 10
1907
#define NUMA_PERIOD_THRESHOLD 7
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1919
	int lr_ratio, ps_ratio;
1920 1921 1922 1923 1924 1925 1926 1927
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1928 1929 1930
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1931
	 */
1932
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1968 1969 1970 1971 1972
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1973 1974 1975
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
1976
		 */
1977 1978
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1979 1980 1981 1982 1983 1984 1985
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2004
		delta = p->se.avg.load_sum;
2005
		*period = LOAD_AVG_MAX;
2006 2007 2008 2009 2010 2011 2012 2013
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2061
		nodemask_t max_group = NODE_MASK_NONE;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2095 2096
		if (!max_faults)
			break;
2097 2098 2099 2100 2101
		nodes = max_group;
	}
	return nid;
}

2102 2103
static void task_numa_placement(struct task_struct *p)
{
2104 2105
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
2106
	unsigned long fault_types[2] = { 0, 0 };
2107 2108
	unsigned long total_faults;
	u64 runtime, period;
2109
	spinlock_t *group_lock = NULL;
2110

2111 2112 2113 2114 2115
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2116
	seq = READ_ONCE(p->mm->numa_scan_seq);
2117 2118 2119
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2120
	p->numa_scan_period_max = task_scan_max(p);
2121

2122 2123 2124 2125
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2126 2127 2128
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2129
		spin_lock_irq(group_lock);
2130 2131
	}

2132 2133
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2134 2135
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2136
		unsigned long faults = 0, group_faults = 0;
2137
		int priv;
2138

2139
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2140
			long diff, f_diff, f_weight;
2141

2142 2143 2144 2145
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2146

2147
			/* Decay existing window, copy faults since last scan */
2148 2149 2150
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2151

2152 2153 2154 2155 2156 2157 2158 2159
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2160
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2161
				   (total_faults + 1);
2162 2163
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2164

2165 2166 2167
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2168
			p->total_numa_faults += diff;
2169
			if (p->numa_group) {
2170 2171 2172 2173 2174 2175 2176 2177 2178
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2179
				p->numa_group->total_faults += diff;
2180
				group_faults += p->numa_group->faults[mem_idx];
2181
			}
2182 2183
		}

2184 2185 2186 2187 2188 2189 2190
		if (!p->numa_group) {
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
2191 2192
			max_nid = nid;
		}
2193 2194
	}

2195
	if (p->numa_group) {
2196
		numa_group_count_active_nodes(p->numa_group);
2197
		spin_unlock_irq(group_lock);
2198
		max_nid = preferred_group_nid(p, max_nid);
2199 2200
	}

2201 2202 2203 2204
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);
2205
	}
2206 2207

	update_task_scan_period(p, fault_types[0], fault_types[1]);
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2221 2222
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2223 2224 2225 2226 2227 2228 2229 2230 2231
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2232
				    4*nr_node_ids*sizeof(unsigned long);
2233 2234 2235 2236 2237 2238

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2239 2240
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2241
		spin_lock_init(&grp->lock);
2242
		grp->gid = p->pid;
2243
		/* Second half of the array tracks nids where faults happen */
2244 2245
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2246

2247
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2248
			grp->faults[i] = p->numa_faults[i];
2249

2250
		grp->total_faults = p->total_numa_faults;
2251

2252 2253 2254 2255 2256
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2257
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2258 2259

	if (!cpupid_match_pid(tsk, cpupid))
2260
		goto no_join;
2261 2262 2263

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2264
		goto no_join;
2265 2266 2267

	my_grp = p->numa_group;
	if (grp == my_grp)
2268
		goto no_join;
2269 2270 2271 2272 2273 2274

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2275
		goto no_join;
2276 2277 2278 2279 2280

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2281
		goto no_join;
2282

2283 2284 2285 2286 2287 2288 2289
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2290

2291 2292 2293
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2294
	if (join && !get_numa_group(grp))
2295
		goto no_join;
2296 2297 2298 2299 2300 2301

	rcu_read_unlock();

	if (!join)
		return;

2302 2303
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2304

2305
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2306 2307
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2308
	}
2309 2310
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2311 2312 2313 2314 2315

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2316
	spin_unlock_irq(&grp->lock);
2317 2318 2319 2320

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2321 2322 2323 2324 2325
	return;

no_join:
	rcu_read_unlock();
	return;
2326 2327 2328 2329 2330
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2331
	void *numa_faults = p->numa_faults;
2332 2333
	unsigned long flags;
	int i;
2334 2335

	if (grp) {
2336
		spin_lock_irqsave(&grp->lock, flags);
2337
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2338
			grp->faults[i] -= p->numa_faults[i];
2339
		grp->total_faults -= p->total_numa_faults;
2340

2341
		grp->nr_tasks--;
2342
		spin_unlock_irqrestore(&grp->lock, flags);
2343
		RCU_INIT_POINTER(p->numa_group, NULL);
2344 2345 2346
		put_numa_group(grp);
	}

2347
	p->numa_faults = NULL;
2348
	kfree(numa_faults);
2349 2350
}

2351 2352 2353
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2354
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2355 2356
{
	struct task_struct *p = current;
2357
	bool migrated = flags & TNF_MIGRATED;
2358
	int cpu_node = task_node(current);
2359
	int local = !!(flags & TNF_FAULT_LOCAL);
2360
	struct numa_group *ng;
2361
	int priv;
2362

2363
	if (!static_branch_likely(&sched_numa_balancing))
2364 2365
		return;

2366 2367 2368 2369
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2370
	/* Allocate buffer to track faults on a per-node basis */
2371 2372
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2373
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2374

2375 2376
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2377
			return;
2378

2379
		p->total_numa_faults = 0;
2380
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2381
	}
2382

2383 2384 2385 2386 2387 2388 2389 2390
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2391
		if (!priv && !(flags & TNF_NO_GROUP))
2392
			task_numa_group(p, last_cpupid, flags, &priv);
2393 2394
	}

2395 2396 2397 2398 2399 2400
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2401 2402 2403 2404
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2405 2406
		local = 1;

2407 2408 2409 2410
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
2411 2412
	if (time_after(jiffies, p->numa_migrate_retry)) {
		task_numa_placement(p);
2413
		numa_migrate_preferred(p);
2414
	}
2415

I
Ingo Molnar 已提交
2416 2417
	if (migrated)
		p->numa_pages_migrated += pages;
2418 2419
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2420

2421 2422
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2423
	p->numa_faults_locality[local] += pages;
2424 2425
}

2426 2427
static void reset_ptenuma_scan(struct task_struct *p)
{
2428 2429 2430 2431 2432 2433 2434 2435
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2436
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2437 2438 2439
	p->mm->numa_scan_offset = 0;
}

2440 2441 2442 2443 2444 2445 2446 2447 2448
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2449
	u64 runtime = p->se.sum_exec_runtime;
2450
	struct vm_area_struct *vma;
2451
	unsigned long start, end;
2452
	unsigned long nr_pte_updates = 0;
2453
	long pages, virtpages;
2454

2455
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2469
	if (!mm->numa_next_scan) {
2470 2471
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2472 2473
	}

2474 2475 2476 2477 2478 2479 2480
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2481 2482
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2483
		p->numa_scan_period = task_scan_start(p);
2484
	}
2485

2486
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2487 2488 2489
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2490 2491 2492 2493 2494 2495
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2496 2497 2498
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2499
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2500 2501
	if (!pages)
		return;
2502

2503

2504 2505
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2506
	vma = find_vma(mm, start);
2507 2508
	if (!vma) {
		reset_ptenuma_scan(p);
2509
		start = 0;
2510 2511
		vma = mm->mmap;
	}
2512
	for (; vma; vma = vma->vm_next) {
2513
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2514
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2515
			continue;
2516
		}
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2528 2529 2530 2531 2532 2533
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2534

2535 2536 2537 2538
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2539
			nr_pte_updates = change_prot_numa(vma, start, end);
2540 2541

			/*
2542 2543 2544 2545 2546 2547
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2548 2549 2550
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2551
			virtpages -= (end - start) >> PAGE_SHIFT;
2552

2553
			start = end;
2554
			if (pages <= 0 || virtpages <= 0)
2555
				goto out;
2556 2557

			cond_resched();
2558
		} while (end != vma->vm_end);
2559
	}
2560

2561
out:
2562
	/*
P
Peter Zijlstra 已提交
2563 2564 2565 2566
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2567 2568
	 */
	if (vma)
2569
		mm->numa_scan_offset = start;
2570 2571 2572
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2609
	if (now > curr->node_stamp + period) {
2610
		if (!curr->node_stamp)
2611
			curr->numa_scan_period = task_scan_start(curr);
2612
		curr->node_stamp += period;
2613 2614 2615 2616 2617 2618 2619

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2620

2621 2622 2623 2624
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2625 2626 2627 2628 2629 2630 2631 2632

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2633

2634 2635
#endif /* CONFIG_NUMA_BALANCING */

2636 2637 2638 2639
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2640
	if (!parent_entity(se))
2641
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2642
#ifdef CONFIG_SMP
2643 2644 2645 2646 2647 2648
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2649
#endif
2650 2651 2652 2653 2654 2655 2656
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2657
	if (!parent_entity(se))
2658
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2659
#ifdef CONFIG_SMP
2660 2661
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2662
		list_del_init(&se->group_node);
2663
	}
2664
#endif
2665 2666 2667
	cfs_rq->nr_running--;
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2709 2710 2711 2712
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2713 2714 2715 2716 2717
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2718 2719 2720 2721 2722
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2749
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2750
			    unsigned long weight, unsigned long runnable)
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2761
	se->runnable_weight = runnable;
2762 2763 2764
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2765 2766 2767 2768 2769 2770 2771
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2788
	reweight_entity(cfs_rq, se, weight, weight);
2789 2790 2791
	load->inv_weight = sched_prio_to_wmult[prio];
}

2792
#ifdef CONFIG_FAIR_GROUP_SCHED
2793
#ifdef CONFIG_SMP
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2832
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2858 2859 2860 2861 2862 2863 2864 2865 2866
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2867
static long calc_group_shares(struct cfs_rq *cfs_rq)
2868
{
2869 2870 2871 2872
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2873

2874
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2875

2876
	tg_weight = atomic_long_read(&tg->load_avg);
2877

2878 2879 2880
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2881

2882
	shares = (tg_shares * load);
2883 2884
	if (tg_weight)
		shares /= tg_weight;
2885

2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2898
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2899
}
2900 2901

/*
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2927 2928 2929
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2930 2931 2932 2933 2934 2935 2936
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2937 2938 2939 2940

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2941

2942 2943
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2944
#endif /* CONFIG_SMP */
2945

2946 2947
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2948 2949 2950 2951 2952
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2953
{
2954 2955
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
2956

2957
	if (!gcfs_rq)
2958 2959
		return;

2960
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
2961
		return;
2962

2963
#ifndef CONFIG_SMP
2964
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2965 2966

	if (likely(se->load.weight == shares))
2967
		return;
2968
#else
2969 2970
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
2971
#endif
P
Peter Zijlstra 已提交
2972

2973
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
2974
}
2975

P
Peter Zijlstra 已提交
2976
#else /* CONFIG_FAIR_GROUP_SCHED */
2977
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2978 2979 2980 2981
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2982
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
2983
{
2984 2985
	struct rq *rq = rq_of(cfs_rq);

2986
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
2987 2988 2989
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
2990
		 * a real problem.
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3001
		cpufreq_update_util(rq, flags);
3002 3003 3004
	}
}

3005
#ifdef CONFIG_SMP
3006
#ifdef CONFIG_FAIR_GROUP_SCHED
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3020
 * Updating tg's load_avg is necessary before update_cfs_share().
3021
 */
3022
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3023
{
3024
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3025

3026 3027 3028 3029 3030 3031
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3032 3033 3034
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3035
	}
3036
}
3037

3038
/*
3039
 * Called within set_task_rq() right before setting a task's CPU. The
3040 3041 3042 3043 3044 3045
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3046 3047 3048
	u64 p_last_update_time;
	u64 n_last_update_time;

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3059 3060
	if (!(se->avg.last_update_time && prev))
		return;
3061 3062

#ifndef CONFIG_64BIT
3063
	{
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3078
	}
3079
#else
3080 3081
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3082
#endif
3083 3084
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3085
}
3086

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3098 3099 3100
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3101 3102 3103 3104 3105 3106 3107 3108
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3109
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3110 3111 3112
 *
 * And per (1) we have:
 *
3113
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3132 3133 3134 3135 3136 3137
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3138
 *
3139
 * So we'll have to approximate.. :/
3140
 *
3141
 * Given the constraint:
3142
 *
3143
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3144
 *
3145 3146
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3147
 *
3148
 * On removal, we'll assume each task is equally runnable; which yields:
3149
 *
3150
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3151
 *
3152
 * XXX: only do this for the part of runnable > running ?
3153 3154 3155
 *
 */

3156
static inline void
3157
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3158 3159 3160 3161 3162 3163 3164
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3165 3166 3167 3168 3169 3170 3171 3172
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3183
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3184
{
3185 3186 3187 3188
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3189

3190 3191
	if (!runnable_sum)
		return;
3192

3193
	gcfs_rq->prop_runnable_sum = 0;
3194

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3218
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3219 3220 3221 3222 3223 3224
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3225 3226
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3227

3228 3229
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3230

3231 3232 3233 3234
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3235

3236 3237
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3238 3239
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3240

3241 3242
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3243

3244
	if (se->on_rq) {
3245 3246
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3247 3248 3249
	}
}

3250
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3251
{
3252 3253
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3254 3255 3256 3257 3258
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3259
	struct cfs_rq *cfs_rq, *gcfs_rq;
3260 3261 3262 3263

	if (entity_is_task(se))
		return 0;

3264 3265
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3266 3267
		return 0;

3268 3269
	gcfs_rq->propagate = 0;

3270 3271
	cfs_rq = cfs_rq_of(se);

3272
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3273

3274 3275
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3276 3277 3278 3279

	return 1;
}

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3299
	if (gcfs_rq->propagate)
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3310
#else /* CONFIG_FAIR_GROUP_SCHED */
3311

3312
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3313 3314 3315 3316 3317 3318

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3319
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3320

3321
#endif /* CONFIG_FAIR_GROUP_SCHED */
3322

3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3334 3335 3336 3337
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3338
 */
3339
static inline int
3340
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3341
{
3342
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3343
	struct sched_avg *sa = &cfs_rq->avg;
3344
	int decayed = 0;
3345

3346 3347
	if (cfs_rq->removed.nr) {
		unsigned long r;
3348
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3349 3350 3351 3352

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3353
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3354 3355 3356 3357
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3358
		sub_positive(&sa->load_avg, r);
3359
		sub_positive(&sa->load_sum, r * divider);
3360

3361
		r = removed_util;
3362
		sub_positive(&sa->util_avg, r);
3363
		sub_positive(&sa->util_sum, r * divider);
3364

3365
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3366 3367

		decayed = 1;
3368
	}
3369

3370
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3371

3372 3373 3374 3375
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3376

3377
	if (decayed)
3378
		cfs_rq_util_change(cfs_rq, 0);
3379

3380
	return decayed;
3381 3382
}

3383 3384 3385 3386
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
3387
 * @flags: migration hints
3388 3389 3390 3391
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3392
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3393
{
3394 3395 3396 3397 3398 3399 3400 3401 3402
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3403
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3422
	enqueue_load_avg(cfs_rq, se);
3423 3424
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3425 3426

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3427

3428
	cfs_rq_util_change(cfs_rq, flags);
3429 3430
}

3431 3432 3433 3434 3435 3436 3437 3438
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3439 3440
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3441
	dequeue_load_avg(cfs_rq, se);
3442 3443
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3444 3445

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3446

3447
	cfs_rq_util_change(cfs_rq, 0);
3448 3449
}

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3477 3478 3479 3480 3481 3482 3483 3484
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3485 3486 3487 3488 3489 3490
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3491
#ifndef CONFIG_64BIT
3492 3493
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3494
	u64 last_update_time_copy;
3495
	u64 last_update_time;
3496

3497 3498 3499 3500 3501
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3502 3503 3504

	return last_update_time;
}
3505
#else
3506 3507 3508 3509
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3510 3511
#endif

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3522
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3523 3524
}

3525 3526 3527 3528 3529 3530 3531
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3532
	unsigned long flags;
3533 3534

	/*
3535 3536 3537 3538 3539 3540 3541
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3542 3543
	 */

3544
	sync_entity_load_avg(se);
3545 3546 3547 3548 3549

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3550
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3551
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3552
}
3553

3554 3555
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3556
	return cfs_rq->avg.runnable_load_avg;
3557 3558 3559 3560 3561 3562 3563
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3564
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3565

3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3593
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3619 3620 3621 3622
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3623 3624 3625 3626 3627 3628 3629 3630 3631
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3632 3633 3634 3635 3636 3637 3638 3639
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3640 3641 3642 3643
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3644
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3672 3673
#else /* CONFIG_SMP */

3674 3675
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3676
#define DO_ATTACH	0x0
3677

3678
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3679
{
3680
	cfs_rq_util_change(cfs_rq, 0);
3681 3682
}

3683
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3684

3685
static inline void
3686
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3687 3688 3689
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3690
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3691 3692 3693 3694
{
	return 0;
}

3695 3696 3697 3698 3699 3700 3701
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3702
#endif /* CONFIG_SMP */
3703

P
Peter Zijlstra 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3713
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3714 3715 3716
#endif
}

3717 3718 3719
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3720
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3721

3722 3723 3724 3725 3726 3727
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3728
	if (initial && sched_feat(START_DEBIT))
3729
		vruntime += sched_vslice(cfs_rq, se);
3730

3731
	/* sleeps up to a single latency don't count. */
3732
	if (!initial) {
3733
		unsigned long thresh = sysctl_sched_latency;
3734

3735 3736 3737 3738 3739 3740
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3741

3742
		vruntime -= thresh;
3743 3744
	}

3745
	/* ensure we never gain time by being placed backwards. */
3746
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3747 3748
}

3749 3750
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3763
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3764
			     "stat_blocked and stat_runtime require the "
3765
			     "kernel parameter schedstats=enable or "
3766 3767 3768 3769 3770
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3790
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3802
static void
3803
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3804
{
3805 3806 3807
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3808
	/*
3809 3810
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3811
	 */
3812
	if (renorm && curr)
3813 3814
		se->vruntime += cfs_rq->min_vruntime;

3815 3816
	update_curr(cfs_rq);

3817
	/*
3818 3819 3820 3821
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3822
	 */
3823 3824 3825
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3826 3827 3828 3829 3830 3831 3832 3833
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3834
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3835
	update_cfs_group(se);
3836
	enqueue_runnable_load_avg(cfs_rq, se);
3837
	account_entity_enqueue(cfs_rq, se);
3838

3839
	if (flags & ENQUEUE_WAKEUP)
3840
		place_entity(cfs_rq, se, 0);
3841

3842
	check_schedstat_required();
3843 3844
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3845
	if (!curr)
3846
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3847
	se->on_rq = 1;
3848

3849
	if (cfs_rq->nr_running == 1) {
3850
		list_add_leaf_cfs_rq(cfs_rq);
3851 3852
		check_enqueue_throttle(cfs_rq);
	}
3853 3854
}

3855
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3856
{
3857 3858
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3859
		if (cfs_rq->last != se)
3860
			break;
3861 3862

		cfs_rq->last = NULL;
3863 3864
	}
}
P
Peter Zijlstra 已提交
3865

3866 3867 3868 3869
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3870
		if (cfs_rq->next != se)
3871
			break;
3872 3873

		cfs_rq->next = NULL;
3874
	}
P
Peter Zijlstra 已提交
3875 3876
}

3877 3878 3879 3880
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3881
		if (cfs_rq->skip != se)
3882
			break;
3883 3884

		cfs_rq->skip = NULL;
3885 3886 3887
	}
}

P
Peter Zijlstra 已提交
3888 3889
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3890 3891 3892 3893 3894
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3895 3896 3897

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3898 3899
}

3900
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3901

3902
static void
3903
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3904
{
3905 3906 3907 3908
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3909 3910 3911 3912 3913 3914 3915 3916 3917

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3918
	update_load_avg(cfs_rq, se, UPDATE_TG);
3919
	dequeue_runnable_load_avg(cfs_rq, se);
3920

3921
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3922

P
Peter Zijlstra 已提交
3923
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3924

3925
	if (se != cfs_rq->curr)
3926
		__dequeue_entity(cfs_rq, se);
3927
	se->on_rq = 0;
3928
	account_entity_dequeue(cfs_rq, se);
3929 3930

	/*
3931 3932 3933 3934
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3935
	 */
3936
	if (!(flags & DEQUEUE_SLEEP))
3937
		se->vruntime -= cfs_rq->min_vruntime;
3938

3939 3940 3941
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3942
	update_cfs_group(se);
3943 3944 3945 3946 3947 3948 3949 3950 3951

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3952 3953 3954 3955 3956
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3957
static void
I
Ingo Molnar 已提交
3958
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3959
{
3960
	unsigned long ideal_runtime, delta_exec;
3961 3962
	struct sched_entity *se;
	s64 delta;
3963

P
Peter Zijlstra 已提交
3964
	ideal_runtime = sched_slice(cfs_rq, curr);
3965
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3966
	if (delta_exec > ideal_runtime) {
3967
		resched_curr(rq_of(cfs_rq));
3968 3969 3970 3971 3972
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3984 3985
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3986

3987 3988
	if (delta < 0)
		return;
3989

3990
	if (delta > ideal_runtime)
3991
		resched_curr(rq_of(cfs_rq));
3992 3993
}

3994
static void
3995
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3996
{
3997 3998 3999 4000 4001 4002 4003
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4004
		update_stats_wait_end(cfs_rq, se);
4005
		__dequeue_entity(cfs_rq, se);
4006
		update_load_avg(cfs_rq, se, UPDATE_TG);
4007 4008
	}

4009
	update_stats_curr_start(cfs_rq, se);
4010
	cfs_rq->curr = se;
4011

I
Ingo Molnar 已提交
4012 4013 4014 4015 4016
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4017
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4018 4019 4020
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4021
	}
4022

4023
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4024 4025
}

4026 4027 4028
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4029 4030 4031 4032 4033 4034 4035
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4036 4037
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4038
{
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4050

4051 4052 4053 4054 4055
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4066 4067 4068
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4069

4070 4071 4072 4073 4074 4075
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4076 4077 4078 4079 4080 4081
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4082
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4083 4084

	return se;
4085 4086
}

4087
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4088

4089
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4090 4091 4092 4093 4094 4095
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4096
		update_curr(cfs_rq);
4097

4098 4099 4100
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4101
	check_spread(cfs_rq, prev);
4102

4103
	if (prev->on_rq) {
4104
		update_stats_wait_start(cfs_rq, prev);
4105 4106
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4107
		/* in !on_rq case, update occurred at dequeue */
4108
		update_load_avg(cfs_rq, prev, 0);
4109
	}
4110
	cfs_rq->curr = NULL;
4111 4112
}

P
Peter Zijlstra 已提交
4113 4114
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4115 4116
{
	/*
4117
	 * Update run-time statistics of the 'current'.
4118
	 */
4119
	update_curr(cfs_rq);
4120

4121 4122 4123
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4124
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4125
	update_cfs_group(curr);
4126

P
Peter Zijlstra 已提交
4127 4128 4129 4130 4131
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4132
	if (queued) {
4133
		resched_curr(rq_of(cfs_rq));
4134 4135
		return;
	}
P
Peter Zijlstra 已提交
4136 4137 4138 4139 4140 4141 4142 4143
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4144
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4145
		check_preempt_tick(cfs_rq, curr);
4146 4147
}

4148 4149 4150 4151 4152 4153

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4154 4155

#ifdef HAVE_JUMP_LABEL
4156
static struct static_key __cfs_bandwidth_used;
4157 4158 4159

static inline bool cfs_bandwidth_used(void)
{
4160
	return static_key_false(&__cfs_bandwidth_used);
4161 4162
}

4163
void cfs_bandwidth_usage_inc(void)
4164
{
4165
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4166 4167 4168 4169
}

void cfs_bandwidth_usage_dec(void)
{
4170
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4171 4172 4173 4174 4175 4176 4177
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4178 4179
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4180 4181
#endif /* HAVE_JUMP_LABEL */

4182 4183 4184 4185 4186 4187 4188 4189
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4190 4191 4192 4193 4194 4195

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4196 4197 4198 4199 4200 4201 4202
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4203
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4204 4205 4206 4207 4208 4209 4210 4211 4212
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4213
	cfs_b->expires_seq++;
P
Paul Turner 已提交
4214 4215
}

4216 4217 4218 4219 4220
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4221 4222 4223 4224
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4225
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4226

4227
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4228 4229
}

4230 4231
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4232 4233 4234
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4235
	u64 amount = 0, min_amount, expires;
4236
	int expires_seq;
4237 4238 4239 4240 4241 4242 4243

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4244
	else {
P
Peter Zijlstra 已提交
4245
		start_cfs_bandwidth(cfs_b);
4246 4247 4248 4249 4250 4251

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4252
	}
4253
	expires_seq = cfs_b->expires_seq;
P
Paul Turner 已提交
4254
	expires = cfs_b->runtime_expires;
4255 4256 4257
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4258 4259 4260 4261 4262
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
4263 4264
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
P
Paul Turner 已提交
4265
		cfs_rq->runtime_expires = expires;
4266
	}
4267 4268

	return cfs_rq->runtime_remaining > 0;
4269 4270
}

P
Paul Turner 已提交
4271 4272 4273 4274 4275
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4276
{
P
Paul Turner 已提交
4277 4278 4279
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4280
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4281 4282
		return;

P
Paul Turner 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4292
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
P
Paul Turner 已提交
4293
	 */
4294
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
P
Paul Turner 已提交
4295 4296 4297 4298 4299 4300 4301 4302
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4303
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4304 4305
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4306
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4307 4308 4309
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4310 4311
		return;

4312 4313 4314 4315 4316
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4317
		resched_curr(rq_of(cfs_rq));
4318 4319
}

4320
static __always_inline
4321
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4322
{
4323
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4324 4325 4326 4327 4328
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4329 4330
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4331
	return cfs_bandwidth_used() && cfs_rq->throttled;
4332 4333
}

4334 4335 4336
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4337
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4364
		/* adjust cfs_rq_clock_task() */
4365
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4366
					     cfs_rq->throttled_clock_task;
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4377 4378
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4379
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4380 4381 4382 4383 4384
	cfs_rq->throttle_count++;

	return 0;
}

4385
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4386 4387 4388 4389 4390
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4391
	bool empty;
4392 4393 4394

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4395
	/* freeze hierarchy runnable averages while throttled */
4396 4397 4398
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4416
		sub_nr_running(rq, task_delta);
4417 4418

	cfs_rq->throttled = 1;
4419
	cfs_rq->throttled_clock = rq_clock(rq);
4420
	raw_spin_lock(&cfs_b->lock);
4421
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4422

4423 4424 4425 4426 4427
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4428 4429 4430 4431 4432 4433 4434 4435

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4436 4437 4438
	raw_spin_unlock(&cfs_b->lock);
}

4439
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4440 4441 4442 4443 4444 4445 4446
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4447
	se = cfs_rq->tg->se[cpu_of(rq)];
4448 4449

	cfs_rq->throttled = 0;
4450 4451 4452

	update_rq_clock(rq);

4453
	raw_spin_lock(&cfs_b->lock);
4454
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4455 4456 4457
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4458 4459 4460
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4479
		add_nr_running(rq, task_delta);
4480

4481
	/* Determine whether we need to wake up potentially idle CPU: */
4482
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4483
		resched_curr(rq);
4484 4485 4486 4487 4488 4489
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4490 4491
	u64 runtime;
	u64 starting_runtime = remaining;
4492 4493 4494 4495 4496

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4497
		struct rq_flags rf;
4498

4499
		rq_lock(rq, &rf);
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4516
		rq_unlock(rq, &rf);
4517 4518 4519 4520 4521 4522

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4523
	return starting_runtime - remaining;
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4534
	u64 runtime, runtime_expires;
4535
	int throttled;
4536 4537 4538

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4539
		goto out_deactivate;
4540

4541
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4542
	cfs_b->nr_periods += overrun;
4543

4544 4545 4546 4547 4548 4549
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4550 4551 4552

	__refill_cfs_bandwidth_runtime(cfs_b);

4553 4554 4555
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4556
		return 0;
4557 4558
	}

4559 4560 4561
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4562 4563 4564
	runtime_expires = cfs_b->runtime_expires;

	/*
4565 4566 4567 4568 4569
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4570
	 */
4571 4572
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4573 4574 4575 4576 4577 4578 4579
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4580 4581

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4582
	}
4583

4584 4585 4586 4587 4588 4589 4590
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4591

4592 4593 4594 4595
	return 0;

out_deactivate:
	return 1;
4596
}
4597

4598 4599 4600 4601 4602 4603 4604
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4605 4606 4607 4608
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4609
 * hrtimer base being cleared by hrtimer_start. In the case of
4610 4611
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4637 4638 4639
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4669 4670 4671
	if (!cfs_bandwidth_used())
		return;

4672
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4688 4689 4690
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4691
		return;
4692
	}
4693

4694
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4695
		runtime = cfs_b->runtime;
4696

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4707
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4708 4709 4710
	raw_spin_unlock(&cfs_b->lock);
}

4711 4712 4713 4714 4715 4716 4717
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4718 4719 4720
	if (!cfs_bandwidth_used())
		return;

4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4749
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4750 4751
}

4752
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4753
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4754
{
4755
	if (!cfs_bandwidth_used())
4756
		return false;
4757

4758
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4759
		return false;
4760 4761 4762 4763 4764 4765

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4766
		return true;
4767 4768

	throttle_cfs_rq(cfs_rq);
4769
	return true;
4770
}
4771 4772 4773 4774 4775

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4776

4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4789
	raw_spin_lock(&cfs_b->lock);
4790
	for (;;) {
P
Peter Zijlstra 已提交
4791
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4792 4793 4794 4795 4796
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4797 4798
	if (idle)
		cfs_b->period_active = 0;
4799
	raw_spin_unlock(&cfs_b->lock);
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4812
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4824
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4825
{
4826 4827
	u64 overrun;

P
Peter Zijlstra 已提交
4828
	lockdep_assert_held(&cfs_b->lock);
4829

4830 4831 4832 4833 4834 4835 4836 4837
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4838 4839 4840 4841
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4842 4843 4844 4845
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4846 4847 4848 4849
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4850
/*
4851
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4852 4853 4854 4855 4856 4857
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4858 4859
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4860
	struct task_group *tg;
4861

4862 4863 4864 4865 4866 4867
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4868 4869 4870 4871 4872

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4873
	rcu_read_unlock();
4874 4875
}

4876
/* cpu offline callback */
4877
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4878
{
4879 4880 4881 4882 4883 4884 4885
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4886 4887 4888 4889 4890 4891 4892 4893

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4894
		cfs_rq->runtime_remaining = 1;
4895
		/*
4896
		 * Offline rq is schedulable till CPU is completely disabled
4897 4898 4899 4900
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4901 4902 4903
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4904
	rcu_read_unlock();
4905 4906 4907
}

#else /* CONFIG_CFS_BANDWIDTH */
4908 4909
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4910
	return rq_clock_task(rq_of(cfs_rq));
4911 4912
}

4913
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4914
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4915
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4916
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4917
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4918 4919 4920 4921 4922

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4934 4935 4936 4937 4938

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4939 4940
#endif

4941 4942 4943 4944 4945
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4946
static inline void update_runtime_enabled(struct rq *rq) {}
4947
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4948 4949 4950

#endif /* CONFIG_CFS_BANDWIDTH */

4951 4952 4953 4954
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4955 4956 4957 4958 4959 4960
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4961
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4962

4963
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4964 4965 4966 4967 4968 4969
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4970
				resched_curr(rq);
P
Peter Zijlstra 已提交
4971 4972
			return;
		}
4973
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4974 4975
	}
}
4976 4977 4978 4979 4980 4981 4982 4983 4984 4985

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4986
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4987 4988 4989 4990 4991
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4992
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4993 4994 4995 4996
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4997 4998 4999 5000

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5001 5002
#endif

5003 5004 5005 5006 5007
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5008
static void
5009
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5010 5011
{
	struct cfs_rq *cfs_rq;
5012
	struct sched_entity *se = &p->se;
5013

5014 5015 5016 5017 5018 5019 5020 5021
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5022 5023 5024 5025 5026 5027
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5028
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5029

5030
	for_each_sched_entity(se) {
5031
		if (se->on_rq)
5032 5033
			break;
		cfs_rq = cfs_rq_of(se);
5034
		enqueue_entity(cfs_rq, se, flags);
5035 5036 5037 5038 5039 5040

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5041
		 */
5042 5043
		if (cfs_rq_throttled(cfs_rq))
			break;
5044
		cfs_rq->h_nr_running++;
5045

5046
		flags = ENQUEUE_WAKEUP;
5047
	}
P
Peter Zijlstra 已提交
5048

P
Peter Zijlstra 已提交
5049
	for_each_sched_entity(se) {
5050
		cfs_rq = cfs_rq_of(se);
5051
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5052

5053 5054 5055
		if (cfs_rq_throttled(cfs_rq))
			break;

5056
		update_load_avg(cfs_rq, se, UPDATE_TG);
5057
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5058 5059
	}

Y
Yuyang Du 已提交
5060
	if (!se)
5061
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5062

5063
	hrtick_update(rq);
5064 5065
}

5066 5067
static void set_next_buddy(struct sched_entity *se);

5068 5069 5070 5071 5072
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5073
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5074 5075
{
	struct cfs_rq *cfs_rq;
5076
	struct sched_entity *se = &p->se;
5077
	int task_sleep = flags & DEQUEUE_SLEEP;
5078 5079 5080

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5081
		dequeue_entity(cfs_rq, se, flags);
5082 5083 5084 5085 5086 5087 5088 5089 5090

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5091
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5092

5093
		/* Don't dequeue parent if it has other entities besides us */
5094
		if (cfs_rq->load.weight) {
5095 5096
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5097 5098 5099 5100
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5101 5102
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5103
			break;
5104
		}
5105
		flags |= DEQUEUE_SLEEP;
5106
	}
P
Peter Zijlstra 已提交
5107

P
Peter Zijlstra 已提交
5108
	for_each_sched_entity(se) {
5109
		cfs_rq = cfs_rq_of(se);
5110
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5111

5112 5113 5114
		if (cfs_rq_throttled(cfs_rq))
			break;

5115
		update_load_avg(cfs_rq, se, UPDATE_TG);
5116
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5117 5118
	}

Y
Yuyang Du 已提交
5119
	if (!se)
5120
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5121

5122
	util_est_dequeue(&rq->cfs, p, task_sleep);
5123
	hrtick_update(rq);
5124 5125
}

5126
#ifdef CONFIG_SMP
5127 5128 5129 5130 5131

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5132
#ifdef CONFIG_NO_HZ_COMMON
5133 5134 5135 5136 5137
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5138
 * The exact cpuload calculated at every tick would be:
5139
 *
5140 5141
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5142 5143
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5144 5145 5146
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5147 5148 5149
 *
 * decay_load_missed() below does efficient calculation of
 *
5150 5151 5152 5153 5154 5155
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5156
 *
5157
 * The calculation is approximated on a 128 point scale.
5158 5159
 */
#define DEGRADE_SHIFT		7
5160 5161 5162 5163 5164 5165 5166 5167 5168

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5198 5199 5200 5201

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5202
	int has_blocked;		/* Idle CPUS has blocked load */
5203
	unsigned long next_balance;     /* in jiffy units */
5204
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5205 5206
} nohz ____cacheline_aligned;

5207
#endif /* CONFIG_NO_HZ_COMMON */
5208

5209
/**
5210
 * __cpu_load_update - update the rq->cpu_load[] statistics
5211 5212 5213 5214
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5215
 * Update rq->cpu_load[] statistics. This function is usually called every
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5242
 * term.
5243
 */
5244 5245
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5246
{
5247
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5259
		old_load = this_rq->cpu_load[i];
5260
#ifdef CONFIG_NO_HZ_COMMON
5261
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5262 5263 5264 5265 5266 5267 5268 5269 5270
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5271
#endif
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5285
/* Used instead of source_load when we know the type == 0 */
5286
static unsigned long weighted_cpuload(struct rq *rq)
5287
{
5288
	return cfs_rq_runnable_load_avg(&rq->cfs);
5289 5290
}

5291
#ifdef CONFIG_NO_HZ_COMMON
5292 5293
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5294
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5320
		cpu_load_update(this_rq, load, pending_updates);
5321 5322 5323
	}
}

5324 5325 5326 5327
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5328
static void cpu_load_update_idle(struct rq *this_rq)
5329 5330 5331 5332
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5333
	if (weighted_cpuload(this_rq))
5334 5335
		return;

5336
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5337 5338 5339
}

/*
5340 5341 5342 5343
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5344
 */
5345
void cpu_load_update_nohz_start(void)
5346 5347
{
	struct rq *this_rq = this_rq();
5348 5349 5350 5351 5352 5353

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5354
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5355 5356 5357 5358 5359 5360 5361
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5362
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5363 5364
	struct rq *this_rq = this_rq();
	unsigned long load;
5365
	struct rq_flags rf;
5366 5367 5368 5369

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5370
	load = weighted_cpuload(this_rq);
5371
	rq_lock(this_rq, &rf);
5372
	update_rq_clock(this_rq);
5373
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5374
	rq_unlock(this_rq, &rf);
5375
}
5376 5377 5378 5379 5380 5381 5382 5383
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5384
#ifdef CONFIG_NO_HZ_COMMON
5385 5386
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5387
#endif
5388 5389
	cpu_load_update(this_rq, load, 1);
}
5390 5391 5392 5393

/*
 * Called from scheduler_tick()
 */
5394
void cpu_load_update_active(struct rq *this_rq)
5395
{
5396
	unsigned long load = weighted_cpuload(this_rq);
5397 5398 5399 5400 5401

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5402 5403
}

5404
/*
5405
 * Return a low guess at the load of a migration-source CPU weighted
5406 5407 5408 5409 5410 5411 5412 5413
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5414
	unsigned long total = weighted_cpuload(rq);
5415 5416 5417 5418 5419 5420 5421 5422

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5423
 * Return a high guess at the load of a migration-target CPU weighted
5424 5425 5426 5427 5428
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5429
	unsigned long total = weighted_cpuload(rq);
5430 5431 5432 5433 5434 5435 5436

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5437
static unsigned long capacity_of(int cpu)
5438
{
5439
	return cpu_rq(cpu)->cpu_capacity;
5440 5441
}

5442 5443 5444 5445 5446
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5447 5448 5449
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5450
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5451
	unsigned long load_avg = weighted_cpuload(rq);
5452 5453

	if (nr_running)
5454
		return load_avg / nr_running;
5455 5456 5457 5458

	return 0;
}

P
Peter Zijlstra 已提交
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5476 5477
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5478
 *
M
Mike Galbraith 已提交
5479
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5492
 */
5493 5494
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5495 5496
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5497
	int factor = this_cpu_read(sd_llc_size);
5498

M
Mike Galbraith 已提交
5499 5500 5501 5502 5503
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5504 5505
}

5506
/*
5507 5508 5509
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5510
 *
5511 5512
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5513 5514 5515 5516
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5517
 */
5518
static int
5519
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5520
{
5521 5522 5523 5524 5525
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5526 5527 5528 5529 5530 5531
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5532
	 */
5533 5534
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5535

5536
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5537
		return this_cpu;
5538

5539
	return nr_cpumask_bits;
5540 5541
}

5542
static int
5543 5544
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5545 5546 5547 5548
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5549
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5550 5551 5552 5553

	if (sync) {
		unsigned long current_load = task_h_load(current);

5554
		if (current_load > this_eff_load)
5555
			return this_cpu;
5556

5557
		this_eff_load -= current_load;
5558 5559 5560 5561
	}

	task_load = task_h_load(p);

5562 5563 5564 5565
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5566

5567
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5568 5569 5570 5571
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5572

5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5583 5584
}

5585
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5586
		       int this_cpu, int prev_cpu, int sync)
5587
{
5588
	int target = nr_cpumask_bits;
5589

5590
	if (sched_feat(WA_IDLE))
5591
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5592

5593 5594
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5595

5596
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5597 5598
	if (target == nr_cpumask_bits)
		return prev_cpu;
5599

5600 5601 5602
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5603 5604
}

5605
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5606 5607 5608

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5609
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5610 5611
}

5612 5613 5614
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5615 5616
 *
 * Assumes p is allowed on at least one CPU in sd.
5617 5618
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5619
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5620
		  int this_cpu, int sd_flag)
5621
{
5622
	struct sched_group *idlest = NULL, *group = sd->groups;
5623
	struct sched_group *most_spare_sg = NULL;
5624 5625 5626
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5627
	unsigned long most_spare = 0, this_spare = 0;
5628
	int load_idx = sd->forkexec_idx;
5629 5630 5631
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5632

5633 5634 5635
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5636
	do {
5637 5638
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5639 5640
		int local_group;
		int i;
5641

5642
		/* Skip over this group if it has no CPUs allowed */
5643
		if (!cpumask_intersects(sched_group_span(group),
5644
					&p->cpus_allowed))
5645 5646 5647
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5648
					       sched_group_span(group));
5649

5650 5651 5652 5653
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5654
		avg_load = 0;
5655
		runnable_load = 0;
5656
		max_spare_cap = 0;
5657

5658
		for_each_cpu(i, sched_group_span(group)) {
5659
			/* Bias balancing toward CPUs of our domain */
5660 5661 5662 5663 5664
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5665 5666 5667
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5668 5669 5670 5671 5672

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5673 5674
		}

5675
		/* Adjust by relative CPU capacity of the group */
5676 5677 5678 5679
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5680 5681

		if (local_group) {
5682 5683
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5684 5685
			this_spare = max_spare_cap;
		} else {
5686 5687 5688
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5689
				 * so we can pick this new CPU:
5690 5691 5692 5693 5694 5695 5696 5697
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5698
				 * blocked load into account through avg_load:
5699 5700
				 */
				min_avg_load = avg_load;
5701 5702 5703 5704 5705 5706 5707
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5708 5709 5710
		}
	} while (group = group->next, group != sd->groups);

5711 5712 5713 5714 5715 5716
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5717 5718 5719 5720
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5721
	 */
5722 5723 5724
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5725
	if (this_spare > task_util(p) / 2 &&
5726
	    imbalance_scale*this_spare > 100*most_spare)
5727
		return NULL;
5728 5729

	if (most_spare > task_util(p) / 2)
5730 5731
		return most_spare_sg;

5732
skip_spare:
5733 5734 5735
	if (!idlest)
		return NULL;

5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5748
	if (min_runnable_load > (this_runnable_load + imbalance))
5749
		return NULL;
5750 5751 5752 5753 5754

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5755 5756 5757 5758
	return idlest;
}

/*
5759
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5760 5761
 */
static int
5762
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5763 5764
{
	unsigned long load, min_load = ULONG_MAX;
5765 5766 5767 5768
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5769 5770
	int i;

5771 5772
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5773
		return cpumask_first(sched_group_span(group));
5774

5775
	/* Traverse only the allowed CPUs */
5776
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5777
		if (available_idle_cpu(i)) {
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5799
		} else if (shallowest_idle_cpu == -1) {
5800
			load = weighted_cpuload(cpu_rq(i));
5801
			if (load < min_load) {
5802 5803 5804
				min_load = load;
				least_loaded_cpu = i;
			}
5805 5806 5807
		}
	}

5808
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5809
}
5810

5811 5812 5813
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5814
	int new_cpu = cpu;
5815

5816 5817 5818
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5819 5820 5821 5822 5823 5824 5825
	/*
	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
	 * last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5843
		if (new_cpu == cpu) {
5844
			/* Now try balancing at a lower domain level of 'cpu': */
5845 5846 5847 5848
			sd = sd->child;
			continue;
		}

5849
		/* Now try balancing at a lower domain level of 'new_cpu': */
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5864
#ifdef CONFIG_SCHED_SMT
5865
DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5894
void __update_idle_core(struct rq *rq)
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5907
		if (!available_idle_cpu(cpu))
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5924
	int core, cpu;
5925

P
Peter Zijlstra 已提交
5926 5927 5928
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5929 5930 5931
	if (!test_idle_cores(target, false))
		return -1;

5932
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5933

5934
	for_each_cpu_wrap(core, cpus, target) {
5935 5936 5937 5938
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
5939
			if (!available_idle_cpu(cpu))
5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5962 5963 5964
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5965
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5966
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5967
			continue;
5968
		if (available_idle_cpu(cpu))
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5993
 */
5994 5995
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5996
	struct sched_domain *this_sd;
5997
	u64 avg_cost, avg_idle;
5998 5999
	u64 time, cost;
	s64 delta;
6000
	int cpu, nr = INT_MAX;
6001

6002 6003 6004 6005
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6006 6007 6008 6009
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6010 6011 6012 6013
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6014 6015
		return -1;

6016 6017 6018 6019 6020 6021 6022 6023
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6024 6025
	time = local_clock();

6026
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6027 6028
		if (!--nr)
			return -1;
6029
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6030
			continue;
6031
		if (available_idle_cpu(cpu))
6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6045
 */
6046
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6047
{
6048
	struct sched_domain *sd;
6049
	int i, recent_used_cpu;
6050

6051
	if (available_idle_cpu(target))
6052
		return target;
6053 6054

	/*
6055
	 * If the previous CPU is cache affine and idle, don't be stupid:
6056
	 */
6057
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6058
		return prev;
6059

6060
	/* Check a recently used CPU as a potential idle candidate: */
6061 6062 6063 6064
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6065
	    available_idle_cpu(recent_used_cpu) &&
6066 6067 6068
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6069
		 * candidate for the next wake:
6070 6071 6072 6073 6074
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6075
	sd = rcu_dereference(per_cpu(sd_llc, target));
6076 6077
	if (!sd)
		return target;
6078

6079 6080 6081
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6082

6083 6084 6085 6086 6087 6088 6089
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6090

6091 6092
	return target;
}
6093

6094 6095 6096 6097 6098 6099 6100
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6111 6112 6113 6114 6115 6116 6117 6118
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6129 6130
 *
 * Return: the (estimated) utilization for the specified CPU
6131
 */
6132
static inline unsigned long cpu_util(int cpu)
6133
{
6134 6135 6136 6137 6138 6139 6140 6141
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6142

6143
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6144
}
6145

6146
/*
6147
 * cpu_util_wake: Compute CPU utilization with any contributions from
6148 6149
 * the waking task p removed.
 */
6150
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6151
{
6152 6153
	struct cfs_rq *cfs_rq;
	unsigned int util;
6154 6155

	/* Task has no contribution or is new */
6156
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6157 6158
		return cpu_util(cpu);

6159 6160 6161 6162 6163
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's blocked util from CPU's util */
	util -= min_t(unsigned int, util, task_util(p));
6164

6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_wake = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_wake = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6200 6201
}

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6220 6221 6222
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6223 6224 6225
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6226
/*
6227 6228 6229
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6230
 *
6231 6232
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6233
 *
6234
 * Returns the target CPU number.
6235 6236 6237
 *
 * preempt must be disabled.
 */
6238
static int
6239
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6240
{
6241
	struct sched_domain *tmp, *sd = NULL;
6242
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6243
	int new_cpu = prev_cpu;
6244
	int want_affine = 0;
6245
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6246

P
Peter Zijlstra 已提交
6247 6248
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6249
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6250
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6251
	}
6252

6253
	rcu_read_lock();
6254
	for_each_domain(cpu, tmp) {
6255
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6256
			break;
6257

6258
		/*
6259
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6260
		 * cpu is a valid SD_WAKE_AFFINE target.
6261
		 */
6262 6263
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6264 6265 6266 6267
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6268
			break;
6269
		}
6270

6271
		if (tmp->flags & sd_flag)
6272
			sd = tmp;
M
Mike Galbraith 已提交
6273 6274
		else if (!want_affine)
			break;
6275 6276
	}

6277 6278
	if (unlikely(sd)) {
		/* Slow path */
6279
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6280 6281 6282 6283 6284 6285 6286
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6287
	}
6288
	rcu_read_unlock();
6289

6290
	return new_cpu;
6291
}
6292

6293 6294
static void detach_entity_cfs_rq(struct sched_entity *se);

6295
/*
6296
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6297
 * cfs_rq_of(p) references at time of call are still valid and identify the
6298
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6299
 */
6300
static void migrate_task_rq_fair(struct task_struct *p, int new_cpu __maybe_unused)
6301
{
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6347 6348 6349

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6350 6351

	/* We have migrated, no longer consider this task hot */
6352
	p->se.exec_start = 0;
6353
}
6354 6355 6356 6357 6358

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6359 6360
#endif /* CONFIG_SMP */

6361
static unsigned long wakeup_gran(struct sched_entity *se)
6362 6363 6364 6365
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6366 6367
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6368 6369 6370 6371 6372 6373 6374 6375 6376
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6377
	 */
6378
	return calc_delta_fair(gran, se);
6379 6380
}

6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6403
	gran = wakeup_gran(se);
6404 6405 6406 6407 6408 6409
	if (vdiff > gran)
		return 1;

	return 0;
}

6410 6411
static void set_last_buddy(struct sched_entity *se)
{
6412 6413 6414
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6415 6416 6417
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6418
		cfs_rq_of(se)->last = se;
6419
	}
6420 6421 6422 6423
}

static void set_next_buddy(struct sched_entity *se)
{
6424 6425 6426
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6427 6428 6429
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6430
		cfs_rq_of(se)->next = se;
6431
	}
6432 6433
}

6434 6435
static void set_skip_buddy(struct sched_entity *se)
{
6436 6437
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6438 6439
}

6440 6441 6442
/*
 * Preempt the current task with a newly woken task if needed:
 */
6443
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6444 6445
{
	struct task_struct *curr = rq->curr;
6446
	struct sched_entity *se = &curr->se, *pse = &p->se;
6447
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6448
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6449
	int next_buddy_marked = 0;
6450

I
Ingo Molnar 已提交
6451 6452 6453
	if (unlikely(se == pse))
		return;

6454
	/*
6455
	 * This is possible from callers such as attach_tasks(), in which we
6456 6457 6458 6459 6460 6461 6462
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6463
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6464
		set_next_buddy(pse);
6465 6466
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6467

6468 6469 6470
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6471 6472 6473 6474 6475 6476
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6477 6478 6479 6480
	 */
	if (test_tsk_need_resched(curr))
		return;

6481 6482 6483 6484 6485
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6486
	/*
6487 6488
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6489
	 */
6490
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6491
		return;
6492

6493
	find_matching_se(&se, &pse);
6494
	update_curr(cfs_rq_of(se));
6495
	BUG_ON(!pse);
6496 6497 6498 6499 6500 6501 6502
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6503
		goto preempt;
6504
	}
6505

6506
	return;
6507

6508
preempt:
6509
	resched_curr(rq);
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6524 6525
}

6526
static struct task_struct *
6527
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6528 6529 6530
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6531
	struct task_struct *p;
6532
	int new_tasks;
6533

6534
again:
6535
	if (!cfs_rq->nr_running)
6536
		goto idle;
6537

6538
#ifdef CONFIG_FAIR_GROUP_SCHED
6539
	if (prev->sched_class != &fair_sched_class)
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6559 6560 6561 6562 6563
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6564

6565 6566 6567
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6568
			 * Therefore the nr_running test will indeed
6569 6570
			 * be correct.
			 */
6571 6572 6573 6574 6575 6576
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6577
				goto simple;
6578
			}
6579
		}
6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6613
	goto done;
6614 6615
simple:
#endif
6616

6617
	put_prev_task(rq, prev);
6618

6619
	do {
6620
		se = pick_next_entity(cfs_rq, NULL);
6621
		set_next_entity(cfs_rq, se);
6622 6623 6624
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6625
	p = task_of(se);
6626

6627
done: __maybe_unused;
6628 6629 6630 6631 6632 6633 6634 6635 6636
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6637 6638
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6639 6640

	return p;
6641 6642

idle:
6643 6644
	new_tasks = idle_balance(rq, rf);

6645 6646 6647 6648 6649
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6650
	if (new_tasks < 0)
6651 6652
		return RETRY_TASK;

6653
	if (new_tasks > 0)
6654 6655 6656
		goto again;

	return NULL;
6657 6658 6659 6660 6661
}

/*
 * Account for a descheduled task:
 */
6662
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6663 6664 6665 6666 6667 6668
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6669
		put_prev_entity(cfs_rq, se);
6670 6671 6672
	}
}

6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6698 6699 6700 6701 6702
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6703
		rq_clock_skip_update(rq);
6704 6705 6706 6707 6708
	}

	set_skip_buddy(se);
}

6709 6710 6711 6712
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6713 6714
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6725
#ifdef CONFIG_SMP
6726
/**************************************************
P
Peter Zijlstra 已提交
6727 6728 6729 6730 6731
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6732
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6733 6734 6735 6736
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6737
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6738 6739 6740 6741
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6742
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6743
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6744 6745 6746 6747 6748 6749
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6750
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6751 6752 6753 6754 6755 6756
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6757
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6771
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6772
 * topology where each level pairs two lower groups (or better). This results
6773
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6774
 * tree to only the first of the previous level and we decrease the frequency
6775
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6776 6777 6778 6779 6780 6781 6782 6783
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6784
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6785 6786 6787 6788 6789 6790 6791
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6792
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6793 6794 6795
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6796
 *             log_2 n
P
Peter Zijlstra 已提交
6797 6798 6799 6800 6801 6802 6803
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6804
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6805 6806 6807 6808 6809 6810 6811 6812 6813
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6814
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6835
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6836 6837 6838 6839 6840 6841
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6842
 */
6843

6844 6845
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6846 6847
enum fbq_type { regular, remote, all };

6848
#define LBF_ALL_PINNED	0x01
6849
#define LBF_NEED_BREAK	0x02
6850 6851
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6852
#define LBF_NOHZ_STATS	0x10
6853
#define LBF_NOHZ_AGAIN	0x20
6854 6855 6856 6857 6858

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6859
	int			src_cpu;
6860 6861 6862 6863

	int			dst_cpu;
	struct rq		*dst_rq;

6864 6865
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6866
	enum cpu_idle_type	idle;
6867
	long			imbalance;
6868 6869 6870
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6871
	unsigned int		flags;
6872 6873 6874 6875

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6876 6877

	enum fbq_type		fbq_type;
6878
	struct list_head	tasks;
6879 6880
};

6881 6882 6883
/*
 * Is this task likely cache-hot:
 */
6884
static int task_hot(struct task_struct *p, struct lb_env *env)
6885 6886 6887
{
	s64 delta;

6888 6889
	lockdep_assert_held(&env->src_rq->lock);

6890 6891 6892 6893 6894 6895 6896 6897 6898
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6899
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6900 6901 6902 6903 6904 6905 6906 6907 6908
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6909
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6910 6911 6912 6913

	return delta < (s64)sysctl_sched_migration_cost;
}

6914
#ifdef CONFIG_NUMA_BALANCING
6915
/*
6916 6917 6918
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6919
 */
6920
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6921
{
6922
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6923 6924
	unsigned long src_weight, dst_weight;
	int src_nid, dst_nid, dist;
6925

6926
	if (!static_branch_likely(&sched_numa_balancing))
6927 6928
		return -1;

6929
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6930
		return -1;
6931 6932 6933 6934

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6935
	if (src_nid == dst_nid)
6936
		return -1;
6937

6938 6939 6940 6941 6942 6943 6944
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6945

6946 6947
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6948
		return 0;
6949

6950
	/* Leaving a core idle is often worse than degrading locality. */
6951
	if (env->idle == CPU_IDLE)
6952 6953
		return -1;

6954
	dist = node_distance(src_nid, dst_nid);
6955
	if (numa_group) {
6956 6957
		src_weight = group_weight(p, src_nid, dist);
		dst_weight = group_weight(p, dst_nid, dist);
6958
	} else {
6959 6960
		src_weight = task_weight(p, src_nid, dist);
		dst_weight = task_weight(p, dst_nid, dist);
6961 6962
	}

6963
	return dst_weight < src_weight;
6964 6965
}

6966
#else
6967
static inline int migrate_degrades_locality(struct task_struct *p,
6968 6969
					     struct lb_env *env)
{
6970
	return -1;
6971
}
6972 6973
#endif

6974 6975 6976 6977
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6978
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6979
{
6980
	int tsk_cache_hot;
6981 6982 6983

	lockdep_assert_held(&env->src_rq->lock);

6984 6985
	/*
	 * We do not migrate tasks that are:
6986
	 * 1) throttled_lb_pair, or
6987
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6988 6989
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6990
	 */
6991 6992 6993
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6994
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6995
		int cpu;
6996

6997
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6998

6999 7000
		env->flags |= LBF_SOME_PINNED;

7001
		/*
7002
		 * Remember if this task can be migrated to any other CPU in
7003 7004 7005
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7006 7007
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7008
		 */
7009
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7010 7011
			return 0;

7012
		/* Prevent to re-select dst_cpu via env's CPUs: */
7013
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7014
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7015
				env->flags |= LBF_DST_PINNED;
7016 7017 7018
				env->new_dst_cpu = cpu;
				break;
			}
7019
		}
7020

7021 7022
		return 0;
	}
7023 7024

	/* Record that we found atleast one task that could run on dst_cpu */
7025
	env->flags &= ~LBF_ALL_PINNED;
7026

7027
	if (task_running(env->src_rq, p)) {
7028
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7029 7030 7031 7032 7033
		return 0;
	}

	/*
	 * Aggressive migration if:
7034 7035 7036
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7037
	 */
7038 7039 7040
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7041

7042
	if (tsk_cache_hot <= 0 ||
7043
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7044
		if (tsk_cache_hot == 1) {
7045 7046
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7047
		}
7048 7049 7050
		return 1;
	}

7051
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7052
	return 0;
7053 7054
}

7055
/*
7056 7057 7058 7059 7060 7061 7062
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7063
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7064 7065 7066
	set_task_cpu(p, env->dst_cpu);
}

7067
/*
7068
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7069 7070
 * part of active balancing operations within "domain".
 *
7071
 * Returns a task if successful and NULL otherwise.
7072
 */
7073
static struct task_struct *detach_one_task(struct lb_env *env)
7074
{
7075
	struct task_struct *p;
7076

7077 7078
	lockdep_assert_held(&env->src_rq->lock);

7079 7080
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7081 7082
		if (!can_migrate_task(p, env))
			continue;
7083

7084
		detach_task(p, env);
7085

7086
		/*
7087
		 * Right now, this is only the second place where
7088
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7089
		 * so we can safely collect stats here rather than
7090
		 * inside detach_tasks().
7091
		 */
7092
		schedstat_inc(env->sd->lb_gained[env->idle]);
7093
		return p;
7094
	}
7095
	return NULL;
7096 7097
}

7098 7099
static const unsigned int sched_nr_migrate_break = 32;

7100
/*
7101 7102
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7103
 *
7104
 * Returns number of detached tasks if successful and 0 otherwise.
7105
 */
7106
static int detach_tasks(struct lb_env *env)
7107
{
7108 7109
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7110
	unsigned long load;
7111 7112 7113
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7114

7115
	if (env->imbalance <= 0)
7116
		return 0;
7117

7118
	while (!list_empty(tasks)) {
7119 7120 7121 7122 7123 7124 7125
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7126
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7127

7128 7129
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7130
		if (env->loop > env->loop_max)
7131
			break;
7132 7133

		/* take a breather every nr_migrate tasks */
7134
		if (env->loop > env->loop_break) {
7135
			env->loop_break += sched_nr_migrate_break;
7136
			env->flags |= LBF_NEED_BREAK;
7137
			break;
7138
		}
7139

7140
		if (!can_migrate_task(p, env))
7141 7142 7143
			goto next;

		load = task_h_load(p);
7144

7145
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7146 7147
			goto next;

7148
		if ((load / 2) > env->imbalance)
7149
			goto next;
7150

7151 7152 7153 7154
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7155
		env->imbalance -= load;
7156 7157

#ifdef CONFIG_PREEMPT
7158 7159
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7160
		 * kernels will stop after the first task is detached to minimize
7161 7162
		 * the critical section.
		 */
7163
		if (env->idle == CPU_NEWLY_IDLE)
7164
			break;
7165 7166
#endif

7167 7168 7169 7170
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7171
		if (env->imbalance <= 0)
7172
			break;
7173 7174 7175

		continue;
next:
7176
		list_move(&p->se.group_node, tasks);
7177
	}
7178

7179
	/*
7180 7181 7182
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7183
	 */
7184
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7185

7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7197
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7198
	p->on_rq = TASK_ON_RQ_QUEUED;
7199 7200 7201 7202 7203 7204 7205 7206 7207
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7208 7209 7210
	struct rq_flags rf;

	rq_lock(rq, &rf);
7211
	update_rq_clock(rq);
7212
	attach_task(rq, p);
7213
	rq_unlock(rq, &rf);
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7224
	struct rq_flags rf;
7225

7226
	rq_lock(env->dst_rq, &rf);
7227
	update_rq_clock(env->dst_rq);
7228 7229 7230 7231

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7232

7233 7234 7235
		attach_task(env->dst_rq, p);
	}

7236
	rq_unlock(env->dst_rq, &rf);
7237 7238
}

7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7250
static inline bool others_have_blocked(struct rq *rq)
7251 7252 7253 7254
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7255 7256 7257
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7258 7259 7260 7261 7262
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7263 7264 7265
	return false;
}

7266 7267
#ifdef CONFIG_FAIR_GROUP_SCHED

7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7279
	if (cfs_rq->avg.runnable_load_sum)
7280 7281 7282 7283 7284
		return false;

	return true;
}

7285
static void update_blocked_averages(int cpu)
7286 7287
{
	struct rq *rq = cpu_rq(cpu);
7288
	struct cfs_rq *cfs_rq, *pos;
7289
	const struct sched_class *curr_class;
7290
	struct rq_flags rf;
7291
	bool done = true;
7292

7293
	rq_lock_irqsave(rq, &rf);
7294
	update_rq_clock(rq);
7295

7296 7297 7298 7299
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7300
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7301 7302
		struct sched_entity *se;

7303 7304 7305
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7306

7307
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7308
			update_tg_load_avg(cfs_rq, 0);
7309

7310 7311 7312
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7313
			update_load_avg(cfs_rq_of(se), se, 0);
7314 7315 7316 7317 7318 7319 7320

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7321 7322 7323

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7324
			done = false;
7325
	}
7326 7327 7328 7329

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7330
	update_irq_load_avg(rq, 0);
7331
	/* Don't need periodic decay once load/util_avg are null */
7332
	if (others_have_blocked(rq))
7333
		done = false;
7334 7335 7336

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7337 7338
	if (done)
		rq->has_blocked_load = 0;
7339
#endif
7340
	rq_unlock_irqrestore(rq, &rf);
7341 7342
}

7343
/*
7344
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7345 7346 7347
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7348
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7349
{
7350 7351
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7352
	unsigned long now = jiffies;
7353
	unsigned long load;
7354

7355
	if (cfs_rq->last_h_load_update == now)
7356 7357
		return;

7358 7359 7360 7361 7362 7363 7364
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7365

7366
	if (!se) {
7367
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7368 7369 7370 7371 7372
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7373 7374
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7375 7376 7377 7378
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7379 7380
}

7381
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7382
{
7383
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7384

7385
	update_cfs_rq_h_load(cfs_rq);
7386
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7387
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7388 7389
}
#else
7390
static inline void update_blocked_averages(int cpu)
7391
{
7392 7393
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7394
	const struct sched_class *curr_class;
7395
	struct rq_flags rf;
7396

7397
	rq_lock_irqsave(rq, &rf);
7398
	update_rq_clock(rq);
7399
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7400 7401 7402 7403

	curr_class = rq->curr->sched_class;
	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7404
	update_irq_load_avg(rq, 0);
7405 7406
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7407
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7408
		rq->has_blocked_load = 0;
7409
#endif
7410
	rq_unlock_irqrestore(rq, &rf);
7411 7412
}

7413
static unsigned long task_h_load(struct task_struct *p)
7414
{
7415
	return p->se.avg.load_avg;
7416
}
P
Peter Zijlstra 已提交
7417
#endif
7418 7419

/********** Helpers for find_busiest_group ************************/
7420 7421 7422 7423 7424 7425 7426

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7427 7428 7429 7430 7431 7432 7433
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7434
	unsigned long load_per_task;
7435
	unsigned long group_capacity;
7436
	unsigned long group_util; /* Total utilization of the group */
7437 7438 7439
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7440
	enum group_type group_type;
7441
	int group_no_capacity;
7442 7443 7444 7445
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7446 7447
};

J
Joonsoo Kim 已提交
7448 7449 7450 7451 7452 7453 7454
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7455
	unsigned long total_running;
J
Joonsoo Kim 已提交
7456
	unsigned long total_load;	/* Total load of all groups in sd */
7457
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7458 7459 7460
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7461
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7462 7463
};

7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7475
		.total_running = 0UL,
7476
		.total_load = 0UL,
7477
		.total_capacity = 0UL,
7478 7479
		.busiest_stat = {
			.avg_load = 0UL,
7480 7481
			.sum_nr_running = 0,
			.group_type = group_other,
7482 7483 7484 7485
		},
	};
}

7486 7487 7488
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7489
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7490 7491
 *
 * Return: The load index.
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7514
static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7515 7516
{
	struct rq *rq = cpu_rq(cpu);
7517
	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7518 7519
	unsigned long used, free;
	unsigned long irq;
7520

7521
	irq = cpu_util_irq(rq);
7522

7523 7524
	if (unlikely(irq >= max))
		return 1;
7525

7526 7527
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7528

7529 7530
	if (unlikely(used >= max))
		return 1;
7531

7532
	free = max - used;
7533 7534

	return scale_irq_capacity(free, irq, max);
7535 7536
}

7537
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7538
{
7539
	unsigned long capacity = scale_rt_capacity(sd, cpu);
7540 7541
	struct sched_group *sdg = sd->groups;

7542
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7543

7544 7545
	if (!capacity)
		capacity = 1;
7546

7547 7548
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7549
	sdg->sgc->min_capacity = capacity;
7550 7551
}

7552
void update_group_capacity(struct sched_domain *sd, int cpu)
7553 7554 7555
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7556
	unsigned long capacity, min_capacity;
7557 7558 7559 7560
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7561
	sdg->sgc->next_update = jiffies + interval;
7562 7563

	if (!child) {
7564
		update_cpu_capacity(sd, cpu);
7565 7566 7567
		return;
	}

7568
	capacity = 0;
7569
	min_capacity = ULONG_MAX;
7570

P
Peter Zijlstra 已提交
7571 7572 7573 7574 7575 7576
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7577
		for_each_cpu(cpu, sched_group_span(sdg)) {
7578
			struct sched_group_capacity *sgc;
7579
			struct rq *rq = cpu_rq(cpu);
7580

7581
			/*
7582
			 * build_sched_domains() -> init_sched_groups_capacity()
7583 7584 7585
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7586 7587
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7588
			 *
7589
			 * This avoids capacity from being 0 and
7590 7591 7592
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7593
				capacity += capacity_of(cpu);
7594 7595 7596
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7597
			}
7598

7599
			min_capacity = min(capacity, min_capacity);
7600
		}
P
Peter Zijlstra 已提交
7601 7602 7603 7604
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7605
		 */
P
Peter Zijlstra 已提交
7606 7607 7608

		group = child->groups;
		do {
7609 7610 7611 7612
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7613 7614 7615
			group = group->next;
		} while (group != child->groups);
	}
7616

7617
	sdg->sgc->capacity = capacity;
7618
	sdg->sgc->min_capacity = min_capacity;
7619 7620
}

7621
/*
7622 7623 7624
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7625 7626
 */
static inline int
7627
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7628
{
7629 7630
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7631 7632
}

7633 7634
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7635
 * groups is inadequate due to ->cpus_allowed constraints.
7636
 *
7637 7638
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7639 7640
 * Something like:
 *
7641 7642
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7643 7644 7645
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7646
 * cpu 3 and leave one of the CPUs in the second group unused.
7647 7648
 *
 * The current solution to this issue is detecting the skew in the first group
7649 7650
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7651 7652
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7653
 * update_sd_pick_busiest(). And calculate_imbalance() and
7654
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7655 7656 7657 7658 7659 7660 7661
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7662
static inline int sg_imbalanced(struct sched_group *group)
7663
{
7664
	return group->sgc->imbalance;
7665 7666
}

7667
/*
7668 7669 7670
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7671 7672
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7673 7674 7675 7676 7677
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7678
 */
7679 7680
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7681
{
7682 7683
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7684

7685
	if ((sgs->group_capacity * 100) >
7686
			(sgs->group_util * env->sd->imbalance_pct))
7687
		return true;
7688

7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7705

7706
	if ((sgs->group_capacity * 100) <
7707
			(sgs->group_util * env->sd->imbalance_pct))
7708
		return true;
7709

7710
	return false;
7711 7712
}

7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7724 7725 7726
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7727
{
7728
	if (sgs->group_no_capacity)
7729 7730 7731 7732 7733 7734 7735 7736
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7737
static bool update_nohz_stats(struct rq *rq, bool force)
7738 7739 7740 7741
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7742 7743 7744
	if (!rq->has_blocked_load)
		return false;

7745
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7746
		return false;
7747

7748
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7749
		return true;
7750 7751

	update_blocked_averages(cpu);
7752 7753 7754 7755

	return rq->has_blocked_load;
#else
	return false;
7756 7757 7758
#endif
}

7759 7760
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7761
 * @env: The load balancing environment.
7762 7763 7764 7765
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7766
 * @overload: Indicate more than one runnable task for any CPU.
7767
 */
7768 7769
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7770 7771
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7772
{
7773
	unsigned long load;
7774
	int i, nr_running;
7775

7776 7777
	memset(sgs, 0, sizeof(*sgs));

7778
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7779 7780
		struct rq *rq = cpu_rq(i);

7781
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7782
			env->flags |= LBF_NOHZ_AGAIN;
7783

7784
		/* Bias balancing toward CPUs of our domain: */
7785
		if (local_group)
7786
			load = target_load(i, load_idx);
7787
		else
7788 7789 7790
			load = source_load(i, load_idx);

		sgs->group_load += load;
7791
		sgs->group_util += cpu_util(i);
7792
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7793

7794 7795
		nr_running = rq->nr_running;
		if (nr_running > 1)
7796 7797
			*overload = true;

7798 7799 7800 7801
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7802
		sgs->sum_weighted_load += weighted_cpuload(rq);
7803 7804 7805 7806
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7807
			sgs->idle_cpus++;
7808 7809
	}

7810 7811
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7812
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7813

7814
	if (sgs->sum_nr_running)
7815
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7816

7817
	sgs->group_weight = group->group_weight;
7818

7819
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7820
	sgs->group_type = group_classify(group, sgs);
7821 7822
}

7823 7824
/**
 * update_sd_pick_busiest - return 1 on busiest group
7825
 * @env: The load balancing environment.
7826 7827
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7828
 * @sgs: sched_group statistics
7829 7830 7831
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7832 7833 7834
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7835
 */
7836
static bool update_sd_pick_busiest(struct lb_env *env,
7837 7838
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7839
				   struct sg_lb_stats *sgs)
7840
{
7841
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7842

7843
	if (sgs->group_type > busiest->group_type)
7844 7845
		return true;

7846 7847 7848 7849 7850 7851
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7866 7867
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7868 7869
		return true;

7870
	/* No ASYM_PACKING if target CPU is already busy */
7871 7872
	if (env->idle == CPU_NOT_IDLE)
		return true;
7873
	/*
T
Tim Chen 已提交
7874 7875 7876
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7877
	 */
T
Tim Chen 已提交
7878 7879
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7880 7881 7882
		if (!sds->busiest)
			return true;

7883
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7884 7885
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7886 7887 7888 7889 7890 7891
			return true;
	}

	return false;
}

7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7922
/**
7923
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7924
 * @env: The load balancing environment.
7925 7926
 * @sds: variable to hold the statistics for this sched_domain.
 */
7927
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7928
{
7929 7930
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7931
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7932
	struct sg_lb_stats tmp_sgs;
7933
	int load_idx, prefer_sibling = 0;
7934
	bool overload = false;
7935 7936 7937 7938

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7939
#ifdef CONFIG_NO_HZ_COMMON
7940
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7941 7942 7943
		env->flags |= LBF_NOHZ_STATS;
#endif

7944
	load_idx = get_sd_load_idx(env->sd, env->idle);
7945 7946

	do {
J
Joonsoo Kim 已提交
7947
		struct sg_lb_stats *sgs = &tmp_sgs;
7948 7949
		int local_group;

7950
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7951 7952
		if (local_group) {
			sds->local = sg;
7953
			sgs = local;
7954 7955

			if (env->idle != CPU_NEWLY_IDLE ||
7956 7957
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7958
		}
7959

7960 7961
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7962

7963 7964 7965
		if (local_group)
			goto next_group;

7966 7967
		/*
		 * In case the child domain prefers tasks go to siblings
7968
		 * first, lower the sg capacity so that we'll try
7969 7970
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7971 7972 7973 7974
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7975
		 */
7976
		if (prefer_sibling && sds->local &&
7977 7978
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7979
			sgs->group_no_capacity = 1;
7980
			sgs->group_type = group_classify(sg, sgs);
7981
		}
7982

7983
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7984
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7985
			sds->busiest_stat = *sgs;
7986 7987
		}

7988 7989
next_group:
		/* Now, start updating sd_lb_stats */
7990
		sds->total_running += sgs->sum_nr_running;
7991
		sds->total_load += sgs->group_load;
7992
		sds->total_capacity += sgs->group_capacity;
7993

7994
		sg = sg->next;
7995
	} while (sg != env->sd->groups);
7996

7997 7998 7999 8000 8001 8002 8003 8004 8005
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8006 8007
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8008 8009 8010 8011 8012 8013

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8014 8015 8016 8017
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8018
 *			sched domain.
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8033
 * Return: 1 when packing is required and a task should be moved to
8034
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8035
 *
8036
 * @env: The load balancing environment.
8037 8038
 * @sds: Statistics of the sched_domain which is to be packed
 */
8039
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8040 8041 8042
{
	int busiest_cpu;

8043
	if (!(env->sd->flags & SD_ASYM_PACKING))
8044 8045
		return 0;

8046 8047 8048
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8049 8050 8051
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8052 8053
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8054 8055
		return 0;

8056
	env->imbalance = DIV_ROUND_CLOSEST(
8057
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8058
		SCHED_CAPACITY_SCALE);
8059

8060
	return 1;
8061 8062 8063 8064 8065 8066
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8067
 * @env: The load balancing environment.
8068 8069
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8070 8071
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8072
{
8073
	unsigned long tmp, capa_now = 0, capa_move = 0;
8074
	unsigned int imbn = 2;
8075
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8076
	struct sg_lb_stats *local, *busiest;
8077

J
Joonsoo Kim 已提交
8078 8079
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8080

J
Joonsoo Kim 已提交
8081 8082 8083 8084
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8085

J
Joonsoo Kim 已提交
8086
	scaled_busy_load_per_task =
8087
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8088
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8089

8090 8091
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8092
		env->imbalance = busiest->load_per_task;
8093 8094 8095 8096 8097
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8098
	 * however we may be able to increase total CPU capacity used by
8099 8100 8101
	 * moving them.
	 */

8102
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8103
			min(busiest->load_per_task, busiest->avg_load);
8104
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8105
			min(local->load_per_task, local->avg_load);
8106
	capa_now /= SCHED_CAPACITY_SCALE;
8107 8108

	/* Amount of load we'd subtract */
8109
	if (busiest->avg_load > scaled_busy_load_per_task) {
8110
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8111
			    min(busiest->load_per_task,
8112
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8113
	}
8114 8115

	/* Amount of load we'd add */
8116
	if (busiest->avg_load * busiest->group_capacity <
8117
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8118 8119
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8120
	} else {
8121
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8122
		      local->group_capacity;
J
Joonsoo Kim 已提交
8123
	}
8124
	capa_move += local->group_capacity *
8125
		    min(local->load_per_task, local->avg_load + tmp);
8126
	capa_move /= SCHED_CAPACITY_SCALE;
8127 8128

	/* Move if we gain throughput */
8129
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8130
		env->imbalance = busiest->load_per_task;
8131 8132 8133 8134 8135
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8136
 * @env: load balance environment
8137 8138
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8139
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8140
{
8141
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8142 8143 8144 8145
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8146

8147
	if (busiest->group_type == group_imbalanced) {
8148 8149
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8150
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8151
		 */
J
Joonsoo Kim 已提交
8152 8153
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8154 8155
	}

8156
	/*
8157 8158 8159 8160
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8161
	 */
8162 8163
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8164 8165
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8166 8167
	}

8168
	/*
8169
	 * If there aren't any idle CPUs, avoid creating some.
8170 8171 8172
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8173
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8174
		if (load_above_capacity > busiest->group_capacity) {
8175
			load_above_capacity -= busiest->group_capacity;
8176
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8177 8178
			load_above_capacity /= busiest->group_capacity;
		} else
8179
			load_above_capacity = ~0UL;
8180 8181 8182
	}

	/*
8183
	 * We're trying to get all the CPUs to the average_load, so we don't
8184
	 * want to push ourselves above the average load, nor do we wish to
8185
	 * reduce the max loaded CPU below the average load. At the same time,
8186 8187
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8188
	 */
8189
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8190 8191

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8192
	env->imbalance = min(
8193 8194
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8195
	) / SCHED_CAPACITY_SCALE;
8196 8197 8198

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8199
	 * there is no guarantee that any tasks will be moved so we'll have
8200 8201 8202
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8203
	if (env->imbalance < busiest->load_per_task)
8204
		return fix_small_imbalance(env, sds);
8205
}
8206

8207 8208 8209 8210
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8211
 * if there is an imbalance.
8212 8213 8214 8215
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8216
 * @env: The load balancing environment.
8217
 *
8218
 * Return:	- The busiest group if imbalance exists.
8219
 */
J
Joonsoo Kim 已提交
8220
static struct sched_group *find_busiest_group(struct lb_env *env)
8221
{
J
Joonsoo Kim 已提交
8222
	struct sg_lb_stats *local, *busiest;
8223 8224
	struct sd_lb_stats sds;

8225
	init_sd_lb_stats(&sds);
8226 8227 8228 8229 8230

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8231
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8232 8233
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8234

8235
	/* ASYM feature bypasses nice load balance check */
8236
	if (check_asym_packing(env, &sds))
8237 8238
		return sds.busiest;

8239
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8240
	if (!sds.busiest || busiest->sum_nr_running == 0)
8241 8242
		goto out_balanced;

8243
	/* XXX broken for overlapping NUMA groups */
8244 8245
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8246

P
Peter Zijlstra 已提交
8247 8248
	/*
	 * If the busiest group is imbalanced the below checks don't
8249
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8250 8251
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8252
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8253 8254
		goto force_balance;

8255 8256 8257 8258 8259
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8260
	    busiest->group_no_capacity)
8261 8262
		goto force_balance;

8263
	/*
8264
	 * If the local group is busier than the selected busiest group
8265 8266
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8267
	if (local->avg_load >= busiest->avg_load)
8268 8269
		goto out_balanced;

8270 8271 8272 8273
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8274
	if (local->avg_load >= sds.avg_load)
8275 8276
		goto out_balanced;

8277
	if (env->idle == CPU_IDLE) {
8278
		/*
8279
		 * This CPU is idle. If the busiest group is not overloaded
8280
		 * and there is no imbalance between this and busiest group
8281
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8282 8283
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8284
		 */
8285 8286
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8287
			goto out_balanced;
8288 8289 8290 8291 8292
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8293 8294
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8295
			goto out_balanced;
8296
	}
8297

8298
force_balance:
8299
	/* Looks like there is an imbalance. Compute it */
8300
	calculate_imbalance(env, &sds);
8301
	return env->imbalance ? sds.busiest : NULL;
8302 8303

out_balanced:
8304
	env->imbalance = 0;
8305 8306 8307 8308
	return NULL;
}

/*
8309
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8310
 */
8311
static struct rq *find_busiest_queue(struct lb_env *env,
8312
				     struct sched_group *group)
8313 8314
{
	struct rq *busiest = NULL, *rq;
8315
	unsigned long busiest_load = 0, busiest_capacity = 1;
8316 8317
	int i;

8318
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8319
		unsigned long capacity, wl;
8320 8321 8322 8323
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8324

8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8347
		capacity = capacity_of(i);
8348

8349
		wl = weighted_cpuload(rq);
8350

8351 8352
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8353
		 * which is not scaled with the CPU capacity.
8354
		 */
8355 8356 8357

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8358 8359
			continue;

8360
		/*
8361 8362 8363
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8364
		 * potentially running at a lower capacity.
8365
		 *
8366
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8367
		 * multiplication to rid ourselves of the division works out
8368 8369
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8370
		 */
8371
		if (wl * busiest_capacity > busiest_load * capacity) {
8372
			busiest_load = wl;
8373
			busiest_capacity = capacity;
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8387
static int need_active_balance(struct lb_env *env)
8388
{
8389 8390 8391
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8392 8393 8394

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8395 8396
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8397
		 */
T
Tim Chen 已提交
8398 8399
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8400
			return 1;
8401 8402
	}

8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8416 8417 8418
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8419 8420
static int active_load_balance_cpu_stop(void *data);

8421 8422 8423 8424 8425
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8426 8427 8428 8429 8430 8431 8432
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8433
	/*
8434
	 * In the newly idle case, we will allow all the CPUs
8435 8436 8437 8438 8439
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8440
	/* Try to find first idle CPU */
8441
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8442
		if (!idle_cpu(cpu))
8443 8444 8445 8446 8447 8448 8449 8450 8451 8452
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8453
	 * First idle CPU or the first CPU(busiest) in this sched group
8454 8455
	 * is eligible for doing load balancing at this and above domains.
	 */
8456
	return balance_cpu == env->dst_cpu;
8457 8458
}

8459 8460 8461 8462 8463 8464
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8465
			int *continue_balancing)
8466
{
8467
	int ld_moved, cur_ld_moved, active_balance = 0;
8468
	struct sched_domain *sd_parent = sd->parent;
8469 8470
	struct sched_group *group;
	struct rq *busiest;
8471
	struct rq_flags rf;
8472
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8473

8474 8475
	struct lb_env env = {
		.sd		= sd,
8476 8477
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8478
		.dst_grpmask    = sched_group_span(sd->groups),
8479
		.idle		= idle,
8480
		.loop_break	= sched_nr_migrate_break,
8481
		.cpus		= cpus,
8482
		.fbq_type	= all,
8483
		.tasks		= LIST_HEAD_INIT(env.tasks),
8484 8485
	};

8486
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8487

8488
	schedstat_inc(sd->lb_count[idle]);
8489 8490

redo:
8491 8492
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8493
		goto out_balanced;
8494
	}
8495

8496
	group = find_busiest_group(&env);
8497
	if (!group) {
8498
		schedstat_inc(sd->lb_nobusyg[idle]);
8499 8500 8501
		goto out_balanced;
	}

8502
	busiest = find_busiest_queue(&env, group);
8503
	if (!busiest) {
8504
		schedstat_inc(sd->lb_nobusyq[idle]);
8505 8506 8507
		goto out_balanced;
	}

8508
	BUG_ON(busiest == env.dst_rq);
8509

8510
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8511

8512 8513 8514
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8515 8516 8517 8518 8519 8520 8521 8522
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8523
		env.flags |= LBF_ALL_PINNED;
8524
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8525

8526
more_balance:
8527
		rq_lock_irqsave(busiest, &rf);
8528
		update_rq_clock(busiest);
8529 8530 8531 8532 8533

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8534
		cur_ld_moved = detach_tasks(&env);
8535 8536

		/*
8537 8538 8539 8540 8541
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8542
		 */
8543

8544
		rq_unlock(busiest, &rf);
8545 8546 8547 8548 8549 8550

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8551
		local_irq_restore(rf.flags);
8552

8553 8554 8555 8556 8557
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8558 8559 8560 8561
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8562
		 * iterate on same src_cpu is dependent on number of CPUs in our
8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8577
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8578

8579
			/* Prevent to re-select dst_cpu via env's CPUs */
8580 8581
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8582
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8583
			env.dst_cpu	 = env.new_dst_cpu;
8584
			env.flags	&= ~LBF_DST_PINNED;
8585 8586
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8587

8588 8589 8590 8591 8592 8593
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8594

8595 8596 8597 8598
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8599
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8600

8601
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8602 8603 8604
				*group_imbalance = 1;
		}

8605
		/* All tasks on this runqueue were pinned by CPU affinity */
8606
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8607
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8608 8609 8610 8611 8612 8613 8614 8615 8616
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8617 8618
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8619
				goto redo;
8620
			}
8621
			goto out_all_pinned;
8622 8623 8624 8625
		}
	}

	if (!ld_moved) {
8626
		schedstat_inc(sd->lb_failed[idle]);
8627 8628 8629 8630 8631 8632 8633 8634
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8635

8636
		if (need_active_balance(&env)) {
8637 8638
			unsigned long flags;

8639 8640
			raw_spin_lock_irqsave(&busiest->lock, flags);

8641 8642 8643 8644
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8645
			 */
8646
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8647 8648
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8649
				env.flags |= LBF_ALL_PINNED;
8650 8651 8652
				goto out_one_pinned;
			}

8653 8654 8655 8656 8657
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8658 8659 8660 8661 8662 8663
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8664

8665
			if (active_balance) {
8666 8667 8668
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8669
			}
8670

8671
			/* We've kicked active balancing, force task migration. */
8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8685
		 * detach_tasks).
8686 8687 8688 8689 8690 8691 8692 8693
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8711
	schedstat_inc(sd->lb_balanced[idle]);
8712 8713 8714 8715 8716

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8717
	if (((env.flags & LBF_ALL_PINNED) &&
8718
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8719 8720 8721
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8722
	ld_moved = 0;
8723 8724 8725 8726
out:
	return ld_moved;
}

8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8743
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8744 8745 8746
{
	unsigned long interval, next;

8747 8748
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8749 8750 8751 8752 8753 8754
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8755
/*
8756
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8757 8758 8759
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8760
 */
8761
static int active_load_balance_cpu_stop(void *data)
8762
{
8763 8764
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8765
	int target_cpu = busiest_rq->push_cpu;
8766
	struct rq *target_rq = cpu_rq(target_cpu);
8767
	struct sched_domain *sd;
8768
	struct task_struct *p = NULL;
8769
	struct rq_flags rf;
8770

8771
	rq_lock_irq(busiest_rq, &rf);
8772 8773 8774 8775 8776 8777 8778
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8779

8780
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8781 8782 8783
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8784 8785 8786

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8787
		goto out_unlock;
8788 8789 8790 8791

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8792
	 * Bjorn Helgaas on a 128-CPU setup.
8793 8794 8795 8796
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8797
	rcu_read_lock();
8798 8799 8800 8801 8802 8803 8804
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8805 8806
		struct lb_env env = {
			.sd		= sd,
8807 8808 8809 8810
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8811
			.idle		= CPU_IDLE,
8812 8813 8814 8815 8816 8817 8818
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8819 8820
		};

8821
		schedstat_inc(sd->alb_count);
8822
		update_rq_clock(busiest_rq);
8823

8824
		p = detach_one_task(&env);
8825
		if (p) {
8826
			schedstat_inc(sd->alb_pushed);
8827 8828 8829
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8830
			schedstat_inc(sd->alb_failed);
8831
		}
8832
	}
8833
	rcu_read_unlock();
8834 8835
out_unlock:
	busiest_rq->active_balance = 0;
8836
	rq_unlock(busiest_rq, &rf);
8837 8838 8839 8840 8841 8842

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8843
	return 0;
8844 8845
}

8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

8964 8965 8966 8967 8968
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8969
#ifdef CONFIG_NO_HZ_COMMON
8970 8971 8972 8973 8974 8975
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8976

8977
static inline int find_new_ilb(void)
8978
{
8979
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8980

8981 8982 8983 8984
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8985 8986
}

8987 8988 8989 8990 8991
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8992
static void kick_ilb(unsigned int flags)
8993 8994 8995 8996 8997
{
	int ilb_cpu;

	nohz.next_balance++;

8998
	ilb_cpu = find_new_ilb();
8999

9000 9001
	if (ilb_cpu >= nr_cpu_ids)
		return;
9002

9003
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9004
	if (flags & NOHZ_KICK_MASK)
9005
		return;
9006

9007 9008
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9009
	 * This way we generate a sched IPI on the target CPU which
9010 9011 9012 9013
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9033
	unsigned int flags = 0;
9034 9035 9036 9037 9038 9039 9040 9041

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9042
	nohz_balance_exit_idle(rq);
9043 9044 9045 9046 9047 9048 9049 9050

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9051 9052
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9053 9054
		flags = NOHZ_STATS_KICK;

9055
	if (time_before(now, nohz.next_balance))
9056
		goto out;
9057 9058

	if (rq->nr_running >= 2) {
9059
		flags = NOHZ_KICK_MASK;
9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9072
			flags = NOHZ_KICK_MASK;
9073 9074 9075 9076 9077 9078 9079 9080 9081
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9082
			flags = NOHZ_KICK_MASK;
9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9095
				flags = NOHZ_KICK_MASK;
9096 9097 9098 9099 9100 9101 9102
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9103 9104
	if (flags)
		kick_ilb(flags);
9105 9106
}

9107
static void set_cpu_sd_state_busy(int cpu)
9108
{
9109
	struct sched_domain *sd;
9110

9111 9112
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9113

9114 9115 9116 9117 9118 9119 9120
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9121 9122
}

9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9138 9139 9140 9141
{
	struct sched_domain *sd;

	rcu_read_lock();
9142
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9143 9144 9145 9146 9147

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9148
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9149
unlock:
9150 9151 9152
	rcu_read_unlock();
}

9153
/*
9154
 * This routine will record that the CPU is going idle with tick stopped.
9155
 * This info will be used in performing idle load balancing in the future.
9156
 */
9157
void nohz_balance_enter_idle(int cpu)
9158
{
9159 9160 9161 9162
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9163
	/* If this CPU is going down, then nothing needs to be done: */
9164 9165 9166
	if (!cpu_active(cpu))
		return;

9167
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9168
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9169 9170
		return;

9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9184
	if (rq->nohz_tick_stopped)
9185
		goto out;
9186

9187
	/* If we're a completely isolated CPU, we don't play: */
9188
	if (on_null_domain(rq))
9189 9190
		return;

9191 9192
	rq->nohz_tick_stopped = 1;

9193 9194
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9195

9196 9197 9198 9199 9200 9201 9202
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9203
	set_cpu_sd_state_idle(cpu);
9204 9205 9206 9207 9208 9209 9210

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9211 9212 9213
}

/*
9214 9215 9216 9217 9218
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9219
 */
9220 9221
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9222
{
9223
	/* Earliest time when we have to do rebalance again */
9224 9225
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9226
	bool has_blocked_load = false;
9227
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9228 9229
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9230
	int ret = false;
P
Peter Zijlstra 已提交
9231
	struct rq *rq;
9232

P
Peter Zijlstra 已提交
9233
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9234

9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9251
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9252
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9253 9254 9255
			continue;

		/*
9256 9257
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9258 9259
		 * balancing owner will pick it up.
		 */
9260 9261 9262 9263
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9264

V
Vincent Guittot 已提交
9265 9266
		rq = cpu_rq(balance_cpu);

9267
		has_blocked_load |= update_nohz_stats(rq, true);
9268

9269 9270 9271 9272 9273
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9274 9275
			struct rq_flags rf;

9276
			rq_lock_irqsave(rq, &rf);
9277
			update_rq_clock(rq);
9278
			cpu_load_update_idle(rq);
9279
			rq_unlock_irqrestore(rq, &rf);
9280

P
Peter Zijlstra 已提交
9281 9282
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9283
		}
9284

9285 9286 9287 9288
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9289
	}
9290

9291 9292 9293 9294 9295 9296
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9297 9298 9299
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9300 9301 9302
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9303 9304 9305
	/* The full idle balance loop has been done */
	ret = true;

9306 9307 9308 9309
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9310

9311 9312 9313 9314 9315 9316 9317
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9318

9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9348
	return true;
9349
}
9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9383 9384 9385
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9386
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9387 9388 9389
{
	return false;
}
9390 9391

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9392
#endif /* CONFIG_NO_HZ_COMMON */
9393

P
Peter Zijlstra 已提交
9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9428

P
Peter Zijlstra 已提交
9429 9430 9431 9432 9433 9434
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9435 9436
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9486
out:
P
Peter Zijlstra 已提交
9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9511 9512 9513 9514
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9515
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9516
{
9517
	struct rq *this_rq = this_rq();
9518
	enum cpu_idle_type idle = this_rq->idle_balance ?
9519 9520 9521
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9522 9523
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9524
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9525
	 * give the idle CPUs a chance to load balance. Else we may
9526 9527
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9528
	 */
P
Peter Zijlstra 已提交
9529 9530 9531 9532 9533
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9534
	rebalance_domains(this_rq, idle);
9535 9536 9537 9538 9539
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9540
void trigger_load_balance(struct rq *rq)
9541 9542
{
	/* Don't need to rebalance while attached to NULL domain */
9543 9544 9545 9546
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9547
		raise_softirq(SCHED_SOFTIRQ);
9548 9549

	nohz_balancer_kick(rq);
9550 9551
}

9552 9553 9554
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9555 9556

	update_runtime_enabled(rq);
9557 9558 9559 9560 9561
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9562 9563 9564

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9565 9566
}

9567
#endif /* CONFIG_SMP */
9568

9569
/*
9570 9571 9572 9573 9574 9575
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9576
 */
P
Peter Zijlstra 已提交
9577
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9578 9579 9580 9581 9582 9583
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9584
		entity_tick(cfs_rq, se, queued);
9585
	}
9586

9587
	if (static_branch_unlikely(&sched_numa_balancing))
9588
		task_tick_numa(rq, curr);
9589 9590 9591
}

/*
P
Peter Zijlstra 已提交
9592 9593 9594
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9595
 */
P
Peter Zijlstra 已提交
9596
static void task_fork_fair(struct task_struct *p)
9597
{
9598 9599
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9600
	struct rq *rq = this_rq();
9601
	struct rq_flags rf;
9602

9603
	rq_lock(rq, &rf);
9604 9605
	update_rq_clock(rq);

9606 9607
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9608 9609
	if (curr) {
		update_curr(cfs_rq);
9610
		se->vruntime = curr->vruntime;
9611
	}
9612
	place_entity(cfs_rq, se, 1);
9613

P
Peter Zijlstra 已提交
9614
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9615
		/*
9616 9617 9618
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9619
		swap(curr->vruntime, se->vruntime);
9620
		resched_curr(rq);
9621
	}
9622

9623
	se->vruntime -= cfs_rq->min_vruntime;
9624
	rq_unlock(rq, &rf);
9625 9626
}

9627 9628 9629 9630
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9631 9632
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9633
{
9634
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9635 9636
		return;

9637 9638 9639 9640 9641
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9642
	if (rq->curr == p) {
9643
		if (p->prio > oldprio)
9644
			resched_curr(rq);
9645
	} else
9646
		check_preempt_curr(rq, p, 0);
9647 9648
}

9649
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9650 9651 9652 9653
{
	struct sched_entity *se = &p->se;

	/*
9654 9655 9656 9657 9658 9659 9660 9661 9662 9663
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9664
	 *
9665 9666 9667 9668
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9669
	 */
9670 9671
	if (!se->sum_exec_runtime ||
	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
9672 9673 9674 9675 9676
		return true;

	return false;
}

9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9695
		update_load_avg(cfs_rq, se, UPDATE_TG);
9696 9697 9698 9699 9700 9701
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9702
static void detach_entity_cfs_rq(struct sched_entity *se)
9703 9704 9705
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9706
	/* Catch up with the cfs_rq and remove our load when we leave */
9707
	update_load_avg(cfs_rq, se, 0);
9708
	detach_entity_load_avg(cfs_rq, se);
9709
	update_tg_load_avg(cfs_rq, false);
9710
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9711 9712
}

9713
static void attach_entity_cfs_rq(struct sched_entity *se)
9714
{
9715
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9716 9717

#ifdef CONFIG_FAIR_GROUP_SCHED
9718 9719 9720 9721 9722 9723
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9724

9725
	/* Synchronize entity with its cfs_rq */
9726
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9727
	attach_entity_load_avg(cfs_rq, se, 0);
9728
	update_tg_load_avg(cfs_rq, false);
9729
	propagate_entity_cfs_rq(se);
9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9755 9756 9757 9758

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9759

9760 9761 9762 9763 9764 9765 9766 9767
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9768

9769
	if (task_on_rq_queued(p)) {
9770
		/*
9771 9772 9773
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9774
		 */
9775 9776 9777 9778
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9779
	}
9780 9781
}

9782 9783 9784 9785 9786 9787 9788 9789 9790
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9791 9792 9793 9794 9795 9796 9797
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9798 9799
}

9800 9801
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9802
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9803 9804 9805 9806
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9807
#ifdef CONFIG_SMP
9808
	raw_spin_lock_init(&cfs_rq->removed.lock);
9809
#endif
9810 9811
}

P
Peter Zijlstra 已提交
9812
#ifdef CONFIG_FAIR_GROUP_SCHED
9813 9814 9815 9816 9817 9818 9819 9820
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9821
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9822
{
9823
	detach_task_cfs_rq(p);
9824
	set_task_rq(p, task_cpu(p));
9825 9826 9827 9828 9829

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9830
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9831
}
9832

9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9846 9847 9848 9849 9850 9851 9852 9853 9854
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9855
		if (tg->se)
9856 9857 9858 9859 9860 9861 9862 9863 9864 9865
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9866
	struct cfs_rq *cfs_rq;
9867 9868
	int i;

K
Kees Cook 已提交
9869
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9870 9871
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9872
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9893
		init_entity_runnable_average(se);
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9915
		update_rq_clock(rq);
9916
		attach_entity_cfs_rq(se);
9917
		sync_throttle(tg, i);
9918 9919 9920 9921
		raw_spin_unlock_irq(&rq->lock);
	}
}

9922
void unregister_fair_sched_group(struct task_group *tg)
9923 9924
{
	unsigned long flags;
9925 9926
	struct rq *rq;
	int cpu;
9927

9928 9929 9930
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9931

9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9964
	if (!parent) {
9965
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9966 9967
		se->depth = 0;
	} else {
9968
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9969 9970
		se->depth = parent->depth + 1;
	}
9971 9972

	se->my_q = cfs_rq;
9973 9974
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9999 10000
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10001 10002

		/* Propagate contribution to hierarchy */
10003
		rq_lock_irqsave(rq, &rf);
10004
		update_rq_clock(rq);
10005
		for_each_sched_entity(se) {
10006
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10007
			update_cfs_group(se);
10008
		}
10009
		rq_unlock_irqrestore(rq, &rf);
10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10025 10026
void online_fair_sched_group(struct task_group *tg) { }

10027
void unregister_fair_sched_group(struct task_group *tg) { }
10028 10029 10030

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10031

10032
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10033 10034 10035 10036 10037 10038 10039 10040 10041
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10042
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10043 10044 10045 10046

	return rr_interval;
}

10047 10048 10049
/*
 * All the scheduling class methods:
 */
10050
const struct sched_class fair_sched_class = {
10051
	.next			= &idle_sched_class,
10052 10053 10054
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10055
	.yield_to_task		= yield_to_task_fair,
10056

I
Ingo Molnar 已提交
10057
	.check_preempt_curr	= check_preempt_wakeup,
10058 10059 10060 10061

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10062
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10063
	.select_task_rq		= select_task_rq_fair,
10064
	.migrate_task_rq	= migrate_task_rq_fair,
10065

10066 10067
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10068

10069
	.task_dead		= task_dead_fair,
10070
	.set_cpus_allowed	= set_cpus_allowed_common,
10071
#endif
10072

10073
	.set_curr_task          = set_curr_task_fair,
10074
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10075
	.task_fork		= task_fork_fair,
10076 10077

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10078
	.switched_from		= switched_from_fair,
10079
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10080

10081 10082
	.get_rr_interval	= get_rr_interval_fair,

10083 10084
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10085
#ifdef CONFIG_FAIR_GROUP_SCHED
10086
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10087
#endif
10088 10089 10090
};

#ifdef CONFIG_SCHED_DEBUG
10091
void print_cfs_stats(struct seq_file *m, int cpu)
10092
{
10093
	struct cfs_rq *cfs_rq, *pos;
10094

10095
	rcu_read_lock();
10096
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10097
		print_cfs_rq(m, cpu, cfs_rq);
10098
	rcu_read_unlock();
10099
}
10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10121 10122 10123 10124 10125 10126

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10127
#ifdef CONFIG_NO_HZ_COMMON
10128
	nohz.next_balance = jiffies;
10129
	nohz.next_blocked = jiffies;
10130 10131 10132 10133 10134
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}