fair.c 232.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122
/*
 * The margin used when comparing utilization with CPU capacity:
 * util * 1024 < capacity * margin
 */
unsigned int capacity_margin = 1280; /* ~20% */

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

141 142 143 144 145 146 147 148 149
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
150
static unsigned int get_update_sysctl_factor(void)
151
{
152
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

188
#define WMULT_CONST	(~0U)
189 190
#define WMULT_SHIFT	32

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
207 208

/*
209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
213
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
214 215 216 217 218
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
219
 */
220
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
221
{
222 223
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
224

225
	__update_inv_weight(lw);
226

227 228 229 230 231
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
232 233
	}

234 235
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
236

237 238 239 240
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
241

242
	return mul_u64_u32_shr(delta_exec, fact, shift);
243 244 245 246
}


const struct sched_class fair_sched_class;
247

248 249 250 251
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

252
#ifdef CONFIG_FAIR_GROUP_SCHED
253

254
/* cpu runqueue to which this cfs_rq is attached */
255 256
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
257
	return cfs_rq->rq;
258 259
}

260 261
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
262

263 264 265 266 267 268 269 270
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

292 293 294
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
295 296 297 298 299 300 301 302 303 304 305 306
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
307
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
308
		}
309 310 311 312 313 314 315 316 317 318 319 320 321

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
322 323 324 325 326
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
327
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
328 329 330
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
331
		return se->cfs_rq;
P
Peter Zijlstra 已提交
332

P
Peter Zijlstra 已提交
333
	return NULL;
P
Peter Zijlstra 已提交
334 335 336 337 338 339 340
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

341 342 343 344 345 346 347 348 349 350 351 352 353
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
354 355
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

373 374 375 376 377 378
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
379

380 381 382
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
383 384 385 386
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
387 388
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
389

P
Peter Zijlstra 已提交
390
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
391
{
P
Peter Zijlstra 已提交
392
	return &task_rq(p)->cfs;
393 394
}

P
Peter Zijlstra 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

409 410 411 412 413 414 415 416
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
417 418 419 420 421 422 423 424
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

425 426 427 428 429
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
430 431
#endif	/* CONFIG_FAIR_GROUP_SCHED */

432
static __always_inline
433
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
434 435 436 437 438

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

439
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
440
{
441
	s64 delta = (s64)(vruntime - max_vruntime);
442
	if (delta > 0)
443
		max_vruntime = vruntime;
444

445
	return max_vruntime;
446 447
}

448
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
449 450 451 452 453 454 455 456
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

457 458 459 460 461 462
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

463 464 465 466
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

467 468 469
	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

470 471 472 473 474
	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

475 476 477 478
		if (!cfs_rq->curr)
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
479 480
	}

481
	/* ensure we never gain time by being placed backwards. */
482
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
483 484 485 486
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
487 488
}

489 490 491
/*
 * Enqueue an entity into the rb-tree:
 */
492
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
509
		if (entity_before(se, entry)) {
510 511 512 513 514 515 516 517 518 519 520
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
521
	if (leftmost)
I
Ingo Molnar 已提交
522
		cfs_rq->rb_leftmost = &se->run_node;
523 524 525 526 527

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

528
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
529
{
P
Peter Zijlstra 已提交
530 531 532 533 534 535
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
536

537 538 539
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

540
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
541
{
542 543 544 545 546 547
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
548 549
}

550 551 552 553 554 555 556 557 558 559 560
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
561
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
562
{
563
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
564

565 566
	if (!last)
		return NULL;
567 568

	return rb_entry(last, struct sched_entity, run_node);
569 570
}

571 572 573 574
/**************************************************************
 * Scheduling class statistics methods:
 */

575
int sched_proc_update_handler(struct ctl_table *table, int write,
576
		void __user *buffer, size_t *lenp,
577 578
		loff_t *ppos)
{
579
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
580
	unsigned int factor = get_update_sysctl_factor();
581 582 583 584 585 586 587

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

588 589 590 591 592 593 594
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

595 596 597
	return 0;
}
#endif
598

599
/*
600
 * delta /= w
601
 */
602
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
603
{
604
	if (unlikely(se->load.weight != NICE_0_LOAD))
605
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
606 607 608 609

	return delta;
}

610 611 612
/*
 * The idea is to set a period in which each task runs once.
 *
613
 * When there are too many tasks (sched_nr_latency) we have to stretch
614 615 616 617
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
618 619
static u64 __sched_period(unsigned long nr_running)
{
620 621 622 623
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
624 625
}

626 627 628 629
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
630
 * s = p*P[w/rw]
631
 */
P
Peter Zijlstra 已提交
632
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
633
{
M
Mike Galbraith 已提交
634
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
635

M
Mike Galbraith 已提交
636
	for_each_sched_entity(se) {
L
Lin Ming 已提交
637
		struct load_weight *load;
638
		struct load_weight lw;
L
Lin Ming 已提交
639 640 641

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
642

M
Mike Galbraith 已提交
643
		if (unlikely(!se->on_rq)) {
644
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
645 646 647 648

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
649
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
650 651
	}
	return slice;
652 653
}

654
/*
A
Andrei Epure 已提交
655
 * We calculate the vruntime slice of a to-be-inserted task.
656
 *
657
 * vs = s/w
658
 */
659
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
660
{
661
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
662 663
}

664
#ifdef CONFIG_SMP
665
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
666 667
static unsigned long task_h_load(struct task_struct *p);

668 669
/*
 * We choose a half-life close to 1 scheduling period.
670 671
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
672 673 674
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
675
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
676

677 678
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
679
{
680
	struct sched_avg *sa = &se->avg;
681

682 683 684 685 686 687 688
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
689
	sa->load_avg = scale_load_down(se->load.weight);
690
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
691 692 693 694 695
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
696
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
697
}
698

699 700
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
701
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
702 703
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
733
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
734
	u64 now = cfs_rq_clock_task(cfs_rq);
735 736 737 738 739 740 741 742 743 744 745 746 747

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
			se->avg.last_update_time = now;
			return;
		}
	}

767
	update_cfs_rq_load_avg(now, cfs_rq, false);
768
	attach_entity_load_avg(cfs_rq, se);
769
	update_tg_load_avg(cfs_rq, false);
770 771
}

772
#else /* !CONFIG_SMP */
773
void init_entity_runnable_average(struct sched_entity *se)
774 775
{
}
776 777 778
void post_init_entity_util_avg(struct sched_entity *se)
{
}
779 780 781
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
782
#endif /* CONFIG_SMP */
783

784
/*
785
 * Update the current task's runtime statistics.
786
 */
787
static void update_curr(struct cfs_rq *cfs_rq)
788
{
789
	struct sched_entity *curr = cfs_rq->curr;
790
	u64 now = rq_clock_task(rq_of(cfs_rq));
791
	u64 delta_exec;
792 793 794 795

	if (unlikely(!curr))
		return;

796 797
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
798
		return;
799

I
Ingo Molnar 已提交
800
	curr->exec_start = now;
801

802 803 804 805
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
806
	schedstat_add(cfs_rq->exec_clock, delta_exec);
807 808 809 810

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

811 812 813
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

814
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
815
		cpuacct_charge(curtask, delta_exec);
816
		account_group_exec_runtime(curtask, delta_exec);
817
	}
818 819

	account_cfs_rq_runtime(cfs_rq, delta_exec);
820 821
}

822 823 824 825 826
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

827
static inline void
828
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
829
{
830 831 832 833 834 835 836
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
837 838

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
839 840
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
841

842
	schedstat_set(se->statistics.wait_start, wait_start);
843 844
}

845
static inline void
846 847 848
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
849 850
	u64 delta;

851 852 853 854
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
855 856 857 858 859 860 861 862 863

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
864
			schedstat_set(se->statistics.wait_start, delta);
865 866 867 868 869
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

870 871 872 873 874
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
875 876
}

877
static inline void
878 879 880
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
881 882 883 884 885 886 887
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
888 889 890 891

	if (entity_is_task(se))
		tsk = task_of(se);

892 893
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
894 895 896 897

		if ((s64)delta < 0)
			delta = 0;

898 899
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
900

901 902
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
903 904 905 906 907 908

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
909 910
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
911 912 913 914

		if ((s64)delta < 0)
			delta = 0;

915 916
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
917

918 919
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 921 922

		if (tsk) {
			if (tsk->in_iowait) {
923 924
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
}

945 946 947
/*
 * Task is being enqueued - update stats:
 */
948
static inline void
949
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
950
{
951 952 953
	if (!schedstat_enabled())
		return;

954 955 956 957
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
958
	if (se != cfs_rq->curr)
959
		update_stats_wait_start(cfs_rq, se);
960 961 962

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
963 964 965
}

static inline void
966
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
967
{
968 969 970 971

	if (!schedstat_enabled())
		return;

972 973 974 975
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
976
	if (se != cfs_rq->curr)
977
		update_stats_wait_end(cfs_rq, se);
978

979 980
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
981

982 983 984 985 986 987
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
988
	}
989 990
}

991 992 993 994
/*
 * We are picking a new current task - update its stats:
 */
static inline void
995
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
996 997 998 999
{
	/*
	 * We are starting a new run period:
	 */
1000
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1001 1002 1003 1004 1005 1006
}

/**************************************************
 * Scheduling class queueing methods:
 */

1007 1008
#ifdef CONFIG_NUMA_BALANCING
/*
1009 1010 1011
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1012
 */
1013 1014
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1015 1016 1017

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1018

1019 1020 1021
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1046
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1047 1048 1049
	unsigned int scan, floor;
	unsigned int windows = 1;

1050 1051
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1080 1081 1082 1083 1084
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1085
	pid_t gid;
1086
	int active_nodes;
1087 1088

	struct rcu_head rcu;
1089
	unsigned long total_faults;
1090
	unsigned long max_faults_cpu;
1091 1092 1093 1094 1095
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1096
	unsigned long *faults_cpu;
1097
	unsigned long faults[0];
1098 1099
};

1100 1101 1102 1103 1104 1105 1106 1107 1108
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1109 1110 1111 1112 1113
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1114 1115 1116 1117 1118 1119 1120
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1121
{
1122
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1123 1124 1125 1126
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1127
	if (!p->numa_faults)
1128 1129
		return 0;

1130 1131
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1132 1133
}

1134 1135 1136 1137 1138
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1139 1140
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1141 1142
}

1143 1144
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1145 1146
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1226 1227 1228 1229 1230 1231
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1232 1233
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1234
{
1235
	unsigned long faults, total_faults;
1236

1237
	if (!p->numa_faults)
1238 1239 1240 1241 1242 1243 1244
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1245
	faults = task_faults(p, nid);
1246 1247
	faults += score_nearby_nodes(p, nid, dist, true);

1248
	return 1000 * faults / total_faults;
1249 1250
}

1251 1252
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1253
{
1254 1255 1256 1257 1258 1259 1260 1261
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1262 1263
		return 0;

1264
	faults = group_faults(p, nid);
1265 1266
	faults += score_nearby_nodes(p, nid, dist, false);

1267
	return 1000 * faults / total_faults;
1268 1269
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1310 1311
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1312
	 */
1313 1314
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1315 1316 1317
		return true;

	/*
1318 1319 1320 1321 1322 1323
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1324
	 */
1325 1326
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1327 1328
}

1329
static unsigned long weighted_cpuload(const int cpu);
1330 1331
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1332
static unsigned long capacity_of(int cpu);
1333 1334
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1335
/* Cached statistics for all CPUs within a node */
1336
struct numa_stats {
1337
	unsigned long nr_running;
1338
	unsigned long load;
1339 1340

	/* Total compute capacity of CPUs on a node */
1341
	unsigned long compute_capacity;
1342 1343

	/* Approximate capacity in terms of runnable tasks on a node */
1344
	unsigned long task_capacity;
1345
	int has_free_capacity;
1346
};
1347

1348 1349 1350 1351 1352
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1353 1354
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1355 1356 1357 1358 1359 1360 1361

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1362
		ns->compute_capacity += capacity_of(cpu);
1363 1364

		cpus++;
1365 1366
	}

1367 1368 1369 1370 1371
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1372 1373
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1374 1375 1376 1377
	 */
	if (!cpus)
		return;

1378 1379 1380 1381 1382 1383
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1384
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1385 1386
}

1387 1388
struct task_numa_env {
	struct task_struct *p;
1389

1390 1391
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1392

1393
	struct numa_stats src_stats, dst_stats;
1394

1395
	int imbalance_pct;
1396
	int dist;
1397 1398 1399

	struct task_struct *best_task;
	long best_imp;
1400 1401 1402
	int best_cpu;
};

1403 1404 1405 1406 1407
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1408 1409
	if (p)
		get_task_struct(p);
1410 1411 1412 1413 1414 1415

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1416
static bool load_too_imbalanced(long src_load, long dst_load,
1417 1418
				struct task_numa_env *env)
{
1419 1420
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1432 1433

	/* We care about the slope of the imbalance, not the direction. */
1434 1435
	if (dst_load < src_load)
		swap(dst_load, src_load);
1436 1437

	/* Is the difference below the threshold? */
1438 1439
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1440 1441 1442 1443 1444
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1445
	 * Compare it with the old imbalance.
1446
	 */
1447
	orig_src_load = env->src_stats.load;
1448
	orig_dst_load = env->dst_stats.load;
1449

1450 1451
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1452

1453 1454 1455 1456 1457
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1458 1459
}

1460 1461 1462 1463 1464 1465
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1466 1467
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1468 1469 1470 1471
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1472
	long src_load, dst_load;
1473
	long load;
1474
	long imp = env->p->numa_group ? groupimp : taskimp;
1475
	long moveimp = imp;
1476
	int dist = env->dist;
1477 1478

	rcu_read_lock();
1479 1480
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1481 1482
		cur = NULL;

1483 1484 1485 1486 1487 1488 1489
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1502 1503
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1504
		 * in any group then look only at task weights.
1505
		 */
1506
		if (cur->numa_group == env->p->numa_group) {
1507 1508
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1509 1510 1511 1512 1513 1514
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1515
		} else {
1516 1517 1518 1519 1520 1521
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1522 1523
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1524
			else
1525 1526
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1527
		}
1528 1529
	}

1530
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1531 1532 1533 1534
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1535
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1536
		    !env->dst_stats.has_free_capacity)
1537 1538 1539 1540 1541 1542
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1543 1544
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1545 1546 1547 1548 1549 1550
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1551 1552 1553
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1572
	if (cur) {
1573 1574 1575
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1576 1577
	}

1578
	if (load_too_imbalanced(src_load, dst_load, env))
1579 1580
		goto unlock;

1581 1582 1583 1584 1585
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
1586 1587
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1588

1589 1590 1591 1592 1593 1594
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1595 1596
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1597 1598 1599 1600 1601 1602 1603 1604 1605
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1606
		task_numa_compare(env, taskimp, groupimp);
1607 1608 1609
	}
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1627 1628 1629
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1630 1631 1632 1633 1634
		return true;

	return false;
}

1635 1636 1637 1638
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1639

1640
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1641
		.src_nid = task_node(p),
1642 1643 1644 1645 1646

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1647
		.best_cpu = -1,
1648 1649
	};
	struct sched_domain *sd;
1650
	unsigned long taskweight, groupweight;
1651
	int nid, ret, dist;
1652
	long taskimp, groupimp;
1653

1654
	/*
1655 1656 1657 1658 1659 1660
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1661 1662
	 */
	rcu_read_lock();
1663
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1664 1665
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1666 1667
	rcu_read_unlock();

1668 1669 1670 1671 1672 1673 1674
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1675
		p->numa_preferred_nid = task_node(p);
1676 1677 1678
		return -EINVAL;
	}

1679
	env.dst_nid = p->numa_preferred_nid;
1680 1681 1682 1683 1684 1685
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1686
	update_numa_stats(&env.dst_stats, env.dst_nid);
1687

1688
	/* Try to find a spot on the preferred nid. */
1689 1690
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1691

1692 1693 1694 1695 1696 1697 1698
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1699
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1700 1701 1702
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1703

1704
			dist = node_distance(env.src_nid, env.dst_nid);
1705 1706 1707 1708 1709
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1710

1711
			/* Only consider nodes where both task and groups benefit */
1712 1713
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1714
			if (taskimp < 0 && groupimp < 0)
1715 1716
				continue;

1717
			env.dist = dist;
1718 1719
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1720 1721
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1722 1723 1724
		}
	}

1725 1726 1727 1728 1729 1730 1731 1732
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1733
	if (p->numa_group) {
1734 1735
		struct numa_group *ng = p->numa_group;

1736 1737 1738 1739 1740
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1741
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1742 1743 1744 1745 1746 1747
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1748

1749 1750 1751 1752 1753 1754
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1755
	if (env.best_task == NULL) {
1756 1757 1758
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1759 1760 1761 1762
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1763 1764
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1765 1766
	put_task_struct(env.best_task);
	return ret;
1767 1768
}

1769 1770 1771
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1772 1773
	unsigned long interval = HZ;

1774
	/* This task has no NUMA fault statistics yet */
1775
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1776 1777
		return;

1778
	/* Periodically retry migrating the task to the preferred node */
1779 1780
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1781 1782

	/* Success if task is already running on preferred CPU */
1783
	if (task_node(p) == p->numa_preferred_nid)
1784 1785 1786
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1787
	task_numa_migrate(p);
1788 1789
}

1790
/*
1791
 * Find out how many nodes on the workload is actively running on. Do this by
1792 1793 1794 1795
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1796
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1797 1798
{
	unsigned long faults, max_faults = 0;
1799
	int nid, active_nodes = 0;
1800 1801 1802 1803 1804 1805 1806 1807 1808

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1809 1810
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1811
	}
1812 1813 1814

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1815 1816
}

1817 1818 1819
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1820 1821 1822
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1823 1824
 */
#define NUMA_PERIOD_SLOTS 10
1825
#define NUMA_PERIOD_THRESHOLD 7
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1846 1847 1848
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1849
	 */
1850
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1884
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1885 1886 1887 1888 1889 1890 1891 1892
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1911 1912
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1913 1914 1915 1916 1917 1918 1919 1920
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1968
		nodemask_t max_group = NODE_MASK_NONE;
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2002 2003
		if (!max_faults)
			break;
2004 2005 2006 2007 2008
		nodes = max_group;
	}
	return nid;
}

2009 2010
static void task_numa_placement(struct task_struct *p)
{
2011 2012
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2013
	unsigned long fault_types[2] = { 0, 0 };
2014 2015
	unsigned long total_faults;
	u64 runtime, period;
2016
	spinlock_t *group_lock = NULL;
2017

2018 2019 2020 2021 2022
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2023
	seq = READ_ONCE(p->mm->numa_scan_seq);
2024 2025 2026
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2027
	p->numa_scan_period_max = task_scan_max(p);
2028

2029 2030 2031 2032
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2033 2034 2035
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2036
		spin_lock_irq(group_lock);
2037 2038
	}

2039 2040
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2041 2042
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2043
		unsigned long faults = 0, group_faults = 0;
2044
		int priv;
2045

2046
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2047
			long diff, f_diff, f_weight;
2048

2049 2050 2051 2052
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2053

2054
			/* Decay existing window, copy faults since last scan */
2055 2056 2057
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2058

2059 2060 2061 2062 2063 2064 2065 2066
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2067
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2068
				   (total_faults + 1);
2069 2070
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2071

2072 2073 2074
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2075
			p->total_numa_faults += diff;
2076
			if (p->numa_group) {
2077 2078 2079 2080 2081 2082 2083 2084 2085
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2086
				p->numa_group->total_faults += diff;
2087
				group_faults += p->numa_group->faults[mem_idx];
2088
			}
2089 2090
		}

2091 2092 2093 2094
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2095 2096 2097 2098 2099 2100 2101

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2102 2103
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2104
	if (p->numa_group) {
2105
		numa_group_count_active_nodes(p->numa_group);
2106
		spin_unlock_irq(group_lock);
2107
		max_nid = preferred_group_nid(p, max_group_nid);
2108 2109
	}

2110 2111 2112 2113 2114 2115 2116
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2117
	}
2118 2119
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2131 2132
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2133 2134 2135 2136 2137 2138 2139 2140 2141
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2142
				    4*nr_node_ids*sizeof(unsigned long);
2143 2144 2145 2146 2147 2148

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2149 2150
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2151
		spin_lock_init(&grp->lock);
2152
		grp->gid = p->pid;
2153
		/* Second half of the array tracks nids where faults happen */
2154 2155
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2156

2157
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2158
			grp->faults[i] = p->numa_faults[i];
2159

2160
		grp->total_faults = p->total_numa_faults;
2161

2162 2163 2164 2165 2166
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2167
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2168 2169

	if (!cpupid_match_pid(tsk, cpupid))
2170
		goto no_join;
2171 2172 2173

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2174
		goto no_join;
2175 2176 2177

	my_grp = p->numa_group;
	if (grp == my_grp)
2178
		goto no_join;
2179 2180 2181 2182 2183 2184

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2185
		goto no_join;
2186 2187 2188 2189 2190

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2191
		goto no_join;
2192

2193 2194 2195 2196 2197 2198 2199
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2200

2201 2202 2203
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2204
	if (join && !get_numa_group(grp))
2205
		goto no_join;
2206 2207 2208 2209 2210 2211

	rcu_read_unlock();

	if (!join)
		return;

2212 2213
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2214

2215
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2216 2217
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2218
	}
2219 2220
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2221 2222 2223 2224 2225

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2226
	spin_unlock_irq(&grp->lock);
2227 2228 2229 2230

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2231 2232 2233 2234 2235
	return;

no_join:
	rcu_read_unlock();
	return;
2236 2237 2238 2239 2240
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2241
	void *numa_faults = p->numa_faults;
2242 2243
	unsigned long flags;
	int i;
2244 2245

	if (grp) {
2246
		spin_lock_irqsave(&grp->lock, flags);
2247
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2248
			grp->faults[i] -= p->numa_faults[i];
2249
		grp->total_faults -= p->total_numa_faults;
2250

2251
		grp->nr_tasks--;
2252
		spin_unlock_irqrestore(&grp->lock, flags);
2253
		RCU_INIT_POINTER(p->numa_group, NULL);
2254 2255 2256
		put_numa_group(grp);
	}

2257
	p->numa_faults = NULL;
2258
	kfree(numa_faults);
2259 2260
}

2261 2262 2263
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2264
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2265 2266
{
	struct task_struct *p = current;
2267
	bool migrated = flags & TNF_MIGRATED;
2268
	int cpu_node = task_node(current);
2269
	int local = !!(flags & TNF_FAULT_LOCAL);
2270
	struct numa_group *ng;
2271
	int priv;
2272

2273
	if (!static_branch_likely(&sched_numa_balancing))
2274 2275
		return;

2276 2277 2278 2279
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2280
	/* Allocate buffer to track faults on a per-node basis */
2281 2282
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2283
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2284

2285 2286
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2287
			return;
2288

2289
		p->total_numa_faults = 0;
2290
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2291
	}
2292

2293 2294 2295 2296 2297 2298 2299 2300
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2301
		if (!priv && !(flags & TNF_NO_GROUP))
2302
			task_numa_group(p, last_cpupid, flags, &priv);
2303 2304
	}

2305 2306 2307 2308 2309 2310
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2311 2312 2313 2314
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2315 2316
		local = 1;

2317
	task_numa_placement(p);
2318

2319 2320 2321 2322 2323
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2324 2325
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2326 2327
	if (migrated)
		p->numa_pages_migrated += pages;
2328 2329
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2330

2331 2332
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2333
	p->numa_faults_locality[local] += pages;
2334 2335
}

2336 2337
static void reset_ptenuma_scan(struct task_struct *p)
{
2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2346
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2347 2348 2349
	p->mm->numa_scan_offset = 0;
}

2350 2351 2352 2353 2354 2355 2356 2357 2358
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2359
	u64 runtime = p->se.sum_exec_runtime;
2360
	struct vm_area_struct *vma;
2361
	unsigned long start, end;
2362
	unsigned long nr_pte_updates = 0;
2363
	long pages, virtpages;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2379
	if (!mm->numa_next_scan) {
2380 2381
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2382 2383
	}

2384 2385 2386 2387 2388 2389 2390
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2391 2392 2393 2394
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2395

2396
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2397 2398 2399
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2400 2401 2402 2403 2404 2405
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2406 2407 2408
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2409
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2410 2411
	if (!pages)
		return;
2412

2413

2414
	down_read(&mm->mmap_sem);
2415
	vma = find_vma(mm, start);
2416 2417
	if (!vma) {
		reset_ptenuma_scan(p);
2418
		start = 0;
2419 2420
		vma = mm->mmap;
	}
2421
	for (; vma; vma = vma->vm_next) {
2422
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2423
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2424
			continue;
2425
		}
2426

2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2437 2438 2439 2440 2441 2442
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2443

2444 2445 2446 2447
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2448
			nr_pte_updates = change_prot_numa(vma, start, end);
2449 2450

			/*
2451 2452 2453 2454 2455 2456
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2457 2458 2459
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2460
			virtpages -= (end - start) >> PAGE_SHIFT;
2461

2462
			start = end;
2463
			if (pages <= 0 || virtpages <= 0)
2464
				goto out;
2465 2466

			cond_resched();
2467
		} while (end != vma->vm_end);
2468
	}
2469

2470
out:
2471
	/*
P
Peter Zijlstra 已提交
2472 2473 2474 2475
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2476 2477
	 */
	if (vma)
2478
		mm->numa_scan_offset = start;
2479 2480 2481
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2518
	if (now > curr->node_stamp + period) {
2519
		if (!curr->node_stamp)
2520
			curr->numa_scan_period = task_scan_min(curr);
2521
		curr->node_stamp += period;
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2533 2534 2535 2536 2537 2538 2539 2540

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2541 2542
#endif /* CONFIG_NUMA_BALANCING */

2543 2544 2545 2546
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2547
	if (!parent_entity(se))
2548
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2549
#ifdef CONFIG_SMP
2550 2551 2552 2553 2554 2555
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2556
#endif
2557 2558 2559 2560 2561 2562 2563
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2564
	if (!parent_entity(se))
2565
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2566
#ifdef CONFIG_SMP
2567 2568
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2569
		list_del_init(&se->group_node);
2570
	}
2571
#endif
2572 2573 2574
	cfs_rq->nr_running--;
}

2575 2576
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2577
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2578
{
2579
	long tg_weight, load, shares;
2580 2581

	/*
2582 2583 2584
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2585
	 */
2586
	load = scale_load_down(cfs_rq->load.weight);
2587

2588
	tg_weight = atomic_long_read(&tg->load_avg);
2589

2590 2591 2592
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2593 2594

	shares = (tg->shares * load);
2595 2596
	if (tg_weight)
		shares /= tg_weight;
2597 2598 2599 2600 2601 2602 2603 2604 2605

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2606
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2607 2608 2609 2610
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2611

P
Peter Zijlstra 已提交
2612 2613 2614
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2615 2616 2617 2618
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2619
		account_entity_dequeue(cfs_rq, se);
2620
	}
P
Peter Zijlstra 已提交
2621 2622 2623 2624 2625 2626 2627

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2628 2629
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2630
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2631 2632 2633
{
	struct task_group *tg;
	struct sched_entity *se;
2634
	long shares;
P
Peter Zijlstra 已提交
2635 2636 2637

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2638
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2639
		return;
2640 2641 2642 2643
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2644
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2645 2646 2647 2648

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2649
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2650 2651 2652 2653
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2654
#ifdef CONFIG_SMP
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2685 2686 2687 2688 2689 2690
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2703 2704
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2705 2706 2707 2708 2709 2710
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2711 2712
	}

2713 2714
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2733 2734 2735
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2736 2737
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2738 2739
}

2740
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2770 2771
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2772
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2773
{
2774
	u64 delta, scaled_delta, periods;
2775
	u32 contrib;
2776
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2777
	unsigned long scale_freq, scale_cpu;
2778

2779
	delta = now - sa->last_update_time;
2780 2781 2782 2783 2784
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2785
		sa->last_update_time = now;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2796
	sa->last_update_time = now;
2797

2798 2799 2800
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2801
	/* delta_w is the amount already accumulated against our next period */
2802
	delta_w = sa->period_contrib;
2803 2804 2805
	if (delta + delta_w >= 1024) {
		decayed = 1;

2806 2807 2808
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2809 2810 2811 2812 2813 2814
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2815
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2816
		if (weight) {
2817 2818 2819 2820 2821
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2822
		}
2823
		if (running)
2824
			sa->util_sum += scaled_delta_w * scale_cpu;
2825 2826 2827 2828 2829 2830 2831

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2832
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2833 2834 2835 2836
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2837
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2838 2839

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2840
		contrib = __compute_runnable_contrib(periods);
2841
		contrib = cap_scale(contrib, scale_freq);
2842
		if (weight) {
2843
			sa->load_sum += weight * contrib;
2844 2845 2846
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2847
		if (running)
2848
			sa->util_sum += contrib * scale_cpu;
2849 2850 2851
	}

	/* Remainder of delta accrued against u_0` */
2852
	scaled_delta = cap_scale(delta, scale_freq);
2853
	if (weight) {
2854
		sa->load_sum += weight * scaled_delta;
2855
		if (cfs_rq)
2856
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2857
	}
2858
	if (running)
2859
		sa->util_sum += scaled_delta * scale_cpu;
2860

2861
	sa->period_contrib += delta;
2862

2863 2864
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2865 2866 2867 2868
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2869
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2870
	}
2871

2872
	return decayed;
2873 2874
}

2875
#ifdef CONFIG_FAIR_GROUP_SCHED
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2891
 */
2892
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2893
{
2894
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2895

2896 2897 2898 2899 2900 2901
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2902 2903 2904
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2905
	}
2906
}
2907

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2954
#else /* CONFIG_FAIR_GROUP_SCHED */
2955
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2956
#endif /* CONFIG_FAIR_GROUP_SCHED */
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3016 3017 3018 3019
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3020
 */
3021 3022
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3023
{
3024
	struct sched_avg *sa = &cfs_rq->avg;
3025
	int decayed, removed_load = 0, removed_util = 0;
3026

3027
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3028
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3029 3030
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3031
		removed_load = 1;
3032
	}
3033

3034 3035
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3036 3037
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3038
		removed_util = 1;
3039
	}
3040

3041
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3042
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3043

3044 3045 3046 3047
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3048

3049 3050
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3051

3052
	return decayed || removed_load;
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3071
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
3072
		update_tg_load_avg(cfs_rq, 0);
3073 3074
}

3075 3076 3077 3078 3079 3080 3081 3082
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3083 3084
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3085 3086 3087
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

3088 3089 3090
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
3091 3092
	 *
	 * Or we're fresh through post_init_entity_util_avg().
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

3104
skip_aging:
3105 3106 3107 3108 3109
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3110 3111

	cfs_rq_util_change(cfs_rq);
3112 3113
}

3114 3115 3116 3117 3118 3119 3120 3121
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3122 3123 3124 3125 3126 3127
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

3128 3129 3130 3131
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3132 3133

	cfs_rq_util_change(cfs_rq);
3134 3135
}

3136 3137 3138
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3139
{
3140 3141
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
3142
	int migrated, decayed;
3143

3144 3145
	migrated = !sa->last_update_time;
	if (!migrated) {
3146
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3147 3148
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3149
	}
3150

3151
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3152

3153 3154 3155
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3156 3157
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3158

3159 3160
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3161 3162
}

3163 3164 3165 3166 3167 3168 3169 3170 3171
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3172
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3173 3174
}

3175
#ifndef CONFIG_64BIT
3176 3177
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3178
	u64 last_update_time_copy;
3179
	u64 last_update_time;
3180

3181 3182 3183 3184 3185
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3186 3187 3188

	return last_update_time;
}
3189
#else
3190 3191 3192 3193
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3194 3195
#endif

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
3206 3207 3208 3209 3210 3211 3212
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3213 3214 3215 3216
	 */

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3217
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3218 3219
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3220
}
3221

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3232 3233
static int idle_balance(struct rq *this_rq);

3234 3235
#else /* CONFIG_SMP */

3236 3237 3238 3239 3240 3241
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3242 3243 3244 3245 3246 3247 3248 3249
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3250 3251
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3252 3253
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3254
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3255

3256 3257 3258 3259 3260
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3261 3262 3263 3264 3265
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3266
#endif /* CONFIG_SMP */
3267

P
Peter Zijlstra 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3277
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3278 3279 3280
#endif
}

3281 3282 3283
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3284
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3285

3286 3287 3288 3289 3290 3291
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3292
	if (initial && sched_feat(START_DEBIT))
3293
		vruntime += sched_vslice(cfs_rq, se);
3294

3295
	/* sleeps up to a single latency don't count. */
3296
	if (!initial) {
3297
		unsigned long thresh = sysctl_sched_latency;
3298

3299 3300 3301 3302 3303 3304
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3305

3306
		vruntime -= thresh;
3307 3308
	}

3309
	/* ensure we never gain time by being placed backwards. */
3310
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3311 3312
}

3313 3314
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3327
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3328 3329 3330 3331 3332 3333 3334
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3354
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3366
static void
3367
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3368
{
3369 3370 3371
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3372
	/*
3373 3374
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3375
	 */
3376
	if (renorm && curr)
3377 3378
		se->vruntime += cfs_rq->min_vruntime;

3379 3380
	update_curr(cfs_rq);

3381
	/*
3382 3383 3384 3385
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3386
	 */
3387 3388 3389
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3390
	enqueue_entity_load_avg(cfs_rq, se);
3391 3392
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3393

3394
	if (flags & ENQUEUE_WAKEUP)
3395
		place_entity(cfs_rq, se, 0);
3396

3397
	check_schedstat_required();
3398 3399
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3400
	if (!curr)
3401
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3402
	se->on_rq = 1;
3403

3404
	if (cfs_rq->nr_running == 1) {
3405
		list_add_leaf_cfs_rq(cfs_rq);
3406 3407
		check_enqueue_throttle(cfs_rq);
	}
3408 3409
}

3410
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3411
{
3412 3413
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3414
		if (cfs_rq->last != se)
3415
			break;
3416 3417

		cfs_rq->last = NULL;
3418 3419
	}
}
P
Peter Zijlstra 已提交
3420

3421 3422 3423 3424
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3425
		if (cfs_rq->next != se)
3426
			break;
3427 3428

		cfs_rq->next = NULL;
3429
	}
P
Peter Zijlstra 已提交
3430 3431
}

3432 3433 3434 3435
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3436
		if (cfs_rq->skip != se)
3437
			break;
3438 3439

		cfs_rq->skip = NULL;
3440 3441 3442
	}
}

P
Peter Zijlstra 已提交
3443 3444
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3445 3446 3447 3448 3449
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3450 3451 3452

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3453 3454
}

3455
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3456

3457
static void
3458
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3459
{
3460 3461 3462 3463
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3464
	dequeue_entity_load_avg(cfs_rq, se);
3465

3466
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3467

P
Peter Zijlstra 已提交
3468
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3469

3470
	if (se != cfs_rq->curr)
3471
		__dequeue_entity(cfs_rq, se);
3472
	se->on_rq = 0;
3473
	account_entity_dequeue(cfs_rq, se);
3474 3475 3476 3477 3478 3479

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3480
	if (!(flags & DEQUEUE_SLEEP))
3481
		se->vruntime -= cfs_rq->min_vruntime;
3482

3483 3484 3485
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3486
	update_min_vruntime(cfs_rq);
3487
	update_cfs_shares(cfs_rq);
3488 3489 3490 3491 3492
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3493
static void
I
Ingo Molnar 已提交
3494
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3495
{
3496
	unsigned long ideal_runtime, delta_exec;
3497 3498
	struct sched_entity *se;
	s64 delta;
3499

P
Peter Zijlstra 已提交
3500
	ideal_runtime = sched_slice(cfs_rq, curr);
3501
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3502
	if (delta_exec > ideal_runtime) {
3503
		resched_curr(rq_of(cfs_rq));
3504 3505 3506 3507 3508
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3520 3521
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3522

3523 3524
	if (delta < 0)
		return;
3525

3526
	if (delta > ideal_runtime)
3527
		resched_curr(rq_of(cfs_rq));
3528 3529
}

3530
static void
3531
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3532
{
3533 3534 3535 3536 3537 3538 3539
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3540
		update_stats_wait_end(cfs_rq, se);
3541
		__dequeue_entity(cfs_rq, se);
3542
		update_load_avg(se, 1);
3543 3544
	}

3545
	update_stats_curr_start(cfs_rq, se);
3546
	cfs_rq->curr = se;
3547

I
Ingo Molnar 已提交
3548 3549 3550 3551 3552
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3553
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3554 3555 3556
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3557
	}
3558

3559
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3560 3561
}

3562 3563 3564
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3565 3566 3567 3568 3569 3570 3571
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3572 3573
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3574
{
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3586

3587 3588 3589 3590 3591
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3602 3603 3604
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3605

3606 3607 3608 3609 3610 3611
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3612 3613 3614 3615 3616 3617
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3618
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3619 3620

	return se;
3621 3622
}

3623
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3624

3625
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3626 3627 3628 3629 3630 3631
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3632
		update_curr(cfs_rq);
3633

3634 3635 3636
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3637
	check_spread(cfs_rq, prev);
3638

3639
	if (prev->on_rq) {
3640
		update_stats_wait_start(cfs_rq, prev);
3641 3642
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3643
		/* in !on_rq case, update occurred at dequeue */
3644
		update_load_avg(prev, 0);
3645
	}
3646
	cfs_rq->curr = NULL;
3647 3648
}

P
Peter Zijlstra 已提交
3649 3650
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3651 3652
{
	/*
3653
	 * Update run-time statistics of the 'current'.
3654
	 */
3655
	update_curr(cfs_rq);
3656

3657 3658 3659
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3660
	update_load_avg(curr, 1);
3661
	update_cfs_shares(cfs_rq);
3662

P
Peter Zijlstra 已提交
3663 3664 3665 3666 3667
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3668
	if (queued) {
3669
		resched_curr(rq_of(cfs_rq));
3670 3671
		return;
	}
P
Peter Zijlstra 已提交
3672 3673 3674 3675 3676 3677 3678 3679
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3680
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3681
		check_preempt_tick(cfs_rq, curr);
3682 3683
}

3684 3685 3686 3687 3688 3689

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3690 3691

#ifdef HAVE_JUMP_LABEL
3692
static struct static_key __cfs_bandwidth_used;
3693 3694 3695

static inline bool cfs_bandwidth_used(void)
{
3696
	return static_key_false(&__cfs_bandwidth_used);
3697 3698
}

3699
void cfs_bandwidth_usage_inc(void)
3700
{
3701 3702 3703 3704 3705 3706
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3707 3708 3709 3710 3711 3712 3713
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3714 3715
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3716 3717
#endif /* HAVE_JUMP_LABEL */

3718 3719 3720 3721 3722 3723 3724 3725
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3726 3727 3728 3729 3730 3731

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3732 3733 3734 3735 3736 3737 3738
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3739
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3751 3752 3753 3754 3755
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3756 3757 3758 3759
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3760
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3761

3762
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3763 3764
}

3765 3766
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3767 3768 3769
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3770
	u64 amount = 0, min_amount, expires;
3771 3772 3773 3774 3775 3776 3777

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3778
	else {
P
Peter Zijlstra 已提交
3779
		start_cfs_bandwidth(cfs_b);
3780 3781 3782 3783 3784 3785

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3786
	}
P
Paul Turner 已提交
3787
	expires = cfs_b->runtime_expires;
3788 3789 3790
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3791 3792 3793 3794 3795 3796 3797
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3798 3799

	return cfs_rq->runtime_remaining > 0;
3800 3801
}

P
Paul Turner 已提交
3802 3803 3804 3805 3806
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3807
{
P
Paul Turner 已提交
3808 3809 3810
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3811
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3812 3813
		return;

P
Paul Turner 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3823 3824 3825
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3826 3827
	 */

3828
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3829 3830 3831 3832 3833 3834 3835 3836
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3837
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3838 3839
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3840
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3841 3842 3843
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3844 3845
		return;

3846 3847 3848 3849 3850
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3851
		resched_curr(rq_of(cfs_rq));
3852 3853
}

3854
static __always_inline
3855
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3856
{
3857
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3858 3859 3860 3861 3862
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3863 3864
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3865
	return cfs_bandwidth_used() && cfs_rq->throttled;
3866 3867
}

3868 3869 3870
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3871
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3899
		/* adjust cfs_rq_clock_task() */
3900
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3901
					     cfs_rq->throttled_clock_task;
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3912 3913
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3914
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3915 3916 3917 3918 3919
	cfs_rq->throttle_count++;

	return 0;
}

3920
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3921 3922 3923 3924 3925
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3926
	bool empty;
3927 3928 3929

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3930
	/* freeze hierarchy runnable averages while throttled */
3931 3932 3933
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3951
		sub_nr_running(rq, task_delta);
3952 3953

	cfs_rq->throttled = 1;
3954
	cfs_rq->throttled_clock = rq_clock(rq);
3955
	raw_spin_lock(&cfs_b->lock);
3956
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3957

3958 3959 3960 3961 3962
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3963 3964 3965 3966 3967 3968 3969 3970

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3971 3972 3973
	raw_spin_unlock(&cfs_b->lock);
}

3974
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3975 3976 3977 3978 3979 3980 3981
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3982
	se = cfs_rq->tg->se[cpu_of(rq)];
3983 3984

	cfs_rq->throttled = 0;
3985 3986 3987

	update_rq_clock(rq);

3988
	raw_spin_lock(&cfs_b->lock);
3989
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3990 3991 3992
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3993 3994 3995
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4014
		add_nr_running(rq, task_delta);
4015 4016 4017

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4018
		resched_curr(rq);
4019 4020 4021 4022 4023 4024
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4025 4026
	u64 runtime;
	u64 starting_runtime = remaining;
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4057
	return starting_runtime - remaining;
4058 4059
}

4060 4061 4062 4063 4064 4065 4066 4067
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4068
	u64 runtime, runtime_expires;
4069
	int throttled;
4070 4071 4072

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4073
		goto out_deactivate;
4074

4075
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4076
	cfs_b->nr_periods += overrun;
4077

4078 4079 4080 4081 4082 4083
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4084 4085 4086

	__refill_cfs_bandwidth_runtime(cfs_b);

4087 4088 4089
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4090
		return 0;
4091 4092
	}

4093 4094 4095
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4096 4097 4098
	runtime_expires = cfs_b->runtime_expires;

	/*
4099 4100 4101 4102 4103
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4104
	 */
4105 4106
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4107 4108 4109 4110 4111 4112 4113
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4114 4115

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4116
	}
4117

4118 4119 4120 4121 4122 4123 4124
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4125

4126 4127 4128 4129
	return 0;

out_deactivate:
	return 1;
4130
}
4131

4132 4133 4134 4135 4136 4137 4138
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4139 4140 4141 4142
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4143
 * hrtimer base being cleared by hrtimer_start. In the case of
4144 4145
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4171 4172 4173
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4203 4204 4205
	if (!cfs_bandwidth_used())
		return;

4206
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4222 4223 4224
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4225
		return;
4226
	}
4227

4228
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4229
		runtime = cfs_b->runtime;
4230

4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4241
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4242 4243 4244
	raw_spin_unlock(&cfs_b->lock);
}

4245 4246 4247 4248 4249 4250 4251
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4252 4253 4254
	if (!cfs_bandwidth_used())
		return;

4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4283
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4284 4285
}

4286
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4287
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4288
{
4289
	if (!cfs_bandwidth_used())
4290
		return false;
4291

4292
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4293
		return false;
4294 4295 4296 4297 4298 4299

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4300
		return true;
4301 4302

	throttle_cfs_rq(cfs_rq);
4303
	return true;
4304
}
4305 4306 4307 4308 4309

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4310

4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4323
	raw_spin_lock(&cfs_b->lock);
4324
	for (;;) {
P
Peter Zijlstra 已提交
4325
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4326 4327 4328 4329 4330
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4331 4332
	if (idle)
		cfs_b->period_active = 0;
4333
	raw_spin_unlock(&cfs_b->lock);
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4346
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4358
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4359
{
P
Peter Zijlstra 已提交
4360
	lockdep_assert_held(&cfs_b->lock);
4361

P
Peter Zijlstra 已提交
4362 4363 4364 4365 4366
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4367 4368 4369 4370
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4371 4372 4373 4374
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4375 4376 4377 4378
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4392
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4404
		cfs_rq->runtime_remaining = 1;
4405 4406 4407 4408 4409 4410
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4411 4412 4413 4414 4415 4416
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4417 4418
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4419
	return rq_clock_task(rq_of(cfs_rq));
4420 4421
}

4422
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4423
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4424
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4425
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4426
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4427 4428 4429 4430 4431

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4443 4444 4445 4446 4447

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4448 4449
#endif

4450 4451 4452 4453 4454
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4455
static inline void update_runtime_enabled(struct rq *rq) {}
4456
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4457 4458 4459

#endif /* CONFIG_CFS_BANDWIDTH */

4460 4461 4462 4463
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4464 4465 4466 4467 4468 4469 4470 4471
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4472
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4473 4474 4475 4476 4477 4478
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4479
				resched_curr(rq);
P
Peter Zijlstra 已提交
4480 4481
			return;
		}
4482
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4483 4484
	}
}
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4495
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4496 4497 4498 4499 4500
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4501
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4502 4503 4504 4505
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4506 4507 4508 4509

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4510 4511
#endif

4512 4513 4514 4515 4516
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4517
static void
4518
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4519 4520
{
	struct cfs_rq *cfs_rq;
4521
	struct sched_entity *se = &p->se;
4522 4523

	for_each_sched_entity(se) {
4524
		if (se->on_rq)
4525 4526
			break;
		cfs_rq = cfs_rq_of(se);
4527
		enqueue_entity(cfs_rq, se, flags);
4528 4529 4530 4531 4532 4533

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4534
		 */
4535 4536
		if (cfs_rq_throttled(cfs_rq))
			break;
4537
		cfs_rq->h_nr_running++;
4538

4539
		flags = ENQUEUE_WAKEUP;
4540
	}
P
Peter Zijlstra 已提交
4541

P
Peter Zijlstra 已提交
4542
	for_each_sched_entity(se) {
4543
		cfs_rq = cfs_rq_of(se);
4544
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4545

4546 4547 4548
		if (cfs_rq_throttled(cfs_rq))
			break;

4549
		update_load_avg(se, 1);
4550
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4551 4552
	}

Y
Yuyang Du 已提交
4553
	if (!se)
4554
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4555

4556
	hrtick_update(rq);
4557 4558
}

4559 4560
static void set_next_buddy(struct sched_entity *se);

4561 4562 4563 4564 4565
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4566
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4567 4568
{
	struct cfs_rq *cfs_rq;
4569
	struct sched_entity *se = &p->se;
4570
	int task_sleep = flags & DEQUEUE_SLEEP;
4571 4572 4573

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4574
		dequeue_entity(cfs_rq, se, flags);
4575 4576 4577 4578 4579 4580 4581 4582 4583

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4584
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4585

4586
		/* Don't dequeue parent if it has other entities besides us */
4587
		if (cfs_rq->load.weight) {
4588 4589
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4590 4591 4592 4593
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4594 4595
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4596
			break;
4597
		}
4598
		flags |= DEQUEUE_SLEEP;
4599
	}
P
Peter Zijlstra 已提交
4600

P
Peter Zijlstra 已提交
4601
	for_each_sched_entity(se) {
4602
		cfs_rq = cfs_rq_of(se);
4603
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4604

4605 4606 4607
		if (cfs_rq_throttled(cfs_rq))
			break;

4608
		update_load_avg(se, 1);
4609
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4610 4611
	}

Y
Yuyang Du 已提交
4612
	if (!se)
4613
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4614

4615
	hrtick_update(rq);
4616 4617
}

4618
#ifdef CONFIG_SMP
4619
#ifdef CONFIG_NO_HZ_COMMON
4620 4621 4622 4623 4624
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4625
 * The exact cpuload calculated at every tick would be:
4626
 *
4627 4628 4629 4630 4631 4632 4633
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4634 4635 4636
 *
 * decay_load_missed() below does efficient calculation of
 *
4637 4638 4639 4640 4641 4642
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4643
 *
4644
 * The calculation is approximated on a 128 point scale.
4645 4646
 */
#define DEGRADE_SHIFT		7
4647 4648 4649 4650 4651 4652 4653 4654 4655

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4685
#endif /* CONFIG_NO_HZ_COMMON */
4686

4687
/**
4688
 * __cpu_load_update - update the rq->cpu_load[] statistics
4689 4690 4691 4692
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4693
 * Update rq->cpu_load[] statistics. This function is usually called every
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4720
 * term.
4721
 */
4722 4723
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4724
{
4725
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4737
		old_load = this_rq->cpu_load[i];
4738
#ifdef CONFIG_NO_HZ_COMMON
4739
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4740 4741 4742 4743 4744 4745 4746 4747 4748
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4749
#endif
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4765 4766 4767 4768 4769 4770
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4771
#ifdef CONFIG_NO_HZ_COMMON
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4800
		cpu_load_update(this_rq, load, pending_updates);
4801 4802 4803
	}
}

4804 4805 4806 4807
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4808
static void cpu_load_update_idle(struct rq *this_rq)
4809 4810 4811 4812
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4813
	if (weighted_cpuload(cpu_of(this_rq)))
4814 4815
		return;

4816
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4817 4818 4819
}

/*
4820 4821 4822 4823
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4824
 */
4825
void cpu_load_update_nohz_start(void)
4826 4827
{
	struct rq *this_rq = this_rq();
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4842
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4843 4844
	struct rq *this_rq = this_rq();
	unsigned long load;
4845 4846 4847 4848

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4849
	load = weighted_cpuload(cpu_of(this_rq));
4850
	raw_spin_lock(&this_rq->lock);
4851
	update_rq_clock(this_rq);
4852
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4853 4854
	raw_spin_unlock(&this_rq->lock);
}
4855 4856 4857 4858 4859 4860 4861 4862
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4863
#ifdef CONFIG_NO_HZ_COMMON
4864 4865
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4866
#endif
4867 4868
	cpu_load_update(this_rq, load, 1);
}
4869 4870 4871 4872

/*
 * Called from scheduler_tick()
 */
4873
void cpu_load_update_active(struct rq *this_rq)
4874
{
4875
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4876 4877 4878 4879 4880

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4881 4882
}

4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4916
static unsigned long capacity_of(int cpu)
4917
{
4918
	return cpu_rq(cpu)->cpu_capacity;
4919 4920
}

4921 4922 4923 4924 4925
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4926 4927 4928
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4929
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4930
	unsigned long load_avg = weighted_cpuload(cpu);
4931 4932

	if (nr_running)
4933
		return load_avg / nr_running;
4934 4935 4936 4937

	return 0;
}

4938
#ifdef CONFIG_FAIR_GROUP_SCHED
4939 4940 4941 4942 4943 4944
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4988
 */
P
Peter Zijlstra 已提交
4989
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4990
{
P
Peter Zijlstra 已提交
4991
	struct sched_entity *se = tg->se[cpu];
4992

4993
	if (!tg->parent)	/* the trivial, non-cgroup case */
4994 4995
		return wl;

P
Peter Zijlstra 已提交
4996
	for_each_sched_entity(se) {
4997 4998
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
4999

5000
		tg = cfs_rq->tg;
5001

5002 5003 5004
		/*
		 * W = @wg + \Sum rw_j
		 */
5005 5006 5007 5008 5009
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5010

5011 5012 5013
		/*
		 * w = rw_i + @wl
		 */
5014
		w += wl;
5015

5016 5017 5018 5019
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5020
			wl = (w * (long)tg->shares) / W;
5021 5022
		else
			wl = tg->shares;
5023

5024 5025 5026 5027 5028
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5029 5030
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5031 5032 5033 5034

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5035
		wl -= se->avg.load_avg;
5036 5037 5038 5039 5040 5041 5042 5043

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5044 5045
		wg = 0;
	}
5046

P
Peter Zijlstra 已提交
5047
	return wl;
5048 5049
}
#else
P
Peter Zijlstra 已提交
5050

5051
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5052
{
5053
	return wl;
5054
}
P
Peter Zijlstra 已提交
5055

5056 5057
#endif

P
Peter Zijlstra 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5075 5076
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5077
 *
M
Mike Galbraith 已提交
5078
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5091
 */
5092 5093
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5094 5095
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5096
	int factor = this_cpu_read(sd_llc_size);
5097

M
Mike Galbraith 已提交
5098 5099 5100 5101 5102
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5103 5104
}

5105 5106
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5107
{
5108
	s64 this_load, load;
5109
	s64 this_eff_load, prev_eff_load;
5110
	int idx, this_cpu;
5111
	struct task_group *tg;
5112
	unsigned long weight;
5113
	int balanced;
5114

5115 5116 5117 5118
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5119

5120 5121 5122 5123 5124
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5125 5126
	if (sync) {
		tg = task_group(current);
5127
		weight = current->se.avg.load_avg;
5128

5129
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5130 5131
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5132

5133
	tg = task_group(p);
5134
	weight = p->se.avg.load_avg;
5135

5136 5137
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5138 5139 5140
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5141 5142 5143 5144
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5145 5146
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5147

5148 5149
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5150

5151
	if (this_load > 0) {
5152 5153 5154 5155
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5156
	}
5157

5158
	balanced = this_eff_load <= prev_eff_load;
5159

5160
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5161

5162 5163
	if (!balanced)
		return 0;
5164

5165 5166
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5167 5168

	return 1;
5169 5170
}

5171 5172 5173 5174 5175
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5176
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5177
		  int this_cpu, int sd_flag)
5178
{
5179
	struct sched_group *idlest = NULL, *group = sd->groups;
5180
	unsigned long min_load = ULONG_MAX, this_load = 0;
5181
	int load_idx = sd->forkexec_idx;
5182
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5183

5184 5185 5186
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5187 5188 5189 5190
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5191

5192 5193
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5194
					tsk_cpus_allowed(p)))
5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5213
		/* Adjust by relative CPU capacity of the group */
5214
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5236 5237 5238 5239
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5240 5241
	int i;

5242 5243 5244 5245
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5246
	/* Traverse only the allowed CPUs */
5247
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5270
		} else if (shallowest_idle_cpu == -1) {
5271 5272 5273 5274 5275
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5276 5277 5278
		}
	}

5279
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5280
}
5281

5282 5283 5284
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5285
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5286
{
5287
	struct sched_domain *sd;
5288
	struct sched_group *sg;
5289

5290 5291
	if (idle_cpu(target))
		return target;
5292 5293

	/*
5294
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5295
	 */
5296 5297
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5298 5299

	/*
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5313
	 */
5314
	sd = rcu_dereference(per_cpu(sd_llc, target));
5315
	for_each_lower_domain(sd) {
5316 5317
		sg = sd->groups;
		do {
5318 5319
			int i;

5320 5321 5322 5323
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5324
			/* Ensure the entire group is idle */
5325
			for_each_cpu(i, sched_group_cpus(sg)) {
5326
				if (i == target || !idle_cpu(i))
5327 5328
					goto next;
			}
5329

5330 5331 5332 5333
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5334 5335 5336 5337 5338 5339 5340 5341
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5342 5343
	return target;
}
5344

5345
/*
5346
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5347
 * tasks. The unit of the return value must be the one of capacity so we can
5348 5349
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5370
 */
5371
static int cpu_util(int cpu)
5372
{
5373
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5374 5375
	unsigned long capacity = capacity_orig_of(cpu);

5376
	return (util >= capacity) ? capacity : util;
5377
}
5378

5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5405
/*
5406 5407 5408
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5409
 *
5410 5411
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5412
 *
5413
 * Returns the target cpu number.
5414 5415 5416
 *
 * preempt must be disabled.
 */
5417
static int
5418
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5419
{
5420
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5421
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5422
	int new_cpu = prev_cpu;
5423
	int want_affine = 0;
5424
	int sync = wake_flags & WF_SYNC;
5425

P
Peter Zijlstra 已提交
5426 5427
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5428 5429
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5430
	}
5431

5432
	rcu_read_lock();
5433
	for_each_domain(cpu, tmp) {
5434
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5435
			break;
5436

5437
		/*
5438 5439
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5440
		 */
5441 5442 5443
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5444
			break;
5445
		}
5446

5447
		if (tmp->flags & sd_flag)
5448
			sd = tmp;
M
Mike Galbraith 已提交
5449 5450
		else if (!want_affine)
			break;
5451 5452
	}

M
Mike Galbraith 已提交
5453 5454
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5455
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5456
			new_cpu = cpu;
5457
	}
5458

M
Mike Galbraith 已提交
5459 5460
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5461
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5462 5463

	} else while (sd) {
5464
		struct sched_group *group;
5465
		int weight;
5466

5467
		if (!(sd->flags & sd_flag)) {
5468 5469 5470
			sd = sd->child;
			continue;
		}
5471

5472
		group = find_idlest_group(sd, p, cpu, sd_flag);
5473 5474 5475 5476
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5477

5478
		new_cpu = find_idlest_cpu(group, p, cpu);
5479 5480 5481 5482
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5483
		}
5484 5485 5486

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5487
		weight = sd->span_weight;
5488 5489
		sd = NULL;
		for_each_domain(cpu, tmp) {
5490
			if (weight <= tmp->span_weight)
5491
				break;
5492
			if (tmp->flags & sd_flag)
5493 5494 5495
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5496
	}
5497
	rcu_read_unlock();
5498

5499
	return new_cpu;
5500
}
5501 5502 5503 5504

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5505
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5506
 */
5507
static void migrate_task_rq_fair(struct task_struct *p)
5508
{
5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5535
	/*
5536 5537 5538 5539 5540
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5541
	 */
5542 5543 5544 5545
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5546 5547

	/* We have migrated, no longer consider this task hot */
5548
	p->se.exec_start = 0;
5549
}
5550 5551 5552 5553 5554

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5555 5556
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5557 5558
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5559 5560 5561 5562
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5563 5564
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5574
	 */
5575
	return calc_delta_fair(gran, se);
5576 5577
}

5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5600
	gran = wakeup_gran(curr, se);
5601 5602 5603 5604 5605 5606
	if (vdiff > gran)
		return 1;

	return 0;
}

5607 5608
static void set_last_buddy(struct sched_entity *se)
{
5609 5610 5611 5612 5613
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5614 5615 5616 5617
}

static void set_next_buddy(struct sched_entity *se)
{
5618 5619 5620 5621 5622
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5623 5624
}

5625 5626
static void set_skip_buddy(struct sched_entity *se)
{
5627 5628
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5629 5630
}

5631 5632 5633
/*
 * Preempt the current task with a newly woken task if needed:
 */
5634
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5635 5636
{
	struct task_struct *curr = rq->curr;
5637
	struct sched_entity *se = &curr->se, *pse = &p->se;
5638
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5639
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5640
	int next_buddy_marked = 0;
5641

I
Ingo Molnar 已提交
5642 5643 5644
	if (unlikely(se == pse))
		return;

5645
	/*
5646
	 * This is possible from callers such as attach_tasks(), in which we
5647 5648 5649 5650 5651 5652 5653
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5654
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5655
		set_next_buddy(pse);
5656 5657
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5658

5659 5660 5661
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5662 5663 5664 5665 5666 5667
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5668 5669 5670 5671
	 */
	if (test_tsk_need_resched(curr))
		return;

5672 5673 5674 5675 5676
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5677
	/*
5678 5679
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5680
	 */
5681
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5682
		return;
5683

5684
	find_matching_se(&se, &pse);
5685
	update_curr(cfs_rq_of(se));
5686
	BUG_ON(!pse);
5687 5688 5689 5690 5691 5692 5693
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5694
		goto preempt;
5695
	}
5696

5697
	return;
5698

5699
preempt:
5700
	resched_curr(rq);
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5715 5716
}

5717
static struct task_struct *
5718
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5719 5720 5721
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5722
	struct task_struct *p;
5723
	int new_tasks;
5724

5725
again:
5726 5727
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5728
		goto idle;
5729

5730
	if (prev->sched_class != &fair_sched_class)
5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5750 5751 5752 5753 5754
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5755

5756 5757 5758 5759 5760 5761 5762 5763 5764
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5805

5806
	if (!cfs_rq->nr_running)
5807
		goto idle;
5808

5809
	put_prev_task(rq, prev);
5810

5811
	do {
5812
		se = pick_next_entity(cfs_rq, NULL);
5813
		set_next_entity(cfs_rq, se);
5814 5815 5816
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5817
	p = task_of(se);
5818

5819 5820
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5821 5822

	return p;
5823 5824

idle:
5825 5826 5827 5828 5829 5830
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
5831
	lockdep_unpin_lock(&rq->lock, cookie);
5832
	new_tasks = idle_balance(rq);
5833
	lockdep_repin_lock(&rq->lock, cookie);
5834 5835 5836 5837 5838
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5839
	if (new_tasks < 0)
5840 5841
		return RETRY_TASK;

5842
	if (new_tasks > 0)
5843 5844 5845
		goto again;

	return NULL;
5846 5847 5848 5849 5850
}

/*
 * Account for a descheduled task:
 */
5851
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5852 5853 5854 5855 5856 5857
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5858
		put_prev_entity(cfs_rq, se);
5859 5860 5861
	}
}

5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5887 5888 5889 5890 5891
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5892
		rq_clock_skip_update(rq, true);
5893 5894 5895 5896 5897
	}

	set_skip_buddy(se);
}

5898 5899 5900 5901
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5902 5903
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5914
#ifdef CONFIG_SMP
5915
/**************************************************
P
Peter Zijlstra 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5932
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
5933 5934 5935 5936 5937 5938
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5939
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5940 5941 5942 5943 5944 5945
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5946
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
5985
 *             log_2 n
P
Peter Zijlstra 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6031
 */
6032

6033 6034
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6035 6036
enum fbq_type { regular, remote, all };

6037
#define LBF_ALL_PINNED	0x01
6038
#define LBF_NEED_BREAK	0x02
6039 6040
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6041 6042 6043 6044 6045

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6046
	int			src_cpu;
6047 6048 6049 6050

	int			dst_cpu;
	struct rq		*dst_rq;

6051 6052
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6053
	enum cpu_idle_type	idle;
6054
	long			imbalance;
6055 6056 6057
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6058
	unsigned int		flags;
6059 6060 6061 6062

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6063 6064

	enum fbq_type		fbq_type;
6065
	struct list_head	tasks;
6066 6067
};

6068 6069 6070
/*
 * Is this task likely cache-hot:
 */
6071
static int task_hot(struct task_struct *p, struct lb_env *env)
6072 6073 6074
{
	s64 delta;

6075 6076
	lockdep_assert_held(&env->src_rq->lock);

6077 6078 6079 6080 6081 6082 6083 6084 6085
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6086
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6087 6088 6089 6090 6091 6092 6093 6094 6095
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6096
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6097 6098 6099 6100

	return delta < (s64)sysctl_sched_migration_cost;
}

6101
#ifdef CONFIG_NUMA_BALANCING
6102
/*
6103 6104 6105
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6106
 */
6107
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6108
{
6109
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6110
	unsigned long src_faults, dst_faults;
6111 6112
	int src_nid, dst_nid;

6113
	if (!static_branch_likely(&sched_numa_balancing))
6114 6115
		return -1;

6116
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6117
		return -1;
6118 6119 6120 6121

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6122
	if (src_nid == dst_nid)
6123
		return -1;
6124

6125 6126 6127 6128 6129 6130 6131
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6132

6133 6134
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6135
		return 0;
6136

6137 6138 6139 6140 6141 6142
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6143 6144
	}

6145
	return dst_faults < src_faults;
6146 6147
}

6148
#else
6149
static inline int migrate_degrades_locality(struct task_struct *p,
6150 6151
					     struct lb_env *env)
{
6152
	return -1;
6153
}
6154 6155
#endif

6156 6157 6158 6159
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6160
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6161
{
6162
	int tsk_cache_hot;
6163 6164 6165

	lockdep_assert_held(&env->src_rq->lock);

6166 6167
	/*
	 * We do not migrate tasks that are:
6168
	 * 1) throttled_lb_pair, or
6169
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6170 6171
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6172
	 */
6173 6174 6175
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6176
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6177
		int cpu;
6178

6179
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6180

6181 6182
		env->flags |= LBF_SOME_PINNED;

6183 6184 6185 6186 6187 6188 6189 6190
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6191
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6192 6193
			return 0;

6194 6195 6196
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6197
				env->flags |= LBF_DST_PINNED;
6198 6199 6200
				env->new_dst_cpu = cpu;
				break;
			}
6201
		}
6202

6203 6204
		return 0;
	}
6205 6206

	/* Record that we found atleast one task that could run on dst_cpu */
6207
	env->flags &= ~LBF_ALL_PINNED;
6208

6209
	if (task_running(env->src_rq, p)) {
6210
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6211 6212 6213 6214 6215
		return 0;
	}

	/*
	 * Aggressive migration if:
6216 6217 6218
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6219
	 */
6220 6221 6222
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6223

6224
	if (tsk_cache_hot <= 0 ||
6225
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6226
		if (tsk_cache_hot == 1) {
6227 6228
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6229
		}
6230 6231 6232
		return 1;
	}

6233
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6234
	return 0;
6235 6236
}

6237
/*
6238 6239 6240 6241 6242 6243 6244
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6245
	deactivate_task(env->src_rq, p, 0);
6246 6247 6248
	set_task_cpu(p, env->dst_cpu);
}

6249
/*
6250
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6251 6252
 * part of active balancing operations within "domain".
 *
6253
 * Returns a task if successful and NULL otherwise.
6254
 */
6255
static struct task_struct *detach_one_task(struct lb_env *env)
6256 6257 6258
{
	struct task_struct *p, *n;

6259 6260
	lockdep_assert_held(&env->src_rq->lock);

6261 6262 6263
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6264

6265
		detach_task(p, env);
6266

6267
		/*
6268
		 * Right now, this is only the second place where
6269
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6270
		 * so we can safely collect stats here rather than
6271
		 * inside detach_tasks().
6272
		 */
6273
		schedstat_inc(env->sd->lb_gained[env->idle]);
6274
		return p;
6275
	}
6276
	return NULL;
6277 6278
}

6279 6280
static const unsigned int sched_nr_migrate_break = 32;

6281
/*
6282 6283
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6284
 *
6285
 * Returns number of detached tasks if successful and 0 otherwise.
6286
 */
6287
static int detach_tasks(struct lb_env *env)
6288
{
6289 6290
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6291
	unsigned long load;
6292 6293 6294
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6295

6296
	if (env->imbalance <= 0)
6297
		return 0;
6298

6299
	while (!list_empty(tasks)) {
6300 6301 6302 6303 6304 6305 6306
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6307
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6308

6309 6310
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6311
		if (env->loop > env->loop_max)
6312
			break;
6313 6314

		/* take a breather every nr_migrate tasks */
6315
		if (env->loop > env->loop_break) {
6316
			env->loop_break += sched_nr_migrate_break;
6317
			env->flags |= LBF_NEED_BREAK;
6318
			break;
6319
		}
6320

6321
		if (!can_migrate_task(p, env))
6322 6323 6324
			goto next;

		load = task_h_load(p);
6325

6326
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6327 6328
			goto next;

6329
		if ((load / 2) > env->imbalance)
6330
			goto next;
6331

6332 6333 6334 6335
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6336
		env->imbalance -= load;
6337 6338

#ifdef CONFIG_PREEMPT
6339 6340
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6341
		 * kernels will stop after the first task is detached to minimize
6342 6343
		 * the critical section.
		 */
6344
		if (env->idle == CPU_NEWLY_IDLE)
6345
			break;
6346 6347
#endif

6348 6349 6350 6351
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6352
		if (env->imbalance <= 0)
6353
			break;
6354 6355 6356

		continue;
next:
6357
		list_move_tail(&p->se.group_node, tasks);
6358
	}
6359

6360
	/*
6361 6362 6363
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6364
	 */
6365
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6366

6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6379
	p->on_rq = TASK_ON_RQ_QUEUED;
6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6408

6409 6410 6411 6412
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6413 6414
}

P
Peter Zijlstra 已提交
6415
#ifdef CONFIG_FAIR_GROUP_SCHED
6416
static void update_blocked_averages(int cpu)
6417 6418
{
	struct rq *rq = cpu_rq(cpu);
6419 6420
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6421

6422 6423
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6424

6425 6426 6427 6428
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6429
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6430 6431 6432
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6433

6434
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6435 6436
			update_tg_load_avg(cfs_rq, 0);
	}
6437
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6438 6439
}

6440
/*
6441
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6442 6443 6444
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6445
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6446
{
6447 6448
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6449
	unsigned long now = jiffies;
6450
	unsigned long load;
6451

6452
	if (cfs_rq->last_h_load_update == now)
6453 6454
		return;

6455 6456 6457 6458 6459 6460 6461
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6462

6463
	if (!se) {
6464
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6465 6466 6467 6468 6469
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6470 6471
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6472 6473 6474 6475
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6476 6477
}

6478
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6479
{
6480
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6481

6482
	update_cfs_rq_h_load(cfs_rq);
6483
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6484
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6485 6486
}
#else
6487
static inline void update_blocked_averages(int cpu)
6488
{
6489 6490 6491 6492 6493 6494
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6495
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6496
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6497 6498
}

6499
static unsigned long task_h_load(struct task_struct *p)
6500
{
6501
	return p->se.avg.load_avg;
6502
}
P
Peter Zijlstra 已提交
6503
#endif
6504 6505

/********** Helpers for find_busiest_group ************************/
6506 6507 6508 6509 6510 6511 6512

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6513 6514 6515 6516 6517 6518 6519
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6520
	unsigned long load_per_task;
6521
	unsigned long group_capacity;
6522
	unsigned long group_util; /* Total utilization of the group */
6523 6524 6525
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6526
	enum group_type group_type;
6527
	int group_no_capacity;
6528 6529 6530 6531
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6532 6533
};

J
Joonsoo Kim 已提交
6534 6535 6536 6537 6538 6539 6540 6541
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6542
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6543 6544 6545
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6546
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6547 6548
};

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6561
		.total_capacity = 0UL,
6562 6563
		.busiest_stat = {
			.avg_load = 0UL,
6564 6565
			.sum_nr_running = 0,
			.group_type = group_other,
6566 6567 6568 6569
		},
	};
}

6570 6571 6572
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6573
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6574 6575
 *
 * Return: The load index.
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6598
static unsigned long scale_rt_capacity(int cpu)
6599 6600
{
	struct rq *rq = cpu_rq(cpu);
6601
	u64 total, used, age_stamp, avg;
6602
	s64 delta;
6603

6604 6605 6606 6607
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6608 6609
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6610
	delta = __rq_clock_broken(rq) - age_stamp;
6611

6612 6613 6614 6615
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6616

6617
	used = div_u64(avg, total);
6618

6619 6620
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6621

6622
	return 1;
6623 6624
}

6625
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6626
{
6627
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6628 6629
	struct sched_group *sdg = sd->groups;

6630
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6631

6632
	capacity *= scale_rt_capacity(cpu);
6633
	capacity >>= SCHED_CAPACITY_SHIFT;
6634

6635 6636
	if (!capacity)
		capacity = 1;
6637

6638 6639
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6640 6641
}

6642
void update_group_capacity(struct sched_domain *sd, int cpu)
6643 6644 6645
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6646
	unsigned long capacity;
6647 6648 6649 6650
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6651
	sdg->sgc->next_update = jiffies + interval;
6652 6653

	if (!child) {
6654
		update_cpu_capacity(sd, cpu);
6655 6656 6657
		return;
	}

6658
	capacity = 0;
6659

P
Peter Zijlstra 已提交
6660 6661 6662 6663 6664 6665
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6666
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6667
			struct sched_group_capacity *sgc;
6668
			struct rq *rq = cpu_rq(cpu);
6669

6670
			/*
6671
			 * build_sched_domains() -> init_sched_groups_capacity()
6672 6673 6674
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6675 6676
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6677
			 *
6678
			 * This avoids capacity from being 0 and
6679 6680 6681
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6682
				capacity += capacity_of(cpu);
6683 6684
				continue;
			}
6685

6686 6687
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6688
		}
P
Peter Zijlstra 已提交
6689 6690 6691 6692
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
6693
		 */
P
Peter Zijlstra 已提交
6694 6695 6696

		group = child->groups;
		do {
6697
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6698 6699 6700
			group = group->next;
		} while (group != child->groups);
	}
6701

6702
	sdg->sgc->capacity = capacity;
6703 6704
}

6705
/*
6706 6707 6708
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6709 6710
 */
static inline int
6711
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6712
{
6713 6714
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6715 6716
}

6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6733 6734
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6735 6736
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6737
 * update_sd_pick_busiest(). And calculate_imbalance() and
6738
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6739 6740 6741 6742 6743 6744 6745
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6746
static inline int sg_imbalanced(struct sched_group *group)
6747
{
6748
	return group->sgc->imbalance;
6749 6750
}

6751
/*
6752 6753 6754
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6755 6756
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6757 6758 6759 6760 6761
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6762
 */
6763 6764
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6765
{
6766 6767
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6768

6769
	if ((sgs->group_capacity * 100) >
6770
			(sgs->group_util * env->sd->imbalance_pct))
6771
		return true;
6772

6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6789

6790
	if ((sgs->group_capacity * 100) <
6791
			(sgs->group_util * env->sd->imbalance_pct))
6792
		return true;
6793

6794
	return false;
6795 6796
}

6797 6798 6799
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6800
{
6801
	if (sgs->group_no_capacity)
6802 6803 6804 6805 6806 6807 6808 6809
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6810 6811
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6812
 * @env: The load balancing environment.
6813 6814 6815 6816
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6817
 * @overload: Indicate more than one runnable task for any CPU.
6818
 */
6819 6820
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6821 6822
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6823
{
6824
	unsigned long load;
6825
	int i, nr_running;
6826

6827 6828
	memset(sgs, 0, sizeof(*sgs));

6829
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6830 6831 6832
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6833
		if (local_group)
6834
			load = target_load(i, load_idx);
6835
		else
6836 6837 6838
			load = source_load(i, load_idx);

		sgs->group_load += load;
6839
		sgs->group_util += cpu_util(i);
6840
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6841

6842 6843
		nr_running = rq->nr_running;
		if (nr_running > 1)
6844 6845
			*overload = true;

6846 6847 6848 6849
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6850
		sgs->sum_weighted_load += weighted_cpuload(i);
6851 6852 6853 6854
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6855
			sgs->idle_cpus++;
6856 6857
	}

6858 6859
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6860
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6861

6862
	if (sgs->sum_nr_running)
6863
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6864

6865
	sgs->group_weight = group->group_weight;
6866

6867
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6868
	sgs->group_type = group_classify(group, sgs);
6869 6870
}

6871 6872
/**
 * update_sd_pick_busiest - return 1 on busiest group
6873
 * @env: The load balancing environment.
6874 6875
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6876
 * @sgs: sched_group statistics
6877 6878 6879
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6880 6881 6882
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6883
 */
6884
static bool update_sd_pick_busiest(struct lb_env *env,
6885 6886
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6887
				   struct sg_lb_stats *sgs)
6888
{
6889
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6890

6891
	if (sgs->group_type > busiest->group_type)
6892 6893
		return true;

6894 6895 6896 6897 6898 6899 6900 6901
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6902 6903
		return true;

6904 6905 6906
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
6907 6908 6909 6910 6911
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6912
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6913 6914 6915
		if (!sds->busiest)
			return true;

6916 6917
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6918 6919 6920 6921 6922 6923
			return true;
	}

	return false;
}

6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6954
/**
6955
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6956
 * @env: The load balancing environment.
6957 6958
 * @sds: variable to hold the statistics for this sched_domain.
 */
6959
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6960
{
6961 6962
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6963
	struct sg_lb_stats tmp_sgs;
6964
	int load_idx, prefer_sibling = 0;
6965
	bool overload = false;
6966 6967 6968 6969

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6970
	load_idx = get_sd_load_idx(env->sd, env->idle);
6971 6972

	do {
J
Joonsoo Kim 已提交
6973
		struct sg_lb_stats *sgs = &tmp_sgs;
6974 6975
		int local_group;

6976
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6977 6978 6979
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6980 6981

			if (env->idle != CPU_NEWLY_IDLE ||
6982 6983
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6984
		}
6985

6986 6987
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6988

6989 6990 6991
		if (local_group)
			goto next_group;

6992 6993
		/*
		 * In case the child domain prefers tasks go to siblings
6994
		 * first, lower the sg capacity so that we'll try
6995 6996
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6997 6998 6999 7000
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7001
		 */
7002
		if (prefer_sibling && sds->local &&
7003 7004 7005
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7006
			sgs->group_type = group_classify(sg, sgs);
7007
		}
7008

7009
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7010
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7011
			sds->busiest_stat = *sgs;
7012 7013
		}

7014 7015 7016
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7017
		sds->total_capacity += sgs->group_capacity;
7018

7019
		sg = sg->next;
7020
	} while (sg != env->sd->groups);
7021 7022 7023

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7024 7025 7026 7027 7028 7029 7030

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7050
 * Return: 1 when packing is required and a task should be moved to
7051 7052
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7053
 * @env: The load balancing environment.
7054 7055
 * @sds: Statistics of the sched_domain which is to be packed
 */
7056
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7057 7058 7059
{
	int busiest_cpu;

7060
	if (!(env->sd->flags & SD_ASYM_PACKING))
7061 7062
		return 0;

7063 7064 7065
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7066 7067 7068 7069
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
7070
	if (env->dst_cpu > busiest_cpu)
7071 7072
		return 0;

7073
	env->imbalance = DIV_ROUND_CLOSEST(
7074
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7075
		SCHED_CAPACITY_SCALE);
7076

7077
	return 1;
7078 7079 7080 7081 7082 7083
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7084
 * @env: The load balancing environment.
7085 7086
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7087 7088
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7089
{
7090
	unsigned long tmp, capa_now = 0, capa_move = 0;
7091
	unsigned int imbn = 2;
7092
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7093
	struct sg_lb_stats *local, *busiest;
7094

J
Joonsoo Kim 已提交
7095 7096
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7097

J
Joonsoo Kim 已提交
7098 7099 7100 7101
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7102

J
Joonsoo Kim 已提交
7103
	scaled_busy_load_per_task =
7104
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7105
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7106

7107 7108
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7109
		env->imbalance = busiest->load_per_task;
7110 7111 7112 7113 7114
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7115
	 * however we may be able to increase total CPU capacity used by
7116 7117 7118
	 * moving them.
	 */

7119
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7120
			min(busiest->load_per_task, busiest->avg_load);
7121
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7122
			min(local->load_per_task, local->avg_load);
7123
	capa_now /= SCHED_CAPACITY_SCALE;
7124 7125

	/* Amount of load we'd subtract */
7126
	if (busiest->avg_load > scaled_busy_load_per_task) {
7127
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7128
			    min(busiest->load_per_task,
7129
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7130
	}
7131 7132

	/* Amount of load we'd add */
7133
	if (busiest->avg_load * busiest->group_capacity <
7134
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7135 7136
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7137
	} else {
7138
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7139
		      local->group_capacity;
J
Joonsoo Kim 已提交
7140
	}
7141
	capa_move += local->group_capacity *
7142
		    min(local->load_per_task, local->avg_load + tmp);
7143
	capa_move /= SCHED_CAPACITY_SCALE;
7144 7145

	/* Move if we gain throughput */
7146
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7147
		env->imbalance = busiest->load_per_task;
7148 7149 7150 7151 7152
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7153
 * @env: load balance environment
7154 7155
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7156
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7157
{
7158
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7159 7160 7161 7162
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7163

7164
	if (busiest->group_type == group_imbalanced) {
7165 7166 7167 7168
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7169 7170
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7171 7172
	}

7173
	/*
7174 7175 7176 7177
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7178
	 */
7179 7180
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7181 7182
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7183 7184
	}

7185 7186 7187 7188 7189
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7190
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7191
		if (load_above_capacity > busiest->group_capacity) {
7192
			load_above_capacity -= busiest->group_capacity;
7193
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7194 7195
			load_above_capacity /= busiest->group_capacity;
		} else
7196
			load_above_capacity = ~0UL;
7197 7198 7199 7200 7201 7202
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7203 7204
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7205
	 */
7206
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7207 7208

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7209
	env->imbalance = min(
7210 7211
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7212
	) / SCHED_CAPACITY_SCALE;
7213 7214 7215

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7216
	 * there is no guarantee that any tasks will be moved so we'll have
7217 7218 7219
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7220
	if (env->imbalance < busiest->load_per_task)
7221
		return fix_small_imbalance(env, sds);
7222
}
7223

7224 7225 7226 7227
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7228
 * if there is an imbalance.
7229 7230 7231 7232
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7233
 * @env: The load balancing environment.
7234
 *
7235
 * Return:	- The busiest group if imbalance exists.
7236
 */
J
Joonsoo Kim 已提交
7237
static struct sched_group *find_busiest_group(struct lb_env *env)
7238
{
J
Joonsoo Kim 已提交
7239
	struct sg_lb_stats *local, *busiest;
7240 7241
	struct sd_lb_stats sds;

7242
	init_sd_lb_stats(&sds);
7243 7244 7245 7246 7247

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7248
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7249 7250
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7251

7252
	/* ASYM feature bypasses nice load balance check */
7253
	if (check_asym_packing(env, &sds))
7254 7255
		return sds.busiest;

7256
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7257
	if (!sds.busiest || busiest->sum_nr_running == 0)
7258 7259
		goto out_balanced;

7260 7261
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7262

P
Peter Zijlstra 已提交
7263 7264
	/*
	 * If the busiest group is imbalanced the below checks don't
7265
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7266 7267
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7268
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7269 7270
		goto force_balance;

7271
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7272 7273
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7274 7275
		goto force_balance;

7276
	/*
7277
	 * If the local group is busier than the selected busiest group
7278 7279
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7280
	if (local->avg_load >= busiest->avg_load)
7281 7282
		goto out_balanced;

7283 7284 7285 7286
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7287
	if (local->avg_load >= sds.avg_load)
7288 7289
		goto out_balanced;

7290
	if (env->idle == CPU_IDLE) {
7291
		/*
7292 7293 7294 7295 7296
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7297
		 */
7298 7299
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7300
			goto out_balanced;
7301 7302 7303 7304 7305
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7306 7307
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7308
			goto out_balanced;
7309
	}
7310

7311
force_balance:
7312
	/* Looks like there is an imbalance. Compute it */
7313
	calculate_imbalance(env, &sds);
7314 7315 7316
	return sds.busiest;

out_balanced:
7317
	env->imbalance = 0;
7318 7319 7320 7321 7322 7323
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7324
static struct rq *find_busiest_queue(struct lb_env *env,
7325
				     struct sched_group *group)
7326 7327
{
	struct rq *busiest = NULL, *rq;
7328
	unsigned long busiest_load = 0, busiest_capacity = 1;
7329 7330
	int i;

7331
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7332
		unsigned long capacity, wl;
7333 7334 7335 7336
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7337

7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7360
		capacity = capacity_of(i);
7361

7362
		wl = weighted_cpuload(i);
7363

7364 7365
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7366
		 * which is not scaled with the cpu capacity.
7367
		 */
7368 7369 7370

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7371 7372
			continue;

7373 7374
		/*
		 * For the load comparisons with the other cpu's, consider
7375 7376 7377
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7378
		 *
7379
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7380
		 * multiplication to rid ourselves of the division works out
7381 7382
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7383
		 */
7384
		if (wl * busiest_capacity > busiest_load * capacity) {
7385
			busiest_load = wl;
7386
			busiest_capacity = capacity;
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7401
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7402

7403
static int need_active_balance(struct lb_env *env)
7404
{
7405 7406 7407
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7408 7409 7410 7411 7412 7413

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7414
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7415
			return 1;
7416 7417
	}

7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7431 7432 7433
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7434 7435
static int active_load_balance_cpu_stop(void *data);

7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7467
	return balance_cpu == env->dst_cpu;
7468 7469
}

7470 7471 7472 7473 7474 7475
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7476
			int *continue_balancing)
7477
{
7478
	int ld_moved, cur_ld_moved, active_balance = 0;
7479
	struct sched_domain *sd_parent = sd->parent;
7480 7481 7482
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7483
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7484

7485 7486
	struct lb_env env = {
		.sd		= sd,
7487 7488
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7489
		.dst_grpmask    = sched_group_cpus(sd->groups),
7490
		.idle		= idle,
7491
		.loop_break	= sched_nr_migrate_break,
7492
		.cpus		= cpus,
7493
		.fbq_type	= all,
7494
		.tasks		= LIST_HEAD_INIT(env.tasks),
7495 7496
	};

7497 7498 7499 7500
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7501
	if (idle == CPU_NEWLY_IDLE)
7502 7503
		env.dst_grpmask = NULL;

7504 7505
	cpumask_copy(cpus, cpu_active_mask);

7506
	schedstat_inc(sd->lb_count[idle]);
7507 7508

redo:
7509 7510
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7511
		goto out_balanced;
7512
	}
7513

7514
	group = find_busiest_group(&env);
7515
	if (!group) {
7516
		schedstat_inc(sd->lb_nobusyg[idle]);
7517 7518 7519
		goto out_balanced;
	}

7520
	busiest = find_busiest_queue(&env, group);
7521
	if (!busiest) {
7522
		schedstat_inc(sd->lb_nobusyq[idle]);
7523 7524 7525
		goto out_balanced;
	}

7526
	BUG_ON(busiest == env.dst_rq);
7527

7528
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
7529

7530 7531 7532
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7533 7534 7535 7536 7537 7538 7539 7540
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7541
		env.flags |= LBF_ALL_PINNED;
7542
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7543

7544
more_balance:
7545
		raw_spin_lock_irqsave(&busiest->lock, flags);
7546 7547 7548 7549 7550

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7551
		cur_ld_moved = detach_tasks(&env);
7552 7553

		/*
7554 7555 7556 7557 7558
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7559
		 */
7560 7561 7562 7563 7564 7565 7566 7567

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7568
		local_irq_restore(flags);
7569

7570 7571 7572 7573 7574
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7594
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7595

7596 7597 7598
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7599
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7600
			env.dst_cpu	 = env.new_dst_cpu;
7601
			env.flags	&= ~LBF_DST_PINNED;
7602 7603
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7604

7605 7606 7607 7608 7609 7610
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7611

7612 7613 7614 7615
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7616
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7617

7618
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7619 7620 7621
				*group_imbalance = 1;
		}

7622
		/* All tasks on this runqueue were pinned by CPU affinity */
7623
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7624
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7625 7626 7627
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7628
				goto redo;
7629
			}
7630
			goto out_all_pinned;
7631 7632 7633 7634
		}
	}

	if (!ld_moved) {
7635
		schedstat_inc(sd->lb_failed[idle]);
7636 7637 7638 7639 7640 7641 7642 7643
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7644

7645
		if (need_active_balance(&env)) {
7646 7647
			raw_spin_lock_irqsave(&busiest->lock, flags);

7648 7649 7650
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7651 7652
			 */
			if (!cpumask_test_cpu(this_cpu,
7653
					tsk_cpus_allowed(busiest->curr))) {
7654 7655
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7656
				env.flags |= LBF_ALL_PINNED;
7657 7658 7659
				goto out_one_pinned;
			}

7660 7661 7662 7663 7664
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7665 7666 7667 7668 7669 7670
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7671

7672
			if (active_balance) {
7673 7674 7675
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7676
			}
7677

7678
			/* We've kicked active balancing, force task migration. */
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7692
		 * detach_tasks).
7693 7694 7695 7696 7697 7698 7699 7700
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7718
	schedstat_inc(sd->lb_balanced[idle]);
7719 7720 7721 7722 7723

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7724
	if (((env.flags & LBF_ALL_PINNED) &&
7725
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7726 7727 7728
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7729
	ld_moved = 0;
7730 7731 7732 7733
out:
	return ld_moved;
}

7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
7750
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
7751 7752 7753
{
	unsigned long interval, next;

7754 7755
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
7756 7757 7758 7759 7760 7761
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7762 7763 7764 7765
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7766
static int idle_balance(struct rq *this_rq)
7767
{
7768 7769
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7770 7771
	struct sched_domain *sd;
	int pulled_task = 0;
7772
	u64 curr_cost = 0;
7773

7774 7775 7776 7777 7778 7779
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7780 7781
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7782 7783 7784
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
7785
			update_next_balance(sd, &next_balance);
7786 7787
		rcu_read_unlock();

7788
		goto out;
7789
	}
7790

7791 7792
	raw_spin_unlock(&this_rq->lock);

7793
	update_blocked_averages(this_cpu);
7794
	rcu_read_lock();
7795
	for_each_domain(this_cpu, sd) {
7796
		int continue_balancing = 1;
7797
		u64 t0, domain_cost;
7798 7799 7800 7801

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7802
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7803
			update_next_balance(sd, &next_balance);
7804
			break;
7805
		}
7806

7807
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7808 7809
			t0 = sched_clock_cpu(this_cpu);

7810
			pulled_task = load_balance(this_cpu, this_rq,
7811 7812
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7813 7814 7815 7816 7817 7818

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7819
		}
7820

7821
		update_next_balance(sd, &next_balance);
7822 7823 7824 7825 7826 7827

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7828 7829
			break;
	}
7830
	rcu_read_unlock();
7831 7832 7833

	raw_spin_lock(&this_rq->lock);

7834 7835 7836
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7837
	/*
7838 7839 7840
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7841
	 */
7842
	if (this_rq->cfs.h_nr_running && !pulled_task)
7843
		pulled_task = 1;
7844

7845 7846 7847
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7848
		this_rq->next_balance = next_balance;
7849

7850
	/* Is there a task of a high priority class? */
7851
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7852 7853
		pulled_task = -1;

7854
	if (pulled_task)
7855 7856
		this_rq->idle_stamp = 0;

7857
	return pulled_task;
7858 7859 7860
}

/*
7861 7862 7863 7864
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7865
 */
7866
static int active_load_balance_cpu_stop(void *data)
7867
{
7868 7869
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7870
	int target_cpu = busiest_rq->push_cpu;
7871
	struct rq *target_rq = cpu_rq(target_cpu);
7872
	struct sched_domain *sd;
7873
	struct task_struct *p = NULL;
7874 7875 7876 7877 7878 7879 7880

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7881 7882 7883

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7884
		goto out_unlock;
7885 7886 7887 7888 7889 7890 7891 7892 7893

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7894
	rcu_read_lock();
7895 7896 7897 7898 7899 7900 7901
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7902 7903
		struct lb_env env = {
			.sd		= sd,
7904 7905 7906 7907
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7908 7909 7910
			.idle		= CPU_IDLE,
		};

7911
		schedstat_inc(sd->alb_count);
7912

7913
		p = detach_one_task(&env);
7914
		if (p) {
7915
			schedstat_inc(sd->alb_pushed);
7916 7917 7918
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
7919
			schedstat_inc(sd->alb_failed);
7920
		}
7921
	}
7922
	rcu_read_unlock();
7923 7924
out_unlock:
	busiest_rq->active_balance = 0;
7925 7926 7927 7928 7929 7930 7931
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7932
	return 0;
7933 7934
}

7935 7936 7937 7938 7939
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7940
#ifdef CONFIG_NO_HZ_COMMON
7941 7942 7943 7944 7945 7946
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7947
static struct {
7948
	cpumask_var_t idle_cpus_mask;
7949
	atomic_t nr_cpus;
7950 7951
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7952

7953
static inline int find_new_ilb(void)
7954
{
7955
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7956

7957 7958 7959 7960
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7961 7962
}

7963 7964 7965 7966 7967
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7968
static void nohz_balancer_kick(void)
7969 7970 7971 7972 7973
{
	int ilb_cpu;

	nohz.next_balance++;

7974
	ilb_cpu = find_new_ilb();
7975

7976 7977
	if (ilb_cpu >= nr_cpu_ids)
		return;
7978

7979
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7980 7981 7982 7983 7984 7985 7986 7987
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7988 7989 7990
	return;
}

7991
void nohz_balance_exit_idle(unsigned int cpu)
7992 7993
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7994 7995 7996 7997 7998 7999 8000
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8001 8002 8003 8004
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8005 8006 8007
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8008
	int cpu = smp_processor_id();
8009 8010

	rcu_read_lock();
8011
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
8012 8013 8014 8015 8016

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8017
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
8018
unlock:
8019 8020 8021 8022 8023 8024
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8025
	int cpu = smp_processor_id();
8026 8027

	rcu_read_lock();
8028
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
8029 8030 8031 8032 8033

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8034
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
8035
unlock:
8036 8037 8038
	rcu_read_unlock();
}

8039
/*
8040
 * This routine will record that the cpu is going idle with tick stopped.
8041
 * This info will be used in performing idle load balancing in the future.
8042
 */
8043
void nohz_balance_enter_idle(int cpu)
8044
{
8045 8046 8047 8048 8049 8050
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8051 8052
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8053

8054 8055 8056 8057 8058 8059
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8060 8061 8062
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8063 8064 8065 8066 8067
}
#endif

static DEFINE_SPINLOCK(balancing);

8068 8069 8070 8071
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8072
void update_max_interval(void)
8073 8074 8075 8076
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8077 8078 8079 8080
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8081
 * Balancing parameters are set up in init_sched_domains.
8082
 */
8083
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8084
{
8085
	int continue_balancing = 1;
8086
	int cpu = rq->cpu;
8087
	unsigned long interval;
8088
	struct sched_domain *sd;
8089 8090 8091
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8092 8093
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8094

8095
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8096

8097
	rcu_read_lock();
8098
	for_each_domain(cpu, sd) {
8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8111 8112 8113
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8125
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8126 8127 8128 8129 8130 8131 8132 8133

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8134
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8135
				/*
8136
				 * The LBF_DST_PINNED logic could have changed
8137 8138
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8139
				 */
8140
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8141 8142
			}
			sd->last_balance = jiffies;
8143
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8144 8145 8146 8147 8148 8149 8150 8151
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8152 8153
	}
	if (need_decay) {
8154
		/*
8155 8156
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8157
		 */
8158 8159
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8160
	}
8161
	rcu_read_unlock();
8162 8163 8164 8165 8166 8167

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8168
	if (likely(update_next_balance)) {
8169
		rq->next_balance = next_balance;
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8184 8185
}

8186
#ifdef CONFIG_NO_HZ_COMMON
8187
/*
8188
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8189 8190
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8191
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8192
{
8193
	int this_cpu = this_rq->cpu;
8194 8195
	struct rq *rq;
	int balance_cpu;
8196 8197 8198
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8199

8200 8201 8202
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8203 8204

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8205
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8206 8207 8208 8209 8210 8211 8212
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8213
		if (need_resched())
8214 8215
			break;

V
Vincent Guittot 已提交
8216 8217
		rq = cpu_rq(balance_cpu);

8218 8219 8220 8221 8222 8223 8224
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8225
			cpu_load_update_idle(rq);
8226 8227 8228
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8229

8230 8231 8232 8233
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8234
	}
8235 8236 8237 8238 8239 8240 8241 8242

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8243 8244
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8245 8246 8247
}

/*
8248
 * Current heuristic for kicking the idle load balancer in the presence
8249
 * of an idle cpu in the system.
8250
 *   - This rq has more than one task.
8251 8252 8253 8254
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8255 8256
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8257
 */
8258
static inline bool nohz_kick_needed(struct rq *rq)
8259 8260
{
	unsigned long now = jiffies;
8261
	struct sched_domain *sd;
8262
	struct sched_group_capacity *sgc;
8263
	int nr_busy, cpu = rq->cpu;
8264
	bool kick = false;
8265

8266
	if (unlikely(rq->idle_balance))
8267
		return false;
8268

8269 8270 8271 8272
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8273
	set_cpu_sd_state_busy();
8274
	nohz_balance_exit_idle(cpu);
8275 8276 8277 8278 8279 8280

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8281
		return false;
8282 8283

	if (time_before(now, nohz.next_balance))
8284
		return false;
8285

8286
	if (rq->nr_running >= 2)
8287
		return true;
8288

8289
	rcu_read_lock();
8290 8291
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8292 8293
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8294

8295 8296 8297 8298 8299
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8300
	}
8301

8302 8303 8304 8305 8306 8307 8308 8309
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8310

8311
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8312
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8313 8314 8315 8316
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8317

8318
unlock:
8319
	rcu_read_unlock();
8320
	return kick;
8321 8322
}
#else
8323
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8324 8325 8326 8327 8328 8329
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8330 8331
static void run_rebalance_domains(struct softirq_action *h)
{
8332
	struct rq *this_rq = this_rq();
8333
	enum cpu_idle_type idle = this_rq->idle_balance ?
8334 8335 8336
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8337
	 * If this cpu has a pending nohz_balance_kick, then do the
8338
	 * balancing on behalf of the other idle cpus whose ticks are
8339 8340 8341 8342
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8343
	 */
8344
	nohz_idle_balance(this_rq, idle);
8345
	rebalance_domains(this_rq, idle);
8346 8347 8348 8349 8350
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8351
void trigger_load_balance(struct rq *rq)
8352 8353
{
	/* Don't need to rebalance while attached to NULL domain */
8354 8355 8356 8357
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8358
		raise_softirq(SCHED_SOFTIRQ);
8359
#ifdef CONFIG_NO_HZ_COMMON
8360
	if (nohz_kick_needed(rq))
8361
		nohz_balancer_kick();
8362
#endif
8363 8364
}

8365 8366 8367
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8368 8369

	update_runtime_enabled(rq);
8370 8371 8372 8373 8374
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8375 8376 8377

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8378 8379
}

8380
#endif /* CONFIG_SMP */
8381

8382 8383 8384
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8385
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8386 8387 8388 8389 8390 8391
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8392
		entity_tick(cfs_rq, se, queued);
8393
	}
8394

8395
	if (static_branch_unlikely(&sched_numa_balancing))
8396
		task_tick_numa(rq, curr);
8397 8398 8399
}

/*
P
Peter Zijlstra 已提交
8400 8401 8402
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8403
 */
P
Peter Zijlstra 已提交
8404
static void task_fork_fair(struct task_struct *p)
8405
{
8406 8407
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8408
	struct rq *rq = this_rq();
8409

8410
	raw_spin_lock(&rq->lock);
8411 8412
	update_rq_clock(rq);

8413 8414
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8415 8416
	if (curr) {
		update_curr(cfs_rq);
8417
		se->vruntime = curr->vruntime;
8418
	}
8419
	place_entity(cfs_rq, se, 1);
8420

P
Peter Zijlstra 已提交
8421
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8422
		/*
8423 8424 8425
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8426
		swap(curr->vruntime, se->vruntime);
8427
		resched_curr(rq);
8428
	}
8429

8430
	se->vruntime -= cfs_rq->min_vruntime;
8431
	raw_spin_unlock(&rq->lock);
8432 8433
}

8434 8435 8436 8437
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8438 8439
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8440
{
8441
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8442 8443
		return;

8444 8445 8446 8447 8448
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8449
	if (rq->curr == p) {
8450
		if (p->prio > oldprio)
8451
			resched_curr(rq);
8452
	} else
8453
		check_preempt_curr(rq, p, 0);
8454 8455
}

8456
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8457 8458 8459 8460
{
	struct sched_entity *se = &p->se;

	/*
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8471
	 *
8472 8473 8474 8475
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8476
	 */
8477 8478 8479 8480 8481 8482 8483 8484 8485 8486
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8487
	u64 now = cfs_rq_clock_task(cfs_rq);
8488 8489

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8490 8491 8492 8493 8494 8495 8496
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8497

8498
	/* Catch up with the cfs_rq and remove our load when we leave */
8499
	update_cfs_rq_load_avg(now, cfs_rq, false);
8500
	detach_entity_load_avg(cfs_rq, se);
8501
	update_tg_load_avg(cfs_rq, false);
P
Peter Zijlstra 已提交
8502 8503
}

8504
static void attach_task_cfs_rq(struct task_struct *p)
8505
{
8506
	struct sched_entity *se = &p->se;
8507
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8508
	u64 now = cfs_rq_clock_task(cfs_rq);
8509 8510

#ifdef CONFIG_FAIR_GROUP_SCHED
8511 8512 8513 8514 8515 8516
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8517

8518
	/* Synchronize task with its cfs_rq */
8519
	update_cfs_rq_load_avg(now, cfs_rq, false);
8520
	attach_entity_load_avg(cfs_rq, se);
8521
	update_tg_load_avg(cfs_rq, false);
8522 8523 8524 8525

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8526

8527 8528 8529 8530 8531 8532 8533 8534
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8535

8536
	if (task_on_rq_queued(p)) {
8537
		/*
8538 8539 8540
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8541
		 */
8542 8543 8544 8545
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8546
	}
8547 8548
}

8549 8550 8551 8552 8553 8554 8555 8556 8557
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8558 8559 8560 8561 8562 8563 8564
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8565 8566
}

8567 8568 8569 8570 8571 8572 8573
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8574
#ifdef CONFIG_SMP
8575 8576
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8577
#endif
8578 8579
}

P
Peter Zijlstra 已提交
8580
#ifdef CONFIG_FAIR_GROUP_SCHED
8581 8582 8583 8584 8585 8586 8587 8588
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

8589
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8590
{
8591
	detach_task_cfs_rq(p);
8592
	set_task_rq(p, task_cpu(p));
8593 8594 8595 8596 8597

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8598
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8599
}
8600

8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

8614 8615 8616 8617 8618 8619 8620 8621 8622
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8623
		if (tg->se)
8624 8625 8626 8627 8628 8629 8630 8631 8632 8633
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8634 8635
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8650 8651
		rq = cpu_rq(i);

8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8664
		init_entity_runnable_average(se);
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
		post_init_entity_util_avg(se);
8687
		sync_throttle(tg, i);
8688 8689 8690 8691
		raw_spin_unlock_irq(&rq->lock);
	}
}

8692
void unregister_fair_sched_group(struct task_group *tg)
8693 8694
{
	unsigned long flags;
8695 8696
	struct rq *rq;
	int cpu;
8697

8698 8699 8700
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8701

8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8734
	if (!parent) {
8735
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8736 8737
		se->depth = 0;
	} else {
8738
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8739 8740
		se->depth = parent->depth + 1;
	}
8741 8742

	se->my_q = cfs_rq;
8743 8744
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8775 8776 8777

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8778
		for_each_sched_entity(se)
8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8796 8797
void online_fair_sched_group(struct task_group *tg) { }

8798
void unregister_fair_sched_group(struct task_group *tg) { }
8799 8800 8801

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8802

8803
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8804 8805 8806 8807 8808 8809 8810 8811 8812
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8813
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8814 8815 8816 8817

	return rr_interval;
}

8818 8819 8820
/*
 * All the scheduling class methods:
 */
8821
const struct sched_class fair_sched_class = {
8822
	.next			= &idle_sched_class,
8823 8824 8825
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8826
	.yield_to_task		= yield_to_task_fair,
8827

I
Ingo Molnar 已提交
8828
	.check_preempt_curr	= check_preempt_wakeup,
8829 8830 8831 8832

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8833
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8834
	.select_task_rq		= select_task_rq_fair,
8835
	.migrate_task_rq	= migrate_task_rq_fair,
8836

8837 8838
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8839

8840
	.task_dead		= task_dead_fair,
8841
	.set_cpus_allowed	= set_cpus_allowed_common,
8842
#endif
8843

8844
	.set_curr_task          = set_curr_task_fair,
8845
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8846
	.task_fork		= task_fork_fair,
8847 8848

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8849
	.switched_from		= switched_from_fair,
8850
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8851

8852 8853
	.get_rr_interval	= get_rr_interval_fair,

8854 8855
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8856
#ifdef CONFIG_FAIR_GROUP_SCHED
8857
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
8858
#endif
8859 8860 8861
};

#ifdef CONFIG_SCHED_DEBUG
8862
void print_cfs_stats(struct seq_file *m, int cpu)
8863 8864 8865
{
	struct cfs_rq *cfs_rq;

8866
	rcu_read_lock();
8867
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8868
		print_cfs_rq(m, cpu, cfs_rq);
8869
	rcu_read_unlock();
8870
}
8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8892 8893 8894 8895 8896 8897

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8898
#ifdef CONFIG_NO_HZ_COMMON
8899
	nohz.next_balance = jiffies;
8900 8901 8902 8903 8904
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}