fair.c 264.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
static inline struct task_struct *task_of(struct sched_entity *se)
{
260
	SCHED_WARN_ON(!entity_is_task(se));
261 262 263
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

285 286 287
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
288 289
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
290 291 292
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
293 294 295 296 297
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
298 299
		 */
		if (cfs_rq->tg->parent &&
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
320
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341
		}
342 343 344 345 346 347 348 349 350 351 352 353 354

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
355
/* Iterate thr' all leaf cfs_rq's on a runqueue */
356 357 358
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
359 360

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
361
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
362 363 364
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
365
		return se->cfs_rq;
P
Peter Zijlstra 已提交
366

P
Peter Zijlstra 已提交
367
	return NULL;
P
Peter Zijlstra 已提交
368 369 370 371 372 373 374
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

375 376 377 378 379 380 381 382 383 384 385 386 387
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
388 389
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

407 408 409 410 411 412
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
413

414 415 416
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
417 418 419
}


P
Peter Zijlstra 已提交
420 421
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
422

P
Peter Zijlstra 已提交
423
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424
{
P
Peter Zijlstra 已提交
425
	return &task_rq(p)->cfs;
426 427
}

P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

442 443 444 445 446 447 448 449
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

450 451
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
452 453 454 455 456 457

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

458 459 460 461 462
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
463 464
#endif	/* CONFIG_FAIR_GROUP_SCHED */

465
static __always_inline
466
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 468 469 470 471

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

472
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473
{
474
	s64 delta = (s64)(vruntime - max_vruntime);
475
	if (delta > 0)
476
		max_vruntime = vruntime;
477

478
	return max_vruntime;
479 480
}

481
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
482 483 484 485 486 487 488 489
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

490 491 492 493 494 495
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

496 497
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
498
	struct sched_entity *curr = cfs_rq->curr;
499
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500

501 502
	u64 vruntime = cfs_rq->min_vruntime;

503 504 505 506 507 508
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
509

510 511 512
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
513

514
		if (!curr)
515 516 517 518 519
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

520
	/* ensure we never gain time by being placed backwards. */
521
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 523 524 525
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
526 527
}

528 529 530
/*
 * Enqueue an entity into the rb-tree:
 */
531
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532
{
533
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 535
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
536
	bool leftmost = true;
537 538 539 540 541 542 543 544 545 546 547

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
548
		if (entity_before(se, entry)) {
549 550 551
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
552
			leftmost = false;
553 554 555 556
		}
	}

	rb_link_node(&se->run_node, parent, link);
557 558
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
559 560
}

561
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562
{
563
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 565
}

566
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567
{
568
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 570 571 572 573

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
574 575
}

576 577 578 579 580 581 582 583 584 585 586
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
587
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588
{
589
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590

591 592
	if (!last)
		return NULL;
593 594

	return rb_entry(last, struct sched_entity, run_node);
595 596
}

597 598 599 600
/**************************************************************
 * Scheduling class statistics methods:
 */

601
int sched_proc_update_handler(struct ctl_table *table, int write,
602
		void __user *buffer, size_t *lenp,
603 604
		loff_t *ppos)
{
605
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606
	unsigned int factor = get_update_sysctl_factor();
607 608 609 610 611 612 613

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

614 615 616 617 618 619 620
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

621 622 623
	return 0;
}
#endif
624

625
/*
626
 * delta /= w
627
 */
628
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629
{
630
	if (unlikely(se->load.weight != NICE_0_LOAD))
631
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 633 634 635

	return delta;
}

636 637 638
/*
 * The idea is to set a period in which each task runs once.
 *
639
 * When there are too many tasks (sched_nr_latency) we have to stretch
640 641 642 643
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
644 645
static u64 __sched_period(unsigned long nr_running)
{
646 647 648 649
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
650 651
}

652 653 654 655
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
656
 * s = p*P[w/rw]
657
 */
P
Peter Zijlstra 已提交
658
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659
{
M
Mike Galbraith 已提交
660
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661

M
Mike Galbraith 已提交
662
	for_each_sched_entity(se) {
L
Lin Ming 已提交
663
		struct load_weight *load;
664
		struct load_weight lw;
L
Lin Ming 已提交
665 666 667

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
668

M
Mike Galbraith 已提交
669
		if (unlikely(!se->on_rq)) {
670
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
671 672 673 674

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
675
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
676 677
	}
	return slice;
678 679
}

680
/*
A
Andrei Epure 已提交
681
 * We calculate the vruntime slice of a to-be-inserted task.
682
 *
683
 * vs = s/w
684
 */
685
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
686
{
687
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 689
}

690
#ifdef CONFIG_SMP
691
#include "pelt.h"
692 693
#include "sched-pelt.h"

694
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 696
static unsigned long task_h_load(struct task_struct *p);

697 698
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
699
{
700
	struct sched_avg *sa = &se->avg;
701

702 703
	memset(sa, 0, sizeof(*sa));

704 705 706 707 708 709 710
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
711 712
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

713 714
	se->runnable_weight = se->load.weight;

715
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
716
}
717

718
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
719
static void attach_entity_cfs_rq(struct sched_entity *se);
720

721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
734
 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
735
 *
736
 * where n denotes the nth task and cpu_scale the CPU capacity.
737
 *
738 739
 * For example, for a CPU with 1024 of capacity, a simplest series from
 * the beginning would be like:
740 741 742 743 744 745 746 747 748 749 750
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
751 752
	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
753 754 755 756 757 758 759 760 761 762 763 764

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
765 766 767 768 769 770 771

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
772
			update_cfs_rq_load_avg(now, cfs_rq);
773
			attach_entity_load_avg(cfs_rq, se, 0);
774 775 776 777 778
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
779
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
780 781 782 783
			return;
		}
	}

784
	attach_entity_cfs_rq(se);
785 786
}

787
#else /* !CONFIG_SMP */
788
void init_entity_runnable_average(struct sched_entity *se)
789 790
{
}
791 792 793
void post_init_entity_util_avg(struct sched_entity *se)
{
}
794 795 796
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
797
#endif /* CONFIG_SMP */
798

799
/*
800
 * Update the current task's runtime statistics.
801
 */
802
static void update_curr(struct cfs_rq *cfs_rq)
803
{
804
	struct sched_entity *curr = cfs_rq->curr;
805
	u64 now = rq_clock_task(rq_of(cfs_rq));
806
	u64 delta_exec;
807 808 809 810

	if (unlikely(!curr))
		return;

811 812
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
813
		return;
814

I
Ingo Molnar 已提交
815
	curr->exec_start = now;
816

817 818 819 820
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
821
	schedstat_add(cfs_rq->exec_clock, delta_exec);
822 823 824 825

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

826 827 828
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

829
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
830
		cgroup_account_cputime(curtask, delta_exec);
831
		account_group_exec_runtime(curtask, delta_exec);
832
	}
833 834

	account_cfs_rq_runtime(cfs_rq, delta_exec);
835 836
}

837 838 839 840 841
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

842
static inline void
843
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
844
{
845 846 847 848 849 850 851
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
852 853

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
854 855
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
856

857
	__schedstat_set(se->statistics.wait_start, wait_start);
858 859
}

860
static inline void
861 862 863
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
864 865
	u64 delta;

866 867 868 869
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
870 871 872 873 874 875 876 877 878

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
879
			__schedstat_set(se->statistics.wait_start, delta);
880 881 882 883 884
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

885
	__schedstat_set(se->statistics.wait_max,
886
		      max(schedstat_val(se->statistics.wait_max), delta));
887 888 889
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
890 891
}

892
static inline void
893 894 895
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
896 897 898 899 900 901 902
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
903 904 905 906

	if (entity_is_task(se))
		tsk = task_of(se);

907 908
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
909 910 911 912

		if ((s64)delta < 0)
			delta = 0;

913
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914
			__schedstat_set(se->statistics.sleep_max, delta);
915

916 917
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 919 920 921 922 923

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
924 925
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931
			__schedstat_set(se->statistics.block_max, delta);
932

933 934
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937

		if (tsk) {
			if (tsk->in_iowait) {
938 939
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
958 959
}

960 961 962
/*
 * Task is being enqueued - update stats:
 */
963
static inline void
964
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965
{
966 967 968
	if (!schedstat_enabled())
		return;

969 970 971 972
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
973
	if (se != cfs_rq->curr)
974
		update_stats_wait_start(cfs_rq, se);
975 976 977

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
978 979 980
}

static inline void
981
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985 986

	if (!schedstat_enabled())
		return;

987 988 989 990
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
991
	if (se != cfs_rq->curr)
992
		update_stats_wait_end(cfs_rq, se);
993

994 995
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
996

997
		if (tsk->state & TASK_INTERRUPTIBLE)
998
			__schedstat_set(se->statistics.sleep_start,
999 1000
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1001
			__schedstat_set(se->statistics.block_start,
1002
				      rq_clock(rq_of(cfs_rq)));
1003 1004 1005
	}
}

1006 1007 1008 1009
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1010
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011 1012 1013 1014
{
	/*
	 * We are starting a new run period:
	 */
1015
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016 1017 1018 1019 1020 1021
}

/**************************************************
 * Scheduling class queueing methods:
 */

1022 1023
#ifdef CONFIG_NUMA_BALANCING
/*
1024 1025 1026
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1027
 */
1028 1029
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030 1031 1032

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1033

1034 1035 1036
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1084
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085 1086 1087
	unsigned int scan, floor;
	unsigned int windows = 1;

1088 1089
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1090 1091 1092 1093 1094 1095
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1115 1116
static unsigned int task_scan_max(struct task_struct *p)
{
1117 1118
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1119 1120 1121

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1137 1138 1139
	return max(smin, smax);
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1193 1194 1195 1196 1197 1198 1199 1200 1201
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1202 1203 1204 1205 1206
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1207
/*
1208
 * The averaged statistics, shared & private, memory & CPU,
1209 1210 1211 1212 1213
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214
{
1215
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216 1217 1218 1219
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1220
	if (!p->numa_faults)
1221 1222
		return 0;

1223 1224
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225 1226
}

1227 1228 1229 1230 1231
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1232 1233
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234 1235
}

1236 1237
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1238 1239
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315
					dist >= maxdist)
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1343 1344 1345 1346 1347 1348
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1349 1350
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1351
{
1352
	unsigned long faults, total_faults;
1353

1354
	if (!p->numa_faults)
1355 1356 1357 1358 1359 1360 1361
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1362
	faults = task_faults(p, nid);
1363 1364
	faults += score_nearby_nodes(p, nid, dist, true);

1365
	return 1000 * faults / total_faults;
1366 1367
}

1368 1369
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1370
{
1371 1372 1373 1374 1375 1376 1377 1378
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1379 1380
		return 0;

1381
	faults = group_faults(p, nid);
1382 1383
	faults += score_nearby_nodes(p, nid, dist, false);

1384
	return 1000 * faults / total_faults;
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1427 1428
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1429
	 */
1430 1431
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1432 1433 1434
		return true;

	/*
1435 1436 1437 1438 1439 1440
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1441
	 */
1442 1443
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1444 1445
}

1446
static unsigned long weighted_cpuload(struct rq *rq);
1447 1448
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1449
static unsigned long capacity_of(int cpu);
1450

1451
/* Cached statistics for all CPUs within a node */
1452 1453
struct numa_stats {
	unsigned long load;
1454 1455

	/* Total compute capacity of CPUs on a node */
1456
	unsigned long compute_capacity;
1457

1458
	unsigned int nr_running;
1459
};
1460

1461 1462 1463 1464 1465
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1466 1467
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1468 1469 1470 1471 1472 1473

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1474
		ns->load += weighted_cpuload(rq);
1475
		ns->compute_capacity += capacity_of(cpu);
1476 1477

		cpus++;
1478 1479
	}

1480 1481 1482 1483 1484
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1485
	 * We'll detect a huge imbalance and bail there.
1486 1487 1488 1489
	 */
	if (!cpus)
		return;

1490 1491 1492 1493
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

1494
	capacity = min_t(unsigned, capacity,
1495
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1496 1497
}

1498 1499
struct task_numa_env {
	struct task_struct *p;
1500

1501 1502
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1503

1504
	struct numa_stats src_stats, dst_stats;
1505

1506
	int imbalance_pct;
1507
	int dist;
1508 1509 1510

	struct task_struct *best_task;
	long best_imp;
1511 1512 1513
	int best_cpu;
};

1514 1515 1516 1517 1518
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1519 1520
	if (p)
		get_task_struct(p);
1521 1522 1523 1524 1525 1526

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1527
static bool load_too_imbalanced(long src_load, long dst_load,
1528 1529
				struct task_numa_env *env)
{
1530 1531
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1543

1544
	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1545

1546
	orig_src_load = env->src_stats.load;
1547
	orig_dst_load = env->dst_stats.load;
1548

1549
	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1550 1551 1552

	/* Would this change make things worse? */
	return (imb > old_imb);
1553 1554
}

1555 1556 1557 1558 1559 1560
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1561
static void task_numa_compare(struct task_numa_env *env,
1562
			      long taskimp, long groupimp, bool maymove)
1563 1564 1565
{
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1566
	long src_load, dst_load;
1567
	long load;
1568
	long imp = env->p->numa_group ? groupimp : taskimp;
1569
	long moveimp = imp;
1570
	int dist = env->dist;
1571 1572

	rcu_read_lock();
1573 1574
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1575 1576
		cur = NULL;

1577 1578 1579 1580 1581 1582 1583
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1584 1585 1586 1587 1588 1589 1590
	if (!cur) {
		if (maymove || imp > env->best_imp)
			goto assign;
		else
			goto unlock;
	}

1591 1592 1593 1594
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
1595
	 * the value is, the more remote accesses that would be expected to
1596 1597
	 * be incurred if the tasks were swapped.
	 */
1598 1599 1600
	/* Skip this swap candidate if cannot move to the source cpu */
	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
		goto unlock;
1601

1602 1603 1604 1605 1606 1607 1608
	/*
	 * If dst and source tasks are in the same NUMA group, or not
	 * in any group then look only at task weights.
	 */
	if (cur->numa_group == env->p->numa_group) {
		imp = taskimp + task_weight(cur, env->src_nid, dist) -
		      task_weight(cur, env->dst_nid, dist);
1609
		/*
1610 1611
		 * Add some hysteresis to prevent swapping the
		 * tasks within a group over tiny differences.
1612
		 */
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		if (cur->numa_group)
			imp -= imp / 16;
	} else {
		/*
		 * Compare the group weights. If a task is all by itself
		 * (not part of a group), use the task weight instead.
		 */
		if (cur->numa_group && env->p->numa_group)
			imp += group_weight(cur, env->src_nid, dist) -
			       group_weight(cur, env->dst_nid, dist);
		else
			imp += task_weight(cur, env->src_nid, dist) -
			       task_weight(cur, env->dst_nid, dist);
1626 1627
	}

1628
	if (imp <= env->best_imp)
1629 1630
		goto unlock;

1631 1632 1633
	if (maymove && moveimp > imp && moveimp > env->best_imp) {
		imp = moveimp - 1;
		cur = NULL;
1634
		goto assign;
1635
	}
1636 1637 1638 1639

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
1640 1641 1642 1643
	load = task_h_load(env->p) - task_h_load(cur);
	if (!load)
		goto assign;

1644 1645
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1646

1647
	if (load_too_imbalanced(src_load, dst_load, env))
1648 1649
		goto unlock;

1650
assign:
1651 1652 1653 1654
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1655 1656
	if (!cur) {
		/*
1657
		 * select_idle_siblings() uses an per-CPU cpumask that
1658 1659 1660
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1661 1662
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1663 1664
		local_irq_enable();
	}
1665

1666 1667 1668 1669 1670
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1671 1672
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1673
{
1674 1675
	long src_load, dst_load, load;
	bool maymove = false;
1676 1677
	int cpu;

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;

	/*
	 * If the improvement from just moving env->p direction is better
	 * than swapping tasks around, check if a move is possible.
	 */
	maymove = !load_too_imbalanced(src_load, dst_load, env);

1688 1689
	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1690
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1691 1692 1693
			continue;

		env->dst_cpu = cpu;
1694
		task_numa_compare(env, taskimp, groupimp, maymove);
1695 1696 1697
	}
}

1698 1699 1700 1701
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1702

1703
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1704
		.src_nid = task_node(p),
1705 1706 1707 1708 1709

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1710
		.best_cpu = -1,
1711 1712
	};
	struct sched_domain *sd;
1713
	unsigned long taskweight, groupweight;
1714
	int nid, ret, dist;
1715
	long taskimp, groupimp;
1716

1717
	/*
1718 1719 1720 1721 1722 1723
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1724 1725
	 */
	rcu_read_lock();
1726
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1727 1728
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1729 1730
	rcu_read_unlock();

1731 1732 1733 1734 1735 1736 1737
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1738
		sched_setnuma(p, task_node(p));
1739 1740 1741
		return -EINVAL;
	}

1742
	env.dst_nid = p->numa_preferred_nid;
1743 1744 1745 1746 1747 1748
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1749
	update_numa_stats(&env.dst_stats, env.dst_nid);
1750

1751
	/* Try to find a spot on the preferred nid. */
1752
	task_numa_find_cpu(&env, taskimp, groupimp);
1753

1754 1755 1756 1757 1758 1759 1760
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1761
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 1763 1764
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1765

1766
			dist = node_distance(env.src_nid, env.dst_nid);
1767 1768 1769 1770 1771
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1772

1773
			/* Only consider nodes where both task and groups benefit */
1774 1775
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1776
			if (taskimp < 0 && groupimp < 0)
1777 1778
				continue;

1779
			env.dist = dist;
1780 1781
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1782
			task_numa_find_cpu(&env, taskimp, groupimp);
1783 1784 1785
		}
	}

1786 1787 1788 1789 1790 1791 1792 1793
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1794 1795 1796 1797
	if (p->numa_group) {
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
1798
			nid = cpu_to_node(env.best_cpu);
1799

1800 1801
		if (nid != p->numa_preferred_nid)
			sched_setnuma(p, nid);
1802 1803 1804 1805 1806
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1807

1808 1809 1810 1811
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1812
	p->numa_scan_period = task_scan_start(p);
1813

1814
	if (env.best_task == NULL) {
1815 1816 1817
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1818 1819 1820
		return ret;
	}

1821 1822
	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);

1823 1824
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1825 1826
	put_task_struct(env.best_task);
	return ret;
1827 1828
}

1829 1830 1831
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1832 1833
	unsigned long interval = HZ;

1834
	/* This task has no NUMA fault statistics yet */
1835
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1836 1837
		return;

1838
	/* Periodically retry migrating the task to the preferred node */
1839
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1840
	p->numa_migrate_retry = jiffies + interval;
1841 1842

	/* Success if task is already running on preferred CPU */
1843
	if (task_node(p) == p->numa_preferred_nid)
1844 1845 1846
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1847
	task_numa_migrate(p);
1848 1849
}

1850
/*
1851
 * Find out how many nodes on the workload is actively running on. Do this by
1852 1853 1854 1855
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1856
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1857 1858
{
	unsigned long faults, max_faults = 0;
1859
	int nid, active_nodes = 0;
1860 1861 1862 1863 1864 1865 1866 1867 1868

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1869 1870
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1871
	}
1872 1873 1874

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1875 1876
}

1877 1878 1879
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1880 1881 1882
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1883 1884
 */
#define NUMA_PERIOD_SLOTS 10
1885
#define NUMA_PERIOD_THRESHOLD 7
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1897
	int lr_ratio, ps_ratio;
1898 1899 1900 1901 1902 1903 1904 1905
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1906 1907 1908
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1909
	 */
1910
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1946 1947 1948 1949 1950
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1951 1952 1953
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
1954
		 */
1955 1956
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1957 1958 1959 1960 1961 1962 1963
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1982
		delta = p->se.avg.load_sum;
1983
		*period = LOAD_AVG_MAX;
1984 1985 1986 1987 1988 1989 1990 1991
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2039
		nodemask_t max_group = NODE_MASK_NONE;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2073 2074
		if (!max_faults)
			break;
2075 2076 2077 2078 2079
		nodes = max_group;
	}
	return nid;
}

2080 2081
static void task_numa_placement(struct task_struct *p)
{
2082 2083
	int seq, nid, max_nid = -1;
	unsigned long max_faults = 0;
2084
	unsigned long fault_types[2] = { 0, 0 };
2085 2086
	unsigned long total_faults;
	u64 runtime, period;
2087
	spinlock_t *group_lock = NULL;
2088

2089 2090 2091 2092 2093
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2094
	seq = READ_ONCE(p->mm->numa_scan_seq);
2095 2096 2097
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2098
	p->numa_scan_period_max = task_scan_max(p);
2099

2100 2101 2102 2103
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2104 2105 2106
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2107
		spin_lock_irq(group_lock);
2108 2109
	}

2110 2111
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2112 2113
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2114
		unsigned long faults = 0, group_faults = 0;
2115
		int priv;
2116

2117
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2118
			long diff, f_diff, f_weight;
2119

2120 2121 2122 2123
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2124

2125
			/* Decay existing window, copy faults since last scan */
2126 2127 2128
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2129

2130 2131 2132 2133 2134 2135 2136 2137
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2138
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2139
				   (total_faults + 1);
2140 2141
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2142

2143 2144 2145
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2146
			p->total_numa_faults += diff;
2147
			if (p->numa_group) {
2148 2149 2150 2151 2152 2153 2154 2155 2156
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2157
				p->numa_group->total_faults += diff;
2158
				group_faults += p->numa_group->faults[mem_idx];
2159
			}
2160 2161
		}

2162 2163 2164 2165 2166 2167 2168
		if (!p->numa_group) {
			if (faults > max_faults) {
				max_faults = faults;
				max_nid = nid;
			}
		} else if (group_faults > max_faults) {
			max_faults = group_faults;
2169 2170
			max_nid = nid;
		}
2171 2172
	}

2173 2174
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2175
	if (p->numa_group) {
2176
		numa_group_count_active_nodes(p->numa_group);
2177
		spin_unlock_irq(group_lock);
2178
		max_nid = preferred_group_nid(p, max_nid);
2179 2180
	}

2181 2182 2183 2184 2185 2186 2187
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2188
	}
2189 2190
}

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2202 2203
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2204 2205 2206 2207 2208 2209 2210 2211 2212
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2213
				    4*nr_node_ids*sizeof(unsigned long);
2214 2215 2216 2217 2218 2219

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2220 2221
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2222
		spin_lock_init(&grp->lock);
2223
		grp->gid = p->pid;
2224
		/* Second half of the array tracks nids where faults happen */
2225 2226
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2227

2228
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2229
			grp->faults[i] = p->numa_faults[i];
2230

2231
		grp->total_faults = p->total_numa_faults;
2232

2233 2234 2235 2236 2237
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2238
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2239 2240

	if (!cpupid_match_pid(tsk, cpupid))
2241
		goto no_join;
2242 2243 2244

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2245
		goto no_join;
2246 2247 2248

	my_grp = p->numa_group;
	if (grp == my_grp)
2249
		goto no_join;
2250 2251 2252 2253 2254 2255

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2256
		goto no_join;
2257 2258 2259 2260 2261

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2262
		goto no_join;
2263

2264 2265 2266 2267 2268 2269 2270
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2271

2272 2273 2274
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2275
	if (join && !get_numa_group(grp))
2276
		goto no_join;
2277 2278 2279 2280 2281 2282

	rcu_read_unlock();

	if (!join)
		return;

2283 2284
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2285

2286
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2287 2288
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2289
	}
2290 2291
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2292 2293 2294 2295 2296

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2297
	spin_unlock_irq(&grp->lock);
2298 2299 2300 2301

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2302 2303 2304 2305 2306
	return;

no_join:
	rcu_read_unlock();
	return;
2307 2308 2309 2310 2311
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2312
	void *numa_faults = p->numa_faults;
2313 2314
	unsigned long flags;
	int i;
2315 2316

	if (grp) {
2317
		spin_lock_irqsave(&grp->lock, flags);
2318
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2319
			grp->faults[i] -= p->numa_faults[i];
2320
		grp->total_faults -= p->total_numa_faults;
2321

2322
		grp->nr_tasks--;
2323
		spin_unlock_irqrestore(&grp->lock, flags);
2324
		RCU_INIT_POINTER(p->numa_group, NULL);
2325 2326 2327
		put_numa_group(grp);
	}

2328
	p->numa_faults = NULL;
2329
	kfree(numa_faults);
2330 2331
}

2332 2333 2334
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2335
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2336 2337
{
	struct task_struct *p = current;
2338
	bool migrated = flags & TNF_MIGRATED;
2339
	int cpu_node = task_node(current);
2340
	int local = !!(flags & TNF_FAULT_LOCAL);
2341
	struct numa_group *ng;
2342
	int priv;
2343

2344
	if (!static_branch_likely(&sched_numa_balancing))
2345 2346
		return;

2347 2348 2349 2350
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2351
	/* Allocate buffer to track faults on a per-node basis */
2352 2353
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2354
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2355

2356 2357
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2358
			return;
2359

2360
		p->total_numa_faults = 0;
2361
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2362
	}
2363

2364 2365 2366 2367 2368 2369 2370 2371
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2372
		if (!priv && !(flags & TNF_NO_GROUP))
2373
			task_numa_group(p, last_cpupid, flags, &priv);
2374 2375
	}

2376 2377 2378 2379 2380 2381
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2382 2383 2384 2385
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2386 2387
		local = 1;

2388
	task_numa_placement(p);
2389

2390 2391 2392 2393 2394
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2395 2396
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2397 2398
	if (migrated)
		p->numa_pages_migrated += pages;
2399 2400
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2401

2402 2403
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2404
	p->numa_faults_locality[local] += pages;
2405 2406
}

2407 2408
static void reset_ptenuma_scan(struct task_struct *p)
{
2409 2410 2411 2412 2413 2414 2415 2416
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2417
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2418 2419 2420
	p->mm->numa_scan_offset = 0;
}

2421 2422 2423 2424 2425 2426 2427 2428 2429
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2430
	u64 runtime = p->se.sum_exec_runtime;
2431
	struct vm_area_struct *vma;
2432
	unsigned long start, end;
2433
	unsigned long nr_pte_updates = 0;
2434
	long pages, virtpages;
2435

2436
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2450
	if (!mm->numa_next_scan) {
2451 2452
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2453 2454
	}

2455 2456 2457 2458 2459 2460 2461
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2462 2463
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2464
		p->numa_scan_period = task_scan_start(p);
2465
	}
2466

2467
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2468 2469 2470
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2471 2472 2473 2474 2475 2476
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2477 2478 2479
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2480
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2481 2482
	if (!pages)
		return;
2483

2484

2485 2486
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2487
	vma = find_vma(mm, start);
2488 2489
	if (!vma) {
		reset_ptenuma_scan(p);
2490
		start = 0;
2491 2492
		vma = mm->mmap;
	}
2493
	for (; vma; vma = vma->vm_next) {
2494
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2495
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2496
			continue;
2497
		}
2498

2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2509 2510 2511 2512 2513 2514
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2515

2516 2517 2518 2519
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2520
			nr_pte_updates = change_prot_numa(vma, start, end);
2521 2522

			/*
2523 2524 2525 2526 2527 2528
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2529 2530 2531
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2532
			virtpages -= (end - start) >> PAGE_SHIFT;
2533

2534
			start = end;
2535
			if (pages <= 0 || virtpages <= 0)
2536
				goto out;
2537 2538

			cond_resched();
2539
		} while (end != vma->vm_end);
2540
	}
2541

2542
out:
2543
	/*
P
Peter Zijlstra 已提交
2544 2545 2546 2547
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2548 2549
	 */
	if (vma)
2550
		mm->numa_scan_offset = start;
2551 2552 2553
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2590
	if (now > curr->node_stamp + period) {
2591
		if (!curr->node_stamp)
2592
			curr->numa_scan_period = task_scan_start(curr);
2593
		curr->node_stamp += period;
2594 2595 2596 2597 2598 2599 2600

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2601

2602 2603 2604 2605
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2606 2607 2608 2609 2610 2611 2612 2613

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2614

2615 2616
#endif /* CONFIG_NUMA_BALANCING */

2617 2618 2619 2620
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2621
	if (!parent_entity(se))
2622
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2623
#ifdef CONFIG_SMP
2624 2625 2626 2627 2628 2629
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2630
#endif
2631 2632 2633 2634 2635 2636 2637
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2638
	if (!parent_entity(se))
2639
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2640
#ifdef CONFIG_SMP
2641 2642
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2643
		list_del_init(&se->group_node);
2644
	}
2645
#endif
2646 2647 2648
	cfs_rq->nr_running--;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2690 2691 2692 2693
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2694 2695 2696 2697 2698
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2699 2700 2701 2702 2703
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2730
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2731
			    unsigned long weight, unsigned long runnable)
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2742
	se->runnable_weight = runnable;
2743 2744 2745
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2746 2747 2748 2749 2750 2751 2752
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2769
	reweight_entity(cfs_rq, se, weight, weight);
2770 2771 2772
	load->inv_weight = sched_prio_to_wmult[prio];
}

2773
#ifdef CONFIG_FAIR_GROUP_SCHED
2774
#ifdef CONFIG_SMP
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2813
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2839 2840 2841 2842 2843 2844 2845 2846 2847
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2848
static long calc_group_shares(struct cfs_rq *cfs_rq)
2849
{
2850 2851 2852 2853
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2854

2855
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2856

2857
	tg_weight = atomic_long_read(&tg->load_avg);
2858

2859 2860 2861
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2862

2863
	shares = (tg_shares * load);
2864 2865
	if (tg_weight)
		shares /= tg_weight;
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2879
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2880
}
2881 2882

/*
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2908 2909 2910
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2911 2912 2913 2914 2915 2916 2917
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2918 2919 2920 2921

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2922

2923 2924
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2925
#endif /* CONFIG_SMP */
2926

2927 2928
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2929 2930 2931 2932 2933
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2934
{
2935 2936
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
2937

2938
	if (!gcfs_rq)
2939 2940
		return;

2941
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
2942
		return;
2943

2944
#ifndef CONFIG_SMP
2945
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2946 2947

	if (likely(se->load.weight == shares))
2948
		return;
2949
#else
2950 2951
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
2952
#endif
P
Peter Zijlstra 已提交
2953

2954
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
2955
}
2956

P
Peter Zijlstra 已提交
2957
#else /* CONFIG_FAIR_GROUP_SCHED */
2958
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2959 2960 2961 2962
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2963
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
2964
{
2965 2966
	struct rq *rq = rq_of(cfs_rq);

2967
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
2968 2969 2970
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
2971
		 * a real problem.
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
2982
		cpufreq_update_util(rq, flags);
2983 2984 2985
	}
}

2986
#ifdef CONFIG_SMP
2987
#ifdef CONFIG_FAIR_GROUP_SCHED
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3001
 * Updating tg's load_avg is necessary before update_cfs_share().
3002
 */
3003
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3004
{
3005
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3006

3007 3008 3009 3010 3011 3012
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3013 3014 3015
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3016
	}
3017
}
3018

3019
/*
3020
 * Called within set_task_rq() right before setting a task's CPU. The
3021 3022 3023 3024 3025 3026
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3027 3028 3029
	u64 p_last_update_time;
	u64 n_last_update_time;

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3040 3041
	if (!(se->avg.last_update_time && prev))
		return;
3042 3043

#ifndef CONFIG_64BIT
3044
	{
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3059
	}
3060
#else
3061 3062
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3063
#endif
3064 3065
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3066
}
3067

3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3079 3080 3081
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3082 3083 3084 3085 3086 3087 3088 3089
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3090
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3091 3092 3093
 *
 * And per (1) we have:
 *
3094
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3113 3114 3115 3116 3117 3118
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3119
 *
3120
 * So we'll have to approximate.. :/
3121
 *
3122
 * Given the constraint:
3123
 *
3124
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3125
 *
3126 3127
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3128
 *
3129
 * On removal, we'll assume each task is equally runnable; which yields:
3130
 *
3131
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3132
 *
3133
 * XXX: only do this for the part of runnable > running ?
3134 3135 3136
 *
 */

3137
static inline void
3138
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3139 3140 3141 3142 3143 3144 3145
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3146 3147 3148 3149 3150 3151 3152 3153
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3164
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3165
{
3166 3167 3168 3169
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3170

3171 3172
	if (!runnable_sum)
		return;
3173

3174
	gcfs_rq->prop_runnable_sum = 0;
3175

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3199
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3200 3201 3202 3203 3204 3205
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3206 3207
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3208

3209 3210
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3211

3212 3213 3214 3215
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3216

3217 3218
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3219 3220
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3221

3222 3223
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3224

3225
	if (se->on_rq) {
3226 3227
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3228 3229 3230
	}
}

3231
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3232
{
3233 3234
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3235 3236 3237 3238 3239
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3240
	struct cfs_rq *cfs_rq, *gcfs_rq;
3241 3242 3243 3244

	if (entity_is_task(se))
		return 0;

3245 3246
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3247 3248
		return 0;

3249 3250
	gcfs_rq->propagate = 0;

3251 3252
	cfs_rq = cfs_rq_of(se);

3253
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3254

3255 3256
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3257 3258 3259 3260

	return 1;
}

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3280
	if (gcfs_rq->propagate)
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3291
#else /* CONFIG_FAIR_GROUP_SCHED */
3292

3293
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3294 3295 3296 3297 3298 3299

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3300
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3301

3302
#endif /* CONFIG_FAIR_GROUP_SCHED */
3303

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3315 3316 3317 3318
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3319
 */
3320
static inline int
3321
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3322
{
3323
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3324
	struct sched_avg *sa = &cfs_rq->avg;
3325
	int decayed = 0;
3326

3327 3328
	if (cfs_rq->removed.nr) {
		unsigned long r;
3329
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3330 3331 3332 3333

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3334
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3335 3336 3337 3338
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3339
		sub_positive(&sa->load_avg, r);
3340
		sub_positive(&sa->load_sum, r * divider);
3341

3342
		r = removed_util;
3343
		sub_positive(&sa->util_avg, r);
3344
		sub_positive(&sa->util_sum, r * divider);
3345

3346
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3347 3348

		decayed = 1;
3349
	}
3350

3351
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3352

3353 3354 3355 3356
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3357

3358
	if (decayed)
3359
		cfs_rq_util_change(cfs_rq, 0);
3360

3361
	return decayed;
3362 3363
}

3364 3365 3366 3367 3368 3369 3370 3371
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3372
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3373
{
3374 3375 3376 3377 3378 3379 3380 3381 3382
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3383
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3402
	enqueue_load_avg(cfs_rq, se);
3403 3404
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3405 3406

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3407

3408
	cfs_rq_util_change(cfs_rq, flags);
3409 3410
}

3411 3412 3413 3414 3415 3416 3417 3418
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3419 3420
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3421
	dequeue_load_avg(cfs_rq, se);
3422 3423
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3424 3425

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3426

3427
	cfs_rq_util_change(cfs_rq, 0);
3428 3429
}

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3457 3458 3459 3460 3461 3462 3463 3464
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3465 3466 3467 3468 3469 3470
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3471
#ifndef CONFIG_64BIT
3472 3473
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3474
	u64 last_update_time_copy;
3475
	u64 last_update_time;
3476

3477 3478 3479 3480 3481
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3482 3483 3484

	return last_update_time;
}
3485
#else
3486 3487 3488 3489
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3490 3491
#endif

3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3502
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3503 3504
}

3505 3506 3507 3508 3509 3510 3511
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3512
	unsigned long flags;
3513 3514

	/*
3515 3516 3517 3518 3519 3520 3521
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3522 3523
	 */

3524
	sync_entity_load_avg(se);
3525 3526 3527 3528 3529

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3530
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3531
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3532
}
3533

3534 3535
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3536
	return cfs_rq->avg.runnable_load_avg;
3537 3538 3539 3540 3541 3542 3543
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3544
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3545

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3573
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

3599 3600 3601 3602
	/* Update root cfs_rq's estimated utilization */
	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
	ue.enqueued -= min_t(unsigned int, ue.enqueued,
			     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3603 3604 3605 3606 3607 3608 3609 3610 3611
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

3612 3613 3614 3615 3616 3617 3618 3619
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

3620 3621 3622 3623
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
3624
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

3652 3653
#else /* CONFIG_SMP */

3654 3655
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3656
#define DO_ATTACH	0x0
3657

3658
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3659
{
3660
	cfs_rq_util_change(cfs_rq, 0);
3661 3662
}

3663
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3664

3665
static inline void
3666
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3667 3668 3669
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3670
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3671 3672 3673 3674
{
	return 0;
}

3675 3676 3677 3678 3679 3680 3681
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

3682
#endif /* CONFIG_SMP */
3683

P
Peter Zijlstra 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3693
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3694 3695 3696
#endif
}

3697 3698 3699
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3700
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3701

3702 3703 3704 3705 3706 3707
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3708
	if (initial && sched_feat(START_DEBIT))
3709
		vruntime += sched_vslice(cfs_rq, se);
3710

3711
	/* sleeps up to a single latency don't count. */
3712
	if (!initial) {
3713
		unsigned long thresh = sysctl_sched_latency;
3714

3715 3716 3717 3718 3719 3720
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3721

3722
		vruntime -= thresh;
3723 3724
	}

3725
	/* ensure we never gain time by being placed backwards. */
3726
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3727 3728
}

3729 3730
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3743
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3744
			     "stat_blocked and stat_runtime require the "
3745
			     "kernel parameter schedstats=enable or "
3746 3747 3748 3749 3750
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3770
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3782
static void
3783
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3784
{
3785 3786 3787
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3788
	/*
3789 3790
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3791
	 */
3792
	if (renorm && curr)
3793 3794
		se->vruntime += cfs_rq->min_vruntime;

3795 3796
	update_curr(cfs_rq);

3797
	/*
3798 3799 3800 3801
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3802
	 */
3803 3804 3805
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3806 3807 3808 3809 3810 3811 3812 3813
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3814
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3815
	update_cfs_group(se);
3816
	enqueue_runnable_load_avg(cfs_rq, se);
3817
	account_entity_enqueue(cfs_rq, se);
3818

3819
	if (flags & ENQUEUE_WAKEUP)
3820
		place_entity(cfs_rq, se, 0);
3821

3822
	check_schedstat_required();
3823 3824
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3825
	if (!curr)
3826
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3827
	se->on_rq = 1;
3828

3829
	if (cfs_rq->nr_running == 1) {
3830
		list_add_leaf_cfs_rq(cfs_rq);
3831 3832
		check_enqueue_throttle(cfs_rq);
	}
3833 3834
}

3835
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3836
{
3837 3838
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3839
		if (cfs_rq->last != se)
3840
			break;
3841 3842

		cfs_rq->last = NULL;
3843 3844
	}
}
P
Peter Zijlstra 已提交
3845

3846 3847 3848 3849
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3850
		if (cfs_rq->next != se)
3851
			break;
3852 3853

		cfs_rq->next = NULL;
3854
	}
P
Peter Zijlstra 已提交
3855 3856
}

3857 3858 3859 3860
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3861
		if (cfs_rq->skip != se)
3862
			break;
3863 3864

		cfs_rq->skip = NULL;
3865 3866 3867
	}
}

P
Peter Zijlstra 已提交
3868 3869
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3870 3871 3872 3873 3874
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3875 3876 3877

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3878 3879
}

3880
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3881

3882
static void
3883
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3884
{
3885 3886 3887 3888
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3889 3890 3891 3892 3893 3894 3895 3896 3897

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3898
	update_load_avg(cfs_rq, se, UPDATE_TG);
3899
	dequeue_runnable_load_avg(cfs_rq, se);
3900

3901
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3902

P
Peter Zijlstra 已提交
3903
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3904

3905
	if (se != cfs_rq->curr)
3906
		__dequeue_entity(cfs_rq, se);
3907
	se->on_rq = 0;
3908
	account_entity_dequeue(cfs_rq, se);
3909 3910

	/*
3911 3912 3913 3914
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3915
	 */
3916
	if (!(flags & DEQUEUE_SLEEP))
3917
		se->vruntime -= cfs_rq->min_vruntime;
3918

3919 3920 3921
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3922
	update_cfs_group(se);
3923 3924 3925 3926 3927 3928 3929 3930 3931

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3932 3933 3934 3935 3936
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3937
static void
I
Ingo Molnar 已提交
3938
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3939
{
3940
	unsigned long ideal_runtime, delta_exec;
3941 3942
	struct sched_entity *se;
	s64 delta;
3943

P
Peter Zijlstra 已提交
3944
	ideal_runtime = sched_slice(cfs_rq, curr);
3945
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3946
	if (delta_exec > ideal_runtime) {
3947
		resched_curr(rq_of(cfs_rq));
3948 3949 3950 3951 3952
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3964 3965
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3966

3967 3968
	if (delta < 0)
		return;
3969

3970
	if (delta > ideal_runtime)
3971
		resched_curr(rq_of(cfs_rq));
3972 3973
}

3974
static void
3975
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3976
{
3977 3978 3979 3980 3981 3982 3983
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3984
		update_stats_wait_end(cfs_rq, se);
3985
		__dequeue_entity(cfs_rq, se);
3986
		update_load_avg(cfs_rq, se, UPDATE_TG);
3987 3988
	}

3989
	update_stats_curr_start(cfs_rq, se);
3990
	cfs_rq->curr = se;
3991

I
Ingo Molnar 已提交
3992 3993 3994 3995 3996
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3997
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3998 3999 4000
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4001
	}
4002

4003
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4004 4005
}

4006 4007 4008
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4009 4010 4011 4012 4013 4014 4015
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4016 4017
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4018
{
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4030

4031 4032 4033 4034 4035
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4046 4047 4048
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4049

4050 4051 4052 4053 4054 4055
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4056 4057 4058 4059 4060 4061
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4062
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4063 4064

	return se;
4065 4066
}

4067
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4068

4069
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4070 4071 4072 4073 4074 4075
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4076
		update_curr(cfs_rq);
4077

4078 4079 4080
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4081
	check_spread(cfs_rq, prev);
4082

4083
	if (prev->on_rq) {
4084
		update_stats_wait_start(cfs_rq, prev);
4085 4086
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4087
		/* in !on_rq case, update occurred at dequeue */
4088
		update_load_avg(cfs_rq, prev, 0);
4089
	}
4090
	cfs_rq->curr = NULL;
4091 4092
}

P
Peter Zijlstra 已提交
4093 4094
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4095 4096
{
	/*
4097
	 * Update run-time statistics of the 'current'.
4098
	 */
4099
	update_curr(cfs_rq);
4100

4101 4102 4103
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4104
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4105
	update_cfs_group(curr);
4106

P
Peter Zijlstra 已提交
4107 4108 4109 4110 4111
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4112
	if (queued) {
4113
		resched_curr(rq_of(cfs_rq));
4114 4115
		return;
	}
P
Peter Zijlstra 已提交
4116 4117 4118 4119 4120 4121 4122 4123
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4124
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4125
		check_preempt_tick(cfs_rq, curr);
4126 4127
}

4128 4129 4130 4131 4132 4133

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4134 4135

#ifdef HAVE_JUMP_LABEL
4136
static struct static_key __cfs_bandwidth_used;
4137 4138 4139

static inline bool cfs_bandwidth_used(void)
{
4140
	return static_key_false(&__cfs_bandwidth_used);
4141 4142
}

4143
void cfs_bandwidth_usage_inc(void)
4144
{
4145
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4146 4147 4148 4149
}

void cfs_bandwidth_usage_dec(void)
{
4150
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4151 4152 4153 4154 4155 4156 4157
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4158 4159
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4160 4161
#endif /* HAVE_JUMP_LABEL */

4162 4163 4164 4165 4166 4167 4168 4169
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4170 4171 4172 4173 4174 4175

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4176 4177 4178 4179 4180 4181 4182
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4183
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4184 4185 4186 4187 4188 4189 4190 4191 4192
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4193
	cfs_b->expires_seq++;
P
Paul Turner 已提交
4194 4195
}

4196 4197 4198 4199 4200
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4201 4202 4203 4204
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4205
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4206

4207
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4208 4209
}

4210 4211
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4212 4213 4214
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4215
	u64 amount = 0, min_amount, expires;
4216
	int expires_seq;
4217 4218 4219 4220 4221 4222 4223

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4224
	else {
P
Peter Zijlstra 已提交
4225
		start_cfs_bandwidth(cfs_b);
4226 4227 4228 4229 4230 4231

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4232
	}
4233
	expires_seq = cfs_b->expires_seq;
P
Paul Turner 已提交
4234
	expires = cfs_b->runtime_expires;
4235 4236 4237
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4238 4239 4240 4241 4242
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
4243 4244
	if (cfs_rq->expires_seq != expires_seq) {
		cfs_rq->expires_seq = expires_seq;
P
Paul Turner 已提交
4245
		cfs_rq->runtime_expires = expires;
4246
	}
4247 4248

	return cfs_rq->runtime_remaining > 0;
4249 4250
}

P
Paul Turner 已提交
4251 4252 4253 4254 4255
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4256
{
P
Paul Turner 已提交
4257 4258 4259
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4260
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4261 4262
		return;

P
Paul Turner 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4272
	 * whether the global deadline(cfs_b->expires_seq) has advanced.
P
Paul Turner 已提交
4273
	 */
4274
	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
P
Paul Turner 已提交
4275 4276 4277 4278 4279 4280 4281 4282
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4283
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4284 4285
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4286
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4287 4288 4289
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4290 4291
		return;

4292 4293 4294 4295 4296
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4297
		resched_curr(rq_of(cfs_rq));
4298 4299
}

4300
static __always_inline
4301
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4302
{
4303
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4304 4305 4306 4307 4308
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4309 4310
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4311
	return cfs_bandwidth_used() && cfs_rq->throttled;
4312 4313
}

4314 4315 4316
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4317
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4344
		/* adjust cfs_rq_clock_task() */
4345
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4346
					     cfs_rq->throttled_clock_task;
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4357 4358
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4359
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4360 4361 4362 4363 4364
	cfs_rq->throttle_count++;

	return 0;
}

4365
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4366 4367 4368 4369 4370
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4371
	bool empty;
4372 4373 4374

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4375
	/* freeze hierarchy runnable averages while throttled */
4376 4377 4378
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4396
		sub_nr_running(rq, task_delta);
4397 4398

	cfs_rq->throttled = 1;
4399
	cfs_rq->throttled_clock = rq_clock(rq);
4400
	raw_spin_lock(&cfs_b->lock);
4401
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4402

4403 4404 4405 4406 4407
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4408 4409 4410 4411 4412 4413 4414 4415

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4416 4417 4418
	raw_spin_unlock(&cfs_b->lock);
}

4419
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4420 4421 4422 4423 4424 4425 4426
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4427
	se = cfs_rq->tg->se[cpu_of(rq)];
4428 4429

	cfs_rq->throttled = 0;
4430 4431 4432

	update_rq_clock(rq);

4433
	raw_spin_lock(&cfs_b->lock);
4434
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4435 4436 4437
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4438 4439 4440
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4459
		add_nr_running(rq, task_delta);
4460

4461
	/* Determine whether we need to wake up potentially idle CPU: */
4462
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4463
		resched_curr(rq);
4464 4465 4466 4467 4468 4469
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4470 4471
	u64 runtime;
	u64 starting_runtime = remaining;
4472 4473 4474 4475 4476

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4477
		struct rq_flags rf;
4478

4479
		rq_lock(rq, &rf);
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4496
		rq_unlock(rq, &rf);
4497 4498 4499 4500 4501 4502

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4503
	return starting_runtime - remaining;
4504 4505
}

4506 4507 4508 4509 4510 4511 4512 4513
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4514
	u64 runtime, runtime_expires;
4515
	int throttled;
4516 4517 4518

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4519
		goto out_deactivate;
4520

4521
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4522
	cfs_b->nr_periods += overrun;
4523

4524 4525 4526 4527 4528 4529
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4530 4531 4532

	__refill_cfs_bandwidth_runtime(cfs_b);

4533 4534 4535
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4536
		return 0;
4537 4538
	}

4539 4540 4541
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4542 4543 4544
	runtime_expires = cfs_b->runtime_expires;

	/*
4545 4546 4547 4548 4549
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4550
	 */
4551 4552
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4553 4554 4555 4556 4557 4558 4559
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4560 4561

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4562
	}
4563

4564 4565 4566 4567 4568 4569 4570
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4571

4572 4573 4574 4575
	return 0;

out_deactivate:
	return 1;
4576
}
4577

4578 4579 4580 4581 4582 4583 4584
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4585 4586 4587 4588
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4589
 * hrtimer base being cleared by hrtimer_start. In the case of
4590 4591
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4617 4618 4619
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4649 4650 4651
	if (!cfs_bandwidth_used())
		return;

4652
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4668 4669 4670
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4671
		return;
4672
	}
4673

4674
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4675
		runtime = cfs_b->runtime;
4676

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4687
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4688 4689 4690
	raw_spin_unlock(&cfs_b->lock);
}

4691 4692 4693 4694 4695 4696 4697
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4698 4699 4700
	if (!cfs_bandwidth_used())
		return;

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4729
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4730 4731
}

4732
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4733
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4734
{
4735
	if (!cfs_bandwidth_used())
4736
		return false;
4737

4738
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4739
		return false;
4740 4741 4742 4743 4744 4745

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4746
		return true;
4747 4748

	throttle_cfs_rq(cfs_rq);
4749
	return true;
4750
}
4751 4752 4753 4754 4755

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4756

4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4769
	raw_spin_lock(&cfs_b->lock);
4770
	for (;;) {
P
Peter Zijlstra 已提交
4771
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4772 4773 4774 4775 4776
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4777 4778
	if (idle)
		cfs_b->period_active = 0;
4779
	raw_spin_unlock(&cfs_b->lock);
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4792
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4804
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4805
{
4806 4807
	u64 overrun;

P
Peter Zijlstra 已提交
4808
	lockdep_assert_held(&cfs_b->lock);
4809

4810 4811 4812 4813 4814 4815 4816 4817
	if (cfs_b->period_active)
		return;

	cfs_b->period_active = 1;
	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
	cfs_b->expires_seq++;
	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4818 4819 4820 4821
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4822 4823 4824 4825
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4826 4827 4828 4829
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4830
/*
4831
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4832 4833 4834 4835 4836 4837
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
4838 4839
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
4840
	struct task_group *tg;
4841

4842 4843 4844 4845 4846 4847
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4848 4849 4850 4851 4852

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
4853
	rcu_read_unlock();
4854 4855
}

4856
/* cpu offline callback */
4857
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4858
{
4859 4860 4861 4862 4863 4864 4865
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4866 4867 4868 4869 4870 4871 4872 4873

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4874
		cfs_rq->runtime_remaining = 1;
4875
		/*
4876
		 * Offline rq is schedulable till CPU is completely disabled
4877 4878 4879 4880
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4881 4882 4883
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
4884
	rcu_read_unlock();
4885 4886 4887
}

#else /* CONFIG_CFS_BANDWIDTH */
4888 4889
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4890
	return rq_clock_task(rq_of(cfs_rq));
4891 4892
}

4893
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4894
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4895
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4896
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4897
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4898 4899 4900 4901 4902

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4914 4915 4916 4917 4918

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4919 4920
#endif

4921 4922 4923 4924 4925
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4926
static inline void update_runtime_enabled(struct rq *rq) {}
4927
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4928 4929 4930

#endif /* CONFIG_CFS_BANDWIDTH */

4931 4932 4933 4934
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4935 4936 4937 4938 4939 4940
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4941
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4942

4943
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4944 4945 4946 4947 4948 4949
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4950
				resched_curr(rq);
P
Peter Zijlstra 已提交
4951 4952
			return;
		}
4953
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4954 4955
	}
}
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4966
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4967 4968 4969 4970 4971
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4972
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4973 4974 4975 4976
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4977 4978 4979 4980

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4981 4982
#endif

4983 4984 4985 4986 4987
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4988
static void
4989
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4990 4991
{
	struct cfs_rq *cfs_rq;
4992
	struct sched_entity *se = &p->se;
4993

4994 4995 4996 4997 4998 4999 5000 5001
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5002 5003 5004 5005 5006 5007
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5008
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5009

5010
	for_each_sched_entity(se) {
5011
		if (se->on_rq)
5012 5013
			break;
		cfs_rq = cfs_rq_of(se);
5014
		enqueue_entity(cfs_rq, se, flags);
5015 5016 5017 5018 5019 5020

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5021
		 */
5022 5023
		if (cfs_rq_throttled(cfs_rq))
			break;
5024
		cfs_rq->h_nr_running++;
5025

5026
		flags = ENQUEUE_WAKEUP;
5027
	}
P
Peter Zijlstra 已提交
5028

P
Peter Zijlstra 已提交
5029
	for_each_sched_entity(se) {
5030
		cfs_rq = cfs_rq_of(se);
5031
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5032

5033 5034 5035
		if (cfs_rq_throttled(cfs_rq))
			break;

5036
		update_load_avg(cfs_rq, se, UPDATE_TG);
5037
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5038 5039
	}

Y
Yuyang Du 已提交
5040
	if (!se)
5041
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5042

5043
	hrtick_update(rq);
5044 5045
}

5046 5047
static void set_next_buddy(struct sched_entity *se);

5048 5049 5050 5051 5052
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5053
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5054 5055
{
	struct cfs_rq *cfs_rq;
5056
	struct sched_entity *se = &p->se;
5057
	int task_sleep = flags & DEQUEUE_SLEEP;
5058 5059 5060

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5061
		dequeue_entity(cfs_rq, se, flags);
5062 5063 5064 5065 5066 5067 5068 5069 5070

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5071
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5072

5073
		/* Don't dequeue parent if it has other entities besides us */
5074
		if (cfs_rq->load.weight) {
5075 5076
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5077 5078 5079 5080
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5081 5082
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5083
			break;
5084
		}
5085
		flags |= DEQUEUE_SLEEP;
5086
	}
P
Peter Zijlstra 已提交
5087

P
Peter Zijlstra 已提交
5088
	for_each_sched_entity(se) {
5089
		cfs_rq = cfs_rq_of(se);
5090
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5091

5092 5093 5094
		if (cfs_rq_throttled(cfs_rq))
			break;

5095
		update_load_avg(cfs_rq, se, UPDATE_TG);
5096
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5097 5098
	}

Y
Yuyang Du 已提交
5099
	if (!se)
5100
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5101

5102
	util_est_dequeue(&rq->cfs, p, task_sleep);
5103
	hrtick_update(rq);
5104 5105
}

5106
#ifdef CONFIG_SMP
5107 5108 5109 5110 5111

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5112
#ifdef CONFIG_NO_HZ_COMMON
5113 5114 5115 5116 5117
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5118
 * The exact cpuload calculated at every tick would be:
5119
 *
5120 5121
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5122 5123
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5124 5125 5126
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5127 5128 5129
 *
 * decay_load_missed() below does efficient calculation of
 *
5130 5131 5132 5133 5134 5135
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5136
 *
5137
 * The calculation is approximated on a 128 point scale.
5138 5139
 */
#define DEGRADE_SHIFT		7
5140 5141 5142 5143 5144 5145 5146 5147 5148

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5178 5179 5180 5181

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5182
	int has_blocked;		/* Idle CPUS has blocked load */
5183
	unsigned long next_balance;     /* in jiffy units */
5184
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5185 5186
} nohz ____cacheline_aligned;

5187
#endif /* CONFIG_NO_HZ_COMMON */
5188

5189
/**
5190
 * __cpu_load_update - update the rq->cpu_load[] statistics
5191 5192 5193 5194
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5195
 * Update rq->cpu_load[] statistics. This function is usually called every
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5222
 * term.
5223
 */
5224 5225
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5226
{
5227
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5239
		old_load = this_rq->cpu_load[i];
5240
#ifdef CONFIG_NO_HZ_COMMON
5241
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5242 5243 5244 5245 5246 5247 5248 5249 5250
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5251
#endif
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}
}

5265
/* Used instead of source_load when we know the type == 0 */
5266
static unsigned long weighted_cpuload(struct rq *rq)
5267
{
5268
	return cfs_rq_runnable_load_avg(&rq->cfs);
5269 5270
}

5271
#ifdef CONFIG_NO_HZ_COMMON
5272 5273
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5274
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5300
		cpu_load_update(this_rq, load, pending_updates);
5301 5302 5303
	}
}

5304 5305 5306 5307
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5308
static void cpu_load_update_idle(struct rq *this_rq)
5309 5310 5311 5312
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5313
	if (weighted_cpuload(this_rq))
5314 5315
		return;

5316
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5317 5318 5319
}

/*
5320 5321 5322 5323
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5324
 */
5325
void cpu_load_update_nohz_start(void)
5326 5327
{
	struct rq *this_rq = this_rq();
5328 5329 5330 5331 5332 5333

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5334
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5335 5336 5337 5338 5339 5340 5341
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5342
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5343 5344
	struct rq *this_rq = this_rq();
	unsigned long load;
5345
	struct rq_flags rf;
5346 5347 5348 5349

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5350
	load = weighted_cpuload(this_rq);
5351
	rq_lock(this_rq, &rf);
5352
	update_rq_clock(this_rq);
5353
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5354
	rq_unlock(this_rq, &rf);
5355
}
5356 5357 5358 5359 5360 5361 5362 5363
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5364
#ifdef CONFIG_NO_HZ_COMMON
5365 5366
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5367
#endif
5368 5369
	cpu_load_update(this_rq, load, 1);
}
5370 5371 5372 5373

/*
 * Called from scheduler_tick()
 */
5374
void cpu_load_update_active(struct rq *this_rq)
5375
{
5376
	unsigned long load = weighted_cpuload(this_rq);
5377 5378 5379 5380 5381

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5382 5383
}

5384
/*
5385
 * Return a low guess at the load of a migration-source CPU weighted
5386 5387 5388 5389 5390 5391 5392 5393
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5394
	unsigned long total = weighted_cpuload(rq);
5395 5396 5397 5398 5399 5400 5401 5402

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5403
 * Return a high guess at the load of a migration-target CPU weighted
5404 5405 5406 5407 5408
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5409
	unsigned long total = weighted_cpuload(rq);
5410 5411 5412 5413 5414 5415 5416

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5417
static unsigned long capacity_of(int cpu)
5418
{
5419
	return cpu_rq(cpu)->cpu_capacity;
5420 5421
}

5422 5423 5424 5425 5426
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5427 5428 5429
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5430
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5431
	unsigned long load_avg = weighted_cpuload(rq);
5432 5433

	if (nr_running)
5434
		return load_avg / nr_running;
5435 5436 5437 5438

	return 0;
}

P
Peter Zijlstra 已提交
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5456 5457
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5458
 *
M
Mike Galbraith 已提交
5459
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5472
 */
5473 5474
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5475 5476
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5477
	int factor = this_cpu_read(sd_llc_size);
5478

M
Mike Galbraith 已提交
5479 5480 5481 5482 5483
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5484 5485
}

5486
/*
5487 5488 5489
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5490
 *
5491 5492
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5493 5494 5495 5496
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5497
 */
5498
static int
5499
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5500
{
5501 5502 5503 5504 5505
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5506 5507 5508 5509 5510 5511
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5512
	 */
5513 5514
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5515

5516
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5517
		return this_cpu;
5518

5519
	return nr_cpumask_bits;
5520 5521
}

5522
static int
5523 5524
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5525 5526 5527 5528
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5529
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5530 5531 5532 5533

	if (sync) {
		unsigned long current_load = task_h_load(current);

5534
		if (current_load > this_eff_load)
5535
			return this_cpu;
5536

5537
		this_eff_load -= current_load;
5538 5539 5540 5541
	}

	task_load = task_h_load(p);

5542 5543 5544 5545
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5546

5547
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5548 5549 5550 5551
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5552

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5563 5564
}

5565
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5566
		       int this_cpu, int prev_cpu, int sync)
5567
{
5568
	int target = nr_cpumask_bits;
5569

5570
	if (sched_feat(WA_IDLE))
5571
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5572

5573 5574
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5575

5576
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5577 5578
	if (target == nr_cpumask_bits)
		return prev_cpu;
5579

5580 5581 5582
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5583 5584
}

5585
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5586 5587 5588

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5589
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5590 5591
}

5592 5593 5594
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5595 5596
 *
 * Assumes p is allowed on at least one CPU in sd.
5597 5598
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5599
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5600
		  int this_cpu, int sd_flag)
5601
{
5602
	struct sched_group *idlest = NULL, *group = sd->groups;
5603
	struct sched_group *most_spare_sg = NULL;
5604 5605 5606
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5607
	unsigned long most_spare = 0, this_spare = 0;
5608
	int load_idx = sd->forkexec_idx;
5609 5610 5611
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5612

5613 5614 5615
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5616
	do {
5617 5618
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5619 5620
		int local_group;
		int i;
5621

5622
		/* Skip over this group if it has no CPUs allowed */
5623
		if (!cpumask_intersects(sched_group_span(group),
5624
					&p->cpus_allowed))
5625 5626 5627
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5628
					       sched_group_span(group));
5629

5630 5631 5632 5633
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5634
		avg_load = 0;
5635
		runnable_load = 0;
5636
		max_spare_cap = 0;
5637

5638
		for_each_cpu(i, sched_group_span(group)) {
5639
			/* Bias balancing toward CPUs of our domain */
5640 5641 5642 5643 5644
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5645 5646 5647
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5648 5649 5650 5651 5652

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5653 5654
		}

5655
		/* Adjust by relative CPU capacity of the group */
5656 5657 5658 5659
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5660 5661

		if (local_group) {
5662 5663
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5664 5665
			this_spare = max_spare_cap;
		} else {
5666 5667 5668
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
5669
				 * so we can pick this new CPU:
5670 5671 5672 5673 5674 5675 5676 5677
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
5678
				 * blocked load into account through avg_load:
5679 5680
				 */
				min_avg_load = avg_load;
5681 5682 5683 5684 5685 5686 5687
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5688 5689 5690
		}
	} while (group = group->next, group != sd->groups);

5691 5692 5693 5694 5695 5696
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5697 5698 5699 5700
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5701
	 */
5702 5703 5704
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5705
	if (this_spare > task_util(p) / 2 &&
5706
	    imbalance_scale*this_spare > 100*most_spare)
5707
		return NULL;
5708 5709

	if (most_spare > task_util(p) / 2)
5710 5711
		return most_spare_sg;

5712
skip_spare:
5713 5714 5715
	if (!idlest)
		return NULL;

5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

5728
	if (min_runnable_load > (this_runnable_load + imbalance))
5729
		return NULL;
5730 5731 5732 5733 5734

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5735 5736 5737 5738
	return idlest;
}

/*
5739
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5740 5741
 */
static int
5742
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5743 5744
{
	unsigned long load, min_load = ULONG_MAX;
5745 5746 5747 5748
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5749 5750
	int i;

5751 5752
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5753
		return cpumask_first(sched_group_span(group));
5754

5755
	/* Traverse only the allowed CPUs */
5756
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5757
		if (available_idle_cpu(i)) {
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5779
		} else if (shallowest_idle_cpu == -1) {
5780
			load = weighted_cpuload(cpu_rq(i));
5781
			if (load < min_load) {
5782 5783 5784
				min_load = load;
				least_loaded_cpu = i;
			}
5785 5786 5787
		}
	}

5788
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5789
}
5790

5791 5792 5793
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5794
	int new_cpu = cpu;
5795

5796 5797 5798
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5799 5800 5801 5802 5803 5804 5805
	/*
	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
	 * last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5823
		if (new_cpu == cpu) {
5824
			/* Now try balancing at a lower domain level of 'cpu': */
5825 5826 5827 5828
			sd = sd->child;
			continue;
		}

5829
		/* Now try balancing at a lower domain level of 'new_cpu': */
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5873
void __update_idle_core(struct rq *rq)
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

5886
		if (!available_idle_cpu(cpu))
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5903
	int core, cpu;
5904

P
Peter Zijlstra 已提交
5905 5906 5907
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5908 5909 5910
	if (!test_idle_cores(target, false))
		return -1;

5911
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5912

5913
	for_each_cpu_wrap(core, cpus, target) {
5914 5915 5916 5917
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
5918
			if (!available_idle_cpu(cpu))
5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5941 5942 5943
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5944
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5945
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5946
			continue;
5947
		if (available_idle_cpu(cpu))
5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5972
 */
5973 5974
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5975
	struct sched_domain *this_sd;
5976
	u64 avg_cost, avg_idle;
5977 5978
	u64 time, cost;
	s64 delta;
5979
	int cpu, nr = INT_MAX;
5980

5981 5982 5983 5984
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

5985 5986 5987 5988
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5989 5990 5991 5992
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5993 5994
		return -1;

5995 5996 5997 5998 5999 6000 6001 6002
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6003 6004
	time = local_clock();

6005
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6006 6007
		if (!--nr)
			return -1;
6008
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6009
			continue;
6010
		if (available_idle_cpu(cpu))
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6024
 */
6025
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6026
{
6027
	struct sched_domain *sd;
6028
	int i, recent_used_cpu;
6029

6030
	if (available_idle_cpu(target))
6031
		return target;
6032 6033

	/*
6034
	 * If the previous CPU is cache affine and idle, don't be stupid:
6035
	 */
6036
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6037
		return prev;
6038

6039
	/* Check a recently used CPU as a potential idle candidate: */
6040 6041 6042 6043
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6044
	    available_idle_cpu(recent_used_cpu) &&
6045 6046 6047
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6048
		 * candidate for the next wake:
6049 6050 6051 6052 6053
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6054
	sd = rcu_dereference(per_cpu(sd_llc, target));
6055 6056
	if (!sd)
		return target;
6057

6058 6059 6060
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6061

6062 6063 6064 6065 6066 6067 6068
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6069

6070 6071
	return target;
}
6072

6073 6074 6075 6076 6077 6078 6079
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6090 6091 6092 6093 6094 6095 6096 6097
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6108 6109
 *
 * Return: the (estimated) utilization for the specified CPU
6110
 */
6111
static inline unsigned long cpu_util(int cpu)
6112
{
6113 6114 6115 6116 6117 6118 6119 6120
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6121

6122
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6123
}
6124

6125
/*
6126
 * cpu_util_wake: Compute CPU utilization with any contributions from
6127 6128
 * the waking task p removed.
 */
6129
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6130
{
6131 6132
	struct cfs_rq *cfs_rq;
	unsigned int util;
6133 6134

	/* Task has no contribution or is new */
6135
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6136 6137
		return cpu_util(cpu);

6138 6139 6140 6141 6142
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's blocked util from CPU's util */
	util -= min_t(unsigned int, util, task_util(p));
6143

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_wake = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_wake = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6179 6180
}

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6199 6200 6201
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6202 6203 6204
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6205
/*
6206 6207 6208
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6209
 *
6210 6211
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6212
 *
6213
 * Returns the target CPU number.
6214 6215 6216
 *
 * preempt must be disabled.
 */
6217
static int
6218
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6219
{
6220
	struct sched_domain *tmp, *sd = NULL;
6221
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6222
	int new_cpu = prev_cpu;
6223
	int want_affine = 0;
6224
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6225

P
Peter Zijlstra 已提交
6226 6227
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6228
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6229
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6230
	}
6231

6232
	rcu_read_lock();
6233
	for_each_domain(cpu, tmp) {
6234
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6235
			break;
6236

6237
		/*
6238
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6239
		 * cpu is a valid SD_WAKE_AFFINE target.
6240
		 */
6241 6242
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6243 6244 6245 6246
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6247
			break;
6248
		}
6249

6250
		if (tmp->flags & sd_flag)
6251
			sd = tmp;
M
Mike Galbraith 已提交
6252 6253
		else if (!want_affine)
			break;
6254 6255
	}

6256 6257
	if (unlikely(sd)) {
		/* Slow path */
6258
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6259 6260 6261 6262 6263 6264 6265
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6266
	}
6267
	rcu_read_unlock();
6268

6269
	return new_cpu;
6270
}
6271

6272 6273
static void detach_entity_cfs_rq(struct sched_entity *se);

6274
/*
6275
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6276
 * cfs_rq_of(p) references at time of call are still valid and identify the
6277
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6278
 */
6279
static void migrate_task_rq_fair(struct task_struct *p)
6280
{
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6326 6327 6328

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6329 6330

	/* We have migrated, no longer consider this task hot */
6331
	p->se.exec_start = 0;
6332
}
6333 6334 6335 6336 6337

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6338 6339
#endif /* CONFIG_SMP */

6340
static unsigned long wakeup_gran(struct sched_entity *se)
6341 6342 6343 6344
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6345 6346
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6347 6348 6349 6350 6351 6352 6353 6354 6355
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6356
	 */
6357
	return calc_delta_fair(gran, se);
6358 6359
}

6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6382
	gran = wakeup_gran(se);
6383 6384 6385 6386 6387 6388
	if (vdiff > gran)
		return 1;

	return 0;
}

6389 6390
static void set_last_buddy(struct sched_entity *se)
{
6391 6392 6393
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6394 6395 6396
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6397
		cfs_rq_of(se)->last = se;
6398
	}
6399 6400 6401 6402
}

static void set_next_buddy(struct sched_entity *se)
{
6403 6404 6405
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6406 6407 6408
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6409
		cfs_rq_of(se)->next = se;
6410
	}
6411 6412
}

6413 6414
static void set_skip_buddy(struct sched_entity *se)
{
6415 6416
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6417 6418
}

6419 6420 6421
/*
 * Preempt the current task with a newly woken task if needed:
 */
6422
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6423 6424
{
	struct task_struct *curr = rq->curr;
6425
	struct sched_entity *se = &curr->se, *pse = &p->se;
6426
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6427
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6428
	int next_buddy_marked = 0;
6429

I
Ingo Molnar 已提交
6430 6431 6432
	if (unlikely(se == pse))
		return;

6433
	/*
6434
	 * This is possible from callers such as attach_tasks(), in which we
6435 6436 6437 6438 6439 6440 6441
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6442
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6443
		set_next_buddy(pse);
6444 6445
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6446

6447 6448 6449
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6450 6451 6452 6453 6454 6455
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6456 6457 6458 6459
	 */
	if (test_tsk_need_resched(curr))
		return;

6460 6461 6462 6463 6464
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6465
	/*
6466 6467
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6468
	 */
6469
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6470
		return;
6471

6472
	find_matching_se(&se, &pse);
6473
	update_curr(cfs_rq_of(se));
6474
	BUG_ON(!pse);
6475 6476 6477 6478 6479 6480 6481
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6482
		goto preempt;
6483
	}
6484

6485
	return;
6486

6487
preempt:
6488
	resched_curr(rq);
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6503 6504
}

6505
static struct task_struct *
6506
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6507 6508 6509
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6510
	struct task_struct *p;
6511
	int new_tasks;
6512

6513
again:
6514
	if (!cfs_rq->nr_running)
6515
		goto idle;
6516

6517
#ifdef CONFIG_FAIR_GROUP_SCHED
6518
	if (prev->sched_class != &fair_sched_class)
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6538 6539 6540 6541 6542
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6543

6544 6545 6546
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6547
			 * Therefore the nr_running test will indeed
6548 6549
			 * be correct.
			 */
6550 6551 6552 6553 6554 6555
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6556
				goto simple;
6557
			}
6558
		}
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6592
	goto done;
6593 6594
simple:
#endif
6595

6596
	put_prev_task(rq, prev);
6597

6598
	do {
6599
		se = pick_next_entity(cfs_rq, NULL);
6600
		set_next_entity(cfs_rq, se);
6601 6602 6603
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6604
	p = task_of(se);
6605

6606
done: __maybe_unused;
6607 6608 6609 6610 6611 6612 6613 6614 6615
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6616 6617
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6618 6619

	return p;
6620 6621

idle:
6622 6623
	new_tasks = idle_balance(rq, rf);

6624 6625 6626 6627 6628
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6629
	if (new_tasks < 0)
6630 6631
		return RETRY_TASK;

6632
	if (new_tasks > 0)
6633 6634 6635
		goto again;

	return NULL;
6636 6637 6638 6639 6640
}

/*
 * Account for a descheduled task:
 */
6641
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6642 6643 6644 6645 6646 6647
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6648
		put_prev_entity(cfs_rq, se);
6649 6650 6651
	}
}

6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6677 6678 6679 6680 6681
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6682
		rq_clock_skip_update(rq);
6683 6684 6685 6686 6687
	}

	set_skip_buddy(se);
}

6688 6689 6690 6691
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6692 6693
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6704
#ifdef CONFIG_SMP
6705
/**************************************************
P
Peter Zijlstra 已提交
6706 6707 6708 6709 6710
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
6711
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
6712 6713 6714 6715
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
6716
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
6717 6718 6719 6720
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
6721
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6722
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6723 6724 6725 6726 6727 6728
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6729
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
6730 6731 6732 6733 6734 6735
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6736
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6750
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
6751
 * topology where each level pairs two lower groups (or better). This results
6752
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
6753
 * tree to only the first of the previous level and we decrease the frequency
6754
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
6755 6756 6757 6758 6759 6760 6761 6762
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
6763
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
6764 6765 6766 6767 6768 6769 6770
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
6771
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
6772 6773 6774
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6775
 *             log_2 n
P
Peter Zijlstra 已提交
6776 6777 6778 6779 6780 6781 6782
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
6783
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
6784 6785 6786 6787 6788 6789 6790 6791 6792
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
6793
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
6814
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
6815 6816 6817 6818 6819 6820
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6821
 */
6822

6823 6824
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6825 6826
enum fbq_type { regular, remote, all };

6827
#define LBF_ALL_PINNED	0x01
6828
#define LBF_NEED_BREAK	0x02
6829 6830
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6831
#define LBF_NOHZ_STATS	0x10
6832
#define LBF_NOHZ_AGAIN	0x20
6833 6834 6835 6836 6837

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6838
	int			src_cpu;
6839 6840 6841 6842

	int			dst_cpu;
	struct rq		*dst_rq;

6843 6844
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6845
	enum cpu_idle_type	idle;
6846
	long			imbalance;
6847 6848 6849
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6850
	unsigned int		flags;
6851 6852 6853 6854

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6855 6856

	enum fbq_type		fbq_type;
6857
	struct list_head	tasks;
6858 6859
};

6860 6861 6862
/*
 * Is this task likely cache-hot:
 */
6863
static int task_hot(struct task_struct *p, struct lb_env *env)
6864 6865 6866
{
	s64 delta;

6867 6868
	lockdep_assert_held(&env->src_rq->lock);

6869 6870 6871 6872 6873 6874 6875 6876 6877
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6878
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6879 6880 6881 6882 6883 6884 6885 6886 6887
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6888
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6889 6890 6891 6892

	return delta < (s64)sysctl_sched_migration_cost;
}

6893
#ifdef CONFIG_NUMA_BALANCING
6894
/*
6895 6896 6897
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6898
 */
6899
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6900
{
6901
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6902
	unsigned long src_faults, dst_faults;
6903 6904
	int src_nid, dst_nid;

6905
	if (!static_branch_likely(&sched_numa_balancing))
6906 6907
		return -1;

6908
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6909
		return -1;
6910 6911 6912 6913

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6914
	if (src_nid == dst_nid)
6915
		return -1;
6916

6917 6918 6919 6920 6921 6922 6923
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6924

6925 6926
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6927
		return 0;
6928

6929 6930 6931 6932
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

6933 6934 6935 6936 6937 6938
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6939 6940
	}

6941
	return dst_faults < src_faults;
6942 6943
}

6944
#else
6945
static inline int migrate_degrades_locality(struct task_struct *p,
6946 6947
					     struct lb_env *env)
{
6948
	return -1;
6949
}
6950 6951
#endif

6952 6953 6954 6955
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6956
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6957
{
6958
	int tsk_cache_hot;
6959 6960 6961

	lockdep_assert_held(&env->src_rq->lock);

6962 6963
	/*
	 * We do not migrate tasks that are:
6964
	 * 1) throttled_lb_pair, or
6965
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6966 6967
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6968
	 */
6969 6970 6971
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6972
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6973
		int cpu;
6974

6975
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6976

6977 6978
		env->flags |= LBF_SOME_PINNED;

6979
		/*
6980
		 * Remember if this task can be migrated to any other CPU in
6981 6982 6983
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
6984 6985
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
6986
		 */
6987
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
6988 6989
			return 0;

6990
		/* Prevent to re-select dst_cpu via env's CPUs: */
6991
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6992
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6993
				env->flags |= LBF_DST_PINNED;
6994 6995 6996
				env->new_dst_cpu = cpu;
				break;
			}
6997
		}
6998

6999 7000
		return 0;
	}
7001 7002

	/* Record that we found atleast one task that could run on dst_cpu */
7003
	env->flags &= ~LBF_ALL_PINNED;
7004

7005
	if (task_running(env->src_rq, p)) {
7006
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7007 7008 7009 7010 7011
		return 0;
	}

	/*
	 * Aggressive migration if:
7012 7013 7014
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7015
	 */
7016 7017 7018
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7019

7020
	if (tsk_cache_hot <= 0 ||
7021
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7022
		if (tsk_cache_hot == 1) {
7023 7024
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7025
		}
7026 7027 7028
		return 1;
	}

7029
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7030
	return 0;
7031 7032
}

7033
/*
7034 7035 7036 7037 7038 7039 7040
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7041
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7042 7043 7044
	set_task_cpu(p, env->dst_cpu);
}

7045
/*
7046
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7047 7048
 * part of active balancing operations within "domain".
 *
7049
 * Returns a task if successful and NULL otherwise.
7050
 */
7051
static struct task_struct *detach_one_task(struct lb_env *env)
7052
{
7053
	struct task_struct *p;
7054

7055 7056
	lockdep_assert_held(&env->src_rq->lock);

7057 7058
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7059 7060
		if (!can_migrate_task(p, env))
			continue;
7061

7062
		detach_task(p, env);
7063

7064
		/*
7065
		 * Right now, this is only the second place where
7066
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7067
		 * so we can safely collect stats here rather than
7068
		 * inside detach_tasks().
7069
		 */
7070
		schedstat_inc(env->sd->lb_gained[env->idle]);
7071
		return p;
7072
	}
7073
	return NULL;
7074 7075
}

7076 7077
static const unsigned int sched_nr_migrate_break = 32;

7078
/*
7079 7080
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7081
 *
7082
 * Returns number of detached tasks if successful and 0 otherwise.
7083
 */
7084
static int detach_tasks(struct lb_env *env)
7085
{
7086 7087
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7088
	unsigned long load;
7089 7090 7091
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7092

7093
	if (env->imbalance <= 0)
7094
		return 0;
7095

7096
	while (!list_empty(tasks)) {
7097 7098 7099 7100 7101 7102 7103
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7104
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7105

7106 7107
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7108
		if (env->loop > env->loop_max)
7109
			break;
7110 7111

		/* take a breather every nr_migrate tasks */
7112
		if (env->loop > env->loop_break) {
7113
			env->loop_break += sched_nr_migrate_break;
7114
			env->flags |= LBF_NEED_BREAK;
7115
			break;
7116
		}
7117

7118
		if (!can_migrate_task(p, env))
7119 7120 7121
			goto next;

		load = task_h_load(p);
7122

7123
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7124 7125
			goto next;

7126
		if ((load / 2) > env->imbalance)
7127
			goto next;
7128

7129 7130 7131 7132
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7133
		env->imbalance -= load;
7134 7135

#ifdef CONFIG_PREEMPT
7136 7137
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7138
		 * kernels will stop after the first task is detached to minimize
7139 7140
		 * the critical section.
		 */
7141
		if (env->idle == CPU_NEWLY_IDLE)
7142
			break;
7143 7144
#endif

7145 7146 7147 7148
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7149
		if (env->imbalance <= 0)
7150
			break;
7151 7152 7153

		continue;
next:
7154
		list_move(&p->se.group_node, tasks);
7155
	}
7156

7157
	/*
7158 7159 7160
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7161
	 */
7162
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7163

7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7175
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7176
	p->on_rq = TASK_ON_RQ_QUEUED;
7177 7178 7179 7180 7181 7182 7183 7184 7185
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7186 7187 7188
	struct rq_flags rf;

	rq_lock(rq, &rf);
7189
	update_rq_clock(rq);
7190
	attach_task(rq, p);
7191
	rq_unlock(rq, &rf);
7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7202
	struct rq_flags rf;
7203

7204
	rq_lock(env->dst_rq, &rf);
7205
	update_rq_clock(env->dst_rq);
7206 7207 7208 7209

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7210

7211 7212 7213
		attach_task(env->dst_rq, p);
	}

7214
	rq_unlock(env->dst_rq, &rf);
7215 7216
}

7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

7228
static inline bool others_have_blocked(struct rq *rq)
7229 7230 7231 7232
{
	if (READ_ONCE(rq->avg_rt.util_avg))
		return true;

7233 7234 7235
	if (READ_ONCE(rq->avg_dl.util_avg))
		return true;

7236 7237 7238 7239 7240
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	if (READ_ONCE(rq->avg_irq.util_avg))
		return true;
#endif

7241 7242 7243
	return false;
}

7244 7245
#ifdef CONFIG_FAIR_GROUP_SCHED

7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7257
	if (cfs_rq->avg.runnable_load_sum)
7258 7259 7260 7261 7262
		return false;

	return true;
}

7263
static void update_blocked_averages(int cpu)
7264 7265
{
	struct rq *rq = cpu_rq(cpu);
7266
	struct cfs_rq *cfs_rq, *pos;
7267
	struct rq_flags rf;
7268
	bool done = true;
7269

7270
	rq_lock_irqsave(rq, &rf);
7271
	update_rq_clock(rq);
7272

7273 7274 7275 7276
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7277
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7278 7279
		struct sched_entity *se;

7280 7281 7282
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7283

7284
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7285
			update_tg_load_avg(cfs_rq, 0);
7286

7287 7288 7289
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7290
			update_load_avg(cfs_rq_of(se), se, 0);
7291 7292 7293 7294 7295 7296 7297

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7298 7299 7300

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7301
			done = false;
7302
	}
7303
	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7304
	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7305
	update_irq_load_avg(rq, 0);
7306
	/* Don't need periodic decay once load/util_avg are null */
7307
	if (others_have_blocked(rq))
7308
		done = false;
7309 7310 7311

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7312 7313
	if (done)
		rq->has_blocked_load = 0;
7314
#endif
7315
	rq_unlock_irqrestore(rq, &rf);
7316 7317
}

7318
/*
7319
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7320 7321 7322
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7323
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7324
{
7325 7326
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7327
	unsigned long now = jiffies;
7328
	unsigned long load;
7329

7330
	if (cfs_rq->last_h_load_update == now)
7331 7332
		return;

7333 7334 7335 7336 7337 7338 7339
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7340

7341
	if (!se) {
7342
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7343 7344 7345 7346 7347
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7348 7349
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7350 7351 7352 7353
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7354 7355
}

7356
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7357
{
7358
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7359

7360
	update_cfs_rq_h_load(cfs_rq);
7361
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7362
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7363 7364
}
#else
7365
static inline void update_blocked_averages(int cpu)
7366
{
7367 7368
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7369
	struct rq_flags rf;
7370

7371
	rq_lock_irqsave(rq, &rf);
7372
	update_rq_clock(rq);
7373
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7374
	update_rt_rq_load_avg(rq_clock_task(rq), rq, 0);
7375
	update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
7376
	update_irq_load_avg(rq, 0);
7377 7378
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7379
	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7380
		rq->has_blocked_load = 0;
7381
#endif
7382
	rq_unlock_irqrestore(rq, &rf);
7383 7384
}

7385
static unsigned long task_h_load(struct task_struct *p)
7386
{
7387
	return p->se.avg.load_avg;
7388
}
P
Peter Zijlstra 已提交
7389
#endif
7390 7391

/********** Helpers for find_busiest_group ************************/
7392 7393 7394 7395 7396 7397 7398

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7399 7400 7401 7402 7403 7404 7405
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7406
	unsigned long load_per_task;
7407
	unsigned long group_capacity;
7408
	unsigned long group_util; /* Total utilization of the group */
7409 7410 7411
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7412
	enum group_type group_type;
7413
	int group_no_capacity;
7414 7415 7416 7417
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7418 7419
};

J
Joonsoo Kim 已提交
7420 7421 7422 7423 7424 7425 7426
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7427
	unsigned long total_running;
J
Joonsoo Kim 已提交
7428
	unsigned long total_load;	/* Total load of all groups in sd */
7429
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7430 7431 7432
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7433
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7434 7435
};

7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7447
		.total_running = 0UL,
7448
		.total_load = 0UL,
7449
		.total_capacity = 0UL,
7450 7451
		.busiest_stat = {
			.avg_load = 0UL,
7452 7453
			.sum_nr_running = 0,
			.group_type = group_other,
7454 7455 7456 7457
		},
	};
}

7458 7459 7460
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7461
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7462 7463
 *
 * Return: The load index.
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7486
static unsigned long scale_rt_capacity(int cpu)
7487 7488
{
	struct rq *rq = cpu_rq(cpu);
7489 7490 7491
	unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
	unsigned long used, free;
	unsigned long irq;
7492

7493
	irq = cpu_util_irq(rq);
7494

7495 7496
	if (unlikely(irq >= max))
		return 1;
7497

7498 7499
	used = READ_ONCE(rq->avg_rt.util_avg);
	used += READ_ONCE(rq->avg_dl.util_avg);
7500

7501 7502
	if (unlikely(used >= max))
		return 1;
7503

7504
	free = max - used;
7505 7506

	return scale_irq_capacity(free, irq, max);
7507 7508
}

7509
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7510
{
7511
	unsigned long capacity = scale_rt_capacity(cpu);
7512 7513
	struct sched_group *sdg = sd->groups;

7514
	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7515

7516 7517
	if (!capacity)
		capacity = 1;
7518

7519 7520
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7521
	sdg->sgc->min_capacity = capacity;
7522 7523
}

7524
void update_group_capacity(struct sched_domain *sd, int cpu)
7525 7526 7527
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7528
	unsigned long capacity, min_capacity;
7529 7530 7531 7532
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7533
	sdg->sgc->next_update = jiffies + interval;
7534 7535

	if (!child) {
7536
		update_cpu_capacity(sd, cpu);
7537 7538 7539
		return;
	}

7540
	capacity = 0;
7541
	min_capacity = ULONG_MAX;
7542

P
Peter Zijlstra 已提交
7543 7544 7545 7546 7547 7548
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7549
		for_each_cpu(cpu, sched_group_span(sdg)) {
7550
			struct sched_group_capacity *sgc;
7551
			struct rq *rq = cpu_rq(cpu);
7552

7553
			/*
7554
			 * build_sched_domains() -> init_sched_groups_capacity()
7555 7556 7557
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7558 7559
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7560
			 *
7561
			 * This avoids capacity from being 0 and
7562 7563 7564
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7565
				capacity += capacity_of(cpu);
7566 7567 7568
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7569
			}
7570

7571
			min_capacity = min(capacity, min_capacity);
7572
		}
P
Peter Zijlstra 已提交
7573 7574 7575 7576
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7577
		 */
P
Peter Zijlstra 已提交
7578 7579 7580

		group = child->groups;
		do {
7581 7582 7583 7584
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7585 7586 7587
			group = group->next;
		} while (group != child->groups);
	}
7588

7589
	sdg->sgc->capacity = capacity;
7590
	sdg->sgc->min_capacity = min_capacity;
7591 7592
}

7593
/*
7594 7595 7596
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7597 7598
 */
static inline int
7599
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7600
{
7601 7602
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7603 7604
}

7605 7606
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7607
 * groups is inadequate due to ->cpus_allowed constraints.
7608
 *
7609 7610
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7611 7612
 * Something like:
 *
7613 7614
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7615 7616 7617
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7618
 * cpu 3 and leave one of the CPUs in the second group unused.
7619 7620
 *
 * The current solution to this issue is detecting the skew in the first group
7621 7622
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7623 7624
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7625
 * update_sd_pick_busiest(). And calculate_imbalance() and
7626
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7627 7628 7629 7630 7631 7632 7633
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7634
static inline int sg_imbalanced(struct sched_group *group)
7635
{
7636
	return group->sgc->imbalance;
7637 7638
}

7639
/*
7640 7641 7642
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7643 7644
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7645 7646 7647 7648 7649
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7650
 */
7651 7652
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7653
{
7654 7655
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7656

7657
	if ((sgs->group_capacity * 100) >
7658
			(sgs->group_util * env->sd->imbalance_pct))
7659
		return true;
7660

7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7677

7678
	if ((sgs->group_capacity * 100) <
7679
			(sgs->group_util * env->sd->imbalance_pct))
7680
		return true;
7681

7682
	return false;
7683 7684
}

7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7696 7697 7698
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7699
{
7700
	if (sgs->group_no_capacity)
7701 7702 7703 7704 7705 7706 7707 7708
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7709
static bool update_nohz_stats(struct rq *rq, bool force)
7710 7711 7712 7713
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

7714 7715 7716
	if (!rq->has_blocked_load)
		return false;

7717
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7718
		return false;
7719

7720
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7721
		return true;
7722 7723

	update_blocked_averages(cpu);
7724 7725 7726 7727

	return rq->has_blocked_load;
#else
	return false;
7728 7729 7730
#endif
}

7731 7732
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7733
 * @env: The load balancing environment.
7734 7735 7736 7737
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7738
 * @overload: Indicate more than one runnable task for any CPU.
7739
 */
7740 7741
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7742 7743
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7744
{
7745
	unsigned long load;
7746
	int i, nr_running;
7747

7748 7749
	memset(sgs, 0, sizeof(*sgs));

7750
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7751 7752
		struct rq *rq = cpu_rq(i);

7753
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7754
			env->flags |= LBF_NOHZ_AGAIN;
7755

7756
		/* Bias balancing toward CPUs of our domain: */
7757
		if (local_group)
7758
			load = target_load(i, load_idx);
7759
		else
7760 7761 7762
			load = source_load(i, load_idx);

		sgs->group_load += load;
7763
		sgs->group_util += cpu_util(i);
7764
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7765

7766 7767
		nr_running = rq->nr_running;
		if (nr_running > 1)
7768 7769
			*overload = true;

7770 7771 7772 7773
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7774
		sgs->sum_weighted_load += weighted_cpuload(rq);
7775 7776 7777 7778
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7779
			sgs->idle_cpus++;
7780 7781
	}

7782 7783
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7784
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7785

7786
	if (sgs->sum_nr_running)
7787
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7788

7789
	sgs->group_weight = group->group_weight;
7790

7791
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7792
	sgs->group_type = group_classify(group, sgs);
7793 7794
}

7795 7796
/**
 * update_sd_pick_busiest - return 1 on busiest group
7797
 * @env: The load balancing environment.
7798 7799
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7800
 * @sgs: sched_group statistics
7801 7802 7803
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7804 7805 7806
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7807
 */
7808
static bool update_sd_pick_busiest(struct lb_env *env,
7809 7810
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7811
				   struct sg_lb_stats *sgs)
7812
{
7813
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7814

7815
	if (sgs->group_type > busiest->group_type)
7816 7817
		return true;

7818 7819 7820 7821 7822 7823
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7838 7839
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7840 7841
		return true;

7842
	/* No ASYM_PACKING if target CPU is already busy */
7843 7844
	if (env->idle == CPU_NOT_IDLE)
		return true;
7845
	/*
T
Tim Chen 已提交
7846 7847 7848
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7849
	 */
T
Tim Chen 已提交
7850 7851
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7852 7853 7854
		if (!sds->busiest)
			return true;

7855
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
7856 7857
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7858 7859 7860 7861 7862 7863
			return true;
	}

	return false;
}

7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7894
/**
7895
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7896
 * @env: The load balancing environment.
7897 7898
 * @sds: variable to hold the statistics for this sched_domain.
 */
7899
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7900
{
7901 7902
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7903
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7904
	struct sg_lb_stats tmp_sgs;
7905
	int load_idx, prefer_sibling = 0;
7906
	bool overload = false;
7907 7908 7909 7910

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7911
#ifdef CONFIG_NO_HZ_COMMON
7912
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
7913 7914 7915
		env->flags |= LBF_NOHZ_STATS;
#endif

7916
	load_idx = get_sd_load_idx(env->sd, env->idle);
7917 7918

	do {
J
Joonsoo Kim 已提交
7919
		struct sg_lb_stats *sgs = &tmp_sgs;
7920 7921
		int local_group;

7922
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7923 7924
		if (local_group) {
			sds->local = sg;
7925
			sgs = local;
7926 7927

			if (env->idle != CPU_NEWLY_IDLE ||
7928 7929
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7930
		}
7931

7932 7933
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7934

7935 7936 7937
		if (local_group)
			goto next_group;

7938 7939
		/*
		 * In case the child domain prefers tasks go to siblings
7940
		 * first, lower the sg capacity so that we'll try
7941 7942
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7943 7944 7945 7946
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7947
		 */
7948
		if (prefer_sibling && sds->local &&
7949 7950
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7951
			sgs->group_no_capacity = 1;
7952
			sgs->group_type = group_classify(sg, sgs);
7953
		}
7954

7955
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7956
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7957
			sds->busiest_stat = *sgs;
7958 7959
		}

7960 7961
next_group:
		/* Now, start updating sd_lb_stats */
7962
		sds->total_running += sgs->sum_nr_running;
7963
		sds->total_load += sgs->group_load;
7964
		sds->total_capacity += sgs->group_capacity;
7965

7966
		sg = sg->next;
7967
	} while (sg != env->sd->groups);
7968

7969 7970 7971 7972 7973 7974 7975 7976 7977
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

7978 7979
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7980 7981 7982 7983 7984 7985

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
7986 7987 7988 7989
}

/**
 * check_asym_packing - Check to see if the group is packed into the
7990
 *			sched domain.
7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8005
 * Return: 1 when packing is required and a task should be moved to
8006
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8007
 *
8008
 * @env: The load balancing environment.
8009 8010
 * @sds: Statistics of the sched_domain which is to be packed
 */
8011
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8012 8013 8014
{
	int busiest_cpu;

8015
	if (!(env->sd->flags & SD_ASYM_PACKING))
8016 8017
		return 0;

8018 8019 8020
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8021 8022 8023
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8024 8025
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8026 8027
		return 0;

8028
	env->imbalance = DIV_ROUND_CLOSEST(
8029
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8030
		SCHED_CAPACITY_SCALE);
8031

8032
	return 1;
8033 8034 8035 8036 8037 8038
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8039
 * @env: The load balancing environment.
8040 8041
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8042 8043
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8044
{
8045
	unsigned long tmp, capa_now = 0, capa_move = 0;
8046
	unsigned int imbn = 2;
8047
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8048
	struct sg_lb_stats *local, *busiest;
8049

J
Joonsoo Kim 已提交
8050 8051
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8052

J
Joonsoo Kim 已提交
8053 8054 8055 8056
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8057

J
Joonsoo Kim 已提交
8058
	scaled_busy_load_per_task =
8059
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8060
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8061

8062 8063
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8064
		env->imbalance = busiest->load_per_task;
8065 8066 8067 8068 8069
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8070
	 * however we may be able to increase total CPU capacity used by
8071 8072 8073
	 * moving them.
	 */

8074
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8075
			min(busiest->load_per_task, busiest->avg_load);
8076
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8077
			min(local->load_per_task, local->avg_load);
8078
	capa_now /= SCHED_CAPACITY_SCALE;
8079 8080

	/* Amount of load we'd subtract */
8081
	if (busiest->avg_load > scaled_busy_load_per_task) {
8082
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8083
			    min(busiest->load_per_task,
8084
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8085
	}
8086 8087

	/* Amount of load we'd add */
8088
	if (busiest->avg_load * busiest->group_capacity <
8089
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8090 8091
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8092
	} else {
8093
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8094
		      local->group_capacity;
J
Joonsoo Kim 已提交
8095
	}
8096
	capa_move += local->group_capacity *
8097
		    min(local->load_per_task, local->avg_load + tmp);
8098
	capa_move /= SCHED_CAPACITY_SCALE;
8099 8100

	/* Move if we gain throughput */
8101
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8102
		env->imbalance = busiest->load_per_task;
8103 8104 8105 8106 8107
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8108
 * @env: load balance environment
8109 8110
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8111
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8112
{
8113
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8114 8115 8116 8117
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8118

8119
	if (busiest->group_type == group_imbalanced) {
8120 8121
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8122
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8123
		 */
J
Joonsoo Kim 已提交
8124 8125
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8126 8127
	}

8128
	/*
8129 8130 8131 8132
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8133
	 */
8134 8135
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8136 8137
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8138 8139
	}

8140
	/*
8141
	 * If there aren't any idle CPUs, avoid creating some.
8142 8143 8144
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8145
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8146
		if (load_above_capacity > busiest->group_capacity) {
8147
			load_above_capacity -= busiest->group_capacity;
8148
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8149 8150
			load_above_capacity /= busiest->group_capacity;
		} else
8151
			load_above_capacity = ~0UL;
8152 8153 8154
	}

	/*
8155
	 * We're trying to get all the CPUs to the average_load, so we don't
8156
	 * want to push ourselves above the average load, nor do we wish to
8157
	 * reduce the max loaded CPU below the average load. At the same time,
8158 8159
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8160
	 */
8161
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8162 8163

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8164
	env->imbalance = min(
8165 8166
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8167
	) / SCHED_CAPACITY_SCALE;
8168 8169 8170

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8171
	 * there is no guarantee that any tasks will be moved so we'll have
8172 8173 8174
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8175
	if (env->imbalance < busiest->load_per_task)
8176
		return fix_small_imbalance(env, sds);
8177
}
8178

8179 8180 8181 8182
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8183
 * if there is an imbalance.
8184 8185 8186 8187
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8188
 * @env: The load balancing environment.
8189
 *
8190
 * Return:	- The busiest group if imbalance exists.
8191
 */
J
Joonsoo Kim 已提交
8192
static struct sched_group *find_busiest_group(struct lb_env *env)
8193
{
J
Joonsoo Kim 已提交
8194
	struct sg_lb_stats *local, *busiest;
8195 8196
	struct sd_lb_stats sds;

8197
	init_sd_lb_stats(&sds);
8198 8199 8200 8201 8202

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8203
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8204 8205
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8206

8207
	/* ASYM feature bypasses nice load balance check */
8208
	if (check_asym_packing(env, &sds))
8209 8210
		return sds.busiest;

8211
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8212
	if (!sds.busiest || busiest->sum_nr_running == 0)
8213 8214
		goto out_balanced;

8215
	/* XXX broken for overlapping NUMA groups */
8216 8217
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8218

P
Peter Zijlstra 已提交
8219 8220
	/*
	 * If the busiest group is imbalanced the below checks don't
8221
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8222 8223
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8224
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8225 8226
		goto force_balance;

8227 8228 8229 8230 8231
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8232
	    busiest->group_no_capacity)
8233 8234
		goto force_balance;

8235
	/*
8236
	 * If the local group is busier than the selected busiest group
8237 8238
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8239
	if (local->avg_load >= busiest->avg_load)
8240 8241
		goto out_balanced;

8242 8243 8244 8245
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8246
	if (local->avg_load >= sds.avg_load)
8247 8248
		goto out_balanced;

8249
	if (env->idle == CPU_IDLE) {
8250
		/*
8251
		 * This CPU is idle. If the busiest group is not overloaded
8252
		 * and there is no imbalance between this and busiest group
8253
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8254 8255
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8256
		 */
8257 8258
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8259
			goto out_balanced;
8260 8261 8262 8263 8264
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8265 8266
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8267
			goto out_balanced;
8268
	}
8269

8270
force_balance:
8271
	/* Looks like there is an imbalance. Compute it */
8272
	calculate_imbalance(env, &sds);
8273 8274 8275
	return sds.busiest;

out_balanced:
8276
	env->imbalance = 0;
8277 8278 8279 8280
	return NULL;
}

/*
8281
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8282
 */
8283
static struct rq *find_busiest_queue(struct lb_env *env,
8284
				     struct sched_group *group)
8285 8286
{
	struct rq *busiest = NULL, *rq;
8287
	unsigned long busiest_load = 0, busiest_capacity = 1;
8288 8289
	int i;

8290
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8291
		unsigned long capacity, wl;
8292 8293 8294 8295
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8296

8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8319
		capacity = capacity_of(i);
8320

8321
		wl = weighted_cpuload(rq);
8322

8323 8324
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8325
		 * which is not scaled with the CPU capacity.
8326
		 */
8327 8328 8329

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8330 8331
			continue;

8332
		/*
8333 8334 8335
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8336
		 * potentially running at a lower capacity.
8337
		 *
8338
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8339
		 * multiplication to rid ourselves of the division works out
8340 8341
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8342
		 */
8343
		if (wl * busiest_capacity > busiest_load * capacity) {
8344
			busiest_load = wl;
8345
			busiest_capacity = capacity;
8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8359
static int need_active_balance(struct lb_env *env)
8360
{
8361 8362 8363
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8364 8365 8366

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8367 8368
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8369
		 */
T
Tim Chen 已提交
8370 8371
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8372
			return 1;
8373 8374
	}

8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8388 8389 8390
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8391 8392
static int active_load_balance_cpu_stop(void *data);

8393 8394 8395 8396 8397
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8398 8399 8400 8401 8402 8403 8404
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8405
	/*
8406
	 * In the newly idle case, we will allow all the CPUs
8407 8408 8409 8410 8411
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8412
	/* Try to find first idle CPU */
8413
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8414
		if (!idle_cpu(cpu))
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8425
	 * First idle CPU or the first CPU(busiest) in this sched group
8426 8427
	 * is eligible for doing load balancing at this and above domains.
	 */
8428
	return balance_cpu == env->dst_cpu;
8429 8430
}

8431 8432 8433 8434 8435 8436
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8437
			int *continue_balancing)
8438
{
8439
	int ld_moved, cur_ld_moved, active_balance = 0;
8440
	struct sched_domain *sd_parent = sd->parent;
8441 8442
	struct sched_group *group;
	struct rq *busiest;
8443
	struct rq_flags rf;
8444
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8445

8446 8447
	struct lb_env env = {
		.sd		= sd,
8448 8449
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8450
		.dst_grpmask    = sched_group_span(sd->groups),
8451
		.idle		= idle,
8452
		.loop_break	= sched_nr_migrate_break,
8453
		.cpus		= cpus,
8454
		.fbq_type	= all,
8455
		.tasks		= LIST_HEAD_INIT(env.tasks),
8456 8457
	};

8458
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8459

8460
	schedstat_inc(sd->lb_count[idle]);
8461 8462

redo:
8463 8464
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8465
		goto out_balanced;
8466
	}
8467

8468
	group = find_busiest_group(&env);
8469
	if (!group) {
8470
		schedstat_inc(sd->lb_nobusyg[idle]);
8471 8472 8473
		goto out_balanced;
	}

8474
	busiest = find_busiest_queue(&env, group);
8475
	if (!busiest) {
8476
		schedstat_inc(sd->lb_nobusyq[idle]);
8477 8478 8479
		goto out_balanced;
	}

8480
	BUG_ON(busiest == env.dst_rq);
8481

8482
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8483

8484 8485 8486
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8487 8488 8489 8490 8491 8492 8493 8494
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8495
		env.flags |= LBF_ALL_PINNED;
8496
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8497

8498
more_balance:
8499
		rq_lock_irqsave(busiest, &rf);
8500
		update_rq_clock(busiest);
8501 8502 8503 8504 8505

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8506
		cur_ld_moved = detach_tasks(&env);
8507 8508

		/*
8509 8510 8511 8512 8513
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8514
		 */
8515

8516
		rq_unlock(busiest, &rf);
8517 8518 8519 8520 8521 8522

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8523
		local_irq_restore(rf.flags);
8524

8525 8526 8527 8528 8529
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8530 8531 8532 8533
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8534
		 * iterate on same src_cpu is dependent on number of CPUs in our
8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8549
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8550

8551
			/* Prevent to re-select dst_cpu via env's CPUs */
8552 8553
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8554
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8555
			env.dst_cpu	 = env.new_dst_cpu;
8556
			env.flags	&= ~LBF_DST_PINNED;
8557 8558
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8559

8560 8561 8562 8563 8564 8565
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8566

8567 8568 8569 8570
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8571
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8572

8573
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8574 8575 8576
				*group_imbalance = 1;
		}

8577
		/* All tasks on this runqueue were pinned by CPU affinity */
8578
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8579
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8580 8581 8582 8583 8584 8585 8586 8587 8588
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8589 8590
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8591
				goto redo;
8592
			}
8593
			goto out_all_pinned;
8594 8595 8596 8597
		}
	}

	if (!ld_moved) {
8598
		schedstat_inc(sd->lb_failed[idle]);
8599 8600 8601 8602 8603 8604 8605 8606
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8607

8608
		if (need_active_balance(&env)) {
8609 8610
			unsigned long flags;

8611 8612
			raw_spin_lock_irqsave(&busiest->lock, flags);

8613 8614 8615 8616
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8617
			 */
8618
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8619 8620
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8621
				env.flags |= LBF_ALL_PINNED;
8622 8623 8624
				goto out_one_pinned;
			}

8625 8626 8627 8628 8629
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8630 8631 8632 8633 8634 8635
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8636

8637
			if (active_balance) {
8638 8639 8640
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8641
			}
8642

8643
			/* We've kicked active balancing, force task migration. */
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8657
		 * detach_tasks).
8658 8659 8660 8661 8662 8663 8664 8665
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8683
	schedstat_inc(sd->lb_balanced[idle]);
8684 8685 8686 8687 8688

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8689
	if (((env.flags & LBF_ALL_PINNED) &&
8690
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8691 8692 8693
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8694
	ld_moved = 0;
8695 8696 8697 8698
out:
	return ld_moved;
}

8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8715
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8716 8717 8718
{
	unsigned long interval, next;

8719 8720
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8721 8722 8723 8724 8725 8726
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8727
/*
8728
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8729 8730 8731
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8732
 */
8733
static int active_load_balance_cpu_stop(void *data)
8734
{
8735 8736
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8737
	int target_cpu = busiest_rq->push_cpu;
8738
	struct rq *target_rq = cpu_rq(target_cpu);
8739
	struct sched_domain *sd;
8740
	struct task_struct *p = NULL;
8741
	struct rq_flags rf;
8742

8743
	rq_lock_irq(busiest_rq, &rf);
8744 8745 8746 8747 8748 8749 8750
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8751

8752
	/* Make sure the requested CPU hasn't gone down in the meantime: */
8753 8754 8755
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8756 8757 8758

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8759
		goto out_unlock;
8760 8761 8762 8763

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
8764
	 * Bjorn Helgaas on a 128-CPU setup.
8765 8766 8767 8768
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8769
	rcu_read_lock();
8770 8771 8772 8773 8774 8775 8776
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8777 8778
		struct lb_env env = {
			.sd		= sd,
8779 8780 8781 8782
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8783
			.idle		= CPU_IDLE,
8784 8785 8786 8787 8788 8789 8790
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8791 8792
		};

8793
		schedstat_inc(sd->alb_count);
8794
		update_rq_clock(busiest_rq);
8795

8796
		p = detach_one_task(&env);
8797
		if (p) {
8798
			schedstat_inc(sd->alb_pushed);
8799 8800 8801
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8802
			schedstat_inc(sd->alb_failed);
8803
		}
8804
	}
8805
	rcu_read_unlock();
8806 8807
out_unlock:
	busiest_rq->active_balance = 0;
8808
	rq_unlock(busiest_rq, &rf);
8809 8810 8811 8812 8813 8814

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8815
	return 0;
8816 8817
}

8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

8936 8937 8938 8939 8940
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8941
#ifdef CONFIG_NO_HZ_COMMON
8942 8943 8944 8945 8946 8947
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8948

8949
static inline int find_new_ilb(void)
8950
{
8951
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8952

8953 8954 8955 8956
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8957 8958
}

8959 8960 8961 8962 8963
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8964
static void kick_ilb(unsigned int flags)
8965 8966 8967 8968 8969
{
	int ilb_cpu;

	nohz.next_balance++;

8970
	ilb_cpu = find_new_ilb();
8971

8972 8973
	if (ilb_cpu >= nr_cpu_ids)
		return;
8974

8975
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
8976
	if (flags & NOHZ_KICK_MASK)
8977
		return;
8978

8979 8980
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
8981
	 * This way we generate a sched IPI on the target CPU which
8982 8983 8984 8985
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9005
	unsigned int flags = 0;
9006 9007 9008 9009 9010 9011 9012 9013

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9014
	nohz_balance_exit_idle(rq);
9015 9016 9017 9018 9019 9020 9021 9022

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9023 9024
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9025 9026
		flags = NOHZ_STATS_KICK;

9027
	if (time_before(now, nohz.next_balance))
9028
		goto out;
9029 9030

	if (rq->nr_running >= 2) {
9031
		flags = NOHZ_KICK_MASK;
9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9044
			flags = NOHZ_KICK_MASK;
9045 9046 9047 9048 9049 9050 9051 9052 9053
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9054
			flags = NOHZ_KICK_MASK;
9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9067
				flags = NOHZ_KICK_MASK;
9068 9069 9070 9071 9072 9073 9074
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9075 9076
	if (flags)
		kick_ilb(flags);
9077 9078
}

9079
static void set_cpu_sd_state_busy(int cpu)
9080
{
9081
	struct sched_domain *sd;
9082

9083 9084
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9085

9086 9087 9088 9089 9090 9091 9092
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9093 9094
}

9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9110 9111 9112 9113
{
	struct sched_domain *sd;

	rcu_read_lock();
9114
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9115 9116 9117 9118 9119

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9120
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9121
unlock:
9122 9123 9124
	rcu_read_unlock();
}

9125
/*
9126
 * This routine will record that the CPU is going idle with tick stopped.
9127
 * This info will be used in performing idle load balancing in the future.
9128
 */
9129
void nohz_balance_enter_idle(int cpu)
9130
{
9131 9132 9133 9134
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9135
	/* If this CPU is going down, then nothing needs to be done: */
9136 9137 9138
	if (!cpu_active(cpu))
		return;

9139
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9140
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9141 9142
		return;

9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9156
	if (rq->nohz_tick_stopped)
9157
		goto out;
9158

9159
	/* If we're a completely isolated CPU, we don't play: */
9160
	if (on_null_domain(rq))
9161 9162
		return;

9163 9164
	rq->nohz_tick_stopped = 1;

9165 9166
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9167

9168 9169 9170 9171 9172 9173 9174
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9175
	set_cpu_sd_state_idle(cpu);
9176 9177 9178 9179 9180 9181 9182

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9183 9184 9185
}

/*
9186 9187 9188 9189 9190
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9191
 */
9192 9193
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9194
{
9195
	/* Earliest time when we have to do rebalance again */
9196 9197
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9198
	bool has_blocked_load = false;
9199
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9200 9201
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9202
	int ret = false;
P
Peter Zijlstra 已提交
9203
	struct rq *rq;
9204

P
Peter Zijlstra 已提交
9205
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9206

9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9223
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9224
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9225 9226 9227
			continue;

		/*
9228 9229
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9230 9231
		 * balancing owner will pick it up.
		 */
9232 9233 9234 9235
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9236

V
Vincent Guittot 已提交
9237 9238
		rq = cpu_rq(balance_cpu);

9239
		has_blocked_load |= update_nohz_stats(rq, true);
9240

9241 9242 9243 9244 9245
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9246 9247
			struct rq_flags rf;

9248
			rq_lock_irqsave(rq, &rf);
9249
			update_rq_clock(rq);
9250
			cpu_load_update_idle(rq);
9251
			rq_unlock_irqrestore(rq, &rf);
9252

P
Peter Zijlstra 已提交
9253 9254
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9255
		}
9256

9257 9258 9259 9260
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9261
	}
9262

9263 9264 9265 9266 9267 9268
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9269 9270 9271
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9272 9273 9274
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9275 9276 9277
	/* The full idle balance loop has been done */
	ret = true;

9278 9279 9280 9281
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9282

9283 9284 9285 9286 9287 9288 9289
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9290

9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9320
	return true;
9321
}
9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9355 9356 9357
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9358
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9359 9360 9361
{
	return false;
}
9362 9363

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9364
#endif /* CONFIG_NO_HZ_COMMON */
9365

P
Peter Zijlstra 已提交
9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9400

P
Peter Zijlstra 已提交
9401 9402 9403 9404 9405 9406
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9407 9408
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9458
out:
P
Peter Zijlstra 已提交
9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9483 9484 9485 9486
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9487
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9488
{
9489
	struct rq *this_rq = this_rq();
9490
	enum cpu_idle_type idle = this_rq->idle_balance ?
9491 9492 9493
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9494 9495
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9496
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9497
	 * give the idle CPUs a chance to load balance. Else we may
9498 9499
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9500
	 */
P
Peter Zijlstra 已提交
9501 9502 9503 9504 9505
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9506
	rebalance_domains(this_rq, idle);
9507 9508 9509 9510 9511
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9512
void trigger_load_balance(struct rq *rq)
9513 9514
{
	/* Don't need to rebalance while attached to NULL domain */
9515 9516 9517 9518
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9519
		raise_softirq(SCHED_SOFTIRQ);
9520 9521

	nohz_balancer_kick(rq);
9522 9523
}

9524 9525 9526
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9527 9528

	update_runtime_enabled(rq);
9529 9530 9531 9532 9533
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9534 9535 9536

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9537 9538
}

9539
#endif /* CONFIG_SMP */
9540

9541
/*
9542 9543 9544 9545 9546 9547
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9548
 */
P
Peter Zijlstra 已提交
9549
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9550 9551 9552 9553 9554 9555
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9556
		entity_tick(cfs_rq, se, queued);
9557
	}
9558

9559
	if (static_branch_unlikely(&sched_numa_balancing))
9560
		task_tick_numa(rq, curr);
9561 9562 9563
}

/*
P
Peter Zijlstra 已提交
9564 9565 9566
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9567
 */
P
Peter Zijlstra 已提交
9568
static void task_fork_fair(struct task_struct *p)
9569
{
9570 9571
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9572
	struct rq *rq = this_rq();
9573
	struct rq_flags rf;
9574

9575
	rq_lock(rq, &rf);
9576 9577
	update_rq_clock(rq);

9578 9579
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9580 9581
	if (curr) {
		update_curr(cfs_rq);
9582
		se->vruntime = curr->vruntime;
9583
	}
9584
	place_entity(cfs_rq, se, 1);
9585

P
Peter Zijlstra 已提交
9586
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9587
		/*
9588 9589 9590
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9591
		swap(curr->vruntime, se->vruntime);
9592
		resched_curr(rq);
9593
	}
9594

9595
	se->vruntime -= cfs_rq->min_vruntime;
9596
	rq_unlock(rq, &rf);
9597 9598
}

9599 9600 9601 9602
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9603 9604
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9605
{
9606
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9607 9608
		return;

9609 9610 9611 9612 9613
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9614
	if (rq->curr == p) {
9615
		if (p->prio > oldprio)
9616
			resched_curr(rq);
9617
	} else
9618
		check_preempt_curr(rq, p, 0);
9619 9620
}

9621
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9622 9623 9624 9625
{
	struct sched_entity *se = &p->se;

	/*
9626 9627 9628 9629 9630 9631 9632 9633 9634 9635
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9636
	 *
9637 9638 9639 9640
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9641
	 */
9642 9643 9644 9645 9646 9647
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9666
		update_load_avg(cfs_rq, se, UPDATE_TG);
9667 9668 9669 9670 9671 9672
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9673
static void detach_entity_cfs_rq(struct sched_entity *se)
9674 9675 9676
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9677
	/* Catch up with the cfs_rq and remove our load when we leave */
9678
	update_load_avg(cfs_rq, se, 0);
9679
	detach_entity_load_avg(cfs_rq, se);
9680
	update_tg_load_avg(cfs_rq, false);
9681
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9682 9683
}

9684
static void attach_entity_cfs_rq(struct sched_entity *se)
9685
{
9686
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9687 9688

#ifdef CONFIG_FAIR_GROUP_SCHED
9689 9690 9691 9692 9693 9694
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9695

9696
	/* Synchronize entity with its cfs_rq */
9697
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9698
	attach_entity_load_avg(cfs_rq, se, 0);
9699
	update_tg_load_avg(cfs_rq, false);
9700
	propagate_entity_cfs_rq(se);
9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9726 9727 9728 9729

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9730

9731 9732 9733 9734 9735 9736 9737 9738
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9739

9740
	if (task_on_rq_queued(p)) {
9741
		/*
9742 9743 9744
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9745
		 */
9746 9747 9748 9749
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9750
	}
9751 9752
}

9753 9754 9755 9756 9757 9758 9759 9760 9761
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9762 9763 9764 9765 9766 9767 9768
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9769 9770
}

9771 9772
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9773
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9774 9775 9776 9777
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9778
#ifdef CONFIG_SMP
9779
	raw_spin_lock_init(&cfs_rq->removed.lock);
9780
#endif
9781 9782
}

P
Peter Zijlstra 已提交
9783
#ifdef CONFIG_FAIR_GROUP_SCHED
9784 9785 9786 9787 9788 9789 9790 9791
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9792
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9793
{
9794
	detach_task_cfs_rq(p);
9795
	set_task_rq(p, task_cpu(p));
9796 9797 9798 9799 9800

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9801
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9802
}
9803

9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9817 9818 9819 9820 9821 9822 9823 9824 9825
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9826
		if (tg->se)
9827 9828 9829 9830 9831 9832 9833 9834 9835 9836
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9837
	struct cfs_rq *cfs_rq;
9838 9839
	int i;

K
Kees Cook 已提交
9840
	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9841 9842
	if (!tg->cfs_rq)
		goto err;
K
Kees Cook 已提交
9843
	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9864
		init_entity_runnable_average(se);
9865 9866 9867 9868 9869 9870 9871 9872 9873 9874
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9886
		update_rq_clock(rq);
9887
		attach_entity_cfs_rq(se);
9888
		sync_throttle(tg, i);
9889 9890 9891 9892
		raw_spin_unlock_irq(&rq->lock);
	}
}

9893
void unregister_fair_sched_group(struct task_group *tg)
9894 9895
{
	unsigned long flags;
9896 9897
	struct rq *rq;
	int cpu;
9898

9899 9900 9901
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9902

9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9935
	if (!parent) {
9936
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9937 9938
		se->depth = 0;
	} else {
9939
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9940 9941
		se->depth = parent->depth + 1;
	}
9942 9943

	se->my_q = cfs_rq;
9944 9945
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9970 9971
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9972 9973

		/* Propagate contribution to hierarchy */
9974
		rq_lock_irqsave(rq, &rf);
9975
		update_rq_clock(rq);
9976
		for_each_sched_entity(se) {
9977
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9978
			update_cfs_group(se);
9979
		}
9980
		rq_unlock_irqrestore(rq, &rf);
9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9996 9997
void online_fair_sched_group(struct task_group *tg) { }

9998
void unregister_fair_sched_group(struct task_group *tg) { }
9999 10000 10001

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10002

10003
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10004 10005 10006 10007 10008 10009 10010 10011 10012
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10013
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10014 10015 10016 10017

	return rr_interval;
}

10018 10019 10020
/*
 * All the scheduling class methods:
 */
10021
const struct sched_class fair_sched_class = {
10022
	.next			= &idle_sched_class,
10023 10024 10025
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10026
	.yield_to_task		= yield_to_task_fair,
10027

I
Ingo Molnar 已提交
10028
	.check_preempt_curr	= check_preempt_wakeup,
10029 10030 10031 10032

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10033
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10034
	.select_task_rq		= select_task_rq_fair,
10035
	.migrate_task_rq	= migrate_task_rq_fair,
10036

10037 10038
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10039

10040
	.task_dead		= task_dead_fair,
10041
	.set_cpus_allowed	= set_cpus_allowed_common,
10042
#endif
10043

10044
	.set_curr_task          = set_curr_task_fair,
10045
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10046
	.task_fork		= task_fork_fair,
10047 10048

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10049
	.switched_from		= switched_from_fair,
10050
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10051

10052 10053
	.get_rr_interval	= get_rr_interval_fair,

10054 10055
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10056
#ifdef CONFIG_FAIR_GROUP_SCHED
10057
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10058
#endif
10059 10060 10061
};

#ifdef CONFIG_SCHED_DEBUG
10062
void print_cfs_stats(struct seq_file *m, int cpu)
10063
{
10064
	struct cfs_rq *cfs_rq, *pos;
10065

10066
	rcu_read_lock();
10067
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10068
		print_cfs_rq(m, cpu, cfs_rq);
10069
	rcu_read_unlock();
10070
}
10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10092 10093 10094 10095 10096 10097

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10098
#ifdef CONFIG_NO_HZ_COMMON
10099
	nohz.next_balance = jiffies;
10100
	nohz.next_blocked = jiffies;
10101 10102 10103 10104 10105
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}