fair.c 274.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22
 */
23
#include "sched.h"
24 25 26

#include <trace/events/sched.h>

27
/*
28
 * Targeted preemption latency for CPU-bound tasks:
29
 *
30
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
31 32 33
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
34
 *
I
Ingo Molnar 已提交
35 36
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
37 38
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39
 */
40 41
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
42

43 44 45 46
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
47 48 49 50 51 52
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53
 */
54
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55

56
/*
57
 * Minimal preemption granularity for CPU-bound tasks:
58
 *
59
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60
 */
61 62
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 64

/*
65
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66
 */
67
static unsigned int sched_nr_latency = 8;
68 69

/*
70
 * After fork, child runs first. If set to 0 (default) then
71
 * parent will (try to) run first.
72
 */
73
unsigned int sysctl_sched_child_runs_first __read_mostly;
74 75 76 77 78 79 80

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
81 82
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83
 */
84 85
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86

87
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88

T
Tim Chen 已提交
89 90
#ifdef CONFIG_SMP
/*
91
 * For asym packing, by default the lower numbered CPU has higher priority.
T
Tim Chen 已提交
92 93 94 95 96 97 98
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

99 100 101 102 103 104 105 106 107
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
108 109 110
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
111 112
#endif

113 114
/*
 * The margin used when comparing utilization with CPU capacity:
115
 * util * margin < capacity * 1024
116 117
 *
 * (default: ~20%)
118
 */
119
unsigned int capacity_margin				= 1280;
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

139 140 141 142 143 144 145 146 147
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
148
static unsigned int get_update_sysctl_factor(void)
149
{
150
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

186
#define WMULT_CONST	(~0U)
187 188
#define WMULT_SHIFT	32

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
205 206

/*
207 208 209 210
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
211
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212 213 214 215 216
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
217
 */
218
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219
{
220 221
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
222

223
	__update_inv_weight(lw);
224

225 226 227 228 229
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
230 231
	}

232 233
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
234

235 236 237 238
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
239

240
	return mul_u64_u32_shr(delta_exec, fact, shift);
241 242 243 244
}


const struct sched_class fair_sched_class;
245

246 247 248 249
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

250
#ifdef CONFIG_FAIR_GROUP_SCHED
251

252
/* cpu runqueue to which this cfs_rq is attached */
253 254
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
255
	return cfs_rq->rq;
256 257
}

258 259
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
260

261 262
static inline struct task_struct *task_of(struct sched_entity *se)
{
263
	SCHED_WARN_ON(!entity_is_task(se));
264 265 266
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

288 289 290
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
291 292
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
293 294 295
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
296 297 298 299 300
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
301 302
		 */
		if (cfs_rq->tg->parent &&
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
323
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
344
		}
345 346 347 348 349 350 351 352 353 354 355 356 357

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
358
/* Iterate thr' all leaf cfs_rq's on a runqueue */
359 360 361
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
362 363

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
364
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
365 366 367
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
368
		return se->cfs_rq;
P
Peter Zijlstra 已提交
369

P
Peter Zijlstra 已提交
370
	return NULL;
P
Peter Zijlstra 已提交
371 372 373 374 375 376 377
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

378 379 380 381 382 383 384 385 386 387 388 389 390
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
391 392
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

410 411 412 413 414 415
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
416

417 418 419
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
420 421 422 423
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
424 425
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
426

P
Peter Zijlstra 已提交
427
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
428
{
P
Peter Zijlstra 已提交
429
	return &task_rq(p)->cfs;
430 431
}

P
Peter Zijlstra 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

446 447 448 449 450 451 452 453
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

454 455
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
456 457 458 459 460 461

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

462 463 464 465 466
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
467 468
#endif	/* CONFIG_FAIR_GROUP_SCHED */

469
static __always_inline
470
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
471 472 473 474 475

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

476
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
477
{
478
	s64 delta = (s64)(vruntime - max_vruntime);
479
	if (delta > 0)
480
		max_vruntime = vruntime;
481

482
	return max_vruntime;
483 484
}

485
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

494 495 496 497 498 499
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

500 501
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
502
	struct sched_entity *curr = cfs_rq->curr;
503
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
504

505 506
	u64 vruntime = cfs_rq->min_vruntime;

507 508 509 510 511 512
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
513

514 515 516
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
517

518
		if (!curr)
519 520 521 522 523
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

524
	/* ensure we never gain time by being placed backwards. */
525
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
526 527 528 529
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
530 531
}

532 533 534
/*
 * Enqueue an entity into the rb-tree:
 */
535
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
536
{
537
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
538 539
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
540
	bool leftmost = true;
541 542 543 544 545 546 547 548 549 550 551

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
552
		if (entity_before(se, entry)) {
553 554 555
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
556
			leftmost = false;
557 558 559 560
		}
	}

	rb_link_node(&se->run_node, parent, link);
561 562
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
563 564
}

565
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
566
{
567
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
568 569
}

570
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
571
{
572
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
573 574 575 576 577

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
578 579
}

580 581 582 583 584 585 586 587 588 589 590
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
591
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
592
{
593
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
594

595 596
	if (!last)
		return NULL;
597 598

	return rb_entry(last, struct sched_entity, run_node);
599 600
}

601 602 603 604
/**************************************************************
 * Scheduling class statistics methods:
 */

605
int sched_proc_update_handler(struct ctl_table *table, int write,
606
		void __user *buffer, size_t *lenp,
607 608
		loff_t *ppos)
{
609
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
610
	unsigned int factor = get_update_sysctl_factor();
611 612 613 614 615 616 617

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

618 619 620 621 622 623 624
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

625 626 627
	return 0;
}
#endif
628

629
/*
630
 * delta /= w
631
 */
632
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
633
{
634
	if (unlikely(se->load.weight != NICE_0_LOAD))
635
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
636 637 638 639

	return delta;
}

640 641 642
/*
 * The idea is to set a period in which each task runs once.
 *
643
 * When there are too many tasks (sched_nr_latency) we have to stretch
644 645 646 647
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
648 649
static u64 __sched_period(unsigned long nr_running)
{
650 651 652 653
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
654 655
}

656 657 658 659
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
660
 * s = p*P[w/rw]
661
 */
P
Peter Zijlstra 已提交
662
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663
{
M
Mike Galbraith 已提交
664
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
665

M
Mike Galbraith 已提交
666
	for_each_sched_entity(se) {
L
Lin Ming 已提交
667
		struct load_weight *load;
668
		struct load_weight lw;
L
Lin Ming 已提交
669 670 671

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
672

M
Mike Galbraith 已提交
673
		if (unlikely(!se->on_rq)) {
674
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
675 676 677 678

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
679
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
680 681
	}
	return slice;
682 683
}

684
/*
A
Andrei Epure 已提交
685
 * We calculate the vruntime slice of a to-be-inserted task.
686
 *
687
 * vs = s/w
688
 */
689
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
690
{
691
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
692 693
}

694
#ifdef CONFIG_SMP
695 696 697

#include "sched-pelt.h"

698
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
699 700
static unsigned long task_h_load(struct task_struct *p);

701 702
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
703
{
704
	struct sched_avg *sa = &se->avg;
705

706 707
	memset(sa, 0, sizeof(*sa));

708 709 710 711 712 713 714
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
715 716
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

717 718
	se->runnable_weight = se->load.weight;

719
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
720
}
721

722
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
723
static void attach_entity_cfs_rq(struct sched_entity *se);
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
754
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
755 756 757 758 759 760 761 762 763 764 765 766

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
767 768 769 770 771 772 773

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
774
			update_cfs_rq_load_avg(now, cfs_rq);
775
			attach_entity_load_avg(cfs_rq, se, 0);
776 777 778 779 780
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
781
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
782 783 784 785
			return;
		}
	}

786
	attach_entity_cfs_rq(se);
787 788
}

789
#else /* !CONFIG_SMP */
790
void init_entity_runnable_average(struct sched_entity *se)
791 792
{
}
793 794 795
void post_init_entity_util_avg(struct sched_entity *se)
{
}
796 797 798
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
799
#endif /* CONFIG_SMP */
800

801
/*
802
 * Update the current task's runtime statistics.
803
 */
804
static void update_curr(struct cfs_rq *cfs_rq)
805
{
806
	struct sched_entity *curr = cfs_rq->curr;
807
	u64 now = rq_clock_task(rq_of(cfs_rq));
808
	u64 delta_exec;
809 810 811 812

	if (unlikely(!curr))
		return;

813 814
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
815
		return;
816

I
Ingo Molnar 已提交
817
	curr->exec_start = now;
818

819 820 821 822
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
823
	schedstat_add(cfs_rq->exec_clock, delta_exec);
824 825 826 827

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

828 829 830
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

831
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
832
		cgroup_account_cputime(curtask, delta_exec);
833
		account_group_exec_runtime(curtask, delta_exec);
834
	}
835 836

	account_cfs_rq_runtime(cfs_rq, delta_exec);
837 838
}

839 840 841 842 843
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

844
static inline void
845
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
846
{
847 848 849 850 851 852 853
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
854 855

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
856 857
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
858

859
	__schedstat_set(se->statistics.wait_start, wait_start);
860 861
}

862
static inline void
863 864 865
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
866 867
	u64 delta;

868 869 870 871
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
872 873 874 875 876 877 878 879 880

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
881
			__schedstat_set(se->statistics.wait_start, delta);
882 883 884 885 886
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

887
	__schedstat_set(se->statistics.wait_max,
888
		      max(schedstat_val(se->statistics.wait_max), delta));
889 890 891
	__schedstat_inc(se->statistics.wait_count);
	__schedstat_add(se->statistics.wait_sum, delta);
	__schedstat_set(se->statistics.wait_start, 0);
892 893
}

894
static inline void
895 896 897
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
898 899 900 901 902 903 904
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
905 906 907 908

	if (entity_is_task(se))
		tsk = task_of(se);

909 910
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
911 912 913 914

		if ((s64)delta < 0)
			delta = 0;

915
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
916
			__schedstat_set(se->statistics.sleep_max, delta);
917

918 919
		__schedstat_set(se->statistics.sleep_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 921 922 923 924 925

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
926 927
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
928 929 930 931

		if ((s64)delta < 0)
			delta = 0;

932
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
933
			__schedstat_set(se->statistics.block_max, delta);
934

935 936
		__schedstat_set(se->statistics.block_start, 0);
		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
937 938 939

		if (tsk) {
			if (tsk->in_iowait) {
940 941
				__schedstat_add(se->statistics.iowait_sum, delta);
				__schedstat_inc(se->statistics.iowait_count);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
960 961
}

962 963 964
/*
 * Task is being enqueued - update stats:
 */
965
static inline void
966
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967
{
968 969 970
	if (!schedstat_enabled())
		return;

971 972 973 974
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
975
	if (se != cfs_rq->curr)
976
		update_stats_wait_start(cfs_rq, se);
977 978 979

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
980 981 982
}

static inline void
983
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
984
{
985 986 987 988

	if (!schedstat_enabled())
		return;

989 990 991 992
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
993
	if (se != cfs_rq->curr)
994
		update_stats_wait_end(cfs_rq, se);
995

996 997
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
998

999
		if (tsk->state & TASK_INTERRUPTIBLE)
1000
			__schedstat_set(se->statistics.sleep_start,
1001 1002
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
1003
			__schedstat_set(se->statistics.block_start,
1004
				      rq_clock(rq_of(cfs_rq)));
1005 1006 1007
	}
}

1008 1009 1010 1011
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1012
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1013 1014 1015 1016
{
	/*
	 * We are starting a new run period:
	 */
1017
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1018 1019 1020 1021 1022 1023
}

/**************************************************
 * Scheduling class queueing methods:
 */

1024 1025
#ifdef CONFIG_NUMA_BALANCING
/*
1026 1027 1028
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1029
 */
1030 1031
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1032 1033 1034

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1035

1036 1037 1038
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1086
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1087 1088 1089
	unsigned int scan, floor;
	unsigned int windows = 1;

1090 1091
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1092 1093 1094 1095 1096 1097
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1117 1118
static unsigned int task_scan_max(struct task_struct *p)
{
1119 1120
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1121 1122 1123

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1139 1140 1141
	return max(smin, smax);
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
{
	int mm_users = 0;
	struct mm_struct *mm = p->mm;

	if (mm) {
		mm_users = atomic_read(&mm->mm_users);
		if (mm_users == 1) {
			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
			mm->numa_scan_seq = 0;
		}
	}
	p->node_stamp			= 0;
	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
	p->numa_work.next		= &p->numa_work;
	p->numa_faults			= NULL;
	p->numa_group			= NULL;
	p->last_task_numa_placement	= 0;
	p->last_sum_exec_runtime	= 0;

	/* New address space, reset the preferred nid */
	if (!(clone_flags & CLONE_VM)) {
		p->numa_preferred_nid = -1;
		return;
	}

	/*
	 * New thread, keep existing numa_preferred_nid which should be copied
	 * already by arch_dup_task_struct but stagger when scans start.
	 */
	if (mm) {
		unsigned int delay;

		delay = min_t(unsigned int, task_scan_max(current),
			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
		delay += 2 * TICK_NSEC;
		p->node_stamp = delay;
	}
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1195 1196 1197 1198 1199 1200 1201 1202 1203
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1204 1205 1206 1207 1208
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1209
/*
1210
 * The averaged statistics, shared & private, memory & CPU,
1211 1212 1213 1214 1215
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1216
{
1217
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1218 1219 1220 1221
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1222
	if (!p->numa_faults)
1223 1224
		return 0;

1225 1226
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1227 1228
}

1229 1230 1231 1232 1233
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1234 1235
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1236 1237
}

1238 1239
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1240 1241
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1345 1346 1347 1348 1349 1350
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1351 1352
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1353
{
1354
	unsigned long faults, total_faults;
1355

1356
	if (!p->numa_faults)
1357 1358 1359 1360 1361 1362 1363
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1364
	faults = task_faults(p, nid);
1365 1366
	faults += score_nearby_nodes(p, nid, dist, true);

1367
	return 1000 * faults / total_faults;
1368 1369
}

1370 1371
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1372
{
1373 1374 1375 1376 1377 1378 1379 1380
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1381 1382
		return 0;

1383
	faults = group_faults(p, nid);
1384 1385
	faults += score_nearby_nodes(p, nid, dist, false);

1386
	return 1000 * faults / total_faults;
1387 1388
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1429 1430
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1431
	 */
1432 1433
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1434 1435 1436
		return true;

	/*
1437 1438 1439 1440 1441 1442
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1443
	 */
1444 1445
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1446 1447
}

1448
static unsigned long weighted_cpuload(struct rq *rq);
1449 1450
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1451
static unsigned long capacity_of(int cpu);
1452

1453
/* Cached statistics for all CPUs within a node */
1454
struct numa_stats {
1455
	unsigned long nr_running;
1456
	unsigned long load;
1457 1458

	/* Total compute capacity of CPUs on a node */
1459
	unsigned long compute_capacity;
1460 1461

	/* Approximate capacity in terms of runnable tasks on a node */
1462
	unsigned long task_capacity;
1463
	int has_free_capacity;
1464
};
1465

1466 1467 1468 1469 1470
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1471 1472
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1473 1474 1475 1476 1477 1478

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1479
		ns->load += weighted_cpuload(rq);
1480
		ns->compute_capacity += capacity_of(cpu);
1481 1482

		cpus++;
1483 1484
	}

1485 1486 1487 1488 1489
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1490 1491
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1492 1493 1494 1495
	 */
	if (!cpus)
		return;

1496 1497 1498 1499 1500 1501
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1502
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1503 1504
}

1505 1506
struct task_numa_env {
	struct task_struct *p;
1507

1508 1509
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1510

1511
	struct numa_stats src_stats, dst_stats;
1512

1513
	int imbalance_pct;
1514
	int dist;
1515 1516 1517

	struct task_struct *best_task;
	long best_imp;
1518 1519 1520
	int best_cpu;
};

1521 1522 1523 1524 1525
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1526 1527
	if (p)
		get_task_struct(p);
1528 1529 1530 1531 1532 1533

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1534
static bool load_too_imbalanced(long src_load, long dst_load,
1535 1536
				struct task_numa_env *env)
{
1537 1538
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1550 1551

	/* We care about the slope of the imbalance, not the direction. */
1552 1553
	if (dst_load < src_load)
		swap(dst_load, src_load);
1554 1555

	/* Is the difference below the threshold? */
1556 1557
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1558 1559 1560 1561 1562
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1563
	 * Compare it with the old imbalance.
1564
	 */
1565
	orig_src_load = env->src_stats.load;
1566
	orig_dst_load = env->dst_stats.load;
1567

1568 1569
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1570

1571 1572 1573 1574 1575
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1576 1577
}

1578 1579 1580 1581 1582 1583
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1584 1585
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1586 1587 1588 1589
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1590
	long src_load, dst_load;
1591
	long load;
1592
	long imp = env->p->numa_group ? groupimp : taskimp;
1593
	long moveimp = imp;
1594
	int dist = env->dist;
1595 1596

	rcu_read_lock();
1597 1598
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1599 1600
		cur = NULL;

1601 1602 1603 1604 1605 1606 1607
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
1616
		/* Skip this swap candidate if cannot move to the source CPU: */
1617
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1618 1619
			goto unlock;

1620 1621
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1622
		 * in any group then look only at task weights.
1623
		 */
1624
		if (cur->numa_group == env->p->numa_group) {
1625 1626
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1627 1628 1629 1630 1631 1632
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1633
		} else {
1634 1635 1636 1637 1638 1639
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1640 1641
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1642
			else
1643 1644
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1645
		}
1646 1647
	}

1648
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1649 1650 1651 1652
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1653
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1654
		    !env->dst_stats.has_free_capacity)
1655 1656 1657 1658 1659
			goto unlock;

		goto balance;
	}

1660
	/* Balance doesn't matter much if we're running a task per CPU: */
1661 1662
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1663 1664 1665 1666 1667 1668
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1669 1670 1671
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1690
	if (cur) {
1691 1692 1693
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1694 1695
	}

1696
	if (load_too_imbalanced(src_load, dst_load, env))
1697 1698
		goto unlock;

1699 1700 1701 1702
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1703 1704
	if (!cur) {
		/*
1705
		 * select_idle_siblings() uses an per-CPU cpumask that
1706 1707 1708
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1709 1710
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1711 1712
		local_irq_enable();
	}
1713

1714 1715 1716 1717 1718 1719
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1720 1721
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1722 1723 1724 1725 1726
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1727
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1728 1729 1730
			continue;

		env->dst_cpu = cpu;
1731
		task_numa_compare(env, taskimp, groupimp);
1732 1733 1734
	}
}

1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1752 1753 1754
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1755 1756 1757 1758 1759
		return true;

	return false;
}

1760 1761 1762 1763
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1764

1765
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1766
		.src_nid = task_node(p),
1767 1768 1769 1770 1771

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1772
		.best_cpu = -1,
1773 1774
	};
	struct sched_domain *sd;
1775
	unsigned long taskweight, groupweight;
1776
	int nid, ret, dist;
1777
	long taskimp, groupimp;
1778

1779
	/*
1780 1781 1782 1783 1784 1785
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1786 1787
	 */
	rcu_read_lock();
1788
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1789 1790
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1791 1792
	rcu_read_unlock();

1793 1794 1795 1796 1797 1798 1799
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1800
		p->numa_preferred_nid = task_node(p);
1801 1802 1803
		return -EINVAL;
	}

1804
	env.dst_nid = p->numa_preferred_nid;
1805 1806 1807 1808 1809 1810
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1811
	update_numa_stats(&env.dst_stats, env.dst_nid);
1812

1813
	/* Try to find a spot on the preferred nid. */
1814 1815
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1816

1817 1818 1819 1820 1821 1822 1823
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1824
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1825 1826 1827
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1828

1829
			dist = node_distance(env.src_nid, env.dst_nid);
1830 1831 1832 1833 1834
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1835

1836
			/* Only consider nodes where both task and groups benefit */
1837 1838
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1839
			if (taskimp < 0 && groupimp < 0)
1840 1841
				continue;

1842
			env.dist = dist;
1843 1844
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1845 1846
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1847 1848 1849
		}
	}

1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1858
	if (p->numa_group) {
1859 1860
		struct numa_group *ng = p->numa_group;

1861 1862 1863 1864 1865
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1866
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1867 1868 1869 1870 1871 1872
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1873

1874 1875 1876 1877
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1878
	p->numa_scan_period = task_scan_start(p);
1879

1880
	if (env.best_task == NULL) {
1881 1882 1883
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1884 1885 1886 1887
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1888 1889
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1890 1891
	put_task_struct(env.best_task);
	return ret;
1892 1893
}

1894 1895 1896
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1897 1898
	unsigned long interval = HZ;

1899
	/* This task has no NUMA fault statistics yet */
1900
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1901 1902
		return;

1903
	/* Periodically retry migrating the task to the preferred node */
1904
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1905
	p->numa_migrate_retry = jiffies + interval;
1906 1907

	/* Success if task is already running on preferred CPU */
1908
	if (task_node(p) == p->numa_preferred_nid)
1909 1910 1911
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1912
	task_numa_migrate(p);
1913 1914
}

1915
/*
1916
 * Find out how many nodes on the workload is actively running on. Do this by
1917 1918 1919 1920
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1921
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1922 1923
{
	unsigned long faults, max_faults = 0;
1924
	int nid, active_nodes = 0;
1925 1926 1927 1928 1929 1930 1931 1932 1933

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1934 1935
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1936
	}
1937 1938 1939

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1940 1941
}

1942 1943 1944
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1945 1946 1947
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1948 1949
 */
#define NUMA_PERIOD_SLOTS 10
1950
#define NUMA_PERIOD_THRESHOLD 7
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1962
	int lr_ratio, ps_ratio;
1963 1964 1965 1966 1967 1968 1969 1970
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1971 1972 1973
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1974
	 */
1975
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2011 2012 2013 2014 2015
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
2016 2017 2018
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
2019
		 */
2020 2021
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2022 2023 2024 2025 2026 2027 2028
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2047
		delta = p->se.avg.load_sum;
2048
		*period = LOAD_AVG_MAX;
2049 2050 2051 2052 2053 2054 2055 2056
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2104
		nodemask_t max_group = NODE_MASK_NONE;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2138 2139
		if (!max_faults)
			break;
2140 2141 2142 2143 2144
		nodes = max_group;
	}
	return nid;
}

2145 2146
static void task_numa_placement(struct task_struct *p)
{
2147 2148
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2149
	unsigned long fault_types[2] = { 0, 0 };
2150 2151
	unsigned long total_faults;
	u64 runtime, period;
2152
	spinlock_t *group_lock = NULL;
2153

2154 2155 2156 2157 2158
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2159
	seq = READ_ONCE(p->mm->numa_scan_seq);
2160 2161 2162
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2163
	p->numa_scan_period_max = task_scan_max(p);
2164

2165 2166 2167 2168
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2169 2170 2171
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2172
		spin_lock_irq(group_lock);
2173 2174
	}

2175 2176
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2177 2178
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2179
		unsigned long faults = 0, group_faults = 0;
2180
		int priv;
2181

2182
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2183
			long diff, f_diff, f_weight;
2184

2185 2186 2187 2188
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2189

2190
			/* Decay existing window, copy faults since last scan */
2191 2192 2193
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2194

2195 2196 2197 2198 2199 2200 2201 2202
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2203
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2204
				   (total_faults + 1);
2205 2206
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2207

2208 2209 2210
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2211
			p->total_numa_faults += diff;
2212
			if (p->numa_group) {
2213 2214 2215 2216 2217 2218 2219 2220 2221
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2222
				p->numa_group->total_faults += diff;
2223
				group_faults += p->numa_group->faults[mem_idx];
2224
			}
2225 2226
		}

2227 2228 2229 2230
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2231 2232 2233 2234 2235 2236 2237

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2238 2239
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2240
	if (p->numa_group) {
2241
		numa_group_count_active_nodes(p->numa_group);
2242
		spin_unlock_irq(group_lock);
2243
		max_nid = preferred_group_nid(p, max_group_nid);
2244 2245
	}

2246 2247 2248 2249 2250 2251 2252
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2253
	}
2254 2255
}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2267 2268
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2269 2270 2271 2272 2273 2274 2275 2276 2277
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2278
				    4*nr_node_ids*sizeof(unsigned long);
2279 2280 2281 2282 2283 2284

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2285 2286
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2287
		spin_lock_init(&grp->lock);
2288
		grp->gid = p->pid;
2289
		/* Second half of the array tracks nids where faults happen */
2290 2291
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2292

2293
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2294
			grp->faults[i] = p->numa_faults[i];
2295

2296
		grp->total_faults = p->total_numa_faults;
2297

2298 2299 2300 2301 2302
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2303
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2304 2305

	if (!cpupid_match_pid(tsk, cpupid))
2306
		goto no_join;
2307 2308 2309

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2310
		goto no_join;
2311 2312 2313

	my_grp = p->numa_group;
	if (grp == my_grp)
2314
		goto no_join;
2315 2316 2317 2318 2319 2320

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2321
		goto no_join;
2322 2323 2324 2325 2326

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2327
		goto no_join;
2328

2329 2330 2331 2332 2333 2334 2335
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2336

2337 2338 2339
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2340
	if (join && !get_numa_group(grp))
2341
		goto no_join;
2342 2343 2344 2345 2346 2347

	rcu_read_unlock();

	if (!join)
		return;

2348 2349
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2350

2351
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2352 2353
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2354
	}
2355 2356
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2357 2358 2359 2360 2361

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2362
	spin_unlock_irq(&grp->lock);
2363 2364 2365 2366

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2367 2368 2369 2370 2371
	return;

no_join:
	rcu_read_unlock();
	return;
2372 2373 2374 2375 2376
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2377
	void *numa_faults = p->numa_faults;
2378 2379
	unsigned long flags;
	int i;
2380 2381

	if (grp) {
2382
		spin_lock_irqsave(&grp->lock, flags);
2383
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2384
			grp->faults[i] -= p->numa_faults[i];
2385
		grp->total_faults -= p->total_numa_faults;
2386

2387
		grp->nr_tasks--;
2388
		spin_unlock_irqrestore(&grp->lock, flags);
2389
		RCU_INIT_POINTER(p->numa_group, NULL);
2390 2391 2392
		put_numa_group(grp);
	}

2393
	p->numa_faults = NULL;
2394
	kfree(numa_faults);
2395 2396
}

2397 2398 2399
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2400
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2401 2402
{
	struct task_struct *p = current;
2403
	bool migrated = flags & TNF_MIGRATED;
2404
	int cpu_node = task_node(current);
2405
	int local = !!(flags & TNF_FAULT_LOCAL);
2406
	struct numa_group *ng;
2407
	int priv;
2408

2409
	if (!static_branch_likely(&sched_numa_balancing))
2410 2411
		return;

2412 2413 2414 2415
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2416
	/* Allocate buffer to track faults on a per-node basis */
2417 2418
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2419
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2420

2421 2422
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2423
			return;
2424

2425
		p->total_numa_faults = 0;
2426
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2427
	}
2428

2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2437
		if (!priv && !(flags & TNF_NO_GROUP))
2438
			task_numa_group(p, last_cpupid, flags, &priv);
2439 2440
	}

2441 2442 2443 2444 2445 2446
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2447 2448 2449 2450
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2451 2452
		local = 1;

2453
	task_numa_placement(p);
2454

2455 2456 2457 2458 2459
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2460 2461
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2462 2463
	if (migrated)
		p->numa_pages_migrated += pages;
2464 2465
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2466

2467 2468
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2469
	p->numa_faults_locality[local] += pages;
2470 2471
}

2472 2473
static void reset_ptenuma_scan(struct task_struct *p)
{
2474 2475 2476 2477 2478 2479 2480 2481
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2482
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2483 2484 2485
	p->mm->numa_scan_offset = 0;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2495
	u64 runtime = p->se.sum_exec_runtime;
2496
	struct vm_area_struct *vma;
2497
	unsigned long start, end;
2498
	unsigned long nr_pte_updates = 0;
2499
	long pages, virtpages;
2500

2501
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2515
	if (!mm->numa_next_scan) {
2516 2517
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2518 2519
	}

2520 2521 2522 2523 2524 2525 2526
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2527 2528
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2529
		p->numa_scan_period = task_scan_start(p);
2530
	}
2531

2532
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2533 2534 2535
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2536 2537 2538 2539 2540 2541
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2542 2543 2544
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2545
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2546 2547
	if (!pages)
		return;
2548

2549

2550 2551
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2552
	vma = find_vma(mm, start);
2553 2554
	if (!vma) {
		reset_ptenuma_scan(p);
2555
		start = 0;
2556 2557
		vma = mm->mmap;
	}
2558
	for (; vma; vma = vma->vm_next) {
2559
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2560
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2561
			continue;
2562
		}
2563

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2574 2575 2576 2577 2578 2579
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2580

2581 2582 2583 2584
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2585
			nr_pte_updates = change_prot_numa(vma, start, end);
2586 2587

			/*
2588 2589 2590 2591 2592 2593
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2594 2595 2596
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2597
			virtpages -= (end - start) >> PAGE_SHIFT;
2598

2599
			start = end;
2600
			if (pages <= 0 || virtpages <= 0)
2601
				goto out;
2602 2603

			cond_resched();
2604
		} while (end != vma->vm_end);
2605
	}
2606

2607
out:
2608
	/*
P
Peter Zijlstra 已提交
2609 2610 2611 2612
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2613 2614
	 */
	if (vma)
2615
		mm->numa_scan_offset = start;
2616 2617 2618
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2655
	if (now > curr->node_stamp + period) {
2656
		if (!curr->node_stamp)
2657
			curr->numa_scan_period = task_scan_start(curr);
2658
		curr->node_stamp += period;
2659 2660 2661 2662 2663 2664 2665

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2666

2667 2668 2669 2670
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2671 2672 2673 2674 2675 2676 2677 2678

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2679

2680 2681
#endif /* CONFIG_NUMA_BALANCING */

2682 2683 2684 2685
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2686
	if (!parent_entity(se))
2687
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2688
#ifdef CONFIG_SMP
2689 2690 2691 2692 2693 2694
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2695
#endif
2696 2697 2698 2699 2700 2701 2702
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2703
	if (!parent_entity(se))
2704
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2705
#ifdef CONFIG_SMP
2706 2707
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2708
		list_del_init(&se->group_node);
2709
	}
2710
#endif
2711 2712 2713
	cfs_rq->nr_running--;
}

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
/*
2753
 * XXX we want to get rid of these helpers and use the full load resolution.
2754 2755 2756 2757 2758 2759
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

2760 2761 2762 2763 2764
static inline long se_runnable(struct sched_entity *se)
{
	return scale_load_down(se->runnable_weight);
}

2765 2766 2767
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2768 2769 2770 2771
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2772 2773 2774 2775 2776
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2777 2778 2779 2780 2781
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2808
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2809
			    unsigned long weight, unsigned long runnable)
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2820
	se->runnable_weight = runnable;
2821 2822 2823
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2824 2825 2826 2827 2828 2829 2830
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2847
	reweight_entity(cfs_rq, se, weight, weight);
2848 2849 2850
	load->inv_weight = sched_prio_to_wmult[prio];
}

2851
#ifdef CONFIG_FAIR_GROUP_SCHED
2852
#ifdef CONFIG_SMP
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2891
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2917 2918 2919 2920 2921 2922 2923 2924 2925
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2926
static long calc_group_shares(struct cfs_rq *cfs_rq)
2927
{
2928 2929 2930 2931
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2932

2933
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2934

2935
	tg_weight = atomic_long_read(&tg->load_avg);
2936

2937 2938 2939
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2940

2941
	shares = (tg_shares * load);
2942 2943
	if (tg_weight)
		shares /= tg_weight;
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2957
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2958
}
2959 2960

/*
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2986 2987 2988
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2989 2990 2991 2992 2993 2994 2995
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2996 2997 2998 2999

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
3000

3001 3002
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
3003
#endif /* CONFIG_SMP */
3004

3005 3006
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

3007 3008 3009 3010 3011
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3012
{
3013 3014
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
3015

3016
	if (!gcfs_rq)
3017 3018
		return;

3019
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
3020
		return;
3021

3022
#ifndef CONFIG_SMP
3023
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3024 3025

	if (likely(se->load.weight == shares))
3026
		return;
3027
#else
3028 3029
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3030
#endif
P
Peter Zijlstra 已提交
3031

3032
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3033
}
3034

P
Peter Zijlstra 已提交
3035
#else /* CONFIG_FAIR_GROUP_SCHED */
3036
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3037 3038 3039 3040
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3041
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3042
{
3043 3044
	struct rq *rq = rq_of(cfs_rq);

3045
	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3046 3047 3048
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3049
		 * a real problem.
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3060
		cpufreq_update_util(rq, flags);
3061 3062 3063
	}
}

3064
#ifdef CONFIG_SMP
3065 3066 3067 3068
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
3069
static u64 decay_load(u64 val, u64 n)
3070
{
3071 3072
	unsigned int local_n;

3073
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3074 3075 3076 3077 3078 3079 3080
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
3081 3082
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
3083 3084 3085 3086 3087 3088
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
3089 3090
	}

3091 3092
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
3093 3094
}

3095
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3096
{
3097
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3098

3099
	/*
P
Peter Zijlstra 已提交
3100
	 * c1 = d1 y^p
3101
	 */
3102
	c1 = decay_load((u64)d1, periods);
3103 3104

	/*
P
Peter Zijlstra 已提交
3105
	 *            p-1
3106 3107
	 * c2 = 1024 \Sum y^n
	 *            n=1
3108
	 *
3109 3110
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
3111
	 *              n=0        n=p
3112
	 */
3113
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3114 3115

	return c1 + c2 + c3;
3116 3117
}

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
3129 3130 3131
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
3132
 *
P
Peter Zijlstra 已提交
3133
 *    = u y^p +					(Step 1)
3134
 *
P
Peter Zijlstra 已提交
3135 3136 3137
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
3138 3139 3140
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3141
	       unsigned long load, unsigned long runnable, int running)
3142 3143
{
	unsigned long scale_freq, scale_cpu;
3144
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3145 3146
	u64 periods;

3147
	scale_freq = arch_scale_freq_capacity(cpu);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
3158 3159
		sa->runnable_load_sum =
			decay_load(sa->runnable_load_sum, periods);
3160 3161
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

3162 3163 3164 3165 3166 3167 3168
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
3169 3170 3171
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
3172 3173 3174 3175
	if (load)
		sa->load_sum += load * contrib;
	if (runnable)
		sa->runnable_load_sum += runnable * contrib;
3176 3177 3178 3179 3180 3181
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
3210
static __always_inline int
3211
___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3212
		  unsigned long load, unsigned long runnable, int running)
3213
{
3214
	u64 delta;
3215

3216
	delta = now - sa->last_update_time;
3217 3218 3219 3220 3221
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
3222
		sa->last_update_time = now;
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3233 3234

	sa->last_update_time += delta << 10;
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
3245 3246
	if (!load)
		runnable = running = 0;
3247

3248 3249 3250 3251 3252 3253 3254
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
3255
	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3256
		return 0;
3257

3258 3259 3260 3261
	return 1;
}

static __always_inline void
3262
___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3263 3264 3265
{
	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

3266 3267 3268
	/*
	 * Step 2: update *_avg.
	 */
3269 3270
	sa->load_avg = div_u64(load * sa->load_sum, divider);
	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3271 3272
	sa->util_avg = sa->util_sum / divider;
}
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
/*
 * When a task is dequeued, its estimated utilization should not be update if
 * its util_avg has not been updated at least once.
 * This flag is used to synchronize util_avg updates with util_est updates.
 * We map this information into the LSB bit of the utilization saved at
 * dequeue time (i.e. util_est.dequeued).
 */
#define UTIL_AVG_UNCHANGED 0x1

static inline void cfs_se_util_change(struct sched_avg *avg)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Avoid store if the flag has been already set */
	enqueued = avg->util_est.enqueued;
	if (!(enqueued & UTIL_AVG_UNCHANGED))
		return;

	/* Reset flag to report util_avg has been updated */
	enqueued &= ~UTIL_AVG_UNCHANGED;
	WRITE_ONCE(avg->util_est.enqueued, enqueued);
}

3300 3301 3302
/*
 * sched_entity:
 *
3303 3304 3305 3306 3307 3308 3309
 *   task:
 *     se_runnable() == se_weight()
 *
 *   group: [ see update_cfs_group() ]
 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
 *
3310 3311 3312
 *   load_sum := runnable_sum
 *   load_avg = se_weight(se) * runnable_avg
 *
3313 3314 3315 3316 3317
 *   runnable_load_sum := runnable_sum
 *   runnable_load_avg = se_runnable(se) * runnable_avg
 *
 * XXX collapse load_sum and runnable_load_sum
 *
3318 3319 3320 3321
 * cfq_rs:
 *
 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 *   load_avg = \Sum se->avg.load_avg
3322 3323 3324
 *
 *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
 *   runnable_load_avg = \Sum se->avg.runable_load_avg
3325 3326
 */

3327 3328 3329
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
3330 3331 3332 3333 3334
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3335 3336 3337 3338
		return 1;
	}

	return 0;
3339 3340 3341 3342 3343
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3344 3345 3346 3347 3348
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
				cfs_rq->curr == se)) {
3349

3350
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3351
		cfs_se_util_change(&se->avg);
3352 3353 3354 3355
		return 1;
	}

	return 0;
3356 3357 3358 3359 3360
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
3361 3362
	if (___update_load_sum(now, cpu, &cfs_rq->avg,
				scale_load_down(cfs_rq->load.weight),
3363 3364 3365 3366
				scale_load_down(cfs_rq->runnable_weight),
				cfs_rq->curr != NULL)) {

		___update_load_avg(&cfs_rq->avg, 1, 1);
3367 3368 3369 3370
		return 1;
	}

	return 0;
3371 3372
}

3373
#ifdef CONFIG_FAIR_GROUP_SCHED
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3387
 * Updating tg's load_avg is necessary before update_cfs_share().
3388
 */
3389
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3390
{
3391
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3392

3393 3394 3395 3396 3397 3398
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3399 3400 3401
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3402
	}
3403
}
3404

3405
/*
3406
 * Called within set_task_rq() right before setting a task's CPU. The
3407 3408 3409 3410 3411 3412
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3413 3414 3415
	u64 p_last_update_time;
	u64 n_last_update_time;

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3426 3427
	if (!(se->avg.last_update_time && prev))
		return;
3428 3429

#ifndef CONFIG_64BIT
3430
	{
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3445
	}
3446
#else
3447 3448
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3449
#endif
3450 3451
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3452
}
3453

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3465 3466 3467
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3468 3469 3470 3471 3472 3473 3474 3475
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3476
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3477 3478 3479
 *
 * And per (1) we have:
 *
3480
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3499 3500 3501 3502 3503 3504
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3505
 *
3506
 * So we'll have to approximate.. :/
3507
 *
3508
 * Given the constraint:
3509
 *
3510
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3511
 *
3512 3513
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3514
 *
3515
 * On removal, we'll assume each task is equally runnable; which yields:
3516
 *
3517
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3518
 *
3519
 * XXX: only do this for the part of runnable > running ?
3520 3521 3522
 *
 */

3523
static inline void
3524
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3525 3526 3527 3528 3529 3530 3531
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3532 3533 3534 3535 3536 3537 3538 3539
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3550
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3551
{
3552 3553 3554 3555
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3556

3557 3558
	if (!runnable_sum)
		return;
3559

3560
	gcfs_rq->prop_runnable_sum = 0;
3561

3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
3585
	 * As running sum is scale with CPU capacity wehreas the runnable sum
3586 3587 3588 3589 3590 3591
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3592 3593
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3594

3595 3596
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3597

3598 3599 3600 3601
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3602

3603 3604
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3605 3606
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3607

3608 3609
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3610

3611
	if (se->on_rq) {
3612 3613
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3614 3615 3616
	}
}

3617
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3618
{
3619 3620
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3621 3622 3623 3624 3625
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3626
	struct cfs_rq *cfs_rq, *gcfs_rq;
3627 3628 3629 3630

	if (entity_is_task(se))
		return 0;

3631 3632
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3633 3634
		return 0;

3635 3636
	gcfs_rq->propagate = 0;

3637 3638
	cfs_rq = cfs_rq_of(se);

3639
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3640

3641 3642
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3643 3644 3645 3646

	return 1;
}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3666
	if (gcfs_rq->propagate)
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3677
#else /* CONFIG_FAIR_GROUP_SCHED */
3678

3679
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3680 3681 3682 3683 3684 3685

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3686
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3687

3688
#endif /* CONFIG_FAIR_GROUP_SCHED */
3689

3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3701 3702 3703 3704
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3705
 */
3706
static inline int
3707
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3708
{
3709
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3710
	struct sched_avg *sa = &cfs_rq->avg;
3711
	int decayed = 0;
3712

3713 3714
	if (cfs_rq->removed.nr) {
		unsigned long r;
3715
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3716 3717 3718 3719

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3720
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3721 3722 3723 3724
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3725
		sub_positive(&sa->load_avg, r);
3726
		sub_positive(&sa->load_sum, r * divider);
3727

3728
		r = removed_util;
3729
		sub_positive(&sa->util_avg, r);
3730
		sub_positive(&sa->util_sum, r * divider);
3731

3732
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3733 3734

		decayed = 1;
3735
	}
3736

3737
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3738

3739 3740 3741 3742
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3743

3744
	if (decayed)
3745
		cfs_rq_util_change(cfs_rq, 0);
3746

3747
	return decayed;
3748 3749
}

3750 3751 3752 3753 3754 3755 3756 3757
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3758
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3759
{
3760 3761 3762 3763 3764 3765 3766 3767 3768
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3769
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3788
	enqueue_load_avg(cfs_rq, se);
3789 3790
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3791 3792

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3793

3794
	cfs_rq_util_change(cfs_rq, flags);
3795 3796
}

3797 3798 3799 3800 3801 3802 3803 3804
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3805 3806
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3807
	dequeue_load_avg(cfs_rq, se);
3808 3809
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3810 3811

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3812

3813
	cfs_rq_util_change(cfs_rq, 0);
3814 3815
}

3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

3843 3844 3845 3846 3847 3848 3849 3850
		/*
		 * DO_ATTACH means we're here from enqueue_entity().
		 * !last_update_time means we've passed through
		 * migrate_task_rq_fair() indicating we migrated.
		 *
		 * IOW we're enqueueing a task on a new CPU.
		 */
		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3851 3852 3853 3854 3855 3856
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3857
#ifndef CONFIG_64BIT
3858 3859
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3860
	u64 last_update_time_copy;
3861
	u64 last_update_time;
3862

3863 3864 3865 3866 3867
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3868 3869 3870

	return last_update_time;
}
3871
#else
3872 3873 3874 3875
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3876 3877
#endif

3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3888
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3889 3890
}

3891 3892 3893 3894 3895 3896 3897
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3898
	unsigned long flags;
3899 3900

	/*
3901 3902 3903 3904 3905 3906 3907
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3908 3909
	 */

3910
	sync_entity_load_avg(se);
3911 3912 3913 3914 3915

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3916
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3917
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3918
}
3919

3920 3921
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3922
	return cfs_rq->avg.runnable_load_avg;
3923 3924 3925 3926 3927 3928 3929
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3930
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3931

3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
static inline unsigned long task_util(struct task_struct *p)
{
	return READ_ONCE(p->se.avg.util_avg);
}

static inline unsigned long _task_util_est(struct task_struct *p)
{
	struct util_est ue = READ_ONCE(p->se.avg.util_est);

	return max(ue.ewma, ue.enqueued);
}

static inline unsigned long task_util_est(struct task_struct *p)
{
	return max(task_util(p), _task_util_est(p));
}

static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
				    struct task_struct *p)
{
	unsigned int enqueued;

	if (!sched_feat(UTIL_EST))
		return;

	/* Update root cfs_rq's estimated utilization */
	enqueued  = cfs_rq->avg.util_est.enqueued;
3959
	enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
}

/*
 * Check if a (signed) value is within a specified (unsigned) margin,
 * based on the observation that:
 *
 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
 *
 * NOTE: this only works when value + maring < INT_MAX.
 */
static inline bool within_margin(int value, int margin)
{
	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
}

static void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
{
	long last_ewma_diff;
	struct util_est ue;

	if (!sched_feat(UTIL_EST))
		return;

	/*
	 * Update root cfs_rq's estimated utilization
	 *
	 * If *p is the last task then the root cfs_rq's estimated utilization
	 * of a CPU is 0 by definition.
	 */
	ue.enqueued = 0;
	if (cfs_rq->nr_running) {
		ue.enqueued  = cfs_rq->avg.util_est.enqueued;
		ue.enqueued -= min_t(unsigned int, ue.enqueued,
3995
				     (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	}
	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);

	/*
	 * Skip update of task's estimated utilization when the task has not
	 * yet completed an activation, e.g. being migrated.
	 */
	if (!task_sleep)
		return;

4006 4007 4008 4009 4010 4011 4012 4013
	/*
	 * If the PELT values haven't changed since enqueue time,
	 * skip the util_est update.
	 */
	ue = p->se.avg.util_est;
	if (ue.enqueued & UTIL_AVG_UNCHANGED)
		return;

4014 4015 4016 4017
	/*
	 * Skip update of task's estimated utilization when its EWMA is
	 * already ~1% close to its last activation value.
	 */
4018
	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	last_ewma_diff = ue.enqueued - ue.ewma;
	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
		return;

	/*
	 * Update Task's estimated utilization
	 *
	 * When *p completes an activation we can consolidate another sample
	 * of the task size. This is done by storing the current PELT value
	 * as ue.enqueued and by using this value to update the Exponential
	 * Weighted Moving Average (EWMA):
	 *
	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
	 *
	 * Where 'w' is the weight of new samples, which is configured to be
	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
	 */
	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
	ue.ewma  += last_ewma_diff;
	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
	WRITE_ONCE(p->se.avg.util_est, ue);
}

4046 4047
#else /* CONFIG_SMP */

4048
static inline int
4049
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4050 4051 4052 4053
{
	return 0;
}

4054 4055
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
4056
#define DO_ATTACH	0x0
4057

4058
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4059
{
4060
	cfs_rq_util_change(cfs_rq, 0);
4061 4062
}

4063
static inline void remove_entity_load_avg(struct sched_entity *se) {}
4064

4065
static inline void
4066
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
4067 4068 4069
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

4070
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
4071 4072 4073 4074
{
	return 0;
}

4075 4076 4077 4078 4079 4080 4081
static inline void
util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}

static inline void
util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
		 bool task_sleep) {}

4082
#endif /* CONFIG_SMP */
4083

P
Peter Zijlstra 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
4093
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
4094 4095 4096
#endif
}

4097 4098 4099
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
4100
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
4101

4102 4103 4104 4105 4106 4107
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
4108
	if (initial && sched_feat(START_DEBIT))
4109
		vruntime += sched_vslice(cfs_rq, se);
4110

4111
	/* sleeps up to a single latency don't count. */
4112
	if (!initial) {
4113
		unsigned long thresh = sysctl_sched_latency;
4114

4115 4116 4117 4118 4119 4120
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
4121

4122
		vruntime -= thresh;
4123 4124
	}

4125
	/* ensure we never gain time by being placed backwards. */
4126
	se->vruntime = max_vruntime(se->vruntime, vruntime);
4127 4128
}

4129 4130
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
4143
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4144
			     "stat_blocked and stat_runtime require the "
4145
			     "kernel parameter schedstats=enable or "
4146 4147 4148 4149 4150
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
4170
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

4182
static void
4183
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4184
{
4185 4186 4187
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

4188
	/*
4189 4190
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
4191
	 */
4192
	if (renorm && curr)
4193 4194
		se->vruntime += cfs_rq->min_vruntime;

4195 4196
	update_curr(cfs_rq);

4197
	/*
4198 4199 4200 4201
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
4202
	 */
4203 4204 4205
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

4206 4207 4208 4209 4210 4211 4212 4213
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
4214
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4215
	update_cfs_group(se);
4216
	enqueue_runnable_load_avg(cfs_rq, se);
4217
	account_entity_enqueue(cfs_rq, se);
4218

4219
	if (flags & ENQUEUE_WAKEUP)
4220
		place_entity(cfs_rq, se, 0);
4221

4222
	check_schedstat_required();
4223 4224
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
4225
	if (!curr)
4226
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
4227
	se->on_rq = 1;
4228

4229
	if (cfs_rq->nr_running == 1) {
4230
		list_add_leaf_cfs_rq(cfs_rq);
4231 4232
		check_enqueue_throttle(cfs_rq);
	}
4233 4234
}

4235
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
4236
{
4237 4238
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4239
		if (cfs_rq->last != se)
4240
			break;
4241 4242

		cfs_rq->last = NULL;
4243 4244
	}
}
P
Peter Zijlstra 已提交
4245

4246 4247 4248 4249
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4250
		if (cfs_rq->next != se)
4251
			break;
4252 4253

		cfs_rq->next = NULL;
4254
	}
P
Peter Zijlstra 已提交
4255 4256
}

4257 4258 4259 4260
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4261
		if (cfs_rq->skip != se)
4262
			break;
4263 4264

		cfs_rq->skip = NULL;
4265 4266 4267
	}
}

P
Peter Zijlstra 已提交
4268 4269
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
4270 4271 4272 4273 4274
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
4275 4276 4277

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
4278 4279
}

4280
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4281

4282
static void
4283
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4284
{
4285 4286 4287 4288
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
4289 4290 4291 4292 4293 4294 4295 4296 4297

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
4298
	update_load_avg(cfs_rq, se, UPDATE_TG);
4299
	dequeue_runnable_load_avg(cfs_rq, se);
4300

4301
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
4302

P
Peter Zijlstra 已提交
4303
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4304

4305
	if (se != cfs_rq->curr)
4306
		__dequeue_entity(cfs_rq, se);
4307
	se->on_rq = 0;
4308
	account_entity_dequeue(cfs_rq, se);
4309 4310

	/*
4311 4312 4313 4314
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
4315
	 */
4316
	if (!(flags & DEQUEUE_SLEEP))
4317
		se->vruntime -= cfs_rq->min_vruntime;
4318

4319 4320 4321
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

4322
	update_cfs_group(se);
4323 4324 4325 4326 4327 4328 4329 4330 4331

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
4332 4333 4334 4335 4336
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4337
static void
I
Ingo Molnar 已提交
4338
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4339
{
4340
	unsigned long ideal_runtime, delta_exec;
4341 4342
	struct sched_entity *se;
	s64 delta;
4343

P
Peter Zijlstra 已提交
4344
	ideal_runtime = sched_slice(cfs_rq, curr);
4345
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4346
	if (delta_exec > ideal_runtime) {
4347
		resched_curr(rq_of(cfs_rq));
4348 4349 4350 4351 4352
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4364 4365
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4366

4367 4368
	if (delta < 0)
		return;
4369

4370
	if (delta > ideal_runtime)
4371
		resched_curr(rq_of(cfs_rq));
4372 4373
}

4374
static void
4375
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4376
{
4377 4378 4379 4380 4381 4382 4383
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4384
		update_stats_wait_end(cfs_rq, se);
4385
		__dequeue_entity(cfs_rq, se);
4386
		update_load_avg(cfs_rq, se, UPDATE_TG);
4387 4388
	}

4389
	update_stats_curr_start(cfs_rq, se);
4390
	cfs_rq->curr = se;
4391

I
Ingo Molnar 已提交
4392 4393 4394 4395 4396
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4397
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4398 4399 4400
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4401
	}
4402

4403
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4404 4405
}

4406 4407 4408
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4409 4410 4411 4412 4413 4414 4415
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4416 4417
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4418
{
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4430

4431 4432 4433 4434 4435
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4446 4447 4448
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4449

4450 4451 4452 4453 4454 4455
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4456 4457 4458 4459 4460 4461
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4462
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4463 4464

	return se;
4465 4466
}

4467
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4468

4469
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4470 4471 4472 4473 4474 4475
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4476
		update_curr(cfs_rq);
4477

4478 4479 4480
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4481
	check_spread(cfs_rq, prev);
4482

4483
	if (prev->on_rq) {
4484
		update_stats_wait_start(cfs_rq, prev);
4485 4486
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4487
		/* in !on_rq case, update occurred at dequeue */
4488
		update_load_avg(cfs_rq, prev, 0);
4489
	}
4490
	cfs_rq->curr = NULL;
4491 4492
}

P
Peter Zijlstra 已提交
4493 4494
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4495 4496
{
	/*
4497
	 * Update run-time statistics of the 'current'.
4498
	 */
4499
	update_curr(cfs_rq);
4500

4501 4502 4503
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4504
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4505
	update_cfs_group(curr);
4506

P
Peter Zijlstra 已提交
4507 4508 4509 4510 4511
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4512
	if (queued) {
4513
		resched_curr(rq_of(cfs_rq));
4514 4515
		return;
	}
P
Peter Zijlstra 已提交
4516 4517 4518 4519 4520 4521 4522 4523
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4524
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4525
		check_preempt_tick(cfs_rq, curr);
4526 4527
}

4528 4529 4530 4531 4532 4533

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4534 4535

#ifdef HAVE_JUMP_LABEL
4536
static struct static_key __cfs_bandwidth_used;
4537 4538 4539

static inline bool cfs_bandwidth_used(void)
{
4540
	return static_key_false(&__cfs_bandwidth_used);
4541 4542
}

4543
void cfs_bandwidth_usage_inc(void)
4544
{
4545
	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4546 4547 4548 4549
}

void cfs_bandwidth_usage_dec(void)
{
4550
	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4551 4552 4553 4554 4555 4556 4557
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4558 4559
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4560 4561
#endif /* HAVE_JUMP_LABEL */

4562 4563 4564 4565 4566 4567 4568 4569
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4570 4571 4572 4573 4574 4575

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4576 4577 4578 4579 4580 4581 4582
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4583
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4595 4596 4597 4598 4599
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4600 4601 4602 4603
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4604
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4605

4606
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4607 4608
}

4609 4610
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4611 4612 4613
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4614
	u64 amount = 0, min_amount, expires;
4615 4616 4617 4618 4619 4620 4621

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4622
	else {
P
Peter Zijlstra 已提交
4623
		start_cfs_bandwidth(cfs_b);
4624 4625 4626 4627 4628 4629

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4630
	}
P
Paul Turner 已提交
4631
	expires = cfs_b->runtime_expires;
4632 4633 4634
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4635 4636 4637 4638 4639 4640 4641
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4642 4643

	return cfs_rq->runtime_remaining > 0;
4644 4645
}

P
Paul Turner 已提交
4646 4647 4648 4649 4650
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4651
{
P
Paul Turner 已提交
4652 4653 4654
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4655
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4656 4657
		return;

P
Paul Turner 已提交
4658 4659 4660 4661 4662 4663 4664 4665 4666
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4667 4668 4669
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4670 4671
	 */

4672
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4673 4674 4675 4676 4677 4678 4679 4680
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4681
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4682 4683
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4684
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4685 4686 4687
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4688 4689
		return;

4690 4691 4692 4693 4694
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4695
		resched_curr(rq_of(cfs_rq));
4696 4697
}

4698
static __always_inline
4699
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4700
{
4701
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4702 4703 4704 4705 4706
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4707 4708
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4709
	return cfs_bandwidth_used() && cfs_rq->throttled;
4710 4711
}

4712 4713 4714
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4715
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4743
		/* adjust cfs_rq_clock_task() */
4744
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4745
					     cfs_rq->throttled_clock_task;
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4756 4757
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4758
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4759 4760 4761 4762 4763
	cfs_rq->throttle_count++;

	return 0;
}

4764
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4765 4766 4767 4768 4769
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4770
	bool empty;
4771 4772 4773

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4774
	/* freeze hierarchy runnable averages while throttled */
4775 4776 4777
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4795
		sub_nr_running(rq, task_delta);
4796 4797

	cfs_rq->throttled = 1;
4798
	cfs_rq->throttled_clock = rq_clock(rq);
4799
	raw_spin_lock(&cfs_b->lock);
4800
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4801

4802 4803 4804 4805 4806
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4807 4808 4809 4810 4811 4812 4813 4814

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4815 4816 4817
	raw_spin_unlock(&cfs_b->lock);
}

4818
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4819 4820 4821 4822 4823 4824 4825
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4826
	se = cfs_rq->tg->se[cpu_of(rq)];
4827 4828

	cfs_rq->throttled = 0;
4829 4830 4831

	update_rq_clock(rq);

4832
	raw_spin_lock(&cfs_b->lock);
4833
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4834 4835 4836
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4837 4838 4839
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4858
		add_nr_running(rq, task_delta);
4859

4860
	/* Determine whether we need to wake up potentially idle CPU: */
4861
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4862
		resched_curr(rq);
4863 4864 4865 4866 4867 4868
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4869 4870
	u64 runtime;
	u64 starting_runtime = remaining;
4871 4872 4873 4874 4875

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4876
		struct rq_flags rf;
4877

4878
		rq_lock(rq, &rf);
4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4895
		rq_unlock(rq, &rf);
4896 4897 4898 4899 4900 4901

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4902
	return starting_runtime - remaining;
4903 4904
}

4905 4906 4907 4908 4909 4910 4911 4912
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4913
	u64 runtime, runtime_expires;
4914
	int throttled;
4915 4916 4917

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4918
		goto out_deactivate;
4919

4920
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4921
	cfs_b->nr_periods += overrun;
4922

4923 4924 4925 4926 4927 4928
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4929 4930 4931

	__refill_cfs_bandwidth_runtime(cfs_b);

4932 4933 4934
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4935
		return 0;
4936 4937
	}

4938 4939 4940
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4941 4942 4943
	runtime_expires = cfs_b->runtime_expires;

	/*
4944 4945 4946 4947 4948
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4949
	 */
4950 4951
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4952 4953 4954 4955 4956 4957 4958
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4959 4960

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4961
	}
4962

4963 4964 4965 4966 4967 4968 4969
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4970

4971 4972 4973 4974
	return 0;

out_deactivate:
	return 1;
4975
}
4976

4977 4978 4979 4980 4981 4982 4983
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4984 4985 4986 4987
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4988
 * hrtimer base being cleared by hrtimer_start. In the case of
4989 4990
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
5016 5017 5018
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
5048 5049 5050
	if (!cfs_bandwidth_used())
		return;

5051
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
5067 5068 5069
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
5070
		return;
5071
	}
5072

5073
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5074
		runtime = cfs_b->runtime;
5075

5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
5086
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
5087 5088 5089
	raw_spin_unlock(&cfs_b->lock);
}

5090 5091 5092 5093 5094 5095 5096
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
5097 5098 5099
	if (!cfs_bandwidth_used())
		return;

5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5128
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5129 5130
}

5131
/* conditionally throttle active cfs_rq's from put_prev_entity() */
5132
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5133
{
5134
	if (!cfs_bandwidth_used())
5135
		return false;
5136

5137
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5138
		return false;
5139 5140 5141 5142 5143 5144

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
5145
		return true;
5146 5147

	throttle_cfs_rq(cfs_rq);
5148
	return true;
5149
}
5150 5151 5152 5153 5154

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
5155

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

5168
	raw_spin_lock(&cfs_b->lock);
5169
	for (;;) {
P
Peter Zijlstra 已提交
5170
		overrun = hrtimer_forward_now(timer, cfs_b->period);
5171 5172 5173 5174 5175
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
5176 5177
	if (idle)
		cfs_b->period_active = 0;
5178
	raw_spin_unlock(&cfs_b->lock);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
5191
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
5203
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5204
{
P
Peter Zijlstra 已提交
5205
	lockdep_assert_held(&cfs_b->lock);
5206

P
Peter Zijlstra 已提交
5207 5208 5209 5210 5211
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
5212 5213 5214 5215
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
5216 5217 5218 5219
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

5220 5221 5222 5223
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

5224
/*
5225
 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5226 5227 5228 5229 5230 5231
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
5232 5233
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
5234
	struct task_group *tg;
5235

5236 5237 5238 5239 5240 5241
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5242 5243 5244 5245 5246

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
5247
	rcu_read_unlock();
5248 5249
}

5250
/* cpu offline callback */
5251
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5252
{
5253 5254 5255 5256 5257 5258 5259
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5260 5261 5262 5263 5264 5265 5266 5267

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
5268
		cfs_rq->runtime_remaining = 1;
5269
		/*
5270
		 * Offline rq is schedulable till CPU is completely disabled
5271 5272 5273 5274
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

5275 5276 5277
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
5278
	rcu_read_unlock();
5279 5280 5281
}

#else /* CONFIG_CFS_BANDWIDTH */
5282 5283
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
5284
	return rq_clock_task(rq_of(cfs_rq));
5285 5286
}

5287
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5288
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5289
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5290
static inline void sync_throttle(struct task_group *tg, int cpu) {}
5291
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5292 5293 5294 5295 5296

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5308 5309 5310 5311 5312

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5313 5314
#endif

5315 5316 5317 5318 5319
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5320
static inline void update_runtime_enabled(struct rq *rq) {}
5321
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5322 5323 5324

#endif /* CONFIG_CFS_BANDWIDTH */

5325 5326 5327 5328
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5329 5330 5331 5332 5333 5334
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5335
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5336

5337
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5338 5339 5340 5341 5342 5343
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5344
				resched_curr(rq);
P
Peter Zijlstra 已提交
5345 5346
			return;
		}
5347
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5348 5349
	}
}
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5360
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5361 5362 5363 5364 5365
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5366
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5367 5368 5369 5370
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5371 5372 5373 5374

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5375 5376
#endif

5377 5378 5379 5380 5381
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5382
static void
5383
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5384 5385
{
	struct cfs_rq *cfs_rq;
5386
	struct sched_entity *se = &p->se;
5387

5388 5389 5390 5391 5392 5393 5394 5395
	/*
	 * The code below (indirectly) updates schedutil which looks at
	 * the cfs_rq utilization to select a frequency.
	 * Let's add the task's estimated utilization to the cfs_rq's
	 * estimated utilization, before we update schedutil.
	 */
	util_est_enqueue(&rq->cfs, p);

5396 5397 5398 5399 5400 5401
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5402
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5403

5404
	for_each_sched_entity(se) {
5405
		if (se->on_rq)
5406 5407
			break;
		cfs_rq = cfs_rq_of(se);
5408
		enqueue_entity(cfs_rq, se, flags);
5409 5410 5411 5412 5413 5414

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5415
		 */
5416 5417
		if (cfs_rq_throttled(cfs_rq))
			break;
5418
		cfs_rq->h_nr_running++;
5419

5420
		flags = ENQUEUE_WAKEUP;
5421
	}
P
Peter Zijlstra 已提交
5422

P
Peter Zijlstra 已提交
5423
	for_each_sched_entity(se) {
5424
		cfs_rq = cfs_rq_of(se);
5425
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5426

5427 5428 5429
		if (cfs_rq_throttled(cfs_rq))
			break;

5430
		update_load_avg(cfs_rq, se, UPDATE_TG);
5431
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5432 5433
	}

Y
Yuyang Du 已提交
5434
	if (!se)
5435
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5436

5437
	hrtick_update(rq);
5438 5439
}

5440 5441
static void set_next_buddy(struct sched_entity *se);

5442 5443 5444 5445 5446
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5447
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5448 5449
{
	struct cfs_rq *cfs_rq;
5450
	struct sched_entity *se = &p->se;
5451
	int task_sleep = flags & DEQUEUE_SLEEP;
5452 5453 5454

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5455
		dequeue_entity(cfs_rq, se, flags);
5456 5457 5458 5459 5460 5461 5462 5463 5464

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5465
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5466

5467
		/* Don't dequeue parent if it has other entities besides us */
5468
		if (cfs_rq->load.weight) {
5469 5470
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5471 5472 5473 5474
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5475 5476
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5477
			break;
5478
		}
5479
		flags |= DEQUEUE_SLEEP;
5480
	}
P
Peter Zijlstra 已提交
5481

P
Peter Zijlstra 已提交
5482
	for_each_sched_entity(se) {
5483
		cfs_rq = cfs_rq_of(se);
5484
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5485

5486 5487 5488
		if (cfs_rq_throttled(cfs_rq))
			break;

5489
		update_load_avg(cfs_rq, se, UPDATE_TG);
5490
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5491 5492
	}

Y
Yuyang Du 已提交
5493
	if (!se)
5494
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5495

5496
	util_est_dequeue(&rq->cfs, p, task_sleep);
5497
	hrtick_update(rq);
5498 5499
}

5500
#ifdef CONFIG_SMP
5501 5502 5503 5504 5505

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5506
#ifdef CONFIG_NO_HZ_COMMON
5507 5508 5509 5510 5511
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5512
 * The exact cpuload calculated at every tick would be:
5513
 *
5514 5515
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
5516 5517
 * If a CPU misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when CPU may be busy, then we have:
5518 5519 5520
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5521 5522 5523
 *
 * decay_load_missed() below does efficient calculation of
 *
5524 5525 5526 5527 5528 5529
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5530
 *
5531
 * The calculation is approximated on a 128 point scale.
5532 5533
 */
#define DEGRADE_SHIFT		7
5534 5535 5536 5537 5538 5539 5540 5541 5542

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5572 5573 5574 5575

static struct {
	cpumask_var_t idle_cpus_mask;
	atomic_t nr_cpus;
5576
	int has_blocked;		/* Idle CPUS has blocked load */
5577
	unsigned long next_balance;     /* in jiffy units */
5578
	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5579 5580
} nohz ____cacheline_aligned;

5581
#endif /* CONFIG_NO_HZ_COMMON */
5582

5583
/**
5584
 * __cpu_load_update - update the rq->cpu_load[] statistics
5585 5586 5587 5588
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5589
 * Update rq->cpu_load[] statistics. This function is usually called every
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5616
 * term.
5617
 */
5618 5619
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5620
{
5621
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5633
		old_load = this_rq->cpu_load[i];
5634
#ifdef CONFIG_NO_HZ_COMMON
5635
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5636 5637 5638 5639 5640 5641 5642 5643 5644
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5645
#endif
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5661
/* Used instead of source_load when we know the type == 0 */
5662
static unsigned long weighted_cpuload(struct rq *rq)
5663
{
5664
	return cfs_rq_runnable_load_avg(&rq->cfs);
5665 5666
}

5667
#ifdef CONFIG_NO_HZ_COMMON
5668 5669
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
5670
 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5696
		cpu_load_update(this_rq, load, pending_updates);
5697 5698 5699
	}
}

5700 5701 5702 5703
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5704
static void cpu_load_update_idle(struct rq *this_rq)
5705 5706 5707 5708
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5709
	if (weighted_cpuload(this_rq))
5710 5711
		return;

5712
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5713 5714 5715
}

/*
5716 5717 5718 5719
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5720
 */
5721
void cpu_load_update_nohz_start(void)
5722 5723
{
	struct rq *this_rq = this_rq();
5724 5725 5726 5727 5728 5729

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5730
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5731 5732 5733 5734 5735 5736 5737
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5738
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5739 5740
	struct rq *this_rq = this_rq();
	unsigned long load;
5741
	struct rq_flags rf;
5742 5743 5744 5745

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5746
	load = weighted_cpuload(this_rq);
5747
	rq_lock(this_rq, &rf);
5748
	update_rq_clock(this_rq);
5749
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5750
	rq_unlock(this_rq, &rf);
5751
}
5752 5753 5754 5755 5756 5757 5758 5759
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5760
#ifdef CONFIG_NO_HZ_COMMON
5761 5762
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5763
#endif
5764 5765
	cpu_load_update(this_rq, load, 1);
}
5766 5767 5768 5769

/*
 * Called from scheduler_tick()
 */
5770
void cpu_load_update_active(struct rq *this_rq)
5771
{
5772
	unsigned long load = weighted_cpuload(this_rq);
5773 5774 5775 5776 5777

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5778 5779
}

5780
/*
5781
 * Return a low guess at the load of a migration-source CPU weighted
5782 5783 5784 5785 5786 5787 5788 5789
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5790
	unsigned long total = weighted_cpuload(rq);
5791 5792 5793 5794 5795 5796 5797 5798

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
5799
 * Return a high guess at the load of a migration-target CPU weighted
5800 5801 5802 5803 5804
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5805
	unsigned long total = weighted_cpuload(rq);
5806 5807 5808 5809 5810 5811 5812

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5813
static unsigned long capacity_of(int cpu)
5814
{
5815
	return cpu_rq(cpu)->cpu_capacity;
5816 5817
}

5818 5819 5820 5821 5822
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5823 5824 5825
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5826
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5827
	unsigned long load_avg = weighted_cpuload(rq);
5828 5829

	if (nr_running)
5830
		return load_avg / nr_running;
5831 5832 5833 5834

	return 0;
}

P
Peter Zijlstra 已提交
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5852 5853
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5854
 *
M
Mike Galbraith 已提交
5855
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5868
 */
5869 5870
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5871 5872
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5873
	int factor = this_cpu_read(sd_llc_size);
5874

M
Mike Galbraith 已提交
5875 5876 5877 5878 5879
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5880 5881
}

5882
/*
5883 5884 5885
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5886
 *
5887 5888
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
 *			cache-affine and is (or	will be) idle.
5889 5890 5891 5892
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5893
 */
5894
static int
5895
wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5896
{
5897 5898 5899 5900 5901
	/*
	 * If this_cpu is idle, it implies the wakeup is from interrupt
	 * context. Only allow the move if cache is shared. Otherwise an
	 * interrupt intensive workload could force all tasks onto one
	 * node depending on the IO topology or IRQ affinity settings.
5902 5903 5904 5905 5906 5907
	 *
	 * If the prev_cpu is idle and cache affine then avoid a migration.
	 * There is no guarantee that the cache hot data from an interrupt
	 * is more important than cache hot data on the prev_cpu and from
	 * a cpufreq perspective, it's better to have higher utilisation
	 * on one CPU.
5908
	 */
5909 5910
	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5911

5912
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5913
		return this_cpu;
5914

5915
	return nr_cpumask_bits;
5916 5917
}

5918
static int
5919 5920
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5921 5922 5923 5924
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5925
	this_eff_load = target_load(this_cpu, sd->wake_idx);
5926 5927 5928 5929

	if (sync) {
		unsigned long current_load = task_h_load(current);

5930
		if (current_load > this_eff_load)
5931
			return this_cpu;
5932

5933
		this_eff_load -= current_load;
5934 5935 5936 5937
	}

	task_load = task_h_load(p);

5938 5939 5940 5941
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5942

5943
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5944 5945 5946 5947
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5948

5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
	/*
	 * If sync, adjust the weight of prev_eff_load such that if
	 * prev_eff == this_eff that select_idle_sibling() will consider
	 * stacking the wakee on top of the waker if no other CPU is
	 * idle.
	 */
	if (sync)
		prev_eff_load += 1;

	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5959 5960
}

5961
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5962
		       int this_cpu, int prev_cpu, int sync)
5963
{
5964
	int target = nr_cpumask_bits;
5965

5966
	if (sched_feat(WA_IDLE))
5967
		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5968

5969 5970
	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5971

5972
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5973 5974
	if (target == nr_cpumask_bits)
		return prev_cpu;
5975

5976 5977 5978
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
	return target;
5979 5980
}

5981
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5982 5983 5984

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5985
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5986 5987
}

5988 5989 5990
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5991 5992
 *
 * Assumes p is allowed on at least one CPU in sd.
5993 5994
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5995
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5996
		  int this_cpu, int sd_flag)
5997
{
5998
	struct sched_group *idlest = NULL, *group = sd->groups;
5999
	struct sched_group *most_spare_sg = NULL;
6000 6001 6002
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6003
	unsigned long most_spare = 0, this_spare = 0;
6004
	int load_idx = sd->forkexec_idx;
6005 6006 6007
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
6008

6009 6010 6011
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

6012
	do {
6013 6014
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
6015 6016
		int local_group;
		int i;
6017

6018
		/* Skip over this group if it has no CPUs allowed */
6019
		if (!cpumask_intersects(sched_group_span(group),
6020
					&p->cpus_allowed))
6021 6022 6023
			continue;

		local_group = cpumask_test_cpu(this_cpu,
6024
					       sched_group_span(group));
6025

6026 6027 6028 6029
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
6030
		avg_load = 0;
6031
		runnable_load = 0;
6032
		max_spare_cap = 0;
6033

6034
		for_each_cpu(i, sched_group_span(group)) {
6035
			/* Bias balancing toward CPUs of our domain */
6036 6037 6038 6039 6040
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

6041 6042 6043
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6044 6045 6046 6047 6048

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
6049 6050
		}

6051
		/* Adjust by relative CPU capacity of the group */
6052 6053 6054 6055
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
6056 6057

		if (local_group) {
6058 6059
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
6060 6061
			this_spare = max_spare_cap;
		} else {
6062 6063 6064
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
6065
				 * so we can pick this new CPU:
6066 6067 6068 6069 6070 6071 6072 6073
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
6074
				 * blocked load into account through avg_load:
6075 6076
				 */
				min_avg_load = avg_load;
6077 6078 6079 6080 6081 6082 6083
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
6084 6085 6086
		}
	} while (group = group->next, group != sd->groups);

6087 6088 6089 6090 6091 6092
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
6093 6094 6095 6096
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
6097
	 */
6098 6099 6100
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

6101
	if (this_spare > task_util(p) / 2 &&
6102
	    imbalance_scale*this_spare > 100*most_spare)
6103
		return NULL;
6104 6105

	if (most_spare > task_util(p) / 2)
6106 6107
		return most_spare_sg;

6108
skip_spare:
6109 6110 6111
	if (!idlest)
		return NULL;

6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123
	/*
	 * When comparing groups across NUMA domains, it's possible for the
	 * local domain to be very lightly loaded relative to the remote
	 * domains but "imbalance" skews the comparison making remote CPUs
	 * look much more favourable. When considering cross-domain, add
	 * imbalance to the runnable load on the remote node and consider
	 * staying local.
	 */
	if ((sd->flags & SD_NUMA) &&
	    min_runnable_load + imbalance >= this_runnable_load)
		return NULL;

6124
	if (min_runnable_load > (this_runnable_load + imbalance))
6125
		return NULL;
6126 6127 6128 6129 6130

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

6131 6132 6133 6134
	return idlest;
}

/*
6135
 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6136 6137
 */
static int
6138
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6139 6140
{
	unsigned long load, min_load = ULONG_MAX;
6141 6142 6143 6144
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
6145 6146
	int i;

6147 6148
	/* Check if we have any choice: */
	if (group->group_weight == 1)
6149
		return cpumask_first(sched_group_span(group));
6150

6151
	/* Traverse only the allowed CPUs */
6152
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
6153
		if (available_idle_cpu(i)) {
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
6175
		} else if (shallowest_idle_cpu == -1) {
6176
			load = weighted_cpuload(cpu_rq(i));
6177
			if (load < min_load) {
6178 6179 6180
				min_load = load;
				least_loaded_cpu = i;
			}
6181 6182 6183
		}
	}

6184
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6185
}
6186

6187 6188 6189
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
6190
	int new_cpu = cpu;
6191

6192 6193 6194
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

6195 6196 6197 6198 6199 6200 6201
	/*
	 * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
	 * last_update_time.
	 */
	if (!(sd_flag & SD_BALANCE_FORK))
		sync_entity_load_avg(&p->se);

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
6219
		if (new_cpu == cpu) {
6220
			/* Now try balancing at a lower domain level of 'cpu': */
6221 6222 6223 6224
			sd = sd->child;
			continue;
		}

6225
		/* Now try balancing at a lower domain level of 'new_cpu': */
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
	}

	return new_cpu;
}

6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
6269
void __update_idle_core(struct rq *rq)
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

6282
		if (!available_idle_cpu(cpu))
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6299
	int core, cpu;
6300

P
Peter Zijlstra 已提交
6301 6302 6303
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6304 6305 6306
	if (!test_idle_cores(target, false))
		return -1;

6307
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6308

6309
	for_each_cpu_wrap(core, cpus, target) {
6310 6311 6312 6313
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
6314
			if (!available_idle_cpu(cpu))
6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6337 6338 6339
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6340
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6341
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6342
			continue;
6343
		if (available_idle_cpu(cpu))
6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6368
 */
6369 6370
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6371
	struct sched_domain *this_sd;
6372
	u64 avg_cost, avg_idle;
6373 6374
	u64 time, cost;
	s64 delta;
6375
	int cpu, nr = INT_MAX;
6376

6377 6378 6379 6380
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6381 6382 6383 6384
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6385 6386 6387 6388
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6389 6390
		return -1;

6391 6392 6393 6394 6395 6396 6397 6398
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6399 6400
	time = local_clock();

6401
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6402 6403
		if (!--nr)
			return -1;
6404
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6405
			continue;
6406
		if (available_idle_cpu(cpu))
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6420
 */
6421
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6422
{
6423
	struct sched_domain *sd;
6424
	int i, recent_used_cpu;
6425

6426
	if (available_idle_cpu(target))
6427
		return target;
6428 6429

	/*
6430
	 * If the previous CPU is cache affine and idle, don't be stupid:
6431
	 */
6432
	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6433
		return prev;
6434

6435
	/* Check a recently used CPU as a potential idle candidate: */
6436 6437 6438 6439
	recent_used_cpu = p->recent_used_cpu;
	if (recent_used_cpu != prev &&
	    recent_used_cpu != target &&
	    cpus_share_cache(recent_used_cpu, target) &&
6440
	    available_idle_cpu(recent_used_cpu) &&
6441 6442 6443
	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
		/*
		 * Replace recent_used_cpu with prev as it is a potential
6444
		 * candidate for the next wake:
6445 6446 6447 6448 6449
		 */
		p->recent_used_cpu = prev;
		return recent_used_cpu;
	}

6450
	sd = rcu_dereference(per_cpu(sd_llc, target));
6451 6452
	if (!sd)
		return target;
6453

6454 6455 6456
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6457

6458 6459 6460 6461 6462 6463 6464
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6465

6466 6467
	return target;
}
6468

6469 6470 6471 6472 6473 6474 6475
/**
 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
 * @cpu: the CPU to get the utilization of
 *
 * The unit of the return value must be the one of capacity so we can compare
 * the utilization with the capacity of the CPU that is available for CFS task
 * (ie cpu_capacity).
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
6486 6487 6488 6489 6490 6491 6492 6493
 * The estimated utilization of a CPU is defined to be the maximum between its
 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
 * currently RUNNABLE on that CPU.
 * This allows to properly represent the expected utilization of a CPU which
 * has just got a big task running since a long sleep period. At the same time
 * however it preserves the benefits of the "blocked utilization" in
 * describing the potential for other tasks waking up on the same CPU.
 *
6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6504 6505
 *
 * Return: the (estimated) utilization for the specified CPU
6506
 */
6507
static inline unsigned long cpu_util(int cpu)
6508
{
6509 6510 6511 6512 6513 6514 6515 6516
	struct cfs_rq *cfs_rq;
	unsigned int util;

	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6517

6518
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6519
}
6520

6521
/*
6522
 * cpu_util_wake: Compute CPU utilization with any contributions from
6523 6524
 * the waking task p removed.
 */
6525
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6526
{
6527 6528
	struct cfs_rq *cfs_rq;
	unsigned int util;
6529 6530

	/* Task has no contribution or is new */
6531
	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6532 6533
		return cpu_util(cpu);

6534 6535 6536 6537 6538
	cfs_rq = &cpu_rq(cpu)->cfs;
	util = READ_ONCE(cfs_rq->avg.util_avg);

	/* Discount task's blocked util from CPU's util */
	util -= min_t(unsigned int, util, task_util(p));
6539

6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
	/*
	 * Covered cases:
	 *
	 * a) if *p is the only task sleeping on this CPU, then:
	 *      cpu_util (== task_util) > util_est (== 0)
	 *    and thus we return:
	 *      cpu_util_wake = (cpu_util - task_util) = 0
	 *
	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
	 *    IDLE, then:
	 *      cpu_util >= task_util
	 *      cpu_util > util_est (== 0)
	 *    and thus we discount *p's blocked utilization to return:
	 *      cpu_util_wake = (cpu_util - task_util) >= 0
	 *
	 * c) if other tasks are RUNNABLE on that CPU and
	 *      util_est > cpu_util
	 *    then we use util_est since it returns a more restrictive
	 *    estimation of the spare capacity on that CPU, by just
	 *    considering the expected utilization of tasks already
	 *    runnable on that CPU.
	 *
	 * Cases a) and b) are covered by the above code, while case c) is
	 * covered by the following code when estimated utilization is
	 * enabled.
	 */
	if (sched_feat(UTIL_EST))
		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));

	/*
	 * Utilization (estimated) can exceed the CPU capacity, thus let's
	 * clamp to the maximum CPU capacity to ensure consistency with
	 * the cpu_util call.
	 */
	return min_t(unsigned long, util, capacity_orig_of(cpu));
6575 6576
}

6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6595 6596 6597
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6598 6599 6600
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6601
/*
6602 6603 6604
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6605
 *
6606 6607
 * Balances load by selecting the idlest CPU in the idlest group, or under
 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6608
 *
6609
 * Returns the target CPU number.
6610 6611 6612
 *
 * preempt must be disabled.
 */
6613
static int
6614
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6615
{
6616
	struct sched_domain *tmp, *sd = NULL;
6617
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6618
	int new_cpu = prev_cpu;
6619
	int want_affine = 0;
6620
	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6621

P
Peter Zijlstra 已提交
6622 6623
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6624
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6625
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6626
	}
6627

6628
	rcu_read_lock();
6629
	for_each_domain(cpu, tmp) {
6630
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6631
			break;
6632

6633
		/*
6634
		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6635
		 * cpu is a valid SD_WAKE_AFFINE target.
6636
		 */
6637 6638
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6639 6640 6641 6642
			if (cpu != prev_cpu)
				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);

			sd = NULL; /* Prefer wake_affine over balance flags */
6643
			break;
6644
		}
6645

6646
		if (tmp->flags & sd_flag)
6647
			sd = tmp;
M
Mike Galbraith 已提交
6648 6649
		else if (!want_affine)
			break;
6650 6651
	}

6652 6653
	if (unlikely(sd)) {
		/* Slow path */
6654
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6655 6656 6657 6658 6659 6660 6661
	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
		/* Fast path */

		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);

		if (want_affine)
			current->recent_used_cpu = cpu;
6662
	}
6663
	rcu_read_unlock();
6664

6665
	return new_cpu;
6666
}
6667

6668 6669
static void detach_entity_cfs_rq(struct sched_entity *se);

6670
/*
6671
 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6672
 * cfs_rq_of(p) references at time of call are still valid and identify the
6673
 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6674
 */
6675
static void migrate_task_rq_fair(struct task_struct *p)
6676
{
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6722 6723 6724

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6725 6726

	/* We have migrated, no longer consider this task hot */
6727
	p->se.exec_start = 0;
6728
}
6729 6730 6731 6732 6733

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6734 6735
#endif /* CONFIG_SMP */

6736
static unsigned long wakeup_gran(struct sched_entity *se)
6737 6738 6739 6740
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6741 6742
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6743 6744 6745 6746 6747 6748 6749 6750 6751
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6752
	 */
6753
	return calc_delta_fair(gran, se);
6754 6755
}

6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6778
	gran = wakeup_gran(se);
6779 6780 6781 6782 6783 6784
	if (vdiff > gran)
		return 1;

	return 0;
}

6785 6786
static void set_last_buddy(struct sched_entity *se)
{
6787 6788 6789
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6790 6791 6792
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6793
		cfs_rq_of(se)->last = se;
6794
	}
6795 6796 6797 6798
}

static void set_next_buddy(struct sched_entity *se)
{
6799 6800 6801
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6802 6803 6804
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6805
		cfs_rq_of(se)->next = se;
6806
	}
6807 6808
}

6809 6810
static void set_skip_buddy(struct sched_entity *se)
{
6811 6812
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6813 6814
}

6815 6816 6817
/*
 * Preempt the current task with a newly woken task if needed:
 */
6818
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6819 6820
{
	struct task_struct *curr = rq->curr;
6821
	struct sched_entity *se = &curr->se, *pse = &p->se;
6822
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6823
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6824
	int next_buddy_marked = 0;
6825

I
Ingo Molnar 已提交
6826 6827 6828
	if (unlikely(se == pse))
		return;

6829
	/*
6830
	 * This is possible from callers such as attach_tasks(), in which we
6831 6832 6833 6834 6835 6836 6837
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6838
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6839
		set_next_buddy(pse);
6840 6841
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6842

6843 6844 6845
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6846 6847 6848 6849 6850 6851
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6852 6853 6854 6855
	 */
	if (test_tsk_need_resched(curr))
		return;

6856 6857 6858 6859 6860
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6861
	/*
6862 6863
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6864
	 */
6865
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6866
		return;
6867

6868
	find_matching_se(&se, &pse);
6869
	update_curr(cfs_rq_of(se));
6870
	BUG_ON(!pse);
6871 6872 6873 6874 6875 6876 6877
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6878
		goto preempt;
6879
	}
6880

6881
	return;
6882

6883
preempt:
6884
	resched_curr(rq);
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6899 6900
}

6901
static struct task_struct *
6902
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6903 6904 6905
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6906
	struct task_struct *p;
6907
	int new_tasks;
6908

6909
again:
6910
	if (!cfs_rq->nr_running)
6911
		goto idle;
6912

6913
#ifdef CONFIG_FAIR_GROUP_SCHED
6914
	if (prev->sched_class != &fair_sched_class)
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6934 6935 6936 6937 6938
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6939

6940 6941 6942
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6943
			 * Therefore the nr_running test will indeed
6944 6945
			 * be correct.
			 */
6946 6947 6948 6949 6950 6951
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6952
				goto simple;
6953
			}
6954
		}
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6988
	goto done;
6989 6990
simple:
#endif
6991

6992
	put_prev_task(rq, prev);
6993

6994
	do {
6995
		se = pick_next_entity(cfs_rq, NULL);
6996
		set_next_entity(cfs_rq, se);
6997 6998 6999
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
7000
	p = task_of(se);
7001

7002
done: __maybe_unused;
7003 7004 7005 7006 7007 7008 7009 7010 7011
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

7012 7013
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
7014 7015

	return p;
7016 7017

idle:
7018 7019
	new_tasks = idle_balance(rq, rf);

7020 7021 7022 7023 7024
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
7025
	if (new_tasks < 0)
7026 7027
		return RETRY_TASK;

7028
	if (new_tasks > 0)
7029 7030 7031
		goto again;

	return NULL;
7032 7033 7034 7035 7036
}

/*
 * Account for a descheduled task:
 */
7037
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7038 7039 7040 7041 7042 7043
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
7044
		put_prev_entity(cfs_rq, se);
7045 7046 7047
	}
}

7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
7073 7074 7075 7076 7077
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
7078
		rq_clock_skip_update(rq);
7079 7080 7081 7082 7083
	}

	set_skip_buddy(se);
}

7084 7085 7086 7087
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

7088 7089
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

7100
#ifdef CONFIG_SMP
7101
/**************************************************
P
Peter Zijlstra 已提交
7102 7103 7104 7105 7106
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
7107
 * per-CPU scheduler provides, namely provide a proportional amount of compute
P
Peter Zijlstra 已提交
7108 7109 7110 7111
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
7112
 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
P
Peter Zijlstra 已提交
7113 7114 7115 7116
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
7117
 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7118
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
7119 7120 7121 7122 7123 7124
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
7125
 * C_i is the compute capacity of CPU i, typically it is the
P
Peter Zijlstra 已提交
7126 7127 7128 7129 7130 7131
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
7132
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7146
 * for all i,j solution, we create a tree of CPUs that follows the hardware
P
Peter Zijlstra 已提交
7147
 * topology where each level pairs two lower groups (or better). This results
7148
 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
P
Peter Zijlstra 已提交
7149
 * tree to only the first of the previous level and we decrease the frequency
7150
 * of load-balance at each level inv. proportional to the number of CPUs in
P
Peter Zijlstra 已提交
7151 7152 7153 7154 7155 7156 7157 7158
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
7159
 *         |         |     `- number of CPUs doing load-balance
P
Peter Zijlstra 已提交
7160 7161 7162 7163 7164 7165 7166
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
7167
 * to every other CPU in at most O(log n) steps:
P
Peter Zijlstra 已提交
7168 7169 7170
 *
 * The adjacency matrix of the resulting graph is given by:
 *
7171
 *             log_2 n
P
Peter Zijlstra 已提交
7172 7173 7174 7175 7176 7177 7178
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
7179
 * Showing there's indeed a path between every CPU in at most O(log n) steps.
P
Peter Zijlstra 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
7189
 * balancing is more aggressive and has the newly idle CPU iterate up the domain
P
Peter Zijlstra 已提交
7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
7210
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
P
Peter Zijlstra 已提交
7211 7212 7213 7214 7215 7216
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
7217
 */
7218

7219 7220
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

7221 7222
enum fbq_type { regular, remote, all };

7223
#define LBF_ALL_PINNED	0x01
7224
#define LBF_NEED_BREAK	0x02
7225 7226
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
7227
#define LBF_NOHZ_STATS	0x10
7228
#define LBF_NOHZ_AGAIN	0x20
7229 7230 7231 7232 7233

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
7234
	int			src_cpu;
7235 7236 7237 7238

	int			dst_cpu;
	struct rq		*dst_rq;

7239 7240
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
7241
	enum cpu_idle_type	idle;
7242
	long			imbalance;
7243 7244 7245
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

7246
	unsigned int		flags;
7247 7248 7249 7250

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
7251 7252

	enum fbq_type		fbq_type;
7253
	struct list_head	tasks;
7254 7255
};

7256 7257 7258
/*
 * Is this task likely cache-hot:
 */
7259
static int task_hot(struct task_struct *p, struct lb_env *env)
7260 7261 7262
{
	s64 delta;

7263 7264
	lockdep_assert_held(&env->src_rq->lock);

7265 7266 7267 7268 7269 7270 7271 7272 7273
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
7274
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7275 7276 7277 7278 7279 7280 7281 7282 7283
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

7284
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7285 7286 7287 7288

	return delta < (s64)sysctl_sched_migration_cost;
}

7289
#ifdef CONFIG_NUMA_BALANCING
7290
/*
7291 7292 7293
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
7294
 */
7295
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7296
{
7297
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7298
	unsigned long src_faults, dst_faults;
7299 7300
	int src_nid, dst_nid;

7301
	if (!static_branch_likely(&sched_numa_balancing))
7302 7303
		return -1;

7304
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7305
		return -1;
7306 7307 7308 7309

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

7310
	if (src_nid == dst_nid)
7311
		return -1;
7312

7313 7314 7315 7316 7317 7318 7319
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
7320

7321 7322
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
7323
		return 0;
7324

7325 7326 7327 7328
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

7329 7330 7331 7332 7333 7334
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
7335 7336
	}

7337
	return dst_faults < src_faults;
7338 7339
}

7340
#else
7341
static inline int migrate_degrades_locality(struct task_struct *p,
7342 7343
					     struct lb_env *env)
{
7344
	return -1;
7345
}
7346 7347
#endif

7348 7349 7350 7351
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7352
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7353
{
7354
	int tsk_cache_hot;
7355 7356 7357

	lockdep_assert_held(&env->src_rq->lock);

7358 7359
	/*
	 * We do not migrate tasks that are:
7360
	 * 1) throttled_lb_pair, or
7361
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7362 7363
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7364
	 */
7365 7366 7367
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7368
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7369
		int cpu;
7370

7371
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7372

7373 7374
		env->flags |= LBF_SOME_PINNED;

7375
		/*
7376
		 * Remember if this task can be migrated to any other CPU in
7377 7378 7379
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7380 7381
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7382
		 */
7383
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7384 7385
			return 0;

7386
		/* Prevent to re-select dst_cpu via env's CPUs: */
7387
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7388
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7389
				env->flags |= LBF_DST_PINNED;
7390 7391 7392
				env->new_dst_cpu = cpu;
				break;
			}
7393
		}
7394

7395 7396
		return 0;
	}
7397 7398

	/* Record that we found atleast one task that could run on dst_cpu */
7399
	env->flags &= ~LBF_ALL_PINNED;
7400

7401
	if (task_running(env->src_rq, p)) {
7402
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7403 7404 7405 7406 7407
		return 0;
	}

	/*
	 * Aggressive migration if:
7408 7409 7410
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7411
	 */
7412 7413 7414
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7415

7416
	if (tsk_cache_hot <= 0 ||
7417
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7418
		if (tsk_cache_hot == 1) {
7419 7420
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7421
		}
7422 7423 7424
		return 1;
	}

7425
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7426
	return 0;
7427 7428
}

7429
/*
7430 7431 7432 7433 7434 7435 7436
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7437
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7438 7439 7440
	set_task_cpu(p, env->dst_cpu);
}

7441
/*
7442
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7443 7444
 * part of active balancing operations within "domain".
 *
7445
 * Returns a task if successful and NULL otherwise.
7446
 */
7447
static struct task_struct *detach_one_task(struct lb_env *env)
7448
{
7449
	struct task_struct *p;
7450

7451 7452
	lockdep_assert_held(&env->src_rq->lock);

7453 7454
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7455 7456
		if (!can_migrate_task(p, env))
			continue;
7457

7458
		detach_task(p, env);
7459

7460
		/*
7461
		 * Right now, this is only the second place where
7462
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7463
		 * so we can safely collect stats here rather than
7464
		 * inside detach_tasks().
7465
		 */
7466
		schedstat_inc(env->sd->lb_gained[env->idle]);
7467
		return p;
7468
	}
7469
	return NULL;
7470 7471
}

7472 7473
static const unsigned int sched_nr_migrate_break = 32;

7474
/*
7475 7476
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7477
 *
7478
 * Returns number of detached tasks if successful and 0 otherwise.
7479
 */
7480
static int detach_tasks(struct lb_env *env)
7481
{
7482 7483
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7484
	unsigned long load;
7485 7486 7487
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7488

7489
	if (env->imbalance <= 0)
7490
		return 0;
7491

7492
	while (!list_empty(tasks)) {
7493 7494 7495 7496 7497 7498 7499
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7500
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7501

7502 7503
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7504
		if (env->loop > env->loop_max)
7505
			break;
7506 7507

		/* take a breather every nr_migrate tasks */
7508
		if (env->loop > env->loop_break) {
7509
			env->loop_break += sched_nr_migrate_break;
7510
			env->flags |= LBF_NEED_BREAK;
7511
			break;
7512
		}
7513

7514
		if (!can_migrate_task(p, env))
7515 7516 7517
			goto next;

		load = task_h_load(p);
7518

7519
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7520 7521
			goto next;

7522
		if ((load / 2) > env->imbalance)
7523
			goto next;
7524

7525 7526 7527 7528
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7529
		env->imbalance -= load;
7530 7531

#ifdef CONFIG_PREEMPT
7532 7533
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7534
		 * kernels will stop after the first task is detached to minimize
7535 7536
		 * the critical section.
		 */
7537
		if (env->idle == CPU_NEWLY_IDLE)
7538
			break;
7539 7540
#endif

7541 7542 7543 7544
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7545
		if (env->imbalance <= 0)
7546
			break;
7547 7548 7549

		continue;
next:
7550
		list_move(&p->se.group_node, tasks);
7551
	}
7552

7553
	/*
7554 7555 7556
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7557
	 */
7558
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7559

7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7571
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7572
	p->on_rq = TASK_ON_RQ_QUEUED;
7573 7574 7575 7576 7577 7578 7579 7580 7581
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7582 7583 7584
	struct rq_flags rf;

	rq_lock(rq, &rf);
7585
	update_rq_clock(rq);
7586
	attach_task(rq, p);
7587
	rq_unlock(rq, &rf);
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7598
	struct rq_flags rf;
7599

7600
	rq_lock(env->dst_rq, &rf);
7601
	update_rq_clock(env->dst_rq);
7602 7603 7604 7605

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7606

7607 7608 7609
		attach_task(env->dst_rq, p);
	}

7610
	rq_unlock(env->dst_rq, &rf);
7611 7612
}

7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625
static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->avg.load_avg)
		return true;

	if (cfs_rq->avg.util_avg)
		return true;

	return false;
}

#ifdef CONFIG_FAIR_GROUP_SCHED

7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636
static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7637
	if (cfs_rq->avg.runnable_load_sum)
7638 7639 7640 7641 7642
		return false;

	return true;
}

7643
static void update_blocked_averages(int cpu)
7644 7645
{
	struct rq *rq = cpu_rq(cpu);
7646
	struct cfs_rq *cfs_rq, *pos;
7647
	struct rq_flags rf;
7648
	bool done = true;
7649

7650
	rq_lock_irqsave(rq, &rf);
7651
	update_rq_clock(rq);
7652

7653 7654 7655 7656
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7657
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7658 7659
		struct sched_entity *se;

7660 7661 7662
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7663

7664
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7665
			update_tg_load_avg(cfs_rq, 0);
7666

7667 7668 7669
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7670
			update_load_avg(cfs_rq_of(se), se, 0);
7671 7672 7673 7674 7675 7676 7677

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7678 7679 7680

		/* Don't need periodic decay once load/util_avg are null */
		if (cfs_rq_has_blocked(cfs_rq))
7681
			done = false;
7682
	}
7683 7684 7685

#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7686 7687
	if (done)
		rq->has_blocked_load = 0;
7688
#endif
7689
	rq_unlock_irqrestore(rq, &rf);
7690 7691
}

7692
/*
7693
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7694 7695 7696
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7697
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7698
{
7699 7700
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7701
	unsigned long now = jiffies;
7702
	unsigned long load;
7703

7704
	if (cfs_rq->last_h_load_update == now)
7705 7706
		return;

7707 7708 7709 7710 7711 7712 7713
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7714

7715
	if (!se) {
7716
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7717 7718 7719 7720 7721
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7722 7723
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7724 7725 7726 7727
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7728 7729
}

7730
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7731
{
7732
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7733

7734
	update_cfs_rq_h_load(cfs_rq);
7735
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7736
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7737 7738
}
#else
7739
static inline void update_blocked_averages(int cpu)
7740
{
7741 7742
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7743
	struct rq_flags rf;
7744

7745
	rq_lock_irqsave(rq, &rf);
7746
	update_rq_clock(rq);
7747
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7748 7749
#ifdef CONFIG_NO_HZ_COMMON
	rq->last_blocked_load_update_tick = jiffies;
7750
	if (!cfs_rq_has_blocked(cfs_rq))
7751
		rq->has_blocked_load = 0;
7752
#endif
7753
	rq_unlock_irqrestore(rq, &rf);
7754 7755
}

7756
static unsigned long task_h_load(struct task_struct *p)
7757
{
7758
	return p->se.avg.load_avg;
7759
}
P
Peter Zijlstra 已提交
7760
#endif
7761 7762

/********** Helpers for find_busiest_group ************************/
7763 7764 7765 7766 7767 7768 7769

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7770 7771 7772 7773 7774 7775 7776
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7777
	unsigned long load_per_task;
7778
	unsigned long group_capacity;
7779
	unsigned long group_util; /* Total utilization of the group */
7780 7781 7782
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7783
	enum group_type group_type;
7784
	int group_no_capacity;
7785 7786 7787 7788
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7789 7790
};

J
Joonsoo Kim 已提交
7791 7792 7793 7794 7795 7796 7797
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7798
	unsigned long total_running;
J
Joonsoo Kim 已提交
7799
	unsigned long total_load;	/* Total load of all groups in sd */
7800
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7801 7802 7803
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7804
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7805 7806
};

7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7818
		.total_running = 0UL,
7819
		.total_load = 0UL,
7820
		.total_capacity = 0UL,
7821 7822
		.busiest_stat = {
			.avg_load = 0UL,
7823 7824
			.sum_nr_running = 0,
			.group_type = group_other,
7825 7826 7827 7828
		},
	};
}

7829 7830 7831
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7832
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7833 7834
 *
 * Return: The load index.
7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7857
static unsigned long scale_rt_capacity(int cpu)
7858 7859
{
	struct rq *rq = cpu_rq(cpu);
7860
	u64 total, used, age_stamp, avg;
7861
	s64 delta;
7862

7863 7864 7865 7866
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7867 7868
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7869
	delta = __rq_clock_broken(rq) - age_stamp;
7870

7871 7872 7873 7874
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7875

7876
	used = div_u64(avg, total);
7877

7878 7879
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7880

7881
	return 1;
7882 7883
}

7884
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7885
{
7886
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7887 7888
	struct sched_group *sdg = sd->groups;

7889
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7890

7891
	capacity *= scale_rt_capacity(cpu);
7892
	capacity >>= SCHED_CAPACITY_SHIFT;
7893

7894 7895
	if (!capacity)
		capacity = 1;
7896

7897 7898
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7899
	sdg->sgc->min_capacity = capacity;
7900 7901
}

7902
void update_group_capacity(struct sched_domain *sd, int cpu)
7903 7904 7905
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7906
	unsigned long capacity, min_capacity;
7907 7908 7909 7910
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7911
	sdg->sgc->next_update = jiffies + interval;
7912 7913

	if (!child) {
7914
		update_cpu_capacity(sd, cpu);
7915 7916 7917
		return;
	}

7918
	capacity = 0;
7919
	min_capacity = ULONG_MAX;
7920

P
Peter Zijlstra 已提交
7921 7922 7923 7924 7925 7926
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7927
		for_each_cpu(cpu, sched_group_span(sdg)) {
7928
			struct sched_group_capacity *sgc;
7929
			struct rq *rq = cpu_rq(cpu);
7930

7931
			/*
7932
			 * build_sched_domains() -> init_sched_groups_capacity()
7933 7934 7935
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7936 7937
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7938
			 *
7939
			 * This avoids capacity from being 0 and
7940 7941 7942
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7943
				capacity += capacity_of(cpu);
7944 7945 7946
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7947
			}
7948

7949
			min_capacity = min(capacity, min_capacity);
7950
		}
P
Peter Zijlstra 已提交
7951 7952 7953 7954
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7955
		 */
P
Peter Zijlstra 已提交
7956 7957 7958

		group = child->groups;
		do {
7959 7960 7961 7962
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7963 7964 7965
			group = group->next;
		} while (group != child->groups);
	}
7966

7967
	sdg->sgc->capacity = capacity;
7968
	sdg->sgc->min_capacity = min_capacity;
7969 7970
}

7971
/*
7972 7973 7974
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7975 7976
 */
static inline int
7977
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7978
{
7979 7980
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7981 7982
}

7983 7984
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7985
 * groups is inadequate due to ->cpus_allowed constraints.
7986
 *
7987 7988
 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7989 7990
 * Something like:
 *
7991 7992
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7993 7994 7995
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
7996
 * cpu 3 and leave one of the CPUs in the second group unused.
7997 7998
 *
 * The current solution to this issue is detecting the skew in the first group
7999 8000
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
8001 8002
 *
 * When this is so detected; this group becomes a candidate for busiest; see
8003
 * update_sd_pick_busiest(). And calculate_imbalance() and
8004
 * find_busiest_group() avoid some of the usual balance conditions to allow it
8005 8006 8007 8008 8009 8010 8011
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

8012
static inline int sg_imbalanced(struct sched_group *group)
8013
{
8014
	return group->sgc->imbalance;
8015 8016
}

8017
/*
8018 8019 8020
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
8021 8022
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
8023 8024 8025 8026 8027
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
8028
 */
8029 8030
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8031
{
8032 8033
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
8034

8035
	if ((sgs->group_capacity * 100) >
8036
			(sgs->group_util * env->sd->imbalance_pct))
8037
		return true;
8038

8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
8055

8056
	if ((sgs->group_capacity * 100) <
8057
			(sgs->group_util * env->sd->imbalance_pct))
8058
		return true;
8059

8060
	return false;
8061 8062
}

8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

8074 8075 8076
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
8077
{
8078
	if (sgs->group_no_capacity)
8079 8080 8081 8082 8083 8084 8085 8086
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

8087
static bool update_nohz_stats(struct rq *rq, bool force)
8088 8089 8090 8091
{
#ifdef CONFIG_NO_HZ_COMMON
	unsigned int cpu = rq->cpu;

8092 8093 8094
	if (!rq->has_blocked_load)
		return false;

8095
	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8096
		return false;
8097

8098
	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8099
		return true;
8100 8101

	update_blocked_averages(cpu);
8102 8103 8104 8105

	return rq->has_blocked_load;
#else
	return false;
8106 8107 8108
#endif
}

8109 8110
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8111
 * @env: The load balancing environment.
8112 8113 8114 8115
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
8116
 * @overload: Indicate more than one runnable task for any CPU.
8117
 */
8118 8119
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
8120 8121
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
8122
{
8123
	unsigned long load;
8124
	int i, nr_running;
8125

8126 8127
	memset(sgs, 0, sizeof(*sgs));

8128
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8129 8130
		struct rq *rq = cpu_rq(i);

8131
		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8132
			env->flags |= LBF_NOHZ_AGAIN;
8133

8134
		/* Bias balancing toward CPUs of our domain: */
8135
		if (local_group)
8136
			load = target_load(i, load_idx);
8137
		else
8138 8139 8140
			load = source_load(i, load_idx);

		sgs->group_load += load;
8141
		sgs->group_util += cpu_util(i);
8142
		sgs->sum_nr_running += rq->cfs.h_nr_running;
8143

8144 8145
		nr_running = rq->nr_running;
		if (nr_running > 1)
8146 8147
			*overload = true;

8148 8149 8150 8151
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
8152
		sgs->sum_weighted_load += weighted_cpuload(rq);
8153 8154 8155 8156
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
8157
			sgs->idle_cpus++;
8158 8159
	}

8160 8161
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
8162
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8163

8164
	if (sgs->sum_nr_running)
8165
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8166

8167
	sgs->group_weight = group->group_weight;
8168

8169
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8170
	sgs->group_type = group_classify(group, sgs);
8171 8172
}

8173 8174
/**
 * update_sd_pick_busiest - return 1 on busiest group
8175
 * @env: The load balancing environment.
8176 8177
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
8178
 * @sgs: sched_group statistics
8179 8180 8181
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
8182 8183 8184
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
8185
 */
8186
static bool update_sd_pick_busiest(struct lb_env *env,
8187 8188
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
8189
				   struct sg_lb_stats *sgs)
8190
{
8191
	struct sg_lb_stats *busiest = &sds->busiest_stat;
8192

8193
	if (sgs->group_type > busiest->group_type)
8194 8195
		return true;

8196 8197 8198 8199 8200 8201
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
8216 8217
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
8218 8219
		return true;

8220
	/* No ASYM_PACKING if target CPU is already busy */
8221 8222
	if (env->idle == CPU_NOT_IDLE)
		return true;
8223
	/*
T
Tim Chen 已提交
8224 8225 8226
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
8227
	 */
T
Tim Chen 已提交
8228 8229
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8230 8231 8232
		if (!sds->busiest)
			return true;

8233
		/* Prefer to move from lowest priority CPU's work */
T
Tim Chen 已提交
8234 8235
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
8236 8237 8238 8239 8240 8241
			return true;
	}

	return false;
}

8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

8272
/**
8273
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8274
 * @env: The load balancing environment.
8275 8276
 * @sds: variable to hold the statistics for this sched_domain.
 */
8277
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8278
{
8279 8280
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
8281
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
8282
	struct sg_lb_stats tmp_sgs;
8283
	int load_idx, prefer_sibling = 0;
8284
	bool overload = false;
8285 8286 8287 8288

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

8289
#ifdef CONFIG_NO_HZ_COMMON
8290
	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8291 8292 8293
		env->flags |= LBF_NOHZ_STATS;
#endif

8294
	load_idx = get_sd_load_idx(env->sd, env->idle);
8295 8296

	do {
J
Joonsoo Kim 已提交
8297
		struct sg_lb_stats *sgs = &tmp_sgs;
8298 8299
		int local_group;

8300
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
8301 8302
		if (local_group) {
			sds->local = sg;
8303
			sgs = local;
8304 8305

			if (env->idle != CPU_NEWLY_IDLE ||
8306 8307
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
8308
		}
8309

8310 8311
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
8312

8313 8314 8315
		if (local_group)
			goto next_group;

8316 8317
		/*
		 * In case the child domain prefers tasks go to siblings
8318
		 * first, lower the sg capacity so that we'll try
8319 8320
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
8321 8322 8323 8324
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
8325
		 */
8326
		if (prefer_sibling && sds->local &&
8327 8328
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8329
			sgs->group_no_capacity = 1;
8330
			sgs->group_type = group_classify(sg, sgs);
8331
		}
8332

8333
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8334
			sds->busiest = sg;
J
Joonsoo Kim 已提交
8335
			sds->busiest_stat = *sgs;
8336 8337
		}

8338 8339
next_group:
		/* Now, start updating sd_lb_stats */
8340
		sds->total_running += sgs->sum_nr_running;
8341
		sds->total_load += sgs->group_load;
8342
		sds->total_capacity += sgs->group_capacity;
8343

8344
		sg = sg->next;
8345
	} while (sg != env->sd->groups);
8346

8347 8348 8349 8350 8351 8352 8353 8354 8355
#ifdef CONFIG_NO_HZ_COMMON
	if ((env->flags & LBF_NOHZ_AGAIN) &&
	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {

		WRITE_ONCE(nohz.next_blocked,
			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
	}
#endif

8356 8357
	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8358 8359 8360 8361 8362 8363

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8364 8365 8366 8367
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8368
 *			sched domain.
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8383
 * Return: 1 when packing is required and a task should be moved to
8384
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8385
 *
8386
 * @env: The load balancing environment.
8387 8388
 * @sds: Statistics of the sched_domain which is to be packed
 */
8389
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8390 8391 8392
{
	int busiest_cpu;

8393
	if (!(env->sd->flags & SD_ASYM_PACKING))
8394 8395
		return 0;

8396 8397 8398
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8399 8400 8401
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8402 8403
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8404 8405
		return 0;

8406
	env->imbalance = DIV_ROUND_CLOSEST(
8407
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8408
		SCHED_CAPACITY_SCALE);
8409

8410
	return 1;
8411 8412 8413 8414 8415 8416
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8417
 * @env: The load balancing environment.
8418 8419
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8420 8421
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8422
{
8423
	unsigned long tmp, capa_now = 0, capa_move = 0;
8424
	unsigned int imbn = 2;
8425
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8426
	struct sg_lb_stats *local, *busiest;
8427

J
Joonsoo Kim 已提交
8428 8429
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8430

J
Joonsoo Kim 已提交
8431 8432 8433 8434
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8435

J
Joonsoo Kim 已提交
8436
	scaled_busy_load_per_task =
8437
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8438
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8439

8440 8441
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8442
		env->imbalance = busiest->load_per_task;
8443 8444 8445 8446 8447
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8448
	 * however we may be able to increase total CPU capacity used by
8449 8450 8451
	 * moving them.
	 */

8452
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8453
			min(busiest->load_per_task, busiest->avg_load);
8454
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8455
			min(local->load_per_task, local->avg_load);
8456
	capa_now /= SCHED_CAPACITY_SCALE;
8457 8458

	/* Amount of load we'd subtract */
8459
	if (busiest->avg_load > scaled_busy_load_per_task) {
8460
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8461
			    min(busiest->load_per_task,
8462
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8463
	}
8464 8465

	/* Amount of load we'd add */
8466
	if (busiest->avg_load * busiest->group_capacity <
8467
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8468 8469
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8470
	} else {
8471
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8472
		      local->group_capacity;
J
Joonsoo Kim 已提交
8473
	}
8474
	capa_move += local->group_capacity *
8475
		    min(local->load_per_task, local->avg_load + tmp);
8476
	capa_move /= SCHED_CAPACITY_SCALE;
8477 8478

	/* Move if we gain throughput */
8479
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8480
		env->imbalance = busiest->load_per_task;
8481 8482 8483 8484 8485
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8486
 * @env: load balance environment
8487 8488
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8489
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8490
{
8491
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8492 8493 8494 8495
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8496

8497
	if (busiest->group_type == group_imbalanced) {
8498 8499
		/*
		 * In the group_imb case we cannot rely on group-wide averages
8500
		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8501
		 */
J
Joonsoo Kim 已提交
8502 8503
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8504 8505
	}

8506
	/*
8507 8508 8509 8510
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8511
	 */
8512 8513
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8514 8515
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8516 8517
	}

8518
	/*
8519
	 * If there aren't any idle CPUs, avoid creating some.
8520 8521 8522
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8523
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8524
		if (load_above_capacity > busiest->group_capacity) {
8525
			load_above_capacity -= busiest->group_capacity;
8526
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8527 8528
			load_above_capacity /= busiest->group_capacity;
		} else
8529
			load_above_capacity = ~0UL;
8530 8531 8532
	}

	/*
8533
	 * We're trying to get all the CPUs to the average_load, so we don't
8534
	 * want to push ourselves above the average load, nor do we wish to
8535
	 * reduce the max loaded CPU below the average load. At the same time,
8536 8537
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8538
	 */
8539
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8540 8541

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8542
	env->imbalance = min(
8543 8544
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8545
	) / SCHED_CAPACITY_SCALE;
8546 8547 8548

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8549
	 * there is no guarantee that any tasks will be moved so we'll have
8550 8551 8552
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8553
	if (env->imbalance < busiest->load_per_task)
8554
		return fix_small_imbalance(env, sds);
8555
}
8556

8557 8558 8559 8560
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8561
 * if there is an imbalance.
8562 8563 8564 8565
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8566
 * @env: The load balancing environment.
8567
 *
8568
 * Return:	- The busiest group if imbalance exists.
8569
 */
J
Joonsoo Kim 已提交
8570
static struct sched_group *find_busiest_group(struct lb_env *env)
8571
{
J
Joonsoo Kim 已提交
8572
	struct sg_lb_stats *local, *busiest;
8573 8574
	struct sd_lb_stats sds;

8575
	init_sd_lb_stats(&sds);
8576 8577 8578 8579 8580

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8581
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8582 8583
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8584

8585
	/* ASYM feature bypasses nice load balance check */
8586
	if (check_asym_packing(env, &sds))
8587 8588
		return sds.busiest;

8589
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8590
	if (!sds.busiest || busiest->sum_nr_running == 0)
8591 8592
		goto out_balanced;

8593
	/* XXX broken for overlapping NUMA groups */
8594 8595
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8596

P
Peter Zijlstra 已提交
8597 8598
	/*
	 * If the busiest group is imbalanced the below checks don't
8599
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8600 8601
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8602
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8603 8604
		goto force_balance;

8605 8606 8607 8608 8609
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8610
	    busiest->group_no_capacity)
8611 8612
		goto force_balance;

8613
	/*
8614
	 * If the local group is busier than the selected busiest group
8615 8616
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8617
	if (local->avg_load >= busiest->avg_load)
8618 8619
		goto out_balanced;

8620 8621 8622 8623
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8624
	if (local->avg_load >= sds.avg_load)
8625 8626
		goto out_balanced;

8627
	if (env->idle == CPU_IDLE) {
8628
		/*
8629
		 * This CPU is idle. If the busiest group is not overloaded
8630
		 * and there is no imbalance between this and busiest group
8631
		 * wrt idle CPUs, it is balanced. The imbalance becomes
8632 8633
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8634
		 */
8635 8636
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8637
			goto out_balanced;
8638 8639 8640 8641 8642
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8643 8644
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8645
			goto out_balanced;
8646
	}
8647

8648
force_balance:
8649
	/* Looks like there is an imbalance. Compute it */
8650
	calculate_imbalance(env, &sds);
8651 8652 8653
	return sds.busiest;

out_balanced:
8654
	env->imbalance = 0;
8655 8656 8657 8658
	return NULL;
}

/*
8659
 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8660
 */
8661
static struct rq *find_busiest_queue(struct lb_env *env,
8662
				     struct sched_group *group)
8663 8664
{
	struct rq *busiest = NULL, *rq;
8665
	unsigned long busiest_load = 0, busiest_capacity = 1;
8666 8667
	int i;

8668
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8669
		unsigned long capacity, wl;
8670 8671 8672 8673
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8674

8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8697
		capacity = capacity_of(i);
8698

8699
		wl = weighted_cpuload(rq);
8700

8701 8702
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8703
		 * which is not scaled with the CPU capacity.
8704
		 */
8705 8706 8707

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8708 8709
			continue;

8710
		/*
8711 8712 8713
		 * For the load comparisons with the other CPU's, consider
		 * the weighted_cpuload() scaled with the CPU capacity, so
		 * that the load can be moved away from the CPU that is
8714
		 * potentially running at a lower capacity.
8715
		 *
8716
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8717
		 * multiplication to rid ourselves of the division works out
8718 8719
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8720
		 */
8721
		if (wl * busiest_capacity > busiest_load * capacity) {
8722
			busiest_load = wl;
8723
			busiest_capacity = capacity;
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8737
static int need_active_balance(struct lb_env *env)
8738
{
8739 8740 8741
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8742 8743 8744

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8745 8746
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8747
		 */
T
Tim Chen 已提交
8748 8749
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8750
			return 1;
8751 8752
	}

8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8766 8767 8768
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8769 8770
static int active_load_balance_cpu_stop(void *data);

8771 8772 8773 8774 8775
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8776 8777 8778 8779 8780 8781 8782
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8783
	/*
8784
	 * In the newly idle case, we will allow all the CPUs
8785 8786 8787 8788 8789
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

8790
	/* Try to find first idle CPU */
8791
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8792
		if (!idle_cpu(cpu))
8793 8794 8795 8796 8797 8798 8799 8800 8801 8802
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
8803
	 * First idle CPU or the first CPU(busiest) in this sched group
8804 8805
	 * is eligible for doing load balancing at this and above domains.
	 */
8806
	return balance_cpu == env->dst_cpu;
8807 8808
}

8809 8810 8811 8812 8813 8814
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8815
			int *continue_balancing)
8816
{
8817
	int ld_moved, cur_ld_moved, active_balance = 0;
8818
	struct sched_domain *sd_parent = sd->parent;
8819 8820
	struct sched_group *group;
	struct rq *busiest;
8821
	struct rq_flags rf;
8822
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8823

8824 8825
	struct lb_env env = {
		.sd		= sd,
8826 8827
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8828
		.dst_grpmask    = sched_group_span(sd->groups),
8829
		.idle		= idle,
8830
		.loop_break	= sched_nr_migrate_break,
8831
		.cpus		= cpus,
8832
		.fbq_type	= all,
8833
		.tasks		= LIST_HEAD_INIT(env.tasks),
8834 8835
	};

8836
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8837

8838
	schedstat_inc(sd->lb_count[idle]);
8839 8840

redo:
8841 8842
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8843
		goto out_balanced;
8844
	}
8845

8846
	group = find_busiest_group(&env);
8847
	if (!group) {
8848
		schedstat_inc(sd->lb_nobusyg[idle]);
8849 8850 8851
		goto out_balanced;
	}

8852
	busiest = find_busiest_queue(&env, group);
8853
	if (!busiest) {
8854
		schedstat_inc(sd->lb_nobusyq[idle]);
8855 8856 8857
		goto out_balanced;
	}

8858
	BUG_ON(busiest == env.dst_rq);
8859

8860
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8861

8862 8863 8864
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8865 8866 8867 8868 8869 8870 8871 8872
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8873
		env.flags |= LBF_ALL_PINNED;
8874
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8875

8876
more_balance:
8877
		rq_lock_irqsave(busiest, &rf);
8878
		update_rq_clock(busiest);
8879 8880 8881 8882 8883

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8884
		cur_ld_moved = detach_tasks(&env);
8885 8886

		/*
8887 8888 8889 8890 8891
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8892
		 */
8893

8894
		rq_unlock(busiest, &rf);
8895 8896 8897 8898 8899 8900

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8901
		local_irq_restore(rf.flags);
8902

8903 8904 8905 8906 8907
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8908 8909 8910 8911
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
8912
		 * iterate on same src_cpu is dependent on number of CPUs in our
8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8927
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8928

8929
			/* Prevent to re-select dst_cpu via env's CPUs */
8930 8931
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8932
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8933
			env.dst_cpu	 = env.new_dst_cpu;
8934
			env.flags	&= ~LBF_DST_PINNED;
8935 8936
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8937

8938 8939 8940 8941 8942 8943
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8944

8945 8946 8947 8948
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8949
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8950

8951
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8952 8953 8954
				*group_imbalance = 1;
		}

8955
		/* All tasks on this runqueue were pinned by CPU affinity */
8956
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8957
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8958 8959 8960 8961 8962 8963 8964 8965 8966
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8967 8968
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8969
				goto redo;
8970
			}
8971
			goto out_all_pinned;
8972 8973 8974 8975
		}
	}

	if (!ld_moved) {
8976
		schedstat_inc(sd->lb_failed[idle]);
8977 8978 8979 8980 8981 8982 8983 8984
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8985

8986
		if (need_active_balance(&env)) {
8987 8988
			unsigned long flags;

8989 8990
			raw_spin_lock_irqsave(&busiest->lock, flags);

8991 8992 8993 8994
			/*
			 * Don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest CPU can't be
			 * moved to this_cpu:
8995
			 */
8996
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8997 8998
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8999
				env.flags |= LBF_ALL_PINNED;
9000 9001 9002
				goto out_one_pinned;
			}

9003 9004 9005 9006 9007
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
9008 9009 9010 9011 9012 9013
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9014

9015
			if (active_balance) {
9016 9017 9018
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
9019
			}
9020

9021
			/* We've kicked active balancing, force task migration. */
9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
9035
		 * detach_tasks).
9036 9037 9038 9039 9040 9041 9042 9043
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
9061
	schedstat_inc(sd->lb_balanced[idle]);
9062 9063 9064 9065 9066

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
9067
	if (((env.flags & LBF_ALL_PINNED) &&
9068
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
9069 9070 9071
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

9072
	ld_moved = 0;
9073 9074 9075 9076
out:
	return ld_moved;
}

9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
9093
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9094 9095 9096
{
	unsigned long interval, next;

9097 9098
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
9099 9100 9101 9102 9103 9104
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

9105
/*
9106
 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9107 9108 9109
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
9110
 */
9111
static int active_load_balance_cpu_stop(void *data)
9112
{
9113 9114
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
9115
	int target_cpu = busiest_rq->push_cpu;
9116
	struct rq *target_rq = cpu_rq(target_cpu);
9117
	struct sched_domain *sd;
9118
	struct task_struct *p = NULL;
9119
	struct rq_flags rf;
9120

9121
	rq_lock_irq(busiest_rq, &rf);
9122 9123 9124 9125 9126 9127 9128
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
9129

9130
	/* Make sure the requested CPU hasn't gone down in the meantime: */
9131 9132 9133
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
9134 9135 9136

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
9137
		goto out_unlock;
9138 9139 9140 9141

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
9142
	 * Bjorn Helgaas on a 128-CPU setup.
9143 9144 9145 9146
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
9147
	rcu_read_lock();
9148 9149 9150 9151 9152 9153 9154
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
9155 9156
		struct lb_env env = {
			.sd		= sd,
9157 9158 9159 9160
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
9161
			.idle		= CPU_IDLE,
9162 9163 9164 9165 9166 9167 9168
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
9169 9170
		};

9171
		schedstat_inc(sd->alb_count);
9172
		update_rq_clock(busiest_rq);
9173

9174
		p = detach_one_task(&env);
9175
		if (p) {
9176
			schedstat_inc(sd->alb_pushed);
9177 9178 9179
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
9180
			schedstat_inc(sd->alb_failed);
9181
		}
9182
	}
9183
	rcu_read_unlock();
9184 9185
out_unlock:
	busiest_rq->active_balance = 0;
9186
	rq_unlock(busiest_rq, &rf);
9187 9188 9189 9190 9191 9192

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

9193
	return 0;
9194 9195
}

9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313
static DEFINE_SPINLOCK(balancing);

/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
void update_max_interval(void)
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in init_sched_domains.
 */
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
{
	int continue_balancing = 1;
	int cpu = rq->cpu;
	unsigned long interval;
	struct sched_domain *sd;
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;

	rcu_read_lock();
	for_each_domain(cpu, sd) {
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
				/*
				 * The LBF_DST_PINNED logic could have changed
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
				 */
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
			}
			sd->last_balance = jiffies;
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
	}
	if (need_decay) {
		/*
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
		 */
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
	}
	rcu_read_unlock();

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance)) {
		rq->next_balance = next_balance;

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
}

9314 9315 9316 9317 9318
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

9319
#ifdef CONFIG_NO_HZ_COMMON
9320 9321 9322 9323 9324 9325
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
9326

9327
static inline int find_new_ilb(void)
9328
{
9329
	int ilb = cpumask_first(nohz.idle_cpus_mask);
9330

9331 9332 9333 9334
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
9335 9336
}

9337 9338 9339 9340 9341
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
9342
static void kick_ilb(unsigned int flags)
9343 9344 9345 9346 9347
{
	int ilb_cpu;

	nohz.next_balance++;

9348
	ilb_cpu = find_new_ilb();
9349

9350 9351
	if (ilb_cpu >= nr_cpu_ids)
		return;
9352

9353
	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
P
Peter Zijlstra 已提交
9354
	if (flags & NOHZ_KICK_MASK)
9355
		return;
9356

9357 9358
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
9359
	 * This way we generate a sched IPI on the target CPU which
9360 9361 9362 9363
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382
}

/*
 * Current heuristic for kicking the idle load balancer in the presence
 * of an idle cpu in the system.
 *   - This rq has more than one task.
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
 */
static void nohz_balancer_kick(struct rq *rq)
{
	unsigned long now = jiffies;
	struct sched_domain_shared *sds;
	struct sched_domain *sd;
	int nr_busy, i, cpu = rq->cpu;
9383
	unsigned int flags = 0;
9384 9385 9386 9387 9388 9389 9390 9391

	if (unlikely(rq->idle_balance))
		return;

	/*
	 * We may be recently in ticked or tickless idle mode. At the first
	 * busy tick after returning from idle, we will update the busy stats.
	 */
9392
	nohz_balance_exit_idle(rq);
9393 9394 9395 9396 9397 9398 9399 9400

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
		return;

9401 9402
	if (READ_ONCE(nohz.has_blocked) &&
	    time_after(now, READ_ONCE(nohz.next_blocked)))
9403 9404
		flags = NOHZ_STATS_KICK;

9405
	if (time_before(now, nohz.next_balance))
9406
		goto out;
9407 9408

	if (rq->nr_running >= 2) {
9409
		flags = NOHZ_KICK_MASK;
9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
		goto out;
	}

	rcu_read_lock();
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
		if (nr_busy > 1) {
9422
			flags = NOHZ_KICK_MASK;
9423 9424 9425 9426 9427 9428 9429 9430 9431
			goto unlock;
		}

	}

	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
9432
			flags = NOHZ_KICK_MASK;
9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444
			goto unlock;
		}
	}

	sd = rcu_dereference(per_cpu(sd_asym, cpu));
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;

			if (sched_asym_prefer(i, cpu)) {
9445
				flags = NOHZ_KICK_MASK;
9446 9447 9448 9449 9450 9451 9452
				goto unlock;
			}
		}
	}
unlock:
	rcu_read_unlock();
out:
9453 9454
	if (flags)
		kick_ilb(flags);
9455 9456
}

9457
static void set_cpu_sd_state_busy(int cpu)
9458
{
9459
	struct sched_domain *sd;
9460

9461 9462
	rcu_read_lock();
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9463

9464 9465 9466 9467 9468 9469 9470
	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

	atomic_inc(&sd->shared->nr_busy_cpus);
unlock:
	rcu_read_unlock();
9471 9472
}

9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487
void nohz_balance_exit_idle(struct rq *rq)
{
	SCHED_WARN_ON(rq != this_rq());

	if (likely(!rq->nohz_tick_stopped))
		return;

	rq->nohz_tick_stopped = 0;
	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
	atomic_dec(&nohz.nr_cpus);

	set_cpu_sd_state_busy(rq->cpu);
}

static void set_cpu_sd_state_idle(int cpu)
9488 9489 9490 9491
{
	struct sched_domain *sd;

	rcu_read_lock();
9492
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9493 9494 9495 9496 9497

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9498
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9499
unlock:
9500 9501 9502
	rcu_read_unlock();
}

9503
/*
9504
 * This routine will record that the CPU is going idle with tick stopped.
9505
 * This info will be used in performing idle load balancing in the future.
9506
 */
9507
void nohz_balance_enter_idle(int cpu)
9508
{
9509 9510 9511 9512
	struct rq *rq = cpu_rq(cpu);

	SCHED_WARN_ON(cpu != smp_processor_id());

9513
	/* If this CPU is going down, then nothing needs to be done: */
9514 9515 9516
	if (!cpu_active(cpu))
		return;

9517
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9518
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9519 9520
		return;

9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533
	/*
	 * Can be set safely without rq->lock held
	 * If a clear happens, it will have evaluated last additions because
	 * rq->lock is held during the check and the clear
	 */
	rq->has_blocked_load = 1;

	/*
	 * The tick is still stopped but load could have been added in the
	 * meantime. We set the nohz.has_blocked flag to trig a check of the
	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
	 * of nohz.has_blocked can only happen after checking the new load
	 */
9534
	if (rq->nohz_tick_stopped)
9535
		goto out;
9536

9537
	/* If we're a completely isolated CPU, we don't play: */
9538
	if (on_null_domain(rq))
9539 9540
		return;

9541 9542
	rq->nohz_tick_stopped = 1;

9543 9544
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
9545

9546 9547 9548 9549 9550 9551 9552
	/*
	 * Ensures that if nohz_idle_balance() fails to observe our
	 * @idle_cpus_mask store, it must observe the @has_blocked
	 * store.
	 */
	smp_mb__after_atomic();

9553
	set_cpu_sd_state_idle(cpu);
9554 9555 9556 9557 9558 9559 9560

out:
	/*
	 * Each time a cpu enter idle, we assume that it has blocked load and
	 * enable the periodic update of the load of idle cpus
	 */
	WRITE_ONCE(nohz.has_blocked, 1);
9561 9562 9563
}

/*
9564 9565 9566 9567 9568
 * Internal function that runs load balance for all idle cpus. The load balance
 * can be a simple update of blocked load or a complete load balance with
 * tasks movement depending of flags.
 * The function returns false if the loop has stopped before running
 * through all idle CPUs.
9569
 */
9570 9571
static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
			       enum cpu_idle_type idle)
9572
{
9573
	/* Earliest time when we have to do rebalance again */
9574 9575
	unsigned long now = jiffies;
	unsigned long next_balance = now + 60*HZ;
9576
	bool has_blocked_load = false;
9577
	int update_next_balance = 0;
P
Peter Zijlstra 已提交
9578 9579
	int this_cpu = this_rq->cpu;
	int balance_cpu;
9580
	int ret = false;
P
Peter Zijlstra 已提交
9581
	struct rq *rq;
9582

P
Peter Zijlstra 已提交
9583
	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9584

9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600
	/*
	 * We assume there will be no idle load after this update and clear
	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
	 * set the has_blocked flag and trig another update of idle load.
	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
	 * setting the flag, we are sure to not clear the state and not
	 * check the load of an idle cpu.
	 */
	WRITE_ONCE(nohz.has_blocked, 0);

	/*
	 * Ensures that if we miss the CPU, we must see the has_blocked
	 * store from nohz_balance_enter_idle().
	 */
	smp_mb();

9601
	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9602
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9603 9604 9605
			continue;

		/*
9606 9607
		 * If this CPU gets work to do, stop the load balancing
		 * work being done for other CPUs. Next load
9608 9609
		 * balancing owner will pick it up.
		 */
9610 9611 9612 9613
		if (need_resched()) {
			has_blocked_load = true;
			goto abort;
		}
9614

V
Vincent Guittot 已提交
9615 9616
		rq = cpu_rq(balance_cpu);

9617
		has_blocked_load |= update_nohz_stats(rq, true);
9618

9619 9620 9621 9622 9623
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9624 9625
			struct rq_flags rf;

9626
			rq_lock_irqsave(rq, &rf);
9627
			update_rq_clock(rq);
9628
			cpu_load_update_idle(rq);
9629
			rq_unlock_irqrestore(rq, &rf);
9630

P
Peter Zijlstra 已提交
9631 9632
			if (flags & NOHZ_BALANCE_KICK)
				rebalance_domains(rq, CPU_IDLE);
9633
		}
9634

9635 9636 9637 9638
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9639
	}
9640

9641 9642 9643 9644 9645 9646
	/* Newly idle CPU doesn't need an update */
	if (idle != CPU_NEWLY_IDLE) {
		update_blocked_averages(this_cpu);
		has_blocked_load |= this_rq->has_blocked_load;
	}

P
Peter Zijlstra 已提交
9647 9648 9649
	if (flags & NOHZ_BALANCE_KICK)
		rebalance_domains(this_rq, CPU_IDLE);

9650 9651 9652
	WRITE_ONCE(nohz.next_blocked,
		now + msecs_to_jiffies(LOAD_AVG_PERIOD));

9653 9654 9655
	/* The full idle balance loop has been done */
	ret = true;

9656 9657 9658 9659
abort:
	/* There is still blocked load, enable periodic update */
	if (has_blocked_load)
		WRITE_ONCE(nohz.has_blocked, 1);
9660

9661 9662 9663 9664 9665 9666 9667
	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
P
Peter Zijlstra 已提交
9668

9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697
	return ret;
}

/*
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
{
	int this_cpu = this_rq->cpu;
	unsigned int flags;

	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
		return false;

	if (idle != CPU_IDLE) {
		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
		return false;
	}

	/*
	 * barrier, pairs with nohz_balance_enter_idle(), ensures ...
	 */
	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
	if (!(flags & NOHZ_KICK_MASK))
		return false;

	_nohz_idle_balance(this_rq, flags, idle);

P
Peter Zijlstra 已提交
9698
	return true;
9699
}
9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732

static void nohz_newidle_balance(struct rq *this_rq)
{
	int this_cpu = this_rq->cpu;

	/*
	 * This CPU doesn't want to be disturbed by scheduler
	 * housekeeping
	 */
	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
		return;

	/* Will wake up very soon. No time for doing anything else*/
	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

	/* Don't need to update blocked load of idle CPUs*/
	if (!READ_ONCE(nohz.has_blocked) ||
	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
		return;

	raw_spin_unlock(&this_rq->lock);
	/*
	 * This CPU is going to be idle and blocked load of idle CPUs
	 * need to be updated. Run the ilb locally as it is a good
	 * candidate for ilb instead of waking up another idle CPU.
	 * Kick an normal ilb if we failed to do the update.
	 */
	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
		kick_ilb(NOHZ_STATS_KICK);
	raw_spin_lock(&this_rq->lock);
}

9733 9734 9735
#else /* !CONFIG_NO_HZ_COMMON */
static inline void nohz_balancer_kick(struct rq *rq) { }

9736
static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
P
Peter Zijlstra 已提交
9737 9738 9739
{
	return false;
}
9740 9741

static inline void nohz_newidle_balance(struct rq *this_rq) { }
9742
#endif /* CONFIG_NO_HZ_COMMON */
9743

P
Peter Zijlstra 已提交
9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
{
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
	struct sched_domain *sd;
	int pulled_task = 0;
	u64 curr_cost = 0;

	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
9778

P
Peter Zijlstra 已提交
9779 9780 9781 9782 9783 9784
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, &next_balance);
		rcu_read_unlock();

9785 9786
		nohz_newidle_balance(this_rq);

P
Peter Zijlstra 已提交
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835
		goto out;
	}

	raw_spin_unlock(&this_rq->lock);

	update_blocked_averages(this_cpu);
	rcu_read_lock();
	for_each_domain(this_cpu, sd) {
		int continue_balancing = 1;
		u64 t0, domain_cost;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, &next_balance);
			break;
		}

		if (sd->flags & SD_BALANCE_NEWIDLE) {
			t0 = sched_clock_cpu(this_cpu);

			pulled_task = load_balance(this_cpu, this_rq,
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
		}

		update_next_balance(sd, &next_balance);

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
			break;
	}
	rcu_read_unlock();

	raw_spin_lock(&this_rq->lock);

	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

9836
out:
P
Peter Zijlstra 已提交
9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860
	/*
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
	 */
	if (this_rq->cfs.h_nr_running && !pulled_task)
		pulled_task = 1;

	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
		this_rq->next_balance = next_balance;

	/* Is there a task of a high priority class? */
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
		pulled_task = -1;

	if (pulled_task)
		this_rq->idle_stamp = 0;

	rq_repin_lock(this_rq, rf);

	return pulled_task;
}

9861 9862 9863 9864
/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9865
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9866
{
9867
	struct rq *this_rq = this_rq();
9868
	enum cpu_idle_type idle = this_rq->idle_balance ?
9869 9870 9871
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9872 9873
	 * If this CPU has a pending nohz_balance_kick, then do the
	 * balancing on behalf of the other idle CPUs whose ticks are
9874
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
9875
	 * give the idle CPUs a chance to load balance. Else we may
9876 9877
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9878
	 */
P
Peter Zijlstra 已提交
9879 9880 9881 9882 9883
	if (nohz_idle_balance(this_rq, idle))
		return;

	/* normal load balance */
	update_blocked_averages(this_rq->cpu);
9884
	rebalance_domains(this_rq, idle);
9885 9886 9887 9888 9889
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9890
void trigger_load_balance(struct rq *rq)
9891 9892
{
	/* Don't need to rebalance while attached to NULL domain */
9893 9894 9895 9896
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9897
		raise_softirq(SCHED_SOFTIRQ);
9898 9899

	nohz_balancer_kick(rq);
9900 9901
}

9902 9903 9904
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9905 9906

	update_runtime_enabled(rq);
9907 9908 9909 9910 9911
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9912 9913 9914

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9915 9916
}

9917
#endif /* CONFIG_SMP */
9918

9919
/*
9920 9921 9922 9923 9924 9925
 * scheduler tick hitting a task of our scheduling class.
 *
 * NOTE: This function can be called remotely by the tick offload that
 * goes along full dynticks. Therefore no local assumption can be made
 * and everything must be accessed through the @rq and @curr passed in
 * parameters.
9926
 */
P
Peter Zijlstra 已提交
9927
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9928 9929 9930 9931 9932 9933
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9934
		entity_tick(cfs_rq, se, queued);
9935
	}
9936

9937
	if (static_branch_unlikely(&sched_numa_balancing))
9938
		task_tick_numa(rq, curr);
9939 9940 9941
}

/*
P
Peter Zijlstra 已提交
9942 9943 9944
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9945
 */
P
Peter Zijlstra 已提交
9946
static void task_fork_fair(struct task_struct *p)
9947
{
9948 9949
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9950
	struct rq *rq = this_rq();
9951
	struct rq_flags rf;
9952

9953
	rq_lock(rq, &rf);
9954 9955
	update_rq_clock(rq);

9956 9957
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9958 9959
	if (curr) {
		update_curr(cfs_rq);
9960
		se->vruntime = curr->vruntime;
9961
	}
9962
	place_entity(cfs_rq, se, 1);
9963

P
Peter Zijlstra 已提交
9964
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9965
		/*
9966 9967 9968
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9969
		swap(curr->vruntime, se->vruntime);
9970
		resched_curr(rq);
9971
	}
9972

9973
	se->vruntime -= cfs_rq->min_vruntime;
9974
	rq_unlock(rq, &rf);
9975 9976
}

9977 9978 9979 9980
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9981 9982
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9983
{
9984
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9985 9986
		return;

9987 9988 9989 9990 9991
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9992
	if (rq->curr == p) {
9993
		if (p->prio > oldprio)
9994
			resched_curr(rq);
9995
	} else
9996
		check_preempt_curr(rq, p, 0);
9997 9998
}

9999
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
10000 10001 10002 10003
{
	struct sched_entity *se = &p->se;

	/*
10004 10005 10006 10007 10008 10009 10010 10011 10012 10013
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
10014
	 *
10015 10016 10017 10018
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
10019
	 */
10020 10021 10022 10023 10024 10025
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

10044
		update_load_avg(cfs_rq, se, UPDATE_TG);
10045 10046 10047 10048 10049 10050
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

10051
static void detach_entity_cfs_rq(struct sched_entity *se)
10052 10053 10054
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

10055
	/* Catch up with the cfs_rq and remove our load when we leave */
10056
	update_load_avg(cfs_rq, se, 0);
10057
	detach_entity_load_avg(cfs_rq, se);
10058
	update_tg_load_avg(cfs_rq, false);
10059
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
10060 10061
}

10062
static void attach_entity_cfs_rq(struct sched_entity *se)
10063
{
10064
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10065 10066

#ifdef CONFIG_FAIR_GROUP_SCHED
10067 10068 10069 10070 10071 10072
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
10073

10074
	/* Synchronize entity with its cfs_rq */
10075
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10076
	attach_entity_load_avg(cfs_rq, se, 0);
10077
	update_tg_load_avg(cfs_rq, false);
10078
	propagate_entity_cfs_rq(se);
10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
10104 10105 10106 10107

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
10108

10109 10110 10111 10112 10113 10114 10115 10116
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
10117

10118
	if (task_on_rq_queued(p)) {
10119
		/*
10120 10121 10122
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
10123
		 */
10124 10125 10126 10127
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
10128
	}
10129 10130
}

10131 10132 10133 10134 10135 10136 10137 10138 10139
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

10140 10141 10142 10143 10144 10145 10146
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
10147 10148
}

10149 10150
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
10151
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10152 10153 10154 10155
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
10156
#ifdef CONFIG_SMP
10157
	raw_spin_lock_init(&cfs_rq->removed.lock);
10158
#endif
10159 10160
}

P
Peter Zijlstra 已提交
10161
#ifdef CONFIG_FAIR_GROUP_SCHED
10162 10163 10164 10165 10166 10167 10168 10169
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

10170
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
10171
{
10172
	detach_task_cfs_rq(p);
10173
	set_task_rq(p, task_cpu(p));
10174 10175 10176 10177 10178

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
10179
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
10180
}
10181

10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

10195 10196 10197 10198 10199 10200 10201 10202 10203
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
10204
		if (tg->se)
10205 10206 10207 10208 10209 10210 10211 10212 10213 10214
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
10215
	struct cfs_rq *cfs_rq;
10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10242
		init_entity_runnable_average(se);
10243 10244 10245 10246 10247 10248 10249 10250 10251 10252
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
10264
		update_rq_clock(rq);
10265
		attach_entity_cfs_rq(se);
10266
		sync_throttle(tg, i);
10267 10268 10269 10270
		raw_spin_unlock_irq(&rq->lock);
	}
}

10271
void unregister_fair_sched_group(struct task_group *tg)
10272 10273
{
	unsigned long flags;
10274 10275
	struct rq *rq;
	int cpu;
10276

10277 10278 10279
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
10280

10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
10313
	if (!parent) {
10314
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
10315 10316
		se->depth = 0;
	} else {
10317
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
10318 10319
		se->depth = parent->depth + 1;
	}
10320 10321

	se->my_q = cfs_rq;
10322 10323
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
10348 10349
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
10350 10351

		/* Propagate contribution to hierarchy */
10352
		rq_lock_irqsave(rq, &rf);
10353
		update_rq_clock(rq);
10354
		for_each_sched_entity(se) {
10355
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10356
			update_cfs_group(se);
10357
		}
10358
		rq_unlock_irqrestore(rq, &rf);
10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

10374 10375
void online_fair_sched_group(struct task_group *tg) { }

10376
void unregister_fair_sched_group(struct task_group *tg) { }
10377 10378 10379

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
10380

10381
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10382 10383 10384 10385 10386 10387 10388 10389 10390
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
10391
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10392 10393 10394 10395

	return rr_interval;
}

10396 10397 10398
/*
 * All the scheduling class methods:
 */
10399
const struct sched_class fair_sched_class = {
10400
	.next			= &idle_sched_class,
10401 10402 10403
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
10404
	.yield_to_task		= yield_to_task_fair,
10405

I
Ingo Molnar 已提交
10406
	.check_preempt_curr	= check_preempt_wakeup,
10407 10408 10409 10410

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

10411
#ifdef CONFIG_SMP
L
Li Zefan 已提交
10412
	.select_task_rq		= select_task_rq_fair,
10413
	.migrate_task_rq	= migrate_task_rq_fair,
10414

10415 10416
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
10417

10418
	.task_dead		= task_dead_fair,
10419
	.set_cpus_allowed	= set_cpus_allowed_common,
10420
#endif
10421

10422
	.set_curr_task          = set_curr_task_fair,
10423
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
10424
	.task_fork		= task_fork_fair,
10425 10426

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
10427
	.switched_from		= switched_from_fair,
10428
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
10429

10430 10431
	.get_rr_interval	= get_rr_interval_fair,

10432 10433
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
10434
#ifdef CONFIG_FAIR_GROUP_SCHED
10435
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
10436
#endif
10437 10438 10439
};

#ifdef CONFIG_SCHED_DEBUG
10440
void print_cfs_stats(struct seq_file *m, int cpu)
10441
{
10442
	struct cfs_rq *cfs_rq, *pos;
10443

10444
	rcu_read_lock();
10445
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10446
		print_cfs_rq(m, cpu, cfs_rq);
10447
	rcu_read_unlock();
10448
}
10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
10470 10471 10472 10473 10474 10475

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

10476
#ifdef CONFIG_NO_HZ_COMMON
10477
	nohz.next_balance = jiffies;
10478
	nohz.next_blocked = jiffies;
10479 10480 10481 10482 10483
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}