fair.c 236.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122
/*
 * The margin used when comparing utilization with CPU capacity:
 * util * 1024 < capacity * margin
 */
unsigned int capacity_margin = 1280; /* ~20% */

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

141 142 143 144 145 146 147 148 149
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
150
static unsigned int get_update_sysctl_factor(void)
151
{
152
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

188
#define WMULT_CONST	(~0U)
189 190
#define WMULT_SHIFT	32

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
207 208

/*
209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
213
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214 215 216 217 218
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
219
 */
220
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
221
{
222 223
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
224

225
	__update_inv_weight(lw);
226

227 228 229 230 231
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
232 233
	}

234 235
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
236

237 238 239 240
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
241

242
	return mul_u64_u32_shr(delta_exec, fact, shift);
243 244 245 246
}


const struct sched_class fair_sched_class;
247

248 249 250 251
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

252
#ifdef CONFIG_FAIR_GROUP_SCHED
253

254
/* cpu runqueue to which this cfs_rq is attached */
255 256
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
257
	return cfs_rq->rq;
258 259
}

260 261
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
262

263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
265
	SCHED_WARN_ON(!entity_is_task(se));
266 267 268
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

290 291 292
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
293 294 295 296 297 298 299 300 301 302 303 304
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
305
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
306
		}
307 308 309 310 311 312 313 314 315 316 317 318 319

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
320 321 322 323 324
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
325
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
326 327 328
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
329
		return se->cfs_rq;
P
Peter Zijlstra 已提交
330

P
Peter Zijlstra 已提交
331
	return NULL;
P
Peter Zijlstra 已提交
332 333 334 335 336 337 338
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

339 340 341 342 343 344 345 346 347 348 349 350 351
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
352 353
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

371 372 373 374 375 376
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
377

378 379 380
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
381 382 383 384
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
385 386
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
387

P
Peter Zijlstra 已提交
388
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389
{
P
Peter Zijlstra 已提交
390
	return &task_rq(p)->cfs;
391 392
}

P
Peter Zijlstra 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

407 408 409 410 411 412 413 414
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

423 424 425 426 427
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
428 429
#endif	/* CONFIG_FAIR_GROUP_SCHED */

430
static __always_inline
431
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432 433 434 435 436

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

437
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438
{
439
	s64 delta = (s64)(vruntime - max_vruntime);
440
	if (delta > 0)
441
		max_vruntime = vruntime;
442

443
	return max_vruntime;
444 445
}

446
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

455 456 457 458 459 460
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

461 462 463 464
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

465 466 467
	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

468 469 470 471 472
	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

473 474 475 476
		if (!cfs_rq->curr)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
477 478
	}

479
	/* ensure we never gain time by being placed backwards. */
480
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 482 483 484
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
485 486
}

487 488 489
/*
 * Enqueue an entity into the rb-tree:
 */
490
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
507
		if (entity_before(se, entry)) {
508 509 510 511 512 513 514 515 516 517 518
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
519
	if (leftmost)
I
Ingo Molnar 已提交
520
		cfs_rq->rb_leftmost = &se->run_node;
521 522 523 524 525

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

526
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527
{
P
Peter Zijlstra 已提交
528 529 530 531 532 533
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
534

535 536 537
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

538
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539
{
540 541 542 543 544 545
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
546 547
}

548 549 550 551 552 553 554 555 556 557 558
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
559
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560
{
561
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562

563 564
	if (!last)
		return NULL;
565 566

	return rb_entry(last, struct sched_entity, run_node);
567 568
}

569 570 571 572
/**************************************************************
 * Scheduling class statistics methods:
 */

573
int sched_proc_update_handler(struct ctl_table *table, int write,
574
		void __user *buffer, size_t *lenp,
575 576
		loff_t *ppos)
{
577
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578
	unsigned int factor = get_update_sysctl_factor();
579 580 581 582 583 584 585

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

586 587 588 589 590 591 592
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

593 594 595
	return 0;
}
#endif
596

597
/*
598
 * delta /= w
599
 */
600
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601
{
602
	if (unlikely(se->load.weight != NICE_0_LOAD))
603
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604 605 606 607

	return delta;
}

608 609 610
/*
 * The idea is to set a period in which each task runs once.
 *
611
 * When there are too many tasks (sched_nr_latency) we have to stretch
612 613 614 615
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
616 617
static u64 __sched_period(unsigned long nr_running)
{
618 619 620 621
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
622 623
}

624 625 626 627
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
628
 * s = p*P[w/rw]
629
 */
P
Peter Zijlstra 已提交
630
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
631
{
M
Mike Galbraith 已提交
632
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
633

M
Mike Galbraith 已提交
634
	for_each_sched_entity(se) {
L
Lin Ming 已提交
635
		struct load_weight *load;
636
		struct load_weight lw;
L
Lin Ming 已提交
637 638 639

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
640

M
Mike Galbraith 已提交
641
		if (unlikely(!se->on_rq)) {
642
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
643 644 645 646

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
647
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
648 649
	}
	return slice;
650 651
}

652
/*
A
Andrei Epure 已提交
653
 * We calculate the vruntime slice of a to-be-inserted task.
654
 *
655
 * vs = s/w
656
 */
657
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
658
{
659
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
660 661
}

662
#ifdef CONFIG_SMP
663
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
664 665
static unsigned long task_h_load(struct task_struct *p);

666 667
/*
 * We choose a half-life close to 1 scheduling period.
668 669
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
670 671 672
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
673
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
674

675 676
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
677
{
678
	struct sched_avg *sa = &se->avg;
679

680 681 682 683 684 685 686
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
687
	sa->load_avg = scale_load_down(se->load.weight);
688
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
689 690 691 692 693
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
694
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
695
}
696

697 698
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
699
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
700 701
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);

702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
731
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
732
	u64 now = cfs_rq_clock_task(cfs_rq);
733 734 735 736 737 738 739 740 741 742 743 744 745

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
			se->avg.last_update_time = now;
			return;
		}
	}

765
	update_cfs_rq_load_avg(now, cfs_rq, false);
766
	attach_entity_load_avg(cfs_rq, se);
767
	update_tg_load_avg(cfs_rq, false);
768 769
}

770
#else /* !CONFIG_SMP */
771
void init_entity_runnable_average(struct sched_entity *se)
772 773
{
}
774 775 776
void post_init_entity_util_avg(struct sched_entity *se)
{
}
777 778 779
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
780
#endif /* CONFIG_SMP */
781

782
/*
783
 * Update the current task's runtime statistics.
784
 */
785
static void update_curr(struct cfs_rq *cfs_rq)
786
{
787
	struct sched_entity *curr = cfs_rq->curr;
788
	u64 now = rq_clock_task(rq_of(cfs_rq));
789
	u64 delta_exec;
790 791 792 793

	if (unlikely(!curr))
		return;

794 795
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
796
		return;
797

I
Ingo Molnar 已提交
798
	curr->exec_start = now;
799

800 801 802 803
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
804
	schedstat_add(cfs_rq->exec_clock, delta_exec);
805 806 807 808

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

809 810 811
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

812
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
813
		cpuacct_charge(curtask, delta_exec);
814
		account_group_exec_runtime(curtask, delta_exec);
815
	}
816 817

	account_cfs_rq_runtime(cfs_rq, delta_exec);
818 819
}

820 821 822 823 824
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

825
static inline void
826
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
827
{
828 829 830 831 832 833 834
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
835 836

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
837 838
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
839

840
	schedstat_set(se->statistics.wait_start, wait_start);
841 842
}

843
static inline void
844 845 846
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
847 848
	u64 delta;

849 850 851 852
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
853 854 855 856 857 858 859 860 861

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
862
			schedstat_set(se->statistics.wait_start, delta);
863 864 865 866 867
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

868 869 870 871 872
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
873 874
}

875
static inline void
876 877 878
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
879 880 881 882 883 884 885
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
886 887 888 889

	if (entity_is_task(se))
		tsk = task_of(se);

890 891
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
892 893 894 895

		if ((s64)delta < 0)
			delta = 0;

896 897
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
898

899 900
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
901 902 903 904 905 906

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
907 908
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
909 910 911 912

		if ((s64)delta < 0)
			delta = 0;

913 914
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
915

916 917
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
918 919 920

		if (tsk) {
			if (tsk->in_iowait) {
921 922
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
}

943 944 945
/*
 * Task is being enqueued - update stats:
 */
946
static inline void
947
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
948
{
949 950 951
	if (!schedstat_enabled())
		return;

952 953 954 955
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
956
	if (se != cfs_rq->curr)
957
		update_stats_wait_start(cfs_rq, se);
958 959 960

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
961 962 963
}

static inline void
964
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
965
{
966 967 968 969

	if (!schedstat_enabled())
		return;

970 971 972 973
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
974
	if (se != cfs_rq->curr)
975
		update_stats_wait_end(cfs_rq, se);
976

977 978
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
979

980 981 982 983 984 985
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
986
	}
987 988
}

989 990 991 992
/*
 * We are picking a new current task - update its stats:
 */
static inline void
993
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
994 995 996 997
{
	/*
	 * We are starting a new run period:
	 */
998
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
999 1000 1001 1002 1003 1004
}

/**************************************************
 * Scheduling class queueing methods:
 */

1005 1006
#ifdef CONFIG_NUMA_BALANCING
/*
1007 1008 1009
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1010
 */
1011 1012
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1013 1014 1015

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1016

1017 1018 1019
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1044
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1045 1046 1047
	unsigned int scan, floor;
	unsigned int windows = 1;

1048 1049
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1078 1079 1080 1081 1082
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1083
	pid_t gid;
1084
	int active_nodes;
1085 1086

	struct rcu_head rcu;
1087
	unsigned long total_faults;
1088
	unsigned long max_faults_cpu;
1089 1090 1091 1092 1093
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1094
	unsigned long *faults_cpu;
1095
	unsigned long faults[0];
1096 1097
};

1098 1099 1100 1101 1102 1103 1104 1105 1106
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1107 1108 1109 1110 1111
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1112 1113 1114 1115 1116 1117 1118
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1119
{
1120
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1121 1122 1123 1124
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1125
	if (!p->numa_faults)
1126 1127
		return 0;

1128 1129
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1130 1131
}

1132 1133 1134 1135 1136
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1137 1138
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1139 1140
}

1141 1142
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1143 1144
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1224 1225 1226 1227 1228 1229
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1230 1231
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1232
{
1233
	unsigned long faults, total_faults;
1234

1235
	if (!p->numa_faults)
1236 1237 1238 1239 1240 1241 1242
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1243
	faults = task_faults(p, nid);
1244 1245
	faults += score_nearby_nodes(p, nid, dist, true);

1246
	return 1000 * faults / total_faults;
1247 1248
}

1249 1250
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1251
{
1252 1253 1254 1255 1256 1257 1258 1259
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1260 1261
		return 0;

1262
	faults = group_faults(p, nid);
1263 1264
	faults += score_nearby_nodes(p, nid, dist, false);

1265
	return 1000 * faults / total_faults;
1266 1267
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1308 1309
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1310
	 */
1311 1312
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1313 1314 1315
		return true;

	/*
1316 1317 1318 1319 1320 1321
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1322
	 */
1323 1324
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1325 1326
}

1327
static unsigned long weighted_cpuload(const int cpu);
1328 1329
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1330
static unsigned long capacity_of(int cpu);
1331 1332
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1333
/* Cached statistics for all CPUs within a node */
1334
struct numa_stats {
1335
	unsigned long nr_running;
1336
	unsigned long load;
1337 1338

	/* Total compute capacity of CPUs on a node */
1339
	unsigned long compute_capacity;
1340 1341

	/* Approximate capacity in terms of runnable tasks on a node */
1342
	unsigned long task_capacity;
1343
	int has_free_capacity;
1344
};
1345

1346 1347 1348 1349 1350
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1351 1352
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1353 1354 1355 1356 1357 1358 1359

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1360
		ns->compute_capacity += capacity_of(cpu);
1361 1362

		cpus++;
1363 1364
	}

1365 1366 1367 1368 1369
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1370 1371
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1372 1373 1374 1375
	 */
	if (!cpus)
		return;

1376 1377 1378 1379 1380 1381
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1382
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1383 1384
}

1385 1386
struct task_numa_env {
	struct task_struct *p;
1387

1388 1389
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1390

1391
	struct numa_stats src_stats, dst_stats;
1392

1393
	int imbalance_pct;
1394
	int dist;
1395 1396 1397

	struct task_struct *best_task;
	long best_imp;
1398 1399 1400
	int best_cpu;
};

1401 1402 1403 1404 1405
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1406 1407
	if (p)
		get_task_struct(p);
1408 1409 1410 1411 1412 1413

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1414
static bool load_too_imbalanced(long src_load, long dst_load,
1415 1416
				struct task_numa_env *env)
{
1417 1418
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1430 1431

	/* We care about the slope of the imbalance, not the direction. */
1432 1433
	if (dst_load < src_load)
		swap(dst_load, src_load);
1434 1435

	/* Is the difference below the threshold? */
1436 1437
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1438 1439 1440 1441 1442
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1443
	 * Compare it with the old imbalance.
1444
	 */
1445
	orig_src_load = env->src_stats.load;
1446
	orig_dst_load = env->dst_stats.load;
1447

1448 1449
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1450

1451 1452 1453 1454 1455
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1456 1457
}

1458 1459 1460 1461 1462 1463
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1464 1465
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1466 1467 1468 1469
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1470
	long src_load, dst_load;
1471
	long load;
1472
	long imp = env->p->numa_group ? groupimp : taskimp;
1473
	long moveimp = imp;
1474
	int dist = env->dist;
1475 1476

	rcu_read_lock();
1477 1478
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1479 1480
		cur = NULL;

1481 1482 1483 1484 1485 1486 1487
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1500 1501
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1502
		 * in any group then look only at task weights.
1503
		 */
1504
		if (cur->numa_group == env->p->numa_group) {
1505 1506
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1507 1508 1509 1510 1511 1512
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1513
		} else {
1514 1515 1516 1517 1518 1519
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1520 1521
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1522
			else
1523 1524
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1525
		}
1526 1527
	}

1528
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1529 1530 1531 1532
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1533
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1534
		    !env->dst_stats.has_free_capacity)
1535 1536 1537 1538 1539 1540
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1541 1542
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1543 1544 1545 1546 1547 1548
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1549 1550 1551
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1552

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1570
	if (cur) {
1571 1572 1573
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1574 1575
	}

1576
	if (load_too_imbalanced(src_load, dst_load, env))
1577 1578
		goto unlock;

1579 1580 1581 1582
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1583 1584 1585 1586 1587 1588
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1589 1590
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1591 1592
		local_irq_enable();
	}
1593

1594 1595 1596 1597 1598 1599
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1600 1601
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1602 1603 1604 1605 1606 1607 1608 1609 1610
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1611
		task_numa_compare(env, taskimp, groupimp);
1612 1613 1614
	}
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1632 1633 1634
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1635 1636 1637 1638 1639
		return true;

	return false;
}

1640 1641 1642 1643
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1644

1645
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1646
		.src_nid = task_node(p),
1647 1648 1649 1650 1651

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1652
		.best_cpu = -1,
1653 1654
	};
	struct sched_domain *sd;
1655
	unsigned long taskweight, groupweight;
1656
	int nid, ret, dist;
1657
	long taskimp, groupimp;
1658

1659
	/*
1660 1661 1662 1663 1664 1665
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1666 1667
	 */
	rcu_read_lock();
1668
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1669 1670
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1671 1672
	rcu_read_unlock();

1673 1674 1675 1676 1677 1678 1679
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1680
		p->numa_preferred_nid = task_node(p);
1681 1682 1683
		return -EINVAL;
	}

1684
	env.dst_nid = p->numa_preferred_nid;
1685 1686 1687 1688 1689 1690
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1691
	update_numa_stats(&env.dst_stats, env.dst_nid);
1692

1693
	/* Try to find a spot on the preferred nid. */
1694 1695
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1696

1697 1698 1699 1700 1701 1702 1703
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1704
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1705 1706 1707
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1708

1709
			dist = node_distance(env.src_nid, env.dst_nid);
1710 1711 1712 1713 1714
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1715

1716
			/* Only consider nodes where both task and groups benefit */
1717 1718
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1719
			if (taskimp < 0 && groupimp < 0)
1720 1721
				continue;

1722
			env.dist = dist;
1723 1724
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1725 1726
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1727 1728 1729
		}
	}

1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1738
	if (p->numa_group) {
1739 1740
		struct numa_group *ng = p->numa_group;

1741 1742 1743 1744 1745
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1746
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1747 1748 1749 1750 1751 1752
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1753

1754 1755 1756 1757 1758 1759
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1760
	if (env.best_task == NULL) {
1761 1762 1763
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1764 1765 1766 1767
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1768 1769
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1770 1771
	put_task_struct(env.best_task);
	return ret;
1772 1773
}

1774 1775 1776
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1777 1778
	unsigned long interval = HZ;

1779
	/* This task has no NUMA fault statistics yet */
1780
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1781 1782
		return;

1783
	/* Periodically retry migrating the task to the preferred node */
1784 1785
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1786 1787

	/* Success if task is already running on preferred CPU */
1788
	if (task_node(p) == p->numa_preferred_nid)
1789 1790 1791
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1792
	task_numa_migrate(p);
1793 1794
}

1795
/*
1796
 * Find out how many nodes on the workload is actively running on. Do this by
1797 1798 1799 1800
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1801
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1802 1803
{
	unsigned long faults, max_faults = 0;
1804
	int nid, active_nodes = 0;
1805 1806 1807 1808 1809 1810 1811 1812 1813

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1814 1815
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1816
	}
1817 1818 1819

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1820 1821
}

1822 1823 1824
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1825 1826 1827
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1828 1829
 */
#define NUMA_PERIOD_SLOTS 10
1830
#define NUMA_PERIOD_THRESHOLD 7
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1851 1852 1853
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1854
	 */
1855
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1889
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1890 1891 1892 1893 1894 1895 1896 1897
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1916 1917
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1918 1919 1920 1921 1922 1923 1924 1925
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1973
		nodemask_t max_group = NODE_MASK_NONE;
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2007 2008
		if (!max_faults)
			break;
2009 2010 2011 2012 2013
		nodes = max_group;
	}
	return nid;
}

2014 2015
static void task_numa_placement(struct task_struct *p)
{
2016 2017
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2018
	unsigned long fault_types[2] = { 0, 0 };
2019 2020
	unsigned long total_faults;
	u64 runtime, period;
2021
	spinlock_t *group_lock = NULL;
2022

2023 2024 2025 2026 2027
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2028
	seq = READ_ONCE(p->mm->numa_scan_seq);
2029 2030 2031
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2032
	p->numa_scan_period_max = task_scan_max(p);
2033

2034 2035 2036 2037
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2038 2039 2040
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2041
		spin_lock_irq(group_lock);
2042 2043
	}

2044 2045
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2046 2047
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2048
		unsigned long faults = 0, group_faults = 0;
2049
		int priv;
2050

2051
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2052
			long diff, f_diff, f_weight;
2053

2054 2055 2056 2057
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2058

2059
			/* Decay existing window, copy faults since last scan */
2060 2061 2062
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2063

2064 2065 2066 2067 2068 2069 2070 2071
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2072
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2073
				   (total_faults + 1);
2074 2075
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2076

2077 2078 2079
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2080
			p->total_numa_faults += diff;
2081
			if (p->numa_group) {
2082 2083 2084 2085 2086 2087 2088 2089 2090
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2091
				p->numa_group->total_faults += diff;
2092
				group_faults += p->numa_group->faults[mem_idx];
2093
			}
2094 2095
		}

2096 2097 2098 2099
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2100 2101 2102 2103 2104 2105 2106

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2107 2108
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2109
	if (p->numa_group) {
2110
		numa_group_count_active_nodes(p->numa_group);
2111
		spin_unlock_irq(group_lock);
2112
		max_nid = preferred_group_nid(p, max_group_nid);
2113 2114
	}

2115 2116 2117 2118 2119 2120 2121
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2122
	}
2123 2124
}

2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2136 2137
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2138 2139 2140 2141 2142 2143 2144 2145 2146
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2147
				    4*nr_node_ids*sizeof(unsigned long);
2148 2149 2150 2151 2152 2153

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2154 2155
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2156
		spin_lock_init(&grp->lock);
2157
		grp->gid = p->pid;
2158
		/* Second half of the array tracks nids where faults happen */
2159 2160
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2161

2162
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2163
			grp->faults[i] = p->numa_faults[i];
2164

2165
		grp->total_faults = p->total_numa_faults;
2166

2167 2168 2169 2170 2171
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2172
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2173 2174

	if (!cpupid_match_pid(tsk, cpupid))
2175
		goto no_join;
2176 2177 2178

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2179
		goto no_join;
2180 2181 2182

	my_grp = p->numa_group;
	if (grp == my_grp)
2183
		goto no_join;
2184 2185 2186 2187 2188 2189

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2190
		goto no_join;
2191 2192 2193 2194 2195

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2196
		goto no_join;
2197

2198 2199 2200 2201 2202 2203 2204
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2205

2206 2207 2208
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2209
	if (join && !get_numa_group(grp))
2210
		goto no_join;
2211 2212 2213 2214 2215 2216

	rcu_read_unlock();

	if (!join)
		return;

2217 2218
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2219

2220
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2221 2222
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2223
	}
2224 2225
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2226 2227 2228 2229 2230

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2231
	spin_unlock_irq(&grp->lock);
2232 2233 2234 2235

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2236 2237 2238 2239 2240
	return;

no_join:
	rcu_read_unlock();
	return;
2241 2242 2243 2244 2245
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2246
	void *numa_faults = p->numa_faults;
2247 2248
	unsigned long flags;
	int i;
2249 2250

	if (grp) {
2251
		spin_lock_irqsave(&grp->lock, flags);
2252
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2253
			grp->faults[i] -= p->numa_faults[i];
2254
		grp->total_faults -= p->total_numa_faults;
2255

2256
		grp->nr_tasks--;
2257
		spin_unlock_irqrestore(&grp->lock, flags);
2258
		RCU_INIT_POINTER(p->numa_group, NULL);
2259 2260 2261
		put_numa_group(grp);
	}

2262
	p->numa_faults = NULL;
2263
	kfree(numa_faults);
2264 2265
}

2266 2267 2268
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2269
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2270 2271
{
	struct task_struct *p = current;
2272
	bool migrated = flags & TNF_MIGRATED;
2273
	int cpu_node = task_node(current);
2274
	int local = !!(flags & TNF_FAULT_LOCAL);
2275
	struct numa_group *ng;
2276
	int priv;
2277

2278
	if (!static_branch_likely(&sched_numa_balancing))
2279 2280
		return;

2281 2282 2283 2284
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2285
	/* Allocate buffer to track faults on a per-node basis */
2286 2287
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2288
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2289

2290 2291
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2292
			return;
2293

2294
		p->total_numa_faults = 0;
2295
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2296
	}
2297

2298 2299 2300 2301 2302 2303 2304 2305
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2306
		if (!priv && !(flags & TNF_NO_GROUP))
2307
			task_numa_group(p, last_cpupid, flags, &priv);
2308 2309
	}

2310 2311 2312 2313 2314 2315
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2316 2317 2318 2319
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2320 2321
		local = 1;

2322
	task_numa_placement(p);
2323

2324 2325 2326 2327 2328
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2329 2330
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2331 2332
	if (migrated)
		p->numa_pages_migrated += pages;
2333 2334
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2335

2336 2337
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2338
	p->numa_faults_locality[local] += pages;
2339 2340
}

2341 2342
static void reset_ptenuma_scan(struct task_struct *p)
{
2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2351
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2352 2353 2354
	p->mm->numa_scan_offset = 0;
}

2355 2356 2357 2358 2359 2360 2361 2362 2363
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2364
	u64 runtime = p->se.sum_exec_runtime;
2365
	struct vm_area_struct *vma;
2366
	unsigned long start, end;
2367
	unsigned long nr_pte_updates = 0;
2368
	long pages, virtpages;
2369

2370
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2384
	if (!mm->numa_next_scan) {
2385 2386
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2387 2388
	}

2389 2390 2391 2392 2393 2394 2395
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2396 2397 2398 2399
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2400

2401
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2402 2403 2404
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2405 2406 2407 2408 2409 2410
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2411 2412 2413
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2414
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2415 2416
	if (!pages)
		return;
2417

2418

2419
	down_read(&mm->mmap_sem);
2420
	vma = find_vma(mm, start);
2421 2422
	if (!vma) {
		reset_ptenuma_scan(p);
2423
		start = 0;
2424 2425
		vma = mm->mmap;
	}
2426
	for (; vma; vma = vma->vm_next) {
2427
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2428
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2429
			continue;
2430
		}
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2442 2443 2444 2445 2446 2447
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2448

2449 2450 2451 2452
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2453
			nr_pte_updates = change_prot_numa(vma, start, end);
2454 2455

			/*
2456 2457 2458 2459 2460 2461
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2462 2463 2464
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2465
			virtpages -= (end - start) >> PAGE_SHIFT;
2466

2467
			start = end;
2468
			if (pages <= 0 || virtpages <= 0)
2469
				goto out;
2470 2471

			cond_resched();
2472
		} while (end != vma->vm_end);
2473
	}
2474

2475
out:
2476
	/*
P
Peter Zijlstra 已提交
2477 2478 2479 2480
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2481 2482
	 */
	if (vma)
2483
		mm->numa_scan_offset = start;
2484 2485 2486
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2523
	if (now > curr->node_stamp + period) {
2524
		if (!curr->node_stamp)
2525
			curr->numa_scan_period = task_scan_min(curr);
2526
		curr->node_stamp += period;
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2538 2539 2540 2541 2542 2543 2544 2545

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2546 2547
#endif /* CONFIG_NUMA_BALANCING */

2548 2549 2550 2551
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2552
	if (!parent_entity(se))
2553
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2554
#ifdef CONFIG_SMP
2555 2556 2557 2558 2559 2560
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2561
#endif
2562 2563 2564 2565 2566 2567 2568
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2569
	if (!parent_entity(se))
2570
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2571
#ifdef CONFIG_SMP
2572 2573
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2574
		list_del_init(&se->group_node);
2575
	}
2576
#endif
2577 2578 2579
	cfs_rq->nr_running--;
}

2580 2581
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2582
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2583
{
2584
	long tg_weight, load, shares;
2585 2586

	/*
2587 2588 2589
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2590
	 */
2591
	load = scale_load_down(cfs_rq->load.weight);
2592

2593
	tg_weight = atomic_long_read(&tg->load_avg);
2594

2595 2596 2597
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2598 2599

	shares = (tg->shares * load);
2600 2601
	if (tg_weight)
		shares /= tg_weight;
2602 2603 2604 2605 2606 2607 2608 2609 2610

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2611
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2612 2613 2614 2615
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2616

P
Peter Zijlstra 已提交
2617 2618 2619
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2620 2621 2622 2623
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2624
		account_entity_dequeue(cfs_rq, se);
2625
	}
P
Peter Zijlstra 已提交
2626 2627 2628 2629 2630 2631 2632

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2633 2634
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2635
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2636 2637 2638
{
	struct task_group *tg;
	struct sched_entity *se;
2639
	long shares;
P
Peter Zijlstra 已提交
2640 2641 2642

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2643
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2644
		return;
2645 2646 2647 2648
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2649
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2650 2651 2652 2653

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2654
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2655 2656 2657 2658
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2659
#ifdef CONFIG_SMP
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2690 2691 2692 2693 2694 2695
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2708 2709
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2710 2711 2712 2713 2714 2715
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2716 2717
	}

2718 2719
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2738 2739 2740
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2741 2742
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2743 2744
}

2745
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2746

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2775 2776
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2777
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2778
{
2779
	u64 delta, scaled_delta, periods;
2780
	u32 contrib;
2781
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2782
	unsigned long scale_freq, scale_cpu;
2783

2784
	delta = now - sa->last_update_time;
2785 2786 2787 2788 2789
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2790
		sa->last_update_time = now;
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2801
	sa->last_update_time = now;
2802

2803 2804 2805
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2806
	/* delta_w is the amount already accumulated against our next period */
2807
	delta_w = sa->period_contrib;
2808 2809 2810
	if (delta + delta_w >= 1024) {
		decayed = 1;

2811 2812 2813
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2814 2815 2816 2817 2818 2819
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2820
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2821
		if (weight) {
2822 2823 2824 2825 2826
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2827
		}
2828
		if (running)
2829
			sa->util_sum += scaled_delta_w * scale_cpu;
2830 2831 2832 2833 2834 2835 2836

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2837
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2838 2839 2840 2841
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2842
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2843 2844

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2845
		contrib = __compute_runnable_contrib(periods);
2846
		contrib = cap_scale(contrib, scale_freq);
2847
		if (weight) {
2848
			sa->load_sum += weight * contrib;
2849 2850 2851
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2852
		if (running)
2853
			sa->util_sum += contrib * scale_cpu;
2854 2855 2856
	}

	/* Remainder of delta accrued against u_0` */
2857
	scaled_delta = cap_scale(delta, scale_freq);
2858
	if (weight) {
2859
		sa->load_sum += weight * scaled_delta;
2860
		if (cfs_rq)
2861
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2862
	}
2863
	if (running)
2864
		sa->util_sum += scaled_delta * scale_cpu;
2865

2866
	sa->period_contrib += delta;
2867

2868 2869
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2870 2871 2872 2873
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2874
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2875
	}
2876

2877
	return decayed;
2878 2879
}

2880
#ifdef CONFIG_FAIR_GROUP_SCHED
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2896
 */
2897
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2898
{
2899
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2900

2901 2902 2903 2904 2905 2906
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2907 2908 2909
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2910
	}
2911
}
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2959
#else /* CONFIG_FAIR_GROUP_SCHED */
2960
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2961
#endif /* CONFIG_FAIR_GROUP_SCHED */
2962

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3021 3022 3023 3024
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3025
 */
3026 3027
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3028
{
3029
	struct sched_avg *sa = &cfs_rq->avg;
3030
	int decayed, removed_load = 0, removed_util = 0;
3031

3032
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3033
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3034 3035
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3036
		removed_load = 1;
3037
	}
3038

3039 3040
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3041 3042
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3043
		removed_util = 1;
3044
	}
3045

3046
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3047
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3048

3049 3050 3051 3052
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3053

3054 3055
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3056

3057
	return decayed || removed_load;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3076
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
3077
		update_tg_load_avg(cfs_rq, 0);
3078 3079
}

3080 3081 3082 3083 3084 3085 3086 3087
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3088 3089
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3090 3091 3092
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

3093 3094 3095
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
3096 3097
	 *
	 * Or we're fresh through post_init_entity_util_avg().
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

3109
skip_aging:
3110 3111 3112 3113 3114
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3115 3116

	cfs_rq_util_change(cfs_rq);
3117 3118
}

3119 3120 3121 3122 3123 3124 3125 3126
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3127 3128 3129 3130 3131 3132
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3133 3134 3135 3136
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3137 3138

	cfs_rq_util_change(cfs_rq);
3139 3140
}

3141 3142 3143
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3144
{
3145 3146
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
3147
	int migrated, decayed;
3148

3149 3150
	migrated = !sa->last_update_time;
	if (!migrated) {
3151
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3152 3153
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3154
	}
3155

3156
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3157

3158 3159 3160
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3161 3162
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3163

3164 3165
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3166 3167
}

3168 3169 3170 3171 3172 3173 3174 3175 3176
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3177
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3178 3179
}

3180
#ifndef CONFIG_64BIT
3181 3182
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3183
	u64 last_update_time_copy;
3184
	u64 last_update_time;
3185

3186 3187 3188 3189 3190
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3191 3192 3193

	return last_update_time;
}
3194
#else
3195 3196 3197 3198
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3199 3200
#endif

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
3211 3212 3213 3214 3215 3216 3217
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3218 3219 3220 3221
	 */

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3222
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3223 3224
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3225
}
3226

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3237 3238
static int idle_balance(struct rq *this_rq);

3239 3240
#else /* CONFIG_SMP */

3241 3242 3243 3244 3245 3246
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3247 3248 3249 3250 3251 3252 3253 3254
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3255 3256
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3257 3258
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3259
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3260

3261 3262 3263 3264 3265
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3266 3267 3268 3269 3270
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3271
#endif /* CONFIG_SMP */
3272

P
Peter Zijlstra 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3282
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3283 3284 3285
#endif
}

3286 3287 3288
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3289
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3290

3291 3292 3293 3294 3295 3296
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3297
	if (initial && sched_feat(START_DEBIT))
3298
		vruntime += sched_vslice(cfs_rq, se);
3299

3300
	/* sleeps up to a single latency don't count. */
3301
	if (!initial) {
3302
		unsigned long thresh = sysctl_sched_latency;
3303

3304 3305 3306 3307 3308 3309
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3310

3311
		vruntime -= thresh;
3312 3313
	}

3314
	/* ensure we never gain time by being placed backwards. */
3315
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3316 3317
}

3318 3319
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3332
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3333 3334 3335 3336 3337 3338 3339
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3359
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3371
static void
3372
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3373
{
3374 3375 3376
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3377
	/*
3378 3379
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3380
	 */
3381
	if (renorm && curr)
3382 3383
		se->vruntime += cfs_rq->min_vruntime;

3384 3385
	update_curr(cfs_rq);

3386
	/*
3387 3388 3389 3390
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3391
	 */
3392 3393 3394
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3395
	enqueue_entity_load_avg(cfs_rq, se);
3396 3397
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3398

3399
	if (flags & ENQUEUE_WAKEUP)
3400
		place_entity(cfs_rq, se, 0);
3401

3402
	check_schedstat_required();
3403 3404
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3405
	if (!curr)
3406
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3407
	se->on_rq = 1;
3408

3409
	if (cfs_rq->nr_running == 1) {
3410
		list_add_leaf_cfs_rq(cfs_rq);
3411 3412
		check_enqueue_throttle(cfs_rq);
	}
3413 3414
}

3415
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3416
{
3417 3418
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3419
		if (cfs_rq->last != se)
3420
			break;
3421 3422

		cfs_rq->last = NULL;
3423 3424
	}
}
P
Peter Zijlstra 已提交
3425

3426 3427 3428 3429
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3430
		if (cfs_rq->next != se)
3431
			break;
3432 3433

		cfs_rq->next = NULL;
3434
	}
P
Peter Zijlstra 已提交
3435 3436
}

3437 3438 3439 3440
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3441
		if (cfs_rq->skip != se)
3442
			break;
3443 3444

		cfs_rq->skip = NULL;
3445 3446 3447
	}
}

P
Peter Zijlstra 已提交
3448 3449
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3450 3451 3452 3453 3454
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3455 3456 3457

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3458 3459
}

3460
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3461

3462
static void
3463
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3464
{
3465 3466 3467 3468
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3469
	dequeue_entity_load_avg(cfs_rq, se);
3470

3471
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3472

P
Peter Zijlstra 已提交
3473
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3474

3475
	if (se != cfs_rq->curr)
3476
		__dequeue_entity(cfs_rq, se);
3477
	se->on_rq = 0;
3478
	account_entity_dequeue(cfs_rq, se);
3479 3480 3481 3482 3483 3484

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3485
	if (!(flags & DEQUEUE_SLEEP))
3486
		se->vruntime -= cfs_rq->min_vruntime;
3487

3488 3489 3490
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3491
	update_min_vruntime(cfs_rq);
3492
	update_cfs_shares(cfs_rq);
3493 3494 3495 3496 3497
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3498
static void
I
Ingo Molnar 已提交
3499
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3500
{
3501
	unsigned long ideal_runtime, delta_exec;
3502 3503
	struct sched_entity *se;
	s64 delta;
3504

P
Peter Zijlstra 已提交
3505
	ideal_runtime = sched_slice(cfs_rq, curr);
3506
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3507
	if (delta_exec > ideal_runtime) {
3508
		resched_curr(rq_of(cfs_rq));
3509 3510 3511 3512 3513
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3525 3526
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3527

3528 3529
	if (delta < 0)
		return;
3530

3531
	if (delta > ideal_runtime)
3532
		resched_curr(rq_of(cfs_rq));
3533 3534
}

3535
static void
3536
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3537
{
3538 3539 3540 3541 3542 3543 3544
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3545
		update_stats_wait_end(cfs_rq, se);
3546
		__dequeue_entity(cfs_rq, se);
3547
		update_load_avg(se, 1);
3548 3549
	}

3550
	update_stats_curr_start(cfs_rq, se);
3551
	cfs_rq->curr = se;
3552

I
Ingo Molnar 已提交
3553 3554 3555 3556 3557
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3558
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3559 3560 3561
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3562
	}
3563

3564
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3565 3566
}

3567 3568 3569
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3570 3571 3572 3573 3574 3575 3576
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3577 3578
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3579
{
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3591

3592 3593 3594 3595 3596
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3607 3608 3609
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3610

3611 3612 3613 3614 3615 3616
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3617 3618 3619 3620 3621 3622
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3623
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3624 3625

	return se;
3626 3627
}

3628
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3629

3630
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3631 3632 3633 3634 3635 3636
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3637
		update_curr(cfs_rq);
3638

3639 3640 3641
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3642
	check_spread(cfs_rq, prev);
3643

3644
	if (prev->on_rq) {
3645
		update_stats_wait_start(cfs_rq, prev);
3646 3647
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3648
		/* in !on_rq case, update occurred at dequeue */
3649
		update_load_avg(prev, 0);
3650
	}
3651
	cfs_rq->curr = NULL;
3652 3653
}

P
Peter Zijlstra 已提交
3654 3655
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3656 3657
{
	/*
3658
	 * Update run-time statistics of the 'current'.
3659
	 */
3660
	update_curr(cfs_rq);
3661

3662 3663 3664
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3665
	update_load_avg(curr, 1);
3666
	update_cfs_shares(cfs_rq);
3667

P
Peter Zijlstra 已提交
3668 3669 3670 3671 3672
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3673
	if (queued) {
3674
		resched_curr(rq_of(cfs_rq));
3675 3676
		return;
	}
P
Peter Zijlstra 已提交
3677 3678 3679 3680 3681 3682 3683 3684
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3685
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3686
		check_preempt_tick(cfs_rq, curr);
3687 3688
}

3689 3690 3691 3692 3693 3694

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3695 3696

#ifdef HAVE_JUMP_LABEL
3697
static struct static_key __cfs_bandwidth_used;
3698 3699 3700

static inline bool cfs_bandwidth_used(void)
{
3701
	return static_key_false(&__cfs_bandwidth_used);
3702 3703
}

3704
void cfs_bandwidth_usage_inc(void)
3705
{
3706 3707 3708 3709 3710 3711
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3712 3713 3714 3715 3716 3717 3718
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3719 3720
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3721 3722
#endif /* HAVE_JUMP_LABEL */

3723 3724 3725 3726 3727 3728 3729 3730
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3731 3732 3733 3734 3735 3736

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3737 3738 3739 3740 3741 3742 3743
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3744
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3756 3757 3758 3759 3760
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3761 3762 3763 3764
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3765
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3766

3767
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3768 3769
}

3770 3771
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3772 3773 3774
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3775
	u64 amount = 0, min_amount, expires;
3776 3777 3778 3779 3780 3781 3782

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3783
	else {
P
Peter Zijlstra 已提交
3784
		start_cfs_bandwidth(cfs_b);
3785 3786 3787 3788 3789 3790

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3791
	}
P
Paul Turner 已提交
3792
	expires = cfs_b->runtime_expires;
3793 3794 3795
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3796 3797 3798 3799 3800 3801 3802
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3803 3804

	return cfs_rq->runtime_remaining > 0;
3805 3806
}

P
Paul Turner 已提交
3807 3808 3809 3810 3811
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3812
{
P
Paul Turner 已提交
3813 3814 3815
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3816
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3817 3818
		return;

P
Paul Turner 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3828 3829 3830
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3831 3832
	 */

3833
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3834 3835 3836 3837 3838 3839 3840 3841
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3842
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3843 3844
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3845
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3846 3847 3848
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3849 3850
		return;

3851 3852 3853 3854 3855
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3856
		resched_curr(rq_of(cfs_rq));
3857 3858
}

3859
static __always_inline
3860
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3861
{
3862
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3863 3864 3865 3866 3867
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3868 3869
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3870
	return cfs_bandwidth_used() && cfs_rq->throttled;
3871 3872
}

3873 3874 3875
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3876
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3904
		/* adjust cfs_rq_clock_task() */
3905
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3906
					     cfs_rq->throttled_clock_task;
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3917 3918
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3919
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3920 3921 3922 3923 3924
	cfs_rq->throttle_count++;

	return 0;
}

3925
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3926 3927 3928 3929 3930
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3931
	bool empty;
3932 3933 3934

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3935
	/* freeze hierarchy runnable averages while throttled */
3936 3937 3938
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3956
		sub_nr_running(rq, task_delta);
3957 3958

	cfs_rq->throttled = 1;
3959
	cfs_rq->throttled_clock = rq_clock(rq);
3960
	raw_spin_lock(&cfs_b->lock);
3961
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3962

3963 3964 3965 3966 3967
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3968 3969 3970 3971 3972 3973 3974 3975

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3976 3977 3978
	raw_spin_unlock(&cfs_b->lock);
}

3979
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3980 3981 3982 3983 3984 3985 3986
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3987
	se = cfs_rq->tg->se[cpu_of(rq)];
3988 3989

	cfs_rq->throttled = 0;
3990 3991 3992

	update_rq_clock(rq);

3993
	raw_spin_lock(&cfs_b->lock);
3994
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3995 3996 3997
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3998 3999 4000
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4019
		add_nr_running(rq, task_delta);
4020 4021 4022

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4023
		resched_curr(rq);
4024 4025 4026 4027 4028 4029
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4030 4031
	u64 runtime;
	u64 starting_runtime = remaining;
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4062
	return starting_runtime - remaining;
4063 4064
}

4065 4066 4067 4068 4069 4070 4071 4072
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4073
	u64 runtime, runtime_expires;
4074
	int throttled;
4075 4076 4077

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4078
		goto out_deactivate;
4079

4080
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4081
	cfs_b->nr_periods += overrun;
4082

4083 4084 4085 4086 4087 4088
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4089 4090 4091

	__refill_cfs_bandwidth_runtime(cfs_b);

4092 4093 4094
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4095
		return 0;
4096 4097
	}

4098 4099 4100
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4101 4102 4103
	runtime_expires = cfs_b->runtime_expires;

	/*
4104 4105 4106 4107 4108
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4109
	 */
4110 4111
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4112 4113 4114 4115 4116 4117 4118
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4119 4120

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4121
	}
4122

4123 4124 4125 4126 4127 4128 4129
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4130

4131 4132 4133 4134
	return 0;

out_deactivate:
	return 1;
4135
}
4136

4137 4138 4139 4140 4141 4142 4143
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4144 4145 4146 4147
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4148
 * hrtimer base being cleared by hrtimer_start. In the case of
4149 4150
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4176 4177 4178
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4208 4209 4210
	if (!cfs_bandwidth_used())
		return;

4211
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4227 4228 4229
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4230
		return;
4231
	}
4232

4233
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4234
		runtime = cfs_b->runtime;
4235

4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4246
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4247 4248 4249
	raw_spin_unlock(&cfs_b->lock);
}

4250 4251 4252 4253 4254 4255 4256
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4257 4258 4259
	if (!cfs_bandwidth_used())
		return;

4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4288
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4289 4290
}

4291
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4292
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4293
{
4294
	if (!cfs_bandwidth_used())
4295
		return false;
4296

4297
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4298
		return false;
4299 4300 4301 4302 4303 4304

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4305
		return true;
4306 4307

	throttle_cfs_rq(cfs_rq);
4308
	return true;
4309
}
4310 4311 4312 4313 4314

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4315

4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4328
	raw_spin_lock(&cfs_b->lock);
4329
	for (;;) {
P
Peter Zijlstra 已提交
4330
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4331 4332 4333 4334 4335
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4336 4337
	if (idle)
		cfs_b->period_active = 0;
4338
	raw_spin_unlock(&cfs_b->lock);
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4351
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4363
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4364
{
P
Peter Zijlstra 已提交
4365
	lockdep_assert_held(&cfs_b->lock);
4366

P
Peter Zijlstra 已提交
4367 4368 4369 4370 4371
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4372 4373 4374 4375
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4376 4377 4378 4379
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4380 4381 4382 4383
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4397
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4409
		cfs_rq->runtime_remaining = 1;
4410 4411 4412 4413 4414 4415
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4416 4417 4418 4419 4420 4421
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4422 4423
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4424
	return rq_clock_task(rq_of(cfs_rq));
4425 4426
}

4427
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4428
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4429
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4430
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4431
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4432 4433 4434 4435 4436

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4448 4449 4450 4451 4452

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4453 4454
#endif

4455 4456 4457 4458 4459
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4460
static inline void update_runtime_enabled(struct rq *rq) {}
4461
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4462 4463 4464

#endif /* CONFIG_CFS_BANDWIDTH */

4465 4466 4467 4468
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4469 4470 4471 4472 4473 4474
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4475
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4476

4477
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4478 4479 4480 4481 4482 4483
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4484
				resched_curr(rq);
P
Peter Zijlstra 已提交
4485 4486
			return;
		}
4487
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4488 4489
	}
}
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4500
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4501 4502 4503 4504 4505
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4506
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4507 4508 4509 4510
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4511 4512 4513 4514

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4515 4516
#endif

4517 4518 4519 4520 4521
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4522
static void
4523
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4524 4525
{
	struct cfs_rq *cfs_rq;
4526
	struct sched_entity *se = &p->se;
4527 4528

	for_each_sched_entity(se) {
4529
		if (se->on_rq)
4530 4531
			break;
		cfs_rq = cfs_rq_of(se);
4532
		enqueue_entity(cfs_rq, se, flags);
4533 4534 4535 4536 4537 4538

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4539
		 */
4540 4541
		if (cfs_rq_throttled(cfs_rq))
			break;
4542
		cfs_rq->h_nr_running++;
4543

4544
		flags = ENQUEUE_WAKEUP;
4545
	}
P
Peter Zijlstra 已提交
4546

P
Peter Zijlstra 已提交
4547
	for_each_sched_entity(se) {
4548
		cfs_rq = cfs_rq_of(se);
4549
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4550

4551 4552 4553
		if (cfs_rq_throttled(cfs_rq))
			break;

4554
		update_load_avg(se, 1);
4555
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4556 4557
	}

Y
Yuyang Du 已提交
4558
	if (!se)
4559
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4560

4561
	hrtick_update(rq);
4562 4563
}

4564 4565
static void set_next_buddy(struct sched_entity *se);

4566 4567 4568 4569 4570
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4571
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4572 4573
{
	struct cfs_rq *cfs_rq;
4574
	struct sched_entity *se = &p->se;
4575
	int task_sleep = flags & DEQUEUE_SLEEP;
4576 4577 4578

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4579
		dequeue_entity(cfs_rq, se, flags);
4580 4581 4582 4583 4584 4585 4586 4587 4588

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4589
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4590

4591
		/* Don't dequeue parent if it has other entities besides us */
4592
		if (cfs_rq->load.weight) {
4593 4594
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4595 4596 4597 4598
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4599 4600
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4601
			break;
4602
		}
4603
		flags |= DEQUEUE_SLEEP;
4604
	}
P
Peter Zijlstra 已提交
4605

P
Peter Zijlstra 已提交
4606
	for_each_sched_entity(se) {
4607
		cfs_rq = cfs_rq_of(se);
4608
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4609

4610 4611 4612
		if (cfs_rq_throttled(cfs_rq))
			break;

4613
		update_load_avg(se, 1);
4614
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4615 4616
	}

Y
Yuyang Du 已提交
4617
	if (!se)
4618
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4619

4620
	hrtick_update(rq);
4621 4622
}

4623
#ifdef CONFIG_SMP
4624 4625 4626 4627 4628

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4629
#ifdef CONFIG_NO_HZ_COMMON
4630 4631 4632 4633 4634
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4635
 * The exact cpuload calculated at every tick would be:
4636
 *
4637 4638 4639 4640 4641 4642 4643
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4644 4645 4646
 *
 * decay_load_missed() below does efficient calculation of
 *
4647 4648 4649 4650 4651 4652
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4653
 *
4654
 * The calculation is approximated on a 128 point scale.
4655 4656
 */
#define DEGRADE_SHIFT		7
4657 4658 4659 4660 4661 4662 4663 4664 4665

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4695
#endif /* CONFIG_NO_HZ_COMMON */
4696

4697
/**
4698
 * __cpu_load_update - update the rq->cpu_load[] statistics
4699 4700 4701 4702
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4703
 * Update rq->cpu_load[] statistics. This function is usually called every
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4730
 * term.
4731
 */
4732 4733
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4734
{
4735
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4747
		old_load = this_rq->cpu_load[i];
4748
#ifdef CONFIG_NO_HZ_COMMON
4749
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4750 4751 4752 4753 4754 4755 4756 4757 4758
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4759
#endif
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4775 4776 4777 4778 4779 4780
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4781
#ifdef CONFIG_NO_HZ_COMMON
4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4810
		cpu_load_update(this_rq, load, pending_updates);
4811 4812 4813
	}
}

4814 4815 4816 4817
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4818
static void cpu_load_update_idle(struct rq *this_rq)
4819 4820 4821 4822
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4823
	if (weighted_cpuload(cpu_of(this_rq)))
4824 4825
		return;

4826
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4827 4828 4829
}

/*
4830 4831 4832 4833
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4834
 */
4835
void cpu_load_update_nohz_start(void)
4836 4837
{
	struct rq *this_rq = this_rq();
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4852
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4853 4854
	struct rq *this_rq = this_rq();
	unsigned long load;
4855 4856 4857 4858

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4859
	load = weighted_cpuload(cpu_of(this_rq));
4860
	raw_spin_lock(&this_rq->lock);
4861
	update_rq_clock(this_rq);
4862
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4863 4864
	raw_spin_unlock(&this_rq->lock);
}
4865 4866 4867 4868 4869 4870 4871 4872
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4873
#ifdef CONFIG_NO_HZ_COMMON
4874 4875
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4876
#endif
4877 4878
	cpu_load_update(this_rq, load, 1);
}
4879 4880 4881 4882

/*
 * Called from scheduler_tick()
 */
4883
void cpu_load_update_active(struct rq *this_rq)
4884
{
4885
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4886 4887 4888 4889 4890

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4891 4892
}

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4926
static unsigned long capacity_of(int cpu)
4927
{
4928
	return cpu_rq(cpu)->cpu_capacity;
4929 4930
}

4931 4932 4933 4934 4935
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4936 4937 4938
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4939
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4940
	unsigned long load_avg = weighted_cpuload(cpu);
4941 4942

	if (nr_running)
4943
		return load_avg / nr_running;
4944 4945 4946 4947

	return 0;
}

4948
#ifdef CONFIG_FAIR_GROUP_SCHED
4949 4950 4951 4952 4953 4954
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4998
 */
P
Peter Zijlstra 已提交
4999
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5000
{
P
Peter Zijlstra 已提交
5001
	struct sched_entity *se = tg->se[cpu];
5002

5003
	if (!tg->parent)	/* the trivial, non-cgroup case */
5004 5005
		return wl;

P
Peter Zijlstra 已提交
5006
	for_each_sched_entity(se) {
5007 5008
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5009

5010
		tg = cfs_rq->tg;
5011

5012 5013 5014
		/*
		 * W = @wg + \Sum rw_j
		 */
5015 5016 5017 5018 5019
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5020

5021 5022 5023
		/*
		 * w = rw_i + @wl
		 */
5024
		w += wl;
5025

5026 5027 5028 5029
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5030
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5031
		else
5032
			wl = scale_load_down(tg->shares);
5033

5034 5035 5036 5037 5038
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5039 5040
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5041 5042 5043 5044

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5045
		wl -= se->avg.load_avg;
5046 5047 5048 5049 5050 5051 5052 5053

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5054 5055
		wg = 0;
	}
5056

P
Peter Zijlstra 已提交
5057
	return wl;
5058 5059
}
#else
P
Peter Zijlstra 已提交
5060

5061
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5062
{
5063
	return wl;
5064
}
P
Peter Zijlstra 已提交
5065

5066 5067
#endif

P
Peter Zijlstra 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5085 5086
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5087
 *
M
Mike Galbraith 已提交
5088
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5101
 */
5102 5103
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5104 5105
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5106
	int factor = this_cpu_read(sd_llc_size);
5107

M
Mike Galbraith 已提交
5108 5109 5110 5111 5112
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5113 5114
}

5115 5116
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5117
{
5118
	s64 this_load, load;
5119
	s64 this_eff_load, prev_eff_load;
5120
	int idx, this_cpu;
5121
	struct task_group *tg;
5122
	unsigned long weight;
5123
	int balanced;
5124

5125 5126 5127 5128
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5129

5130 5131 5132 5133 5134
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5135 5136
	if (sync) {
		tg = task_group(current);
5137
		weight = current->se.avg.load_avg;
5138

5139
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5140 5141
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5142

5143
	tg = task_group(p);
5144
	weight = p->se.avg.load_avg;
5145

5146 5147
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5148 5149 5150
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5151 5152 5153 5154
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5155 5156
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5157

5158 5159
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5160

5161
	if (this_load > 0) {
5162 5163 5164 5165
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5166
	}
5167

5168
	balanced = this_eff_load <= prev_eff_load;
5169

5170
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5171

5172 5173
	if (!balanced)
		return 0;
5174

5175 5176
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5177 5178

	return 1;
5179 5180
}

5181 5182 5183 5184 5185
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5186
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5187
		  int this_cpu, int sd_flag)
5188
{
5189
	struct sched_group *idlest = NULL, *group = sd->groups;
5190
	unsigned long min_load = ULONG_MAX, this_load = 0;
5191
	int load_idx = sd->forkexec_idx;
5192
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5193

5194 5195 5196
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5197 5198 5199 5200
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5201

5202 5203
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5204
					tsk_cpus_allowed(p)))
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5223
		/* Adjust by relative CPU capacity of the group */
5224
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5246 5247 5248 5249
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5250 5251
	int i;

5252 5253 5254 5255
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5256
	/* Traverse only the allowed CPUs */
5257
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5280
		} else if (shallowest_idle_cpu == -1) {
5281 5282 5283 5284 5285
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5286 5287 5288
		}
	}

5289
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5290
}
5291

5292
/*
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5358
void __update_idle_core(struct rq *rq)
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5390 5391 5392
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	if (!test_idle_cores(target, false))
		return -1;

	cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5426 5427 5428
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	for_each_cpu(cpu, cpu_smt_mask(target)) {
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
 */
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct sched_domain *this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	u64 avg_idle = this_rq()->avg_idle;
	u64 avg_cost = this_sd->avg_scan_cost;
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
	if ((avg_idle / 512) < avg_cost)
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5493
 */
5494
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5495
{
5496
	struct sched_domain *sd;
5497
	int i;
5498

5499 5500
	if (idle_cpu(target))
		return target;
5501 5502

	/*
5503
	 * If the previous cpu is cache affine and idle, don't be stupid.
5504
	 */
5505 5506
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5507

5508
	sd = rcu_dereference(per_cpu(sd_llc, target));
5509 5510
	if (!sd)
		return target;
5511

5512 5513 5514
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5515

5516 5517 5518 5519 5520 5521 5522
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5523

5524 5525
	return target;
}
5526

5527
/*
5528
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5529
 * tasks. The unit of the return value must be the one of capacity so we can
5530 5531
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5552
 */
5553
static int cpu_util(int cpu)
5554
{
5555
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5556 5557
	unsigned long capacity = capacity_orig_of(cpu);

5558
	return (util >= capacity) ? capacity : util;
5559
}
5560

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5587
/*
5588 5589 5590
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5591
 *
5592 5593
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5594
 *
5595
 * Returns the target cpu number.
5596 5597 5598
 *
 * preempt must be disabled.
 */
5599
static int
5600
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5601
{
5602
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5603
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5604
	int new_cpu = prev_cpu;
5605
	int want_affine = 0;
5606
	int sync = wake_flags & WF_SYNC;
5607

P
Peter Zijlstra 已提交
5608 5609
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5610 5611
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5612
	}
5613

5614
	rcu_read_lock();
5615
	for_each_domain(cpu, tmp) {
5616
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5617
			break;
5618

5619
		/*
5620 5621
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5622
		 */
5623 5624 5625
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5626
			break;
5627
		}
5628

5629
		if (tmp->flags & sd_flag)
5630
			sd = tmp;
M
Mike Galbraith 已提交
5631 5632
		else if (!want_affine)
			break;
5633 5634
	}

M
Mike Galbraith 已提交
5635 5636
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5637
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5638
			new_cpu = cpu;
5639
	}
5640

M
Mike Galbraith 已提交
5641 5642
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5643
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5644 5645

	} else while (sd) {
5646
		struct sched_group *group;
5647
		int weight;
5648

5649
		if (!(sd->flags & sd_flag)) {
5650 5651 5652
			sd = sd->child;
			continue;
		}
5653

5654
		group = find_idlest_group(sd, p, cpu, sd_flag);
5655 5656 5657 5658
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5659

5660
		new_cpu = find_idlest_cpu(group, p, cpu);
5661 5662 5663 5664
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5665
		}
5666 5667 5668

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5669
		weight = sd->span_weight;
5670 5671
		sd = NULL;
		for_each_domain(cpu, tmp) {
5672
			if (weight <= tmp->span_weight)
5673
				break;
5674
			if (tmp->flags & sd_flag)
5675 5676 5677
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5678
	}
5679
	rcu_read_unlock();
5680

5681
	return new_cpu;
5682
}
5683 5684 5685 5686

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5687
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5688
 */
5689
static void migrate_task_rq_fair(struct task_struct *p)
5690
{
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5717
	/*
5718 5719 5720 5721 5722
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5723
	 */
5724 5725 5726 5727
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5728 5729

	/* We have migrated, no longer consider this task hot */
5730
	p->se.exec_start = 0;
5731
}
5732 5733 5734 5735 5736

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5737 5738
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5739 5740
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5741 5742 5743 5744
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5745 5746
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5747 5748 5749 5750 5751 5752 5753 5754 5755
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5756
	 */
5757
	return calc_delta_fair(gran, se);
5758 5759
}

5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5782
	gran = wakeup_gran(curr, se);
5783 5784 5785 5786 5787 5788
	if (vdiff > gran)
		return 1;

	return 0;
}

5789 5790
static void set_last_buddy(struct sched_entity *se)
{
5791 5792 5793 5794 5795
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5796 5797 5798 5799
}

static void set_next_buddy(struct sched_entity *se)
{
5800 5801 5802 5803 5804
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5805 5806
}

5807 5808
static void set_skip_buddy(struct sched_entity *se)
{
5809 5810
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5811 5812
}

5813 5814 5815
/*
 * Preempt the current task with a newly woken task if needed:
 */
5816
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5817 5818
{
	struct task_struct *curr = rq->curr;
5819
	struct sched_entity *se = &curr->se, *pse = &p->se;
5820
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5821
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5822
	int next_buddy_marked = 0;
5823

I
Ingo Molnar 已提交
5824 5825 5826
	if (unlikely(se == pse))
		return;

5827
	/*
5828
	 * This is possible from callers such as attach_tasks(), in which we
5829 5830 5831 5832 5833 5834 5835
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5836
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5837
		set_next_buddy(pse);
5838 5839
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5840

5841 5842 5843
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5844 5845 5846 5847 5848 5849
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5850 5851 5852 5853
	 */
	if (test_tsk_need_resched(curr))
		return;

5854 5855 5856 5857 5858
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5859
	/*
5860 5861
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5862
	 */
5863
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5864
		return;
5865

5866
	find_matching_se(&se, &pse);
5867
	update_curr(cfs_rq_of(se));
5868
	BUG_ON(!pse);
5869 5870 5871 5872 5873 5874 5875
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5876
		goto preempt;
5877
	}
5878

5879
	return;
5880

5881
preempt:
5882
	resched_curr(rq);
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5897 5898
}

5899
static struct task_struct *
5900
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5901 5902 5903
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5904
	struct task_struct *p;
5905
	int new_tasks;
5906

5907
again:
5908 5909
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5910
		goto idle;
5911

5912
	if (prev->sched_class != &fair_sched_class)
5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5932 5933 5934 5935 5936
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5937

5938 5939 5940 5941 5942 5943 5944 5945 5946
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5987

5988
	if (!cfs_rq->nr_running)
5989
		goto idle;
5990

5991
	put_prev_task(rq, prev);
5992

5993
	do {
5994
		se = pick_next_entity(cfs_rq, NULL);
5995
		set_next_entity(cfs_rq, se);
5996 5997 5998
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5999
	p = task_of(se);
6000

6001 6002
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6003 6004

	return p;
6005 6006

idle:
6007 6008 6009 6010 6011 6012
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
6013
	lockdep_unpin_lock(&rq->lock, cookie);
6014
	new_tasks = idle_balance(rq);
6015
	lockdep_repin_lock(&rq->lock, cookie);
6016 6017 6018 6019 6020
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6021
	if (new_tasks < 0)
6022 6023
		return RETRY_TASK;

6024
	if (new_tasks > 0)
6025 6026 6027
		goto again;

	return NULL;
6028 6029 6030 6031 6032
}

/*
 * Account for a descheduled task:
 */
6033
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6034 6035 6036 6037 6038 6039
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6040
		put_prev_entity(cfs_rq, se);
6041 6042 6043
	}
}

6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6069 6070 6071 6072 6073
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6074
		rq_clock_skip_update(rq, true);
6075 6076 6077 6078 6079
	}

	set_skip_buddy(se);
}

6080 6081 6082 6083
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6084 6085
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6096
#ifdef CONFIG_SMP
6097
/**************************************************
P
Peter Zijlstra 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6114
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6115 6116 6117 6118 6119 6120
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6121
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6122 6123 6124 6125 6126 6127
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6128
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6167
 *             log_2 n
P
Peter Zijlstra 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6213
 */
6214

6215 6216
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6217 6218
enum fbq_type { regular, remote, all };

6219
#define LBF_ALL_PINNED	0x01
6220
#define LBF_NEED_BREAK	0x02
6221 6222
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6223 6224 6225 6226 6227

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6228
	int			src_cpu;
6229 6230 6231 6232

	int			dst_cpu;
	struct rq		*dst_rq;

6233 6234
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6235
	enum cpu_idle_type	idle;
6236
	long			imbalance;
6237 6238 6239
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6240
	unsigned int		flags;
6241 6242 6243 6244

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6245 6246

	enum fbq_type		fbq_type;
6247
	struct list_head	tasks;
6248 6249
};

6250 6251 6252
/*
 * Is this task likely cache-hot:
 */
6253
static int task_hot(struct task_struct *p, struct lb_env *env)
6254 6255 6256
{
	s64 delta;

6257 6258
	lockdep_assert_held(&env->src_rq->lock);

6259 6260 6261 6262 6263 6264 6265 6266 6267
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6268
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6269 6270 6271 6272 6273 6274 6275 6276 6277
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6278
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6279 6280 6281 6282

	return delta < (s64)sysctl_sched_migration_cost;
}

6283
#ifdef CONFIG_NUMA_BALANCING
6284
/*
6285 6286 6287
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6288
 */
6289
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6290
{
6291
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6292
	unsigned long src_faults, dst_faults;
6293 6294
	int src_nid, dst_nid;

6295
	if (!static_branch_likely(&sched_numa_balancing))
6296 6297
		return -1;

6298
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6299
		return -1;
6300 6301 6302 6303

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6304
	if (src_nid == dst_nid)
6305
		return -1;
6306

6307 6308 6309 6310 6311 6312 6313
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6314

6315 6316
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6317
		return 0;
6318

6319 6320 6321 6322 6323 6324
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6325 6326
	}

6327
	return dst_faults < src_faults;
6328 6329
}

6330
#else
6331
static inline int migrate_degrades_locality(struct task_struct *p,
6332 6333
					     struct lb_env *env)
{
6334
	return -1;
6335
}
6336 6337
#endif

6338 6339 6340 6341
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6342
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6343
{
6344
	int tsk_cache_hot;
6345 6346 6347

	lockdep_assert_held(&env->src_rq->lock);

6348 6349
	/*
	 * We do not migrate tasks that are:
6350
	 * 1) throttled_lb_pair, or
6351
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6352 6353
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6354
	 */
6355 6356 6357
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6358
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6359
		int cpu;
6360

6361
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6362

6363 6364
		env->flags |= LBF_SOME_PINNED;

6365 6366 6367 6368 6369 6370 6371 6372
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6373
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6374 6375
			return 0;

6376 6377 6378
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6379
				env->flags |= LBF_DST_PINNED;
6380 6381 6382
				env->new_dst_cpu = cpu;
				break;
			}
6383
		}
6384

6385 6386
		return 0;
	}
6387 6388

	/* Record that we found atleast one task that could run on dst_cpu */
6389
	env->flags &= ~LBF_ALL_PINNED;
6390

6391
	if (task_running(env->src_rq, p)) {
6392
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6393 6394 6395 6396 6397
		return 0;
	}

	/*
	 * Aggressive migration if:
6398 6399 6400
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6401
	 */
6402 6403 6404
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6405

6406
	if (tsk_cache_hot <= 0 ||
6407
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6408
		if (tsk_cache_hot == 1) {
6409 6410
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6411
		}
6412 6413 6414
		return 1;
	}

6415
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6416
	return 0;
6417 6418
}

6419
/*
6420 6421 6422 6423 6424 6425 6426
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6427
	deactivate_task(env->src_rq, p, 0);
6428 6429 6430
	set_task_cpu(p, env->dst_cpu);
}

6431
/*
6432
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6433 6434
 * part of active balancing operations within "domain".
 *
6435
 * Returns a task if successful and NULL otherwise.
6436
 */
6437
static struct task_struct *detach_one_task(struct lb_env *env)
6438 6439 6440
{
	struct task_struct *p, *n;

6441 6442
	lockdep_assert_held(&env->src_rq->lock);

6443 6444 6445
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6446

6447
		detach_task(p, env);
6448

6449
		/*
6450
		 * Right now, this is only the second place where
6451
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6452
		 * so we can safely collect stats here rather than
6453
		 * inside detach_tasks().
6454
		 */
6455
		schedstat_inc(env->sd->lb_gained[env->idle]);
6456
		return p;
6457
	}
6458
	return NULL;
6459 6460
}

6461 6462
static const unsigned int sched_nr_migrate_break = 32;

6463
/*
6464 6465
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6466
 *
6467
 * Returns number of detached tasks if successful and 0 otherwise.
6468
 */
6469
static int detach_tasks(struct lb_env *env)
6470
{
6471 6472
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6473
	unsigned long load;
6474 6475 6476
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6477

6478
	if (env->imbalance <= 0)
6479
		return 0;
6480

6481
	while (!list_empty(tasks)) {
6482 6483 6484 6485 6486 6487 6488
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6489
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6490

6491 6492
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6493
		if (env->loop > env->loop_max)
6494
			break;
6495 6496

		/* take a breather every nr_migrate tasks */
6497
		if (env->loop > env->loop_break) {
6498
			env->loop_break += sched_nr_migrate_break;
6499
			env->flags |= LBF_NEED_BREAK;
6500
			break;
6501
		}
6502

6503
		if (!can_migrate_task(p, env))
6504 6505 6506
			goto next;

		load = task_h_load(p);
6507

6508
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6509 6510
			goto next;

6511
		if ((load / 2) > env->imbalance)
6512
			goto next;
6513

6514 6515 6516 6517
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6518
		env->imbalance -= load;
6519 6520

#ifdef CONFIG_PREEMPT
6521 6522
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6523
		 * kernels will stop after the first task is detached to minimize
6524 6525
		 * the critical section.
		 */
6526
		if (env->idle == CPU_NEWLY_IDLE)
6527
			break;
6528 6529
#endif

6530 6531 6532 6533
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6534
		if (env->imbalance <= 0)
6535
			break;
6536 6537 6538

		continue;
next:
6539
		list_move_tail(&p->se.group_node, tasks);
6540
	}
6541

6542
	/*
6543 6544 6545
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6546
	 */
6547
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6548

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6561
	p->on_rq = TASK_ON_RQ_QUEUED;
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6590

6591 6592 6593 6594
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6595 6596
}

P
Peter Zijlstra 已提交
6597
#ifdef CONFIG_FAIR_GROUP_SCHED
6598
static void update_blocked_averages(int cpu)
6599 6600
{
	struct rq *rq = cpu_rq(cpu);
6601 6602
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6603

6604 6605
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6606

6607 6608 6609 6610
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6611
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6612 6613 6614
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6615

6616
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6617 6618
			update_tg_load_avg(cfs_rq, 0);
	}
6619
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6620 6621
}

6622
/*
6623
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6624 6625 6626
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6627
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6628
{
6629 6630
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6631
	unsigned long now = jiffies;
6632
	unsigned long load;
6633

6634
	if (cfs_rq->last_h_load_update == now)
6635 6636
		return;

6637 6638 6639 6640 6641 6642 6643
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6644

6645
	if (!se) {
6646
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6647 6648 6649 6650 6651
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6652 6653
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6654 6655 6656 6657
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6658 6659
}

6660
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6661
{
6662
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6663

6664
	update_cfs_rq_h_load(cfs_rq);
6665
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6666
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6667 6668
}
#else
6669
static inline void update_blocked_averages(int cpu)
6670
{
6671 6672 6673 6674 6675 6676
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6677
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6678
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6679 6680
}

6681
static unsigned long task_h_load(struct task_struct *p)
6682
{
6683
	return p->se.avg.load_avg;
6684
}
P
Peter Zijlstra 已提交
6685
#endif
6686 6687

/********** Helpers for find_busiest_group ************************/
6688 6689 6690 6691 6692 6693 6694

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6695 6696 6697 6698 6699 6700 6701
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6702
	unsigned long load_per_task;
6703
	unsigned long group_capacity;
6704
	unsigned long group_util; /* Total utilization of the group */
6705 6706 6707
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6708
	enum group_type group_type;
6709
	int group_no_capacity;
6710 6711 6712 6713
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6714 6715
};

J
Joonsoo Kim 已提交
6716 6717 6718 6719 6720 6721 6722 6723
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6724
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6725 6726 6727
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6728
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6729 6730
};

6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6743
		.total_capacity = 0UL,
6744 6745
		.busiest_stat = {
			.avg_load = 0UL,
6746 6747
			.sum_nr_running = 0,
			.group_type = group_other,
6748 6749 6750 6751
		},
	};
}

6752 6753 6754
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6755
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6756 6757
 *
 * Return: The load index.
6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6780
static unsigned long scale_rt_capacity(int cpu)
6781 6782
{
	struct rq *rq = cpu_rq(cpu);
6783
	u64 total, used, age_stamp, avg;
6784
	s64 delta;
6785

6786 6787 6788 6789
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6790 6791
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6792
	delta = __rq_clock_broken(rq) - age_stamp;
6793

6794 6795 6796 6797
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6798

6799
	used = div_u64(avg, total);
6800

6801 6802
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6803

6804
	return 1;
6805 6806
}

6807
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6808
{
6809
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6810 6811
	struct sched_group *sdg = sd->groups;

6812
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6813

6814
	capacity *= scale_rt_capacity(cpu);
6815
	capacity >>= SCHED_CAPACITY_SHIFT;
6816

6817 6818
	if (!capacity)
		capacity = 1;
6819

6820 6821
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6822 6823
}

6824
void update_group_capacity(struct sched_domain *sd, int cpu)
6825 6826 6827
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6828
	unsigned long capacity;
6829 6830 6831 6832
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6833
	sdg->sgc->next_update = jiffies + interval;
6834 6835

	if (!child) {
6836
		update_cpu_capacity(sd, cpu);
6837 6838 6839
		return;
	}

6840
	capacity = 0;
6841

P
Peter Zijlstra 已提交
6842 6843 6844 6845 6846 6847
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6848
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6849
			struct sched_group_capacity *sgc;
6850
			struct rq *rq = cpu_rq(cpu);
6851

6852
			/*
6853
			 * build_sched_domains() -> init_sched_groups_capacity()
6854 6855 6856
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6857 6858
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6859
			 *
6860
			 * This avoids capacity from being 0 and
6861 6862 6863
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6864
				capacity += capacity_of(cpu);
6865 6866
				continue;
			}
6867

6868 6869
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6870
		}
P
Peter Zijlstra 已提交
6871 6872 6873 6874
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
6875
		 */
P
Peter Zijlstra 已提交
6876 6877 6878

		group = child->groups;
		do {
6879
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6880 6881 6882
			group = group->next;
		} while (group != child->groups);
	}
6883

6884
	sdg->sgc->capacity = capacity;
6885 6886
}

6887
/*
6888 6889 6890
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6891 6892
 */
static inline int
6893
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6894
{
6895 6896
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6897 6898
}

6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6915 6916
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6917 6918
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6919
 * update_sd_pick_busiest(). And calculate_imbalance() and
6920
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6921 6922 6923 6924 6925 6926 6927
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6928
static inline int sg_imbalanced(struct sched_group *group)
6929
{
6930
	return group->sgc->imbalance;
6931 6932
}

6933
/*
6934 6935 6936
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6937 6938
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6939 6940 6941 6942 6943
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6944
 */
6945 6946
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6947
{
6948 6949
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6950

6951
	if ((sgs->group_capacity * 100) >
6952
			(sgs->group_util * env->sd->imbalance_pct))
6953
		return true;
6954

6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6971

6972
	if ((sgs->group_capacity * 100) <
6973
			(sgs->group_util * env->sd->imbalance_pct))
6974
		return true;
6975

6976
	return false;
6977 6978
}

6979 6980 6981
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6982
{
6983
	if (sgs->group_no_capacity)
6984 6985 6986 6987 6988 6989 6990 6991
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6992 6993
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6994
 * @env: The load balancing environment.
6995 6996 6997 6998
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6999
 * @overload: Indicate more than one runnable task for any CPU.
7000
 */
7001 7002
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7003 7004
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7005
{
7006
	unsigned long load;
7007
	int i, nr_running;
7008

7009 7010
	memset(sgs, 0, sizeof(*sgs));

7011
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7012 7013 7014
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7015
		if (local_group)
7016
			load = target_load(i, load_idx);
7017
		else
7018 7019 7020
			load = source_load(i, load_idx);

		sgs->group_load += load;
7021
		sgs->group_util += cpu_util(i);
7022
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7023

7024 7025
		nr_running = rq->nr_running;
		if (nr_running > 1)
7026 7027
			*overload = true;

7028 7029 7030 7031
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7032
		sgs->sum_weighted_load += weighted_cpuload(i);
7033 7034 7035 7036
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7037
			sgs->idle_cpus++;
7038 7039
	}

7040 7041
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7042
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7043

7044
	if (sgs->sum_nr_running)
7045
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7046

7047
	sgs->group_weight = group->group_weight;
7048

7049
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7050
	sgs->group_type = group_classify(group, sgs);
7051 7052
}

7053 7054
/**
 * update_sd_pick_busiest - return 1 on busiest group
7055
 * @env: The load balancing environment.
7056 7057
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7058
 * @sgs: sched_group statistics
7059 7060 7061
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7062 7063 7064
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7065
 */
7066
static bool update_sd_pick_busiest(struct lb_env *env,
7067 7068
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7069
				   struct sg_lb_stats *sgs)
7070
{
7071
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7072

7073
	if (sgs->group_type > busiest->group_type)
7074 7075
		return true;

7076 7077 7078 7079 7080 7081 7082 7083
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7084 7085
		return true;

7086 7087 7088
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7089 7090 7091 7092 7093
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
7094
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
7095 7096 7097
		if (!sds->busiest)
			return true;

7098 7099
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
7100 7101 7102 7103 7104 7105
			return true;
	}

	return false;
}

7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7136
/**
7137
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7138
 * @env: The load balancing environment.
7139 7140
 * @sds: variable to hold the statistics for this sched_domain.
 */
7141
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7142
{
7143 7144
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
7145
	struct sg_lb_stats tmp_sgs;
7146
	int load_idx, prefer_sibling = 0;
7147
	bool overload = false;
7148 7149 7150 7151

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7152
	load_idx = get_sd_load_idx(env->sd, env->idle);
7153 7154

	do {
J
Joonsoo Kim 已提交
7155
		struct sg_lb_stats *sgs = &tmp_sgs;
7156 7157
		int local_group;

7158
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7159 7160 7161
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
7162 7163

			if (env->idle != CPU_NEWLY_IDLE ||
7164 7165
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7166
		}
7167

7168 7169
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7170

7171 7172 7173
		if (local_group)
			goto next_group;

7174 7175
		/*
		 * In case the child domain prefers tasks go to siblings
7176
		 * first, lower the sg capacity so that we'll try
7177 7178
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7179 7180 7181 7182
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7183
		 */
7184
		if (prefer_sibling && sds->local &&
7185 7186 7187
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7188
			sgs->group_type = group_classify(sg, sgs);
7189
		}
7190

7191
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7192
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7193
			sds->busiest_stat = *sgs;
7194 7195
		}

7196 7197 7198
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7199
		sds->total_capacity += sgs->group_capacity;
7200

7201
		sg = sg->next;
7202
	} while (sg != env->sd->groups);
7203 7204 7205

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7206 7207 7208 7209 7210 7211 7212

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7232
 * Return: 1 when packing is required and a task should be moved to
7233 7234
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7235
 * @env: The load balancing environment.
7236 7237
 * @sds: Statistics of the sched_domain which is to be packed
 */
7238
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7239 7240 7241
{
	int busiest_cpu;

7242
	if (!(env->sd->flags & SD_ASYM_PACKING))
7243 7244
		return 0;

7245 7246 7247
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7248 7249 7250 7251
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
7252
	if (env->dst_cpu > busiest_cpu)
7253 7254
		return 0;

7255
	env->imbalance = DIV_ROUND_CLOSEST(
7256
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7257
		SCHED_CAPACITY_SCALE);
7258

7259
	return 1;
7260 7261 7262 7263 7264 7265
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7266
 * @env: The load balancing environment.
7267 7268
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7269 7270
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7271
{
7272
	unsigned long tmp, capa_now = 0, capa_move = 0;
7273
	unsigned int imbn = 2;
7274
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7275
	struct sg_lb_stats *local, *busiest;
7276

J
Joonsoo Kim 已提交
7277 7278
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7279

J
Joonsoo Kim 已提交
7280 7281 7282 7283
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7284

J
Joonsoo Kim 已提交
7285
	scaled_busy_load_per_task =
7286
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7287
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7288

7289 7290
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7291
		env->imbalance = busiest->load_per_task;
7292 7293 7294 7295 7296
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7297
	 * however we may be able to increase total CPU capacity used by
7298 7299 7300
	 * moving them.
	 */

7301
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7302
			min(busiest->load_per_task, busiest->avg_load);
7303
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7304
			min(local->load_per_task, local->avg_load);
7305
	capa_now /= SCHED_CAPACITY_SCALE;
7306 7307

	/* Amount of load we'd subtract */
7308
	if (busiest->avg_load > scaled_busy_load_per_task) {
7309
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7310
			    min(busiest->load_per_task,
7311
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7312
	}
7313 7314

	/* Amount of load we'd add */
7315
	if (busiest->avg_load * busiest->group_capacity <
7316
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7317 7318
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7319
	} else {
7320
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7321
		      local->group_capacity;
J
Joonsoo Kim 已提交
7322
	}
7323
	capa_move += local->group_capacity *
7324
		    min(local->load_per_task, local->avg_load + tmp);
7325
	capa_move /= SCHED_CAPACITY_SCALE;
7326 7327

	/* Move if we gain throughput */
7328
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7329
		env->imbalance = busiest->load_per_task;
7330 7331 7332 7333 7334
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7335
 * @env: load balance environment
7336 7337
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7338
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7339
{
7340
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7341 7342 7343 7344
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7345

7346
	if (busiest->group_type == group_imbalanced) {
7347 7348 7349 7350
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7351 7352
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7353 7354
	}

7355
	/*
7356 7357 7358 7359
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7360
	 */
7361 7362
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7363 7364
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7365 7366
	}

7367 7368 7369 7370 7371
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7372
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7373
		if (load_above_capacity > busiest->group_capacity) {
7374
			load_above_capacity -= busiest->group_capacity;
7375
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7376 7377
			load_above_capacity /= busiest->group_capacity;
		} else
7378
			load_above_capacity = ~0UL;
7379 7380 7381 7382 7383 7384
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7385 7386
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7387
	 */
7388
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7389 7390

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7391
	env->imbalance = min(
7392 7393
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7394
	) / SCHED_CAPACITY_SCALE;
7395 7396 7397

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7398
	 * there is no guarantee that any tasks will be moved so we'll have
7399 7400 7401
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7402
	if (env->imbalance < busiest->load_per_task)
7403
		return fix_small_imbalance(env, sds);
7404
}
7405

7406 7407 7408 7409
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7410
 * if there is an imbalance.
7411 7412 7413 7414
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7415
 * @env: The load balancing environment.
7416
 *
7417
 * Return:	- The busiest group if imbalance exists.
7418
 */
J
Joonsoo Kim 已提交
7419
static struct sched_group *find_busiest_group(struct lb_env *env)
7420
{
J
Joonsoo Kim 已提交
7421
	struct sg_lb_stats *local, *busiest;
7422 7423
	struct sd_lb_stats sds;

7424
	init_sd_lb_stats(&sds);
7425 7426 7427 7428 7429

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7430
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7431 7432
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7433

7434
	/* ASYM feature bypasses nice load balance check */
7435
	if (check_asym_packing(env, &sds))
7436 7437
		return sds.busiest;

7438
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7439
	if (!sds.busiest || busiest->sum_nr_running == 0)
7440 7441
		goto out_balanced;

7442 7443
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7444

P
Peter Zijlstra 已提交
7445 7446
	/*
	 * If the busiest group is imbalanced the below checks don't
7447
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7448 7449
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7450
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7451 7452
		goto force_balance;

7453
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7454 7455
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7456 7457
		goto force_balance;

7458
	/*
7459
	 * If the local group is busier than the selected busiest group
7460 7461
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7462
	if (local->avg_load >= busiest->avg_load)
7463 7464
		goto out_balanced;

7465 7466 7467 7468
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7469
	if (local->avg_load >= sds.avg_load)
7470 7471
		goto out_balanced;

7472
	if (env->idle == CPU_IDLE) {
7473
		/*
7474 7475 7476 7477 7478
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7479
		 */
7480 7481
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7482
			goto out_balanced;
7483 7484 7485 7486 7487
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7488 7489
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7490
			goto out_balanced;
7491
	}
7492

7493
force_balance:
7494
	/* Looks like there is an imbalance. Compute it */
7495
	calculate_imbalance(env, &sds);
7496 7497 7498
	return sds.busiest;

out_balanced:
7499
	env->imbalance = 0;
7500 7501 7502 7503 7504 7505
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7506
static struct rq *find_busiest_queue(struct lb_env *env,
7507
				     struct sched_group *group)
7508 7509
{
	struct rq *busiest = NULL, *rq;
7510
	unsigned long busiest_load = 0, busiest_capacity = 1;
7511 7512
	int i;

7513
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7514
		unsigned long capacity, wl;
7515 7516 7517 7518
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7519

7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7542
		capacity = capacity_of(i);
7543

7544
		wl = weighted_cpuload(i);
7545

7546 7547
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7548
		 * which is not scaled with the cpu capacity.
7549
		 */
7550 7551 7552

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7553 7554
			continue;

7555 7556
		/*
		 * For the load comparisons with the other cpu's, consider
7557 7558 7559
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7560
		 *
7561
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7562
		 * multiplication to rid ourselves of the division works out
7563 7564
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7565
		 */
7566
		if (wl * busiest_capacity > busiest_load * capacity) {
7567
			busiest_load = wl;
7568
			busiest_capacity = capacity;
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

7582
static int need_active_balance(struct lb_env *env)
7583
{
7584 7585 7586
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7587 7588 7589 7590 7591 7592

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7593
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7594
			return 1;
7595 7596
	}

7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7610 7611 7612
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7613 7614
static int active_load_balance_cpu_stop(void *data);

7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7646
	return balance_cpu == env->dst_cpu;
7647 7648
}

7649 7650 7651 7652 7653 7654
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7655
			int *continue_balancing)
7656
{
7657
	int ld_moved, cur_ld_moved, active_balance = 0;
7658
	struct sched_domain *sd_parent = sd->parent;
7659 7660 7661
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7662
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7663

7664 7665
	struct lb_env env = {
		.sd		= sd,
7666 7667
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7668
		.dst_grpmask    = sched_group_cpus(sd->groups),
7669
		.idle		= idle,
7670
		.loop_break	= sched_nr_migrate_break,
7671
		.cpus		= cpus,
7672
		.fbq_type	= all,
7673
		.tasks		= LIST_HEAD_INIT(env.tasks),
7674 7675
	};

7676 7677 7678 7679
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7680
	if (idle == CPU_NEWLY_IDLE)
7681 7682
		env.dst_grpmask = NULL;

7683 7684
	cpumask_copy(cpus, cpu_active_mask);

7685
	schedstat_inc(sd->lb_count[idle]);
7686 7687

redo:
7688 7689
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7690
		goto out_balanced;
7691
	}
7692

7693
	group = find_busiest_group(&env);
7694
	if (!group) {
7695
		schedstat_inc(sd->lb_nobusyg[idle]);
7696 7697 7698
		goto out_balanced;
	}

7699
	busiest = find_busiest_queue(&env, group);
7700
	if (!busiest) {
7701
		schedstat_inc(sd->lb_nobusyq[idle]);
7702 7703 7704
		goto out_balanced;
	}

7705
	BUG_ON(busiest == env.dst_rq);
7706

7707
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
7708

7709 7710 7711
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7712 7713 7714 7715 7716 7717 7718 7719
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7720
		env.flags |= LBF_ALL_PINNED;
7721
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7722

7723
more_balance:
7724
		raw_spin_lock_irqsave(&busiest->lock, flags);
7725 7726 7727 7728 7729

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7730
		cur_ld_moved = detach_tasks(&env);
7731 7732

		/*
7733 7734 7735 7736 7737
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7738
		 */
7739 7740 7741 7742 7743 7744 7745 7746

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7747
		local_irq_restore(flags);
7748

7749 7750 7751 7752 7753
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7773
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7774

7775 7776 7777
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7778
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7779
			env.dst_cpu	 = env.new_dst_cpu;
7780
			env.flags	&= ~LBF_DST_PINNED;
7781 7782
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7783

7784 7785 7786 7787 7788 7789
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7790

7791 7792 7793 7794
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7795
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7796

7797
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7798 7799 7800
				*group_imbalance = 1;
		}

7801
		/* All tasks on this runqueue were pinned by CPU affinity */
7802
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7803
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7804 7805 7806
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7807
				goto redo;
7808
			}
7809
			goto out_all_pinned;
7810 7811 7812 7813
		}
	}

	if (!ld_moved) {
7814
		schedstat_inc(sd->lb_failed[idle]);
7815 7816 7817 7818 7819 7820 7821 7822
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7823

7824
		if (need_active_balance(&env)) {
7825 7826
			raw_spin_lock_irqsave(&busiest->lock, flags);

7827 7828 7829
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7830 7831
			 */
			if (!cpumask_test_cpu(this_cpu,
7832
					tsk_cpus_allowed(busiest->curr))) {
7833 7834
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7835
				env.flags |= LBF_ALL_PINNED;
7836 7837 7838
				goto out_one_pinned;
			}

7839 7840 7841 7842 7843
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7844 7845 7846 7847 7848 7849
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7850

7851
			if (active_balance) {
7852 7853 7854
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7855
			}
7856

7857
			/* We've kicked active balancing, force task migration. */
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7871
		 * detach_tasks).
7872 7873 7874 7875 7876 7877 7878 7879
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7897
	schedstat_inc(sd->lb_balanced[idle]);
7898 7899 7900 7901 7902

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7903
	if (((env.flags & LBF_ALL_PINNED) &&
7904
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7905 7906 7907
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7908
	ld_moved = 0;
7909 7910 7911 7912
out:
	return ld_moved;
}

7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
7929
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
7930 7931 7932
{
	unsigned long interval, next;

7933 7934
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
7935 7936 7937 7938 7939 7940
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7941 7942 7943 7944
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7945
static int idle_balance(struct rq *this_rq)
7946
{
7947 7948
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7949 7950
	struct sched_domain *sd;
	int pulled_task = 0;
7951
	u64 curr_cost = 0;
7952

7953 7954 7955 7956 7957 7958
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7959 7960
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7961 7962 7963
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
7964
			update_next_balance(sd, &next_balance);
7965 7966
		rcu_read_unlock();

7967
		goto out;
7968
	}
7969

7970 7971
	raw_spin_unlock(&this_rq->lock);

7972
	update_blocked_averages(this_cpu);
7973
	rcu_read_lock();
7974
	for_each_domain(this_cpu, sd) {
7975
		int continue_balancing = 1;
7976
		u64 t0, domain_cost;
7977 7978 7979 7980

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7981
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7982
			update_next_balance(sd, &next_balance);
7983
			break;
7984
		}
7985

7986
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7987 7988
			t0 = sched_clock_cpu(this_cpu);

7989
			pulled_task = load_balance(this_cpu, this_rq,
7990 7991
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7992 7993 7994 7995 7996 7997

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7998
		}
7999

8000
		update_next_balance(sd, &next_balance);
8001 8002 8003 8004 8005 8006

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8007 8008
			break;
	}
8009
	rcu_read_unlock();
8010 8011 8012

	raw_spin_lock(&this_rq->lock);

8013 8014 8015
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8016
	/*
8017 8018 8019
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8020
	 */
8021
	if (this_rq->cfs.h_nr_running && !pulled_task)
8022
		pulled_task = 1;
8023

8024 8025 8026
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8027
		this_rq->next_balance = next_balance;
8028

8029
	/* Is there a task of a high priority class? */
8030
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8031 8032
		pulled_task = -1;

8033
	if (pulled_task)
8034 8035
		this_rq->idle_stamp = 0;

8036
	return pulled_task;
8037 8038 8039
}

/*
8040 8041 8042 8043
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8044
 */
8045
static int active_load_balance_cpu_stop(void *data)
8046
{
8047 8048
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8049
	int target_cpu = busiest_rq->push_cpu;
8050
	struct rq *target_rq = cpu_rq(target_cpu);
8051
	struct sched_domain *sd;
8052
	struct task_struct *p = NULL;
8053 8054 8055 8056 8057 8058 8059

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8060 8061 8062

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8063
		goto out_unlock;
8064 8065 8066 8067 8068 8069 8070 8071 8072

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8073
	rcu_read_lock();
8074 8075 8076 8077 8078 8079 8080
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8081 8082
		struct lb_env env = {
			.sd		= sd,
8083 8084 8085 8086
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8087 8088 8089
			.idle		= CPU_IDLE,
		};

8090
		schedstat_inc(sd->alb_count);
8091

8092
		p = detach_one_task(&env);
8093
		if (p) {
8094
			schedstat_inc(sd->alb_pushed);
8095 8096 8097
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8098
			schedstat_inc(sd->alb_failed);
8099
		}
8100
	}
8101
	rcu_read_unlock();
8102 8103
out_unlock:
	busiest_rq->active_balance = 0;
8104 8105 8106 8107 8108 8109 8110
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8111
	return 0;
8112 8113
}

8114 8115 8116 8117 8118
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8119
#ifdef CONFIG_NO_HZ_COMMON
8120 8121 8122 8123 8124 8125
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8126
static struct {
8127
	cpumask_var_t idle_cpus_mask;
8128
	atomic_t nr_cpus;
8129 8130
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8131

8132
static inline int find_new_ilb(void)
8133
{
8134
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8135

8136 8137 8138 8139
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8140 8141
}

8142 8143 8144 8145 8146
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8147
static void nohz_balancer_kick(void)
8148 8149 8150 8151 8152
{
	int ilb_cpu;

	nohz.next_balance++;

8153
	ilb_cpu = find_new_ilb();
8154

8155 8156
	if (ilb_cpu >= nr_cpu_ids)
		return;
8157

8158
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8159 8160 8161 8162 8163 8164 8165 8166
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8167 8168 8169
	return;
}

8170
void nohz_balance_exit_idle(unsigned int cpu)
8171 8172
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8173 8174 8175 8176 8177 8178 8179
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8180 8181 8182 8183
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8184 8185 8186
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8187
	int cpu = smp_processor_id();
8188 8189

	rcu_read_lock();
8190
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8191 8192 8193 8194 8195

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8196
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8197
unlock:
8198 8199 8200 8201 8202 8203
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8204
	int cpu = smp_processor_id();
8205 8206

	rcu_read_lock();
8207
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8208 8209 8210 8211 8212

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8213
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8214
unlock:
8215 8216 8217
	rcu_read_unlock();
}

8218
/*
8219
 * This routine will record that the cpu is going idle with tick stopped.
8220
 * This info will be used in performing idle load balancing in the future.
8221
 */
8222
void nohz_balance_enter_idle(int cpu)
8223
{
8224 8225 8226 8227 8228 8229
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8230 8231
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8232

8233 8234 8235 8236 8237 8238
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8239 8240 8241
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8242 8243 8244 8245 8246
}
#endif

static DEFINE_SPINLOCK(balancing);

8247 8248 8249 8250
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8251
void update_max_interval(void)
8252 8253 8254 8255
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8256 8257 8258 8259
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8260
 * Balancing parameters are set up in init_sched_domains.
8261
 */
8262
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8263
{
8264
	int continue_balancing = 1;
8265
	int cpu = rq->cpu;
8266
	unsigned long interval;
8267
	struct sched_domain *sd;
8268 8269 8270
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8271 8272
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8273

8274
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8275

8276
	rcu_read_lock();
8277
	for_each_domain(cpu, sd) {
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8290 8291 8292
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8304
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8305 8306 8307 8308 8309 8310 8311 8312

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8313
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8314
				/*
8315
				 * The LBF_DST_PINNED logic could have changed
8316 8317
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8318
				 */
8319
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8320 8321
			}
			sd->last_balance = jiffies;
8322
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8323 8324 8325 8326 8327 8328 8329 8330
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8331 8332
	}
	if (need_decay) {
8333
		/*
8334 8335
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8336
		 */
8337 8338
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8339
	}
8340
	rcu_read_unlock();
8341 8342 8343 8344 8345 8346

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8347
	if (likely(update_next_balance)) {
8348
		rq->next_balance = next_balance;
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8363 8364
}

8365
#ifdef CONFIG_NO_HZ_COMMON
8366
/*
8367
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8368 8369
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8370
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8371
{
8372
	int this_cpu = this_rq->cpu;
8373 8374
	struct rq *rq;
	int balance_cpu;
8375 8376 8377
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8378

8379 8380 8381
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8382 8383

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8384
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8385 8386 8387 8388 8389 8390 8391
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8392
		if (need_resched())
8393 8394
			break;

V
Vincent Guittot 已提交
8395 8396
		rq = cpu_rq(balance_cpu);

8397 8398 8399 8400 8401 8402 8403
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8404
			cpu_load_update_idle(rq);
8405 8406 8407
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8408

8409 8410 8411 8412
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8413
	}
8414 8415 8416 8417 8418 8419 8420 8421

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8422 8423
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8424 8425 8426
}

/*
8427
 * Current heuristic for kicking the idle load balancer in the presence
8428
 * of an idle cpu in the system.
8429
 *   - This rq has more than one task.
8430 8431 8432 8433
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8434 8435
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8436
 */
8437
static inline bool nohz_kick_needed(struct rq *rq)
8438 8439
{
	unsigned long now = jiffies;
8440
	struct sched_domain_shared *sds;
8441
	struct sched_domain *sd;
8442
	int nr_busy, cpu = rq->cpu;
8443
	bool kick = false;
8444

8445
	if (unlikely(rq->idle_balance))
8446
		return false;
8447

8448 8449 8450 8451
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8452
	set_cpu_sd_state_busy();
8453
	nohz_balance_exit_idle(cpu);
8454 8455 8456 8457 8458 8459

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8460
		return false;
8461 8462

	if (time_before(now, nohz.next_balance))
8463
		return false;
8464

8465
	if (rq->nr_running >= 2)
8466
		return true;
8467

8468
	rcu_read_lock();
8469 8470 8471 8472 8473 8474 8475
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8476 8477 8478 8479 8480
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8481
	}
8482

8483 8484 8485 8486 8487 8488 8489 8490
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8491

8492
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8493
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8494 8495 8496 8497
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8498

8499
unlock:
8500
	rcu_read_unlock();
8501
	return kick;
8502 8503
}
#else
8504
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8505 8506 8507 8508 8509 8510
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8511 8512
static void run_rebalance_domains(struct softirq_action *h)
{
8513
	struct rq *this_rq = this_rq();
8514
	enum cpu_idle_type idle = this_rq->idle_balance ?
8515 8516 8517
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8518
	 * If this cpu has a pending nohz_balance_kick, then do the
8519
	 * balancing on behalf of the other idle cpus whose ticks are
8520 8521 8522 8523
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8524
	 */
8525
	nohz_idle_balance(this_rq, idle);
8526
	rebalance_domains(this_rq, idle);
8527 8528 8529 8530 8531
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8532
void trigger_load_balance(struct rq *rq)
8533 8534
{
	/* Don't need to rebalance while attached to NULL domain */
8535 8536 8537 8538
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8539
		raise_softirq(SCHED_SOFTIRQ);
8540
#ifdef CONFIG_NO_HZ_COMMON
8541
	if (nohz_kick_needed(rq))
8542
		nohz_balancer_kick();
8543
#endif
8544 8545
}

8546 8547 8548
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8549 8550

	update_runtime_enabled(rq);
8551 8552 8553 8554 8555
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8556 8557 8558

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8559 8560
}

8561
#endif /* CONFIG_SMP */
8562

8563 8564 8565
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8566
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8567 8568 8569 8570 8571 8572
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8573
		entity_tick(cfs_rq, se, queued);
8574
	}
8575

8576
	if (static_branch_unlikely(&sched_numa_balancing))
8577
		task_tick_numa(rq, curr);
8578 8579 8580
}

/*
P
Peter Zijlstra 已提交
8581 8582 8583
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8584
 */
P
Peter Zijlstra 已提交
8585
static void task_fork_fair(struct task_struct *p)
8586
{
8587 8588
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8589
	struct rq *rq = this_rq();
8590

8591
	raw_spin_lock(&rq->lock);
8592 8593
	update_rq_clock(rq);

8594 8595
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8596 8597
	if (curr) {
		update_curr(cfs_rq);
8598
		se->vruntime = curr->vruntime;
8599
	}
8600
	place_entity(cfs_rq, se, 1);
8601

P
Peter Zijlstra 已提交
8602
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8603
		/*
8604 8605 8606
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8607
		swap(curr->vruntime, se->vruntime);
8608
		resched_curr(rq);
8609
	}
8610

8611
	se->vruntime -= cfs_rq->min_vruntime;
8612
	raw_spin_unlock(&rq->lock);
8613 8614
}

8615 8616 8617 8618
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8619 8620
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8621
{
8622
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8623 8624
		return;

8625 8626 8627 8628 8629
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8630
	if (rq->curr == p) {
8631
		if (p->prio > oldprio)
8632
			resched_curr(rq);
8633
	} else
8634
		check_preempt_curr(rq, p, 0);
8635 8636
}

8637
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8638 8639 8640 8641
{
	struct sched_entity *se = &p->se;

	/*
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8652
	 *
8653 8654 8655 8656
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8657
	 */
8658 8659 8660 8661 8662 8663 8664 8665 8666 8667
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8668
	u64 now = cfs_rq_clock_task(cfs_rq);
8669 8670

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8671 8672 8673 8674 8675 8676 8677
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8678

8679
	/* Catch up with the cfs_rq and remove our load when we leave */
8680
	update_cfs_rq_load_avg(now, cfs_rq, false);
8681
	detach_entity_load_avg(cfs_rq, se);
8682
	update_tg_load_avg(cfs_rq, false);
P
Peter Zijlstra 已提交
8683 8684
}

8685
static void attach_task_cfs_rq(struct task_struct *p)
8686
{
8687
	struct sched_entity *se = &p->se;
8688
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8689
	u64 now = cfs_rq_clock_task(cfs_rq);
8690 8691

#ifdef CONFIG_FAIR_GROUP_SCHED
8692 8693 8694 8695 8696 8697
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8698

8699
	/* Synchronize task with its cfs_rq */
8700
	update_cfs_rq_load_avg(now, cfs_rq, false);
8701
	attach_entity_load_avg(cfs_rq, se);
8702
	update_tg_load_avg(cfs_rq, false);
8703 8704 8705 8706

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8707

8708 8709 8710 8711 8712 8713 8714 8715
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8716

8717
	if (task_on_rq_queued(p)) {
8718
		/*
8719 8720 8721
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8722
		 */
8723 8724 8725 8726
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8727
	}
8728 8729
}

8730 8731 8732 8733 8734 8735 8736 8737 8738
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8739 8740 8741 8742 8743 8744 8745
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8746 8747
}

8748 8749 8750 8751 8752 8753 8754
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8755
#ifdef CONFIG_SMP
8756 8757
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8758
#endif
8759 8760
}

P
Peter Zijlstra 已提交
8761
#ifdef CONFIG_FAIR_GROUP_SCHED
8762 8763 8764 8765 8766 8767 8768 8769
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

8770
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8771
{
8772
	detach_task_cfs_rq(p);
8773
	set_task_rq(p, task_cpu(p));
8774 8775 8776 8777 8778

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8779
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8780
}
8781

8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

8795 8796 8797 8798 8799 8800 8801 8802 8803
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8804
		if (tg->se)
8805 8806 8807 8808 8809 8810 8811 8812 8813 8814
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8815 8816
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8831 8832
		rq = cpu_rq(i);

8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8845
		init_entity_runnable_average(se);
8846 8847 8848 8849 8850 8851 8852 8853 8854 8855
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
		post_init_entity_util_avg(se);
8868
		sync_throttle(tg, i);
8869 8870 8871 8872
		raw_spin_unlock_irq(&rq->lock);
	}
}

8873
void unregister_fair_sched_group(struct task_group *tg)
8874 8875
{
	unsigned long flags;
8876 8877
	struct rq *rq;
	int cpu;
8878

8879 8880 8881
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8882

8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8915
	if (!parent) {
8916
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8917 8918
		se->depth = 0;
	} else {
8919
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8920 8921
		se->depth = parent->depth + 1;
	}
8922 8923

	se->my_q = cfs_rq;
8924 8925
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8956 8957 8958

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8959
		for_each_sched_entity(se)
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8977 8978
void online_fair_sched_group(struct task_group *tg) { }

8979
void unregister_fair_sched_group(struct task_group *tg) { }
8980 8981 8982

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8983

8984
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8985 8986 8987 8988 8989 8990 8991 8992 8993
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8994
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8995 8996 8997 8998

	return rr_interval;
}

8999 9000 9001
/*
 * All the scheduling class methods:
 */
9002
const struct sched_class fair_sched_class = {
9003
	.next			= &idle_sched_class,
9004 9005 9006
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9007
	.yield_to_task		= yield_to_task_fair,
9008

I
Ingo Molnar 已提交
9009
	.check_preempt_curr	= check_preempt_wakeup,
9010 9011 9012 9013

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9014
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9015
	.select_task_rq		= select_task_rq_fair,
9016
	.migrate_task_rq	= migrate_task_rq_fair,
9017

9018 9019
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9020

9021
	.task_dead		= task_dead_fair,
9022
	.set_cpus_allowed	= set_cpus_allowed_common,
9023
#endif
9024

9025
	.set_curr_task          = set_curr_task_fair,
9026
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9027
	.task_fork		= task_fork_fair,
9028 9029

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9030
	.switched_from		= switched_from_fair,
9031
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9032

9033 9034
	.get_rr_interval	= get_rr_interval_fair,

9035 9036
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9037
#ifdef CONFIG_FAIR_GROUP_SCHED
9038
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9039
#endif
9040 9041 9042
};

#ifdef CONFIG_SCHED_DEBUG
9043
void print_cfs_stats(struct seq_file *m, int cpu)
9044 9045 9046
{
	struct cfs_rq *cfs_rq;

9047
	rcu_read_lock();
9048
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9049
		print_cfs_rq(m, cpu, cfs_rq);
9050
	rcu_read_unlock();
9051
}
9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9073 9074 9075 9076 9077 9078

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9079
#ifdef CONFIG_NO_HZ_COMMON
9080
	nohz.next_balance = jiffies;
9081 9082 9083 9084 9085
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}