fair.c 224.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206 207 208 209 210 211 212
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684 685
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
	sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
686
	sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
687
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
688
}
689 690 691

static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
692
#else
693
void init_entity_runnable_average(struct sched_entity *se)
694 695 696 697
{
}
#endif

698
/*
699
 * Update the current task's runtime statistics.
700
 */
701
static void update_curr(struct cfs_rq *cfs_rq)
702
{
703
	struct sched_entity *curr = cfs_rq->curr;
704
	u64 now = rq_clock_task(rq_of(cfs_rq));
705
	u64 delta_exec;
706 707 708 709

	if (unlikely(!curr))
		return;

710 711
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
712
		return;
713

I
Ingo Molnar 已提交
714
	curr->exec_start = now;
715

716 717 718 719 720 721 722 723 724
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

725 726 727
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

728
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
729
		cpuacct_charge(curtask, delta_exec);
730
		account_group_exec_runtime(curtask, delta_exec);
731
	}
732 733

	account_cfs_rq_runtime(cfs_rq, delta_exec);
734 735
}

736 737 738 739 740
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

741
#ifdef CONFIG_SCHEDSTATS
742
static inline void
743
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
744
{
745 746 747 748 749 750 751
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
752 753
}

754 755 756 757
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
758 759 760
	u64 delta;

	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}

782 783 784
/*
 * Task is being enqueued - update stats:
 */
785 786
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 788 789 790 791
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
792
	if (se != cfs_rq->curr)
793
		update_stats_wait_start(cfs_rq, se);
794 795 796
}

static inline void
797
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
798 799 800 801 802
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
803
	if (se != cfs_rq->curr)
804
		update_stats_wait_end(cfs_rq, se);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

	if (flags & DEQUEUE_SLEEP) {
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
	}

}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
837
}
838
#endif
839 840 841 842 843

/*
 * We are picking a new current task - update its stats:
 */
static inline void
844
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 846 847 848
{
	/*
	 * We are starting a new run period:
	 */
849
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
850 851 852 853 854 855
}

/**************************************************
 * Scheduling class queueing methods:
 */

856 857
#ifdef CONFIG_NUMA_BALANCING
/*
858 859 860
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
861
 */
862 863
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
864 865 866

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
867

868 869 870
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
895
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
896 897 898
	unsigned int scan, floor;
	unsigned int windows = 1;

899 900
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

917 918 919 920 921 922 923 924 925 926 927 928
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

929 930 931 932 933
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
934
	pid_t gid;
935
	int active_nodes;
936 937

	struct rcu_head rcu;
938
	unsigned long total_faults;
939
	unsigned long max_faults_cpu;
940 941 942 943 944
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
945
	unsigned long *faults_cpu;
946
	unsigned long faults[0];
947 948
};

949 950 951 952 953 954 955 956 957
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

958 959 960 961 962
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

963 964 965 966 967 968 969
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
970
{
971
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
972 973 974 975
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
976
	if (!p->numa_faults)
977 978
		return 0;

979 980
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
981 982
}

983 984 985 986 987
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

988 989
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
990 991
}

992 993
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
994 995
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
996 997
}

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1075 1076 1077 1078 1079 1080
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1081 1082
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1083
{
1084
	unsigned long faults, total_faults;
1085

1086
	if (!p->numa_faults)
1087 1088 1089 1090 1091 1092 1093
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1094
	faults = task_faults(p, nid);
1095 1096
	faults += score_nearby_nodes(p, nid, dist, true);

1097
	return 1000 * faults / total_faults;
1098 1099
}

1100 1101
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1102
{
1103 1104 1105 1106 1107 1108 1109 1110
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1111 1112
		return 0;

1113
	faults = group_faults(p, nid);
1114 1115
	faults += score_nearby_nodes(p, nid, dist, false);

1116
	return 1000 * faults / total_faults;
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1159 1160
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1161
	 */
1162 1163
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1164 1165 1166
		return true;

	/*
1167 1168 1169 1170 1171 1172
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1173
	 */
1174 1175
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1176 1177
}

1178
static unsigned long weighted_cpuload(const int cpu);
1179 1180
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1181
static unsigned long capacity_of(int cpu);
1182 1183
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1184
/* Cached statistics for all CPUs within a node */
1185
struct numa_stats {
1186
	unsigned long nr_running;
1187
	unsigned long load;
1188 1189

	/* Total compute capacity of CPUs on a node */
1190
	unsigned long compute_capacity;
1191 1192

	/* Approximate capacity in terms of runnable tasks on a node */
1193
	unsigned long task_capacity;
1194
	int has_free_capacity;
1195
};
1196

1197 1198 1199 1200 1201
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1202 1203
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1204 1205 1206 1207 1208 1209 1210

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1211
		ns->compute_capacity += capacity_of(cpu);
1212 1213

		cpus++;
1214 1215
	}

1216 1217 1218 1219 1220
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1221 1222
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1223 1224 1225 1226
	 */
	if (!cpus)
		return;

1227 1228 1229 1230 1231 1232
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1233
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1234 1235
}

1236 1237
struct task_numa_env {
	struct task_struct *p;
1238

1239 1240
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1241

1242
	struct numa_stats src_stats, dst_stats;
1243

1244
	int imbalance_pct;
1245
	int dist;
1246 1247 1248

	struct task_struct *best_task;
	long best_imp;
1249 1250 1251
	int best_cpu;
};

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1263
static bool load_too_imbalanced(long src_load, long dst_load,
1264 1265
				struct task_numa_env *env)
{
1266 1267
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1279 1280

	/* We care about the slope of the imbalance, not the direction. */
1281 1282
	if (dst_load < src_load)
		swap(dst_load, src_load);
1283 1284

	/* Is the difference below the threshold? */
1285 1286
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1287 1288 1289 1290 1291
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1292
	 * Compare it with the old imbalance.
1293
	 */
1294
	orig_src_load = env->src_stats.load;
1295
	orig_dst_load = env->dst_stats.load;
1296

1297 1298
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1299

1300 1301 1302 1303 1304
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1305 1306
}

1307 1308 1309 1310 1311 1312
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1313 1314
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1315 1316 1317 1318
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1319
	long src_load, dst_load;
1320
	long load;
1321
	long imp = env->p->numa_group ? groupimp : taskimp;
1322
	long moveimp = imp;
1323
	int dist = env->dist;
1324
	bool assigned = false;
1325 1326

	rcu_read_lock();
1327 1328 1329 1330

	raw_spin_lock_irq(&dst_rq->lock);
	cur = dst_rq->curr;
	/*
1331
	 * No need to move the exiting task or idle task.
1332 1333
	 */
	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1334
		cur = NULL;
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
	else {
		/*
		 * The task_struct must be protected here to protect the
		 * p->numa_faults access in the task_weight since the
		 * numa_faults could already be freed in the following path:
		 * finish_task_switch()
		 *     --> put_task_struct()
		 *         --> __put_task_struct()
		 *             --> task_numa_free()
		 */
		get_task_struct(cur);
	}

1348
	raw_spin_unlock_irq(&dst_rq->lock);
1349

1350 1351 1352 1353 1354 1355 1356
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1369 1370
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1371
		 * in any group then look only at task weights.
1372
		 */
1373
		if (cur->numa_group == env->p->numa_group) {
1374 1375
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1376 1377 1378 1379 1380 1381
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1382
		} else {
1383 1384 1385 1386 1387 1388
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1389 1390
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1391
			else
1392 1393
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1394
		}
1395 1396
	}

1397
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1398 1399 1400 1401
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1402
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1403
		    !env->dst_stats.has_free_capacity)
1404 1405 1406 1407 1408 1409
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1410 1411
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1412 1413 1414 1415 1416 1417
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1418 1419 1420
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1421

1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
1431
			put_task_struct(cur);
1432 1433 1434 1435 1436 1437 1438 1439
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1440
	if (cur) {
1441 1442 1443
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1444 1445
	}

1446
	if (load_too_imbalanced(src_load, dst_load, env))
1447 1448
		goto unlock;

1449 1450 1451 1452 1453 1454 1455
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1456
assign:
1457
	assigned = true;
1458 1459 1460
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
1461 1462 1463 1464 1465 1466
	/*
	 * The dst_rq->curr isn't assigned. The protection for task_struct is
	 * finished.
	 */
	if (cur && !assigned)
		put_task_struct(cur);
1467 1468
}

1469 1470
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1471 1472 1473 1474 1475 1476 1477 1478 1479
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1480
		task_numa_compare(env, taskimp, groupimp);
1481 1482 1483
	}
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1501 1502 1503
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1504 1505 1506 1507 1508
		return true;

	return false;
}

1509 1510 1511 1512
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1513

1514
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1515
		.src_nid = task_node(p),
1516 1517 1518 1519 1520

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1521
		.best_cpu = -1,
1522 1523
	};
	struct sched_domain *sd;
1524
	unsigned long taskweight, groupweight;
1525
	int nid, ret, dist;
1526
	long taskimp, groupimp;
1527

1528
	/*
1529 1530 1531 1532 1533 1534
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1535 1536
	 */
	rcu_read_lock();
1537
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1538 1539
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1540 1541
	rcu_read_unlock();

1542 1543 1544 1545 1546 1547 1548
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1549
		p->numa_preferred_nid = task_node(p);
1550 1551 1552
		return -EINVAL;
	}

1553
	env.dst_nid = p->numa_preferred_nid;
1554 1555 1556 1557 1558 1559
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1560
	update_numa_stats(&env.dst_stats, env.dst_nid);
1561

1562
	/* Try to find a spot on the preferred nid. */
1563 1564
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1565

1566 1567 1568 1569 1570 1571 1572
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1573
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1574 1575 1576
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1577

1578
			dist = node_distance(env.src_nid, env.dst_nid);
1579 1580 1581 1582 1583
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1584

1585
			/* Only consider nodes where both task and groups benefit */
1586 1587
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1588
			if (taskimp < 0 && groupimp < 0)
1589 1590
				continue;

1591
			env.dist = dist;
1592 1593
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1594 1595
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1596 1597 1598
		}
	}

1599 1600 1601 1602 1603 1604 1605 1606
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1607
	if (p->numa_group) {
1608 1609
		struct numa_group *ng = p->numa_group;

1610 1611 1612 1613 1614
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1615
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1616 1617 1618 1619 1620 1621
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1622

1623 1624 1625 1626 1627 1628
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1629
	if (env.best_task == NULL) {
1630 1631 1632
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1633 1634 1635 1636
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1637 1638
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1639 1640
	put_task_struct(env.best_task);
	return ret;
1641 1642
}

1643 1644 1645
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1646 1647
	unsigned long interval = HZ;

1648
	/* This task has no NUMA fault statistics yet */
1649
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1650 1651
		return;

1652
	/* Periodically retry migrating the task to the preferred node */
1653 1654
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1655 1656

	/* Success if task is already running on preferred CPU */
1657
	if (task_node(p) == p->numa_preferred_nid)
1658 1659 1660
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1661
	task_numa_migrate(p);
1662 1663
}

1664
/*
1665
 * Find out how many nodes on the workload is actively running on. Do this by
1666 1667 1668 1669
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1670
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1671 1672
{
	unsigned long faults, max_faults = 0;
1673
	int nid, active_nodes = 0;
1674 1675 1676 1677 1678 1679 1680 1681 1682

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1683 1684
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1685
	}
1686 1687 1688

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1689 1690
}

1691 1692 1693
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1694 1695 1696
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1697 1698
 */
#define NUMA_PERIOD_SLOTS 10
1699
#define NUMA_PERIOD_THRESHOLD 7
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1720 1721 1722
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1723
	 */
1724
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1758
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1759 1760 1761 1762 1763 1764 1765 1766
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1785 1786
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1787 1788 1789 1790 1791 1792 1793 1794
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1842
		nodemask_t max_group = NODE_MASK_NONE;
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1876 1877
		if (!max_faults)
			break;
1878 1879 1880 1881 1882
		nodes = max_group;
	}
	return nid;
}

1883 1884
static void task_numa_placement(struct task_struct *p)
{
1885 1886
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1887
	unsigned long fault_types[2] = { 0, 0 };
1888 1889
	unsigned long total_faults;
	u64 runtime, period;
1890
	spinlock_t *group_lock = NULL;
1891

1892 1893 1894 1895 1896
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1897
	seq = READ_ONCE(p->mm->numa_scan_seq);
1898 1899 1900
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1901
	p->numa_scan_period_max = task_scan_max(p);
1902

1903 1904 1905 1906
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1907 1908 1909
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1910
		spin_lock_irq(group_lock);
1911 1912
	}

1913 1914
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1915 1916
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1917
		unsigned long faults = 0, group_faults = 0;
1918
		int priv;
1919

1920
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1921
			long diff, f_diff, f_weight;
1922

1923 1924 1925 1926
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1927

1928
			/* Decay existing window, copy faults since last scan */
1929 1930 1931
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1932

1933 1934 1935 1936 1937 1938 1939 1940
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1941
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1942
				   (total_faults + 1);
1943 1944
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1945

1946 1947 1948
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1949
			p->total_numa_faults += diff;
1950
			if (p->numa_group) {
1951 1952 1953 1954 1955 1956 1957 1958 1959
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1960
				p->numa_group->total_faults += diff;
1961
				group_faults += p->numa_group->faults[mem_idx];
1962
			}
1963 1964
		}

1965 1966 1967 1968
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1969 1970 1971 1972 1973 1974 1975

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1976 1977
	update_task_scan_period(p, fault_types[0], fault_types[1]);

1978
	if (p->numa_group) {
1979
		numa_group_count_active_nodes(p->numa_group);
1980
		spin_unlock_irq(group_lock);
1981
		max_nid = preferred_group_nid(p, max_group_nid);
1982 1983
	}

1984 1985 1986 1987 1988 1989 1990
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
1991
	}
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2005 2006
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2007 2008 2009 2010 2011 2012 2013 2014 2015
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2016
				    4*nr_node_ids*sizeof(unsigned long);
2017 2018 2019 2020 2021 2022

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2023 2024
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2025
		spin_lock_init(&grp->lock);
2026
		grp->gid = p->pid;
2027
		/* Second half of the array tracks nids where faults happen */
2028 2029
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2030

2031
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2032
			grp->faults[i] = p->numa_faults[i];
2033

2034
		grp->total_faults = p->total_numa_faults;
2035

2036 2037 2038 2039 2040
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2041
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2042 2043

	if (!cpupid_match_pid(tsk, cpupid))
2044
		goto no_join;
2045 2046 2047

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2048
		goto no_join;
2049 2050 2051

	my_grp = p->numa_group;
	if (grp == my_grp)
2052
		goto no_join;
2053 2054 2055 2056 2057 2058

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2059
		goto no_join;
2060 2061 2062 2063 2064

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2065
		goto no_join;
2066

2067 2068 2069 2070 2071 2072 2073
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2074

2075 2076 2077
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2078
	if (join && !get_numa_group(grp))
2079
		goto no_join;
2080 2081 2082 2083 2084 2085

	rcu_read_unlock();

	if (!join)
		return;

2086 2087
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2088

2089
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2090 2091
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2092
	}
2093 2094
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2095 2096 2097 2098 2099

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2100
	spin_unlock_irq(&grp->lock);
2101 2102 2103 2104

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2105 2106 2107 2108 2109
	return;

no_join:
	rcu_read_unlock();
	return;
2110 2111 2112 2113 2114
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2115
	void *numa_faults = p->numa_faults;
2116 2117
	unsigned long flags;
	int i;
2118 2119

	if (grp) {
2120
		spin_lock_irqsave(&grp->lock, flags);
2121
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2122
			grp->faults[i] -= p->numa_faults[i];
2123
		grp->total_faults -= p->total_numa_faults;
2124

2125
		grp->nr_tasks--;
2126
		spin_unlock_irqrestore(&grp->lock, flags);
2127
		RCU_INIT_POINTER(p->numa_group, NULL);
2128 2129 2130
		put_numa_group(grp);
	}

2131
	p->numa_faults = NULL;
2132
	kfree(numa_faults);
2133 2134
}

2135 2136 2137
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2138
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2139 2140
{
	struct task_struct *p = current;
2141
	bool migrated = flags & TNF_MIGRATED;
2142
	int cpu_node = task_node(current);
2143
	int local = !!(flags & TNF_FAULT_LOCAL);
2144
	struct numa_group *ng;
2145
	int priv;
2146

2147
	if (!static_branch_likely(&sched_numa_balancing))
2148 2149
		return;

2150 2151 2152 2153
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2154
	/* Allocate buffer to track faults on a per-node basis */
2155 2156
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2157
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2158

2159 2160
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2161
			return;
2162

2163
		p->total_numa_faults = 0;
2164
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2165
	}
2166

2167 2168 2169 2170 2171 2172 2173 2174
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2175
		if (!priv && !(flags & TNF_NO_GROUP))
2176
			task_numa_group(p, last_cpupid, flags, &priv);
2177 2178
	}

2179 2180 2181 2182 2183 2184
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2185 2186 2187 2188
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2189 2190
		local = 1;

2191
	task_numa_placement(p);
2192

2193 2194 2195 2196 2197
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2198 2199
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2200 2201
	if (migrated)
		p->numa_pages_migrated += pages;
2202 2203
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2204

2205 2206
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2207
	p->numa_faults_locality[local] += pages;
2208 2209
}

2210 2211
static void reset_ptenuma_scan(struct task_struct *p)
{
2212 2213 2214 2215 2216 2217 2218 2219
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2220
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2221 2222 2223
	p->mm->numa_scan_offset = 0;
}

2224 2225 2226 2227 2228 2229 2230 2231 2232
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2233
	u64 runtime = p->se.sum_exec_runtime;
2234
	struct vm_area_struct *vma;
2235
	unsigned long start, end;
2236
	unsigned long nr_pte_updates = 0;
2237
	long pages, virtpages;
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2253
	if (!mm->numa_next_scan) {
2254 2255
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2256 2257
	}

2258 2259 2260 2261 2262 2263 2264
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2265 2266 2267 2268
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2269

2270
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2271 2272 2273
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2274 2275 2276 2277 2278 2279
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2280 2281 2282
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2283
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2284 2285
	if (!pages)
		return;
2286

2287

2288
	down_read(&mm->mmap_sem);
2289
	vma = find_vma(mm, start);
2290 2291
	if (!vma) {
		reset_ptenuma_scan(p);
2292
		start = 0;
2293 2294
		vma = mm->mmap;
	}
2295
	for (; vma; vma = vma->vm_next) {
2296
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2297
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2298
			continue;
2299
		}
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2311 2312 2313 2314 2315 2316
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2317

2318 2319 2320 2321
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2322
			nr_pte_updates = change_prot_numa(vma, start, end);
2323 2324

			/*
2325 2326 2327 2328 2329 2330
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2331 2332 2333
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2334
			virtpages -= (end - start) >> PAGE_SHIFT;
2335

2336
			start = end;
2337
			if (pages <= 0 || virtpages <= 0)
2338
				goto out;
2339 2340

			cond_resched();
2341
		} while (end != vma->vm_end);
2342
	}
2343

2344
out:
2345
	/*
P
Peter Zijlstra 已提交
2346 2347 2348 2349
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2350 2351
	 */
	if (vma)
2352
		mm->numa_scan_offset = start;
2353 2354 2355
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2392
	if (now > curr->node_stamp + period) {
2393
		if (!curr->node_stamp)
2394
			curr->numa_scan_period = task_scan_min(curr);
2395
		curr->node_stamp += period;
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2407 2408 2409 2410 2411 2412 2413 2414

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2415 2416
#endif /* CONFIG_NUMA_BALANCING */

2417 2418 2419 2420
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2421
	if (!parent_entity(se))
2422
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2423
#ifdef CONFIG_SMP
2424 2425 2426 2427 2428 2429
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2430
#endif
2431 2432 2433 2434 2435 2436 2437
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2438
	if (!parent_entity(se))
2439
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2440 2441
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2442
		list_del_init(&se->group_node);
2443
	}
2444 2445 2446
	cfs_rq->nr_running--;
}

2447 2448
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2449 2450 2451 2452 2453
static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
{
	long tg_weight;

	/*
2454 2455 2456
	 * Use this CPU's real-time load instead of the last load contribution
	 * as the updating of the contribution is delayed, and we will use the
	 * the real-time load to calc the share. See update_tg_load_avg().
2457
	 */
2458
	tg_weight = atomic_long_read(&tg->load_avg);
2459
	tg_weight -= cfs_rq->tg_load_avg_contrib;
2460
	tg_weight += cfs_rq->load.weight;
2461 2462 2463 2464

	return tg_weight;
}

2465
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2466
{
2467
	long tg_weight, load, shares;
2468

2469
	tg_weight = calc_tg_weight(tg, cfs_rq);
2470
	load = cfs_rq->load.weight;
2471 2472

	shares = (tg->shares * load);
2473 2474
	if (tg_weight)
		shares /= tg_weight;
2475 2476 2477 2478 2479 2480 2481 2482 2483

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2484
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2485 2486 2487 2488
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
2489 2490 2491
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2492 2493 2494 2495
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2496
		account_entity_dequeue(cfs_rq, se);
2497
	}
P
Peter Zijlstra 已提交
2498 2499 2500 2501 2502 2503 2504

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2505 2506
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2507
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2508 2509 2510
{
	struct task_group *tg;
	struct sched_entity *se;
2511
	long shares;
P
Peter Zijlstra 已提交
2512 2513 2514

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2515
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2516
		return;
2517 2518 2519 2520
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2521
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2522 2523 2524 2525

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2526
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2527 2528 2529 2530
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2531
#ifdef CONFIG_SMP
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2552 2553 2554 2555 2556 2557
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2570 2571
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2572 2573 2574 2575 2576 2577
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2578 2579
	}

2580 2581
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
	do {
		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];

		n -= LOAD_AVG_PERIOD;
	} while (n > LOAD_AVG_PERIOD);

	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2610 2611
}

2612 2613 2614 2615
#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
#error "load tracking assumes 2^10 as unit"
#endif

2616
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2617

2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2646 2647
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2648
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2649
{
2650
	u64 delta, scaled_delta, periods;
2651
	u32 contrib;
2652
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2653
	unsigned long scale_freq, scale_cpu;
2654

2655
	delta = now - sa->last_update_time;
2656 2657 2658 2659 2660
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2661
		sa->last_update_time = now;
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2672
	sa->last_update_time = now;
2673

2674 2675 2676
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2677
	/* delta_w is the amount already accumulated against our next period */
2678
	delta_w = sa->period_contrib;
2679 2680 2681
	if (delta + delta_w >= 1024) {
		decayed = 1;

2682 2683 2684
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2685 2686 2687 2688 2689 2690
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2691
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2692
		if (weight) {
2693 2694 2695 2696 2697
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2698
		}
2699
		if (running)
2700
			sa->util_sum += scaled_delta_w * scale_cpu;
2701 2702 2703 2704 2705 2706 2707

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2708
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2709 2710 2711 2712
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2713
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2714 2715

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2716
		contrib = __compute_runnable_contrib(periods);
2717
		contrib = cap_scale(contrib, scale_freq);
2718
		if (weight) {
2719
			sa->load_sum += weight * contrib;
2720 2721 2722
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2723
		if (running)
2724
			sa->util_sum += contrib * scale_cpu;
2725 2726 2727
	}

	/* Remainder of delta accrued against u_0` */
2728
	scaled_delta = cap_scale(delta, scale_freq);
2729
	if (weight) {
2730
		sa->load_sum += weight * scaled_delta;
2731
		if (cfs_rq)
2732
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2733
	}
2734
	if (running)
2735
		sa->util_sum += scaled_delta * scale_cpu;
2736

2737
	sa->period_contrib += delta;
2738

2739 2740
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2741 2742 2743 2744
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2745
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2746
	}
2747

2748
	return decayed;
2749 2750
}

2751
#ifdef CONFIG_FAIR_GROUP_SCHED
2752
/*
2753 2754
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2755
 */
2756
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2757
{
2758
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2759

2760 2761 2762 2763 2764 2765
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2766 2767 2768
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2769
	}
2770
}
2771

2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2818
#else /* CONFIG_FAIR_GROUP_SCHED */
2819
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2820
#endif /* CONFIG_FAIR_GROUP_SCHED */
2821

2822
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2823

2824 2825
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2826
{
2827
	struct sched_avg *sa = &cfs_rq->avg;
2828
	int decayed, removed = 0;
2829

2830
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2831
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2832 2833
		sa->load_avg = max_t(long, sa->load_avg - r, 0);
		sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2834
		removed = 1;
2835
	}
2836

2837 2838 2839
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
		sa->util_avg = max_t(long, sa->util_avg - r, 0);
2840
		sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2841
	}
2842

2843
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2844
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2845

2846 2847 2848 2849
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2850

2851
	return decayed || removed;
2852 2853
}

2854 2855
/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
2856
{
2857
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2858
	u64 now = cfs_rq_clock_task(cfs_rq);
2859 2860
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
2861

2862
	/*
2863 2864
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
2865
	 */
2866
	__update_load_avg(now, cpu, &se->avg,
2867 2868
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
2869

2870 2871
	if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
		update_tg_load_avg(cfs_rq, 0);
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
2895 2896
}

2897 2898
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2899 2900 2901
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2916
skip_aging:
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

	cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
	cfs_rq->avg.load_sum = max_t(s64,  cfs_rq->avg.load_sum - se->avg.load_sum, 0);
	cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
	cfs_rq->avg.util_sum = max_t(s32,  cfs_rq->avg.util_sum - se->avg.util_sum, 0);
}

2936 2937 2938
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2939
{
2940 2941
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2942
	int migrated, decayed;
2943

2944 2945
	migrated = !sa->last_update_time;
	if (!migrated) {
2946
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2947 2948
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
2949
	}
2950

2951
	decayed = update_cfs_rq_load_avg(now, cfs_rq);
2952

2953 2954 2955
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

2956 2957
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
2958

2959 2960
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
2961 2962
}

2963 2964 2965 2966 2967 2968 2969 2970 2971
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
2972
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2973 2974
}

2975
#ifndef CONFIG_64BIT
2976 2977
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
2978
	u64 last_update_time_copy;
2979
	u64 last_update_time;
2980

2981 2982 2983 2984 2985
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
2986 2987 2988

	return last_update_time;
}
2989
#else
2990 2991 2992 2993
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
2994 2995
#endif

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
	 * Newly created task or never used group entity should not be removed
	 * from its (source) cfs_rq
	 */
	if (se->avg.last_update_time == 0)
		return;

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3014
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3015 3016
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3017
}
3018

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3029 3030
static int idle_balance(struct rq *this_rq);

3031 3032
#else /* CONFIG_SMP */

3033 3034 3035
static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3036 3037
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3038
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3039

3040 3041 3042 3043 3044
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3045 3046 3047 3048 3049
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3050
#endif /* CONFIG_SMP */
3051

3052
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3053 3054
{
#ifdef CONFIG_SCHEDSTATS
3055 3056 3057 3058 3059
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

3060
	if (se->statistics.sleep_start) {
3061
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3062 3063 3064 3065

		if ((s64)delta < 0)
			delta = 0;

3066 3067
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
3068

3069
		se->statistics.sleep_start = 0;
3070
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
3071

3072
		if (tsk) {
3073
			account_scheduler_latency(tsk, delta >> 10, 1);
3074 3075
			trace_sched_stat_sleep(tsk, delta);
		}
3076
	}
3077
	if (se->statistics.block_start) {
3078
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3079 3080 3081 3082

		if ((s64)delta < 0)
			delta = 0;

3083 3084
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
3085

3086
		se->statistics.block_start = 0;
3087
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
3088

3089
		if (tsk) {
3090
			if (tsk->in_iowait) {
3091 3092
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3093
				trace_sched_stat_iowait(tsk, delta);
3094 3095
			}

3096 3097
			trace_sched_stat_blocked(tsk, delta);

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3109
		}
3110 3111 3112 3113
	}
#endif
}

P
Peter Zijlstra 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3127 3128 3129
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3130
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3131

3132 3133 3134 3135 3136 3137
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3138
	if (initial && sched_feat(START_DEBIT))
3139
		vruntime += sched_vslice(cfs_rq, se);
3140

3141
	/* sleeps up to a single latency don't count. */
3142
	if (!initial) {
3143
		unsigned long thresh = sysctl_sched_latency;
3144

3145 3146 3147 3148 3149 3150
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3151

3152
		vruntime -= thresh;
3153 3154
	}

3155
	/* ensure we never gain time by being placed backwards. */
3156
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3157 3158
}

3159 3160
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
		pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3181
static void
3182
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3183
{
3184 3185 3186
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
	bool curr = cfs_rq->curr == se;

3187
	/*
3188 3189
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3190
	 */
3191
	if (renorm && curr)
3192 3193
		se->vruntime += cfs_rq->min_vruntime;

3194 3195
	update_curr(cfs_rq);

3196
	/*
3197 3198
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past.
3199
	 */
3200 3201 3202
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3203
	enqueue_entity_load_avg(cfs_rq, se);
3204 3205
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3206

3207
	if (flags & ENQUEUE_WAKEUP) {
3208
		place_entity(cfs_rq, se, 0);
3209 3210
		if (schedstat_enabled())
			enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3211
	}
3212

3213 3214 3215 3216 3217
	check_schedstat_required();
	if (schedstat_enabled()) {
		update_stats_enqueue(cfs_rq, se);
		check_spread(cfs_rq, se);
	}
3218
	if (!curr)
3219
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3220
	se->on_rq = 1;
3221

3222
	if (cfs_rq->nr_running == 1) {
3223
		list_add_leaf_cfs_rq(cfs_rq);
3224 3225
		check_enqueue_throttle(cfs_rq);
	}
3226 3227
}

3228
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3229
{
3230 3231
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3232
		if (cfs_rq->last != se)
3233
			break;
3234 3235

		cfs_rq->last = NULL;
3236 3237
	}
}
P
Peter Zijlstra 已提交
3238

3239 3240 3241 3242
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3243
		if (cfs_rq->next != se)
3244
			break;
3245 3246

		cfs_rq->next = NULL;
3247
	}
P
Peter Zijlstra 已提交
3248 3249
}

3250 3251 3252 3253
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3254
		if (cfs_rq->skip != se)
3255
			break;
3256 3257

		cfs_rq->skip = NULL;
3258 3259 3260
	}
}

P
Peter Zijlstra 已提交
3261 3262
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3263 3264 3265 3266 3267
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3268 3269 3270

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3271 3272
}

3273
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3274

3275
static void
3276
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3277
{
3278 3279 3280 3281
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3282
	dequeue_entity_load_avg(cfs_rq, se);
3283

3284 3285
	if (schedstat_enabled())
		update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3286

P
Peter Zijlstra 已提交
3287
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3288

3289
	if (se != cfs_rq->curr)
3290
		__dequeue_entity(cfs_rq, se);
3291
	se->on_rq = 0;
3292
	account_entity_dequeue(cfs_rq, se);
3293 3294 3295 3296 3297 3298

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3299
	if (!(flags & DEQUEUE_SLEEP))
3300
		se->vruntime -= cfs_rq->min_vruntime;
3301

3302 3303 3304
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3305
	update_min_vruntime(cfs_rq);
3306
	update_cfs_shares(cfs_rq);
3307 3308 3309 3310 3311
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3312
static void
I
Ingo Molnar 已提交
3313
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3314
{
3315
	unsigned long ideal_runtime, delta_exec;
3316 3317
	struct sched_entity *se;
	s64 delta;
3318

P
Peter Zijlstra 已提交
3319
	ideal_runtime = sched_slice(cfs_rq, curr);
3320
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3321
	if (delta_exec > ideal_runtime) {
3322
		resched_curr(rq_of(cfs_rq));
3323 3324 3325 3326 3327
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3339 3340
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3341

3342 3343
	if (delta < 0)
		return;
3344

3345
	if (delta > ideal_runtime)
3346
		resched_curr(rq_of(cfs_rq));
3347 3348
}

3349
static void
3350
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3351
{
3352 3353 3354 3355 3356 3357 3358
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3359 3360
		if (schedstat_enabled())
			update_stats_wait_end(cfs_rq, se);
3361
		__dequeue_entity(cfs_rq, se);
3362
		update_load_avg(se, 1);
3363 3364
	}

3365
	update_stats_curr_start(cfs_rq, se);
3366
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3367 3368 3369 3370 3371 3372
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3373
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3374
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3375 3376 3377
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3378
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3379 3380
}

3381 3382 3383
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3384 3385 3386 3387 3388 3389 3390
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3391 3392
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3393
{
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3405

3406 3407 3408 3409 3410
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3421 3422 3423
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3424

3425 3426 3427 3428 3429 3430
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3431 3432 3433 3434 3435 3436
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3437
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3438 3439

	return se;
3440 3441
}

3442
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3443

3444
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3445 3446 3447 3448 3449 3450
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3451
		update_curr(cfs_rq);
3452

3453 3454 3455
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3456 3457 3458 3459 3460 3461
	if (schedstat_enabled()) {
		check_spread(cfs_rq, prev);
		if (prev->on_rq)
			update_stats_wait_start(cfs_rq, prev);
	}

3462 3463 3464
	if (prev->on_rq) {
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3465
		/* in !on_rq case, update occurred at dequeue */
3466
		update_load_avg(prev, 0);
3467
	}
3468
	cfs_rq->curr = NULL;
3469 3470
}

P
Peter Zijlstra 已提交
3471 3472
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3473 3474
{
	/*
3475
	 * Update run-time statistics of the 'current'.
3476
	 */
3477
	update_curr(cfs_rq);
3478

3479 3480 3481
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3482
	update_load_avg(curr, 1);
3483
	update_cfs_shares(cfs_rq);
3484

P
Peter Zijlstra 已提交
3485 3486 3487 3488 3489
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3490
	if (queued) {
3491
		resched_curr(rq_of(cfs_rq));
3492 3493
		return;
	}
P
Peter Zijlstra 已提交
3494 3495 3496 3497 3498 3499 3500 3501
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3502
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3503
		check_preempt_tick(cfs_rq, curr);
3504 3505
}

3506 3507 3508 3509 3510 3511

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3512 3513

#ifdef HAVE_JUMP_LABEL
3514
static struct static_key __cfs_bandwidth_used;
3515 3516 3517

static inline bool cfs_bandwidth_used(void)
{
3518
	return static_key_false(&__cfs_bandwidth_used);
3519 3520
}

3521
void cfs_bandwidth_usage_inc(void)
3522
{
3523 3524 3525 3526 3527 3528
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3529 3530 3531 3532 3533 3534 3535
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3536 3537
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3538 3539
#endif /* HAVE_JUMP_LABEL */

3540 3541 3542 3543 3544 3545 3546 3547
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3548 3549 3550 3551 3552 3553

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3554 3555 3556 3557 3558 3559 3560
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3561
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3573 3574 3575 3576 3577
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3578 3579 3580 3581 3582 3583
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
		return cfs_rq->throttled_clock_task;

3584
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3585 3586
}

3587 3588
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3589 3590 3591
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3592
	u64 amount = 0, min_amount, expires;
3593 3594 3595 3596 3597 3598 3599

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3600
	else {
P
Peter Zijlstra 已提交
3601
		start_cfs_bandwidth(cfs_b);
3602 3603 3604 3605 3606 3607

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3608
	}
P
Paul Turner 已提交
3609
	expires = cfs_b->runtime_expires;
3610 3611 3612
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3613 3614 3615 3616 3617 3618 3619
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3620 3621

	return cfs_rq->runtime_remaining > 0;
3622 3623
}

P
Paul Turner 已提交
3624 3625 3626 3627 3628
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3629
{
P
Paul Turner 已提交
3630 3631 3632
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3633
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3634 3635
		return;

P
Paul Turner 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3645 3646 3647
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3648 3649
	 */

3650
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3651 3652 3653 3654 3655 3656 3657 3658
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3659
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3660 3661
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3662
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3663 3664 3665
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3666 3667
		return;

3668 3669 3670 3671 3672
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3673
		resched_curr(rq_of(cfs_rq));
3674 3675
}

3676
static __always_inline
3677
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3678
{
3679
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3680 3681 3682 3683 3684
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3685 3686
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3687
	return cfs_bandwidth_used() && cfs_rq->throttled;
3688 3689
}

3690 3691 3692
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3693
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
#ifdef CONFIG_SMP
	if (!cfs_rq->throttle_count) {
3722
		/* adjust cfs_rq_clock_task() */
3723
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3724
					     cfs_rq->throttled_clock_task;
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	}
#endif

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3736 3737
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3738
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3739 3740 3741 3742 3743
	cfs_rq->throttle_count++;

	return 0;
}

3744
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3745 3746 3747 3748 3749
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3750
	bool empty;
3751 3752 3753

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3754
	/* freeze hierarchy runnable averages while throttled */
3755 3756 3757
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3775
		sub_nr_running(rq, task_delta);
3776 3777

	cfs_rq->throttled = 1;
3778
	cfs_rq->throttled_clock = rq_clock(rq);
3779
	raw_spin_lock(&cfs_b->lock);
3780
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3781

3782 3783 3784 3785 3786
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3787 3788 3789 3790 3791 3792 3793 3794

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3795 3796 3797
	raw_spin_unlock(&cfs_b->lock);
}

3798
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3799 3800 3801 3802 3803 3804 3805
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3806
	se = cfs_rq->tg->se[cpu_of(rq)];
3807 3808

	cfs_rq->throttled = 0;
3809 3810 3811

	update_rq_clock(rq);

3812
	raw_spin_lock(&cfs_b->lock);
3813
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3814 3815 3816
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3817 3818 3819
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3838
		add_nr_running(rq, task_delta);
3839 3840 3841

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3842
		resched_curr(rq);
3843 3844 3845 3846 3847 3848
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3849 3850
	u64 runtime;
	u64 starting_runtime = remaining;
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3881
	return starting_runtime - remaining;
3882 3883
}

3884 3885 3886 3887 3888 3889 3890 3891
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3892
	u64 runtime, runtime_expires;
3893
	int throttled;
3894 3895 3896

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3897
		goto out_deactivate;
3898

3899
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3900
	cfs_b->nr_periods += overrun;
3901

3902 3903 3904 3905 3906 3907
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3908 3909 3910

	__refill_cfs_bandwidth_runtime(cfs_b);

3911 3912 3913
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
3914
		return 0;
3915 3916
	}

3917 3918 3919
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

3920 3921 3922
	runtime_expires = cfs_b->runtime_expires;

	/*
3923 3924 3925 3926 3927
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
3928
	 */
3929 3930
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
3931 3932 3933 3934 3935 3936 3937
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3938 3939

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3940
	}
3941

3942 3943 3944 3945 3946 3947 3948
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
3949

3950 3951 3952 3953
	return 0;

out_deactivate:
	return 1;
3954
}
3955

3956 3957 3958 3959 3960 3961 3962
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

3963 3964 3965 3966
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3967
 * hrtimer base being cleared by hrtimer_start. In the case of
3968 3969
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
3995 3996 3997
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4027 4028 4029
	if (!cfs_bandwidth_used())
		return;

4030
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4046 4047 4048
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4049
		return;
4050
	}
4051

4052
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4053
		runtime = cfs_b->runtime;
4054

4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4065
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4066 4067 4068
	raw_spin_unlock(&cfs_b->lock);
}

4069 4070 4071 4072 4073 4074 4075
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4076 4077 4078
	if (!cfs_bandwidth_used())
		return;

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
4094
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4095
{
4096
	if (!cfs_bandwidth_used())
4097
		return false;
4098

4099
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4100
		return false;
4101 4102 4103 4104 4105 4106

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4107
		return true;
4108 4109

	throttle_cfs_rq(cfs_rq);
4110
	return true;
4111
}
4112 4113 4114 4115 4116

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4117

4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4130
	raw_spin_lock(&cfs_b->lock);
4131
	for (;;) {
P
Peter Zijlstra 已提交
4132
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4133 4134 4135 4136 4137
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4138 4139
	if (idle)
		cfs_b->period_active = 0;
4140
	raw_spin_unlock(&cfs_b->lock);
4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4153
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4165
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4166
{
P
Peter Zijlstra 已提交
4167
	lockdep_assert_held(&cfs_b->lock);
4168

P
Peter Zijlstra 已提交
4169 4170 4171 4172 4173
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4174 4175 4176 4177
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4178 4179 4180 4181
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4182 4183 4184 4185
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4199
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4211
		cfs_rq->runtime_remaining = 1;
4212 4213 4214 4215 4216 4217
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4218 4219 4220 4221 4222 4223
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4224 4225
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4226
	return rq_clock_task(rq_of(cfs_rq));
4227 4228
}

4229
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4230
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4231
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4232
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4233 4234 4235 4236 4237

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4249 4250 4251 4252 4253

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4254 4255
#endif

4256 4257 4258 4259 4260
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4261
static inline void update_runtime_enabled(struct rq *rq) {}
4262
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4263 4264 4265

#endif /* CONFIG_CFS_BANDWIDTH */

4266 4267 4268 4269
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4270 4271 4272 4273 4274 4275 4276 4277
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4278
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4279 4280 4281 4282 4283 4284
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4285
				resched_curr(rq);
P
Peter Zijlstra 已提交
4286 4287
			return;
		}
4288
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4289 4290
	}
}
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4301
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4302 4303 4304 4305 4306
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4307
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4308 4309 4310 4311
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4312 4313 4314 4315

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4316 4317
#endif

4318 4319 4320 4321 4322
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4323
static void
4324
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4325 4326
{
	struct cfs_rq *cfs_rq;
4327
	struct sched_entity *se = &p->se;
4328 4329

	for_each_sched_entity(se) {
4330
		if (se->on_rq)
4331 4332
			break;
		cfs_rq = cfs_rq_of(se);
4333
		enqueue_entity(cfs_rq, se, flags);
4334 4335 4336 4337 4338 4339 4340 4341 4342

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4343
		cfs_rq->h_nr_running++;
4344

4345
		flags = ENQUEUE_WAKEUP;
4346
	}
P
Peter Zijlstra 已提交
4347

P
Peter Zijlstra 已提交
4348
	for_each_sched_entity(se) {
4349
		cfs_rq = cfs_rq_of(se);
4350
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4351

4352 4353 4354
		if (cfs_rq_throttled(cfs_rq))
			break;

4355
		update_load_avg(se, 1);
4356
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4357 4358
	}

Y
Yuyang Du 已提交
4359
	if (!se)
4360
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4361

4362
	hrtick_update(rq);
4363 4364
}

4365 4366
static void set_next_buddy(struct sched_entity *se);

4367 4368 4369 4370 4371
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4372
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4373 4374
{
	struct cfs_rq *cfs_rq;
4375
	struct sched_entity *se = &p->se;
4376
	int task_sleep = flags & DEQUEUE_SLEEP;
4377 4378 4379

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4380
		dequeue_entity(cfs_rq, se, flags);
4381 4382 4383 4384 4385 4386 4387 4388 4389

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4390
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4391

4392
		/* Don't dequeue parent if it has other entities besides us */
4393 4394 4395 4396 4397 4398 4399
		if (cfs_rq->load.weight) {
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
			if (task_sleep && parent_entity(se))
				set_next_buddy(parent_entity(se));
4400 4401 4402

			/* avoid re-evaluating load for this entity */
			se = parent_entity(se);
4403
			break;
4404
		}
4405
		flags |= DEQUEUE_SLEEP;
4406
	}
P
Peter Zijlstra 已提交
4407

P
Peter Zijlstra 已提交
4408
	for_each_sched_entity(se) {
4409
		cfs_rq = cfs_rq_of(se);
4410
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4411

4412 4413 4414
		if (cfs_rq_throttled(cfs_rq))
			break;

4415
		update_load_avg(se, 1);
4416
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4417 4418
	}

Y
Yuyang Du 已提交
4419
	if (!se)
4420
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4421

4422
	hrtick_update(rq);
4423 4424
}

4425
#ifdef CONFIG_SMP
4426 4427 4428 4429 4430 4431

/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4432
 * The exact cpuload calculated at every tick would be:
4433
 *
4434 4435 4436 4437 4438 4439 4440
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4441 4442 4443
 *
 * decay_load_missed() below does efficient calculation of
 *
4444 4445 4446 4447 4448 4449
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4450
 *
4451
 * The calculation is approximated on a 128 point scale.
4452 4453
 */
#define DEGRADE_SHIFT		7
4454 4455 4456 4457 4458 4459 4460 4461 4462

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}

4493 4494 4495 4496 4497 4498 4499
/**
 * __update_cpu_load - update the rq->cpu_load[] statistics
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 * @active: !0 for NOHZ_FULL
 *
4500
 * Update rq->cpu_load[] statistics. This function is usually called every
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
 * term. See the @active paramter.
4528 4529
 */
static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4530
			      unsigned long pending_updates, int active)
4531
{
4532
	unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4544
		old_load = this_rq->cpu_load[i];
4545
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4546 4547 4548 4549 4550 4551 4552 4553 4554
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4570 4571 4572 4573 4574 4575
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4576
#ifdef CONFIG_NO_HZ_COMMON
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
static void __update_cpu_load_nohz(struct rq *this_rq,
				   unsigned long curr_jiffies,
				   unsigned long load,
				   int active)
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
		__update_cpu_load(this_rq, load, pending_updates, active);
	}
}

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we cannot use the delta approach from the regular tick since that
 * would seriously skew the load calculation. However we'll make do for those
 * updates happening while idle (nohz_idle_balance) or coming out of idle
 * (tick_nohz_idle_exit).
 *
 * This means we might still be one tick off for nohz periods.
 */

/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4613
static void update_cpu_load_idle(struct rq *this_rq)
4614 4615 4616 4617
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4618
	if (weighted_cpuload(cpu_of(this_rq)))
4619 4620
		return;

4621
	__update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
4622 4623 4624 4625 4626
}

/*
 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
 */
4627
void update_cpu_load_nohz(int active)
4628 4629
{
	struct rq *this_rq = this_rq();
4630
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4631
	unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
4632 4633 4634 4635 4636

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

	raw_spin_lock(&this_rq->lock);
4637
	__update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
4638 4639 4640 4641 4642 4643 4644 4645 4646
	raw_spin_unlock(&this_rq->lock);
}
#endif /* CONFIG_NO_HZ */

/*
 * Called from scheduler_tick()
 */
void update_cpu_load_active(struct rq *this_rq)
{
4647
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4648
	/*
4649
	 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
4650 4651
	 */
	this_rq->last_load_update_tick = jiffies;
4652
	__update_cpu_load(this_rq, load, 1, 1);
4653 4654
}

4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4688
static unsigned long capacity_of(int cpu)
4689
{
4690
	return cpu_rq(cpu)->cpu_capacity;
4691 4692
}

4693 4694 4695 4696 4697
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4698 4699 4700
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4701
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4702
	unsigned long load_avg = weighted_cpuload(cpu);
4703 4704

	if (nr_running)
4705
		return load_avg / nr_running;
4706 4707 4708 4709

	return 0;
}

4710 4711 4712 4713 4714 4715 4716
static void record_wakee(struct task_struct *p)
{
	/*
	 * Rough decay (wiping) for cost saving, don't worry
	 * about the boundary, really active task won't care
	 * about the loss.
	 */
4717
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4718
		current->wakee_flips >>= 1;
4719 4720 4721 4722 4723 4724 4725 4726
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}
4727

4728
static void task_waking_fair(struct task_struct *p)
4729 4730 4731
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4732 4733 4734 4735
	u64 min_vruntime;

#ifndef CONFIG_64BIT
	u64 min_vruntime_copy;
4736

4737 4738 4739 4740 4741 4742 4743 4744
	do {
		min_vruntime_copy = cfs_rq->min_vruntime_copy;
		smp_rmb();
		min_vruntime = cfs_rq->min_vruntime;
	} while (min_vruntime != min_vruntime_copy);
#else
	min_vruntime = cfs_rq->min_vruntime;
#endif
4745

4746
	se->vruntime -= min_vruntime;
4747
	record_wakee(p);
4748 4749
}

4750
#ifdef CONFIG_FAIR_GROUP_SCHED
4751 4752 4753 4754 4755 4756
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4800
 */
P
Peter Zijlstra 已提交
4801
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4802
{
P
Peter Zijlstra 已提交
4803
	struct sched_entity *se = tg->se[cpu];
4804

4805
	if (!tg->parent)	/* the trivial, non-cgroup case */
4806 4807
		return wl;

P
Peter Zijlstra 已提交
4808
	for_each_sched_entity(se) {
4809
		long w, W;
P
Peter Zijlstra 已提交
4810

4811
		tg = se->my_q->tg;
4812

4813 4814 4815 4816
		/*
		 * W = @wg + \Sum rw_j
		 */
		W = wg + calc_tg_weight(tg, se->my_q);
P
Peter Zijlstra 已提交
4817

4818 4819 4820
		/*
		 * w = rw_i + @wl
		 */
4821
		w = cfs_rq_load_avg(se->my_q) + wl;
4822

4823 4824 4825 4826
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4827
			wl = (w * (long)tg->shares) / W;
4828 4829
		else
			wl = tg->shares;
4830

4831 4832 4833 4834 4835
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4836 4837
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4838 4839 4840 4841

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4842
		wl -= se->avg.load_avg;
4843 4844 4845 4846 4847 4848 4849 4850

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4851 4852
		wg = 0;
	}
4853

P
Peter Zijlstra 已提交
4854
	return wl;
4855 4856
}
#else
P
Peter Zijlstra 已提交
4857

4858
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4859
{
4860
	return wl;
4861
}
P
Peter Zijlstra 已提交
4862

4863 4864
#endif

M
Mike Galbraith 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
 * A waker of many should wake a different task than the one last awakened
 * at a frequency roughly N times higher than one of its wakees.  In order
 * to determine whether we should let the load spread vs consolodating to
 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.  With
 * both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.  Waker/wakee
 * being client/server, worker/dispatcher, interrupt source or whatever is
 * irrelevant, spread criteria is apparent partner count exceeds socket size.
 */
4877 4878
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
4879 4880
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
4881
	int factor = this_cpu_read(sd_llc_size);
4882

M
Mike Galbraith 已提交
4883 4884 4885 4886 4887
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
4888 4889
}

4890
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4891
{
4892
	s64 this_load, load;
4893
	s64 this_eff_load, prev_eff_load;
4894 4895
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
4896
	unsigned long weight;
4897
	int balanced;
4898

4899 4900 4901 4902 4903
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
4904

4905 4906 4907 4908 4909
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
4910 4911
	if (sync) {
		tg = task_group(current);
4912
		weight = current->se.avg.load_avg;
4913

4914
		this_load += effective_load(tg, this_cpu, -weight, -weight);
4915 4916
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
4917

4918
	tg = task_group(p);
4919
	weight = p->se.avg.load_avg;
4920

4921 4922
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4923 4924 4925
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
4926 4927 4928 4929
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
4930 4931
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
4932

4933 4934
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
4935

4936
	if (this_load > 0) {
4937 4938 4939 4940
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4941
	}
4942

4943
	balanced = this_eff_load <= prev_eff_load;
4944

4945
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4946

4947 4948
	if (!balanced)
		return 0;
4949

4950 4951 4952 4953
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
4954 4955
}

4956 4957 4958 4959 4960
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
4961
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4962
		  int this_cpu, int sd_flag)
4963
{
4964
	struct sched_group *idlest = NULL, *group = sd->groups;
4965
	unsigned long min_load = ULONG_MAX, this_load = 0;
4966
	int load_idx = sd->forkexec_idx;
4967
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4968

4969 4970 4971
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

4972 4973 4974 4975
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
4976

4977 4978
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
4979
					tsk_cpus_allowed(p)))
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

4998
		/* Adjust by relative CPU capacity of the group */
4999
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5021 5022 5023 5024
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5025 5026 5027
	int i;

	/* Traverse only the allowed CPUs */
5028
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5051
		} else if (shallowest_idle_cpu == -1) {
5052 5053 5054 5055 5056
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5057 5058 5059
		}
	}

5060
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5061
}
5062

5063 5064 5065
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5066
static int select_idle_sibling(struct task_struct *p, int target)
5067
{
5068
	struct sched_domain *sd;
5069
	struct sched_group *sg;
5070
	int i = task_cpu(p);
5071

5072 5073
	if (idle_cpu(target))
		return target;
5074 5075

	/*
5076
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5077
	 */
5078 5079
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
5080 5081

	/*
5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5095
	 */
5096
	sd = rcu_dereference(per_cpu(sd_llc, target));
5097
	for_each_lower_domain(sd) {
5098 5099 5100 5101 5102 5103
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5104
			/* Ensure the entire group is idle */
5105
			for_each_cpu(i, sched_group_cpus(sg)) {
5106
				if (i == target || !idle_cpu(i))
5107 5108
					goto next;
			}
5109

5110 5111 5112 5113
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5114 5115 5116 5117 5118 5119 5120 5121
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5122 5123
	return target;
}
5124

5125
/*
5126
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5127
 * tasks. The unit of the return value must be the one of capacity so we can
5128 5129
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5150
 */
5151
static int cpu_util(int cpu)
5152
{
5153
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5154 5155
	unsigned long capacity = capacity_orig_of(cpu);

5156
	return (util >= capacity) ? capacity : util;
5157
}
5158

5159
/*
5160 5161 5162
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5163
 *
5164 5165
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5166
 *
5167
 * Returns the target cpu number.
5168 5169 5170
 *
 * preempt must be disabled.
 */
5171
static int
5172
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5173
{
5174
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5175
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5176
	int new_cpu = prev_cpu;
5177
	int want_affine = 0;
5178
	int sync = wake_flags & WF_SYNC;
5179

5180
	if (sd_flag & SD_BALANCE_WAKE)
M
Mike Galbraith 已提交
5181
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
5182

5183
	rcu_read_lock();
5184
	for_each_domain(cpu, tmp) {
5185
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5186
			break;
5187

5188
		/*
5189 5190
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5191
		 */
5192 5193 5194
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5195
			break;
5196
		}
5197

5198
		if (tmp->flags & sd_flag)
5199
			sd = tmp;
M
Mike Galbraith 已提交
5200 5201
		else if (!want_affine)
			break;
5202 5203
	}

M
Mike Galbraith 已提交
5204 5205 5206 5207
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5208
	}
5209

M
Mike Galbraith 已提交
5210 5211 5212 5213 5214
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5215
		struct sched_group *group;
5216
		int weight;
5217

5218
		if (!(sd->flags & sd_flag)) {
5219 5220 5221
			sd = sd->child;
			continue;
		}
5222

5223
		group = find_idlest_group(sd, p, cpu, sd_flag);
5224 5225 5226 5227
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5228

5229
		new_cpu = find_idlest_cpu(group, p, cpu);
5230 5231 5232 5233
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5234
		}
5235 5236 5237

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5238
		weight = sd->span_weight;
5239 5240
		sd = NULL;
		for_each_domain(cpu, tmp) {
5241
			if (weight <= tmp->span_weight)
5242
				break;
5243
			if (tmp->flags & sd_flag)
5244 5245 5246
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5247
	}
5248
	rcu_read_unlock();
5249

5250
	return new_cpu;
5251
}
5252 5253 5254 5255

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5256
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5257
 */
5258
static void migrate_task_rq_fair(struct task_struct *p)
5259
{
5260
	/*
5261 5262 5263 5264 5265
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5266
	 */
5267 5268 5269 5270
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5271 5272

	/* We have migrated, no longer consider this task hot */
5273
	p->se.exec_start = 0;
5274
}
5275 5276 5277 5278 5279

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5280 5281
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5282 5283
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5284 5285 5286 5287
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5288 5289
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5299
	 */
5300
	return calc_delta_fair(gran, se);
5301 5302
}

5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5325
	gran = wakeup_gran(curr, se);
5326 5327 5328 5329 5330 5331
	if (vdiff > gran)
		return 1;

	return 0;
}

5332 5333
static void set_last_buddy(struct sched_entity *se)
{
5334 5335 5336 5337 5338
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5339 5340 5341 5342
}

static void set_next_buddy(struct sched_entity *se)
{
5343 5344 5345 5346 5347
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5348 5349
}

5350 5351
static void set_skip_buddy(struct sched_entity *se)
{
5352 5353
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5354 5355
}

5356 5357 5358
/*
 * Preempt the current task with a newly woken task if needed:
 */
5359
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5360 5361
{
	struct task_struct *curr = rq->curr;
5362
	struct sched_entity *se = &curr->se, *pse = &p->se;
5363
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5364
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5365
	int next_buddy_marked = 0;
5366

I
Ingo Molnar 已提交
5367 5368 5369
	if (unlikely(se == pse))
		return;

5370
	/*
5371
	 * This is possible from callers such as attach_tasks(), in which we
5372 5373 5374 5375 5376 5377 5378
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5379
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5380
		set_next_buddy(pse);
5381 5382
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5383

5384 5385 5386
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5387 5388 5389 5390 5391 5392
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5393 5394 5395 5396
	 */
	if (test_tsk_need_resched(curr))
		return;

5397 5398 5399 5400 5401
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5402
	/*
5403 5404
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5405
	 */
5406
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5407
		return;
5408

5409
	find_matching_se(&se, &pse);
5410
	update_curr(cfs_rq_of(se));
5411
	BUG_ON(!pse);
5412 5413 5414 5415 5416 5417 5418
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5419
		goto preempt;
5420
	}
5421

5422
	return;
5423

5424
preempt:
5425
	resched_curr(rq);
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5440 5441
}

5442 5443
static struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5444 5445 5446
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5447
	struct task_struct *p;
5448
	int new_tasks;
5449

5450
again:
5451 5452
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5453
		goto idle;
5454

5455
	if (prev->sched_class != &fair_sched_class)
5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5475 5476 5477 5478 5479
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5480

5481 5482 5483 5484 5485 5486 5487 5488 5489
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5530

5531
	if (!cfs_rq->nr_running)
5532
		goto idle;
5533

5534
	put_prev_task(rq, prev);
5535

5536
	do {
5537
		se = pick_next_entity(cfs_rq, NULL);
5538
		set_next_entity(cfs_rq, se);
5539 5540 5541
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5542
	p = task_of(se);
5543

5544 5545
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5546 5547

	return p;
5548 5549

idle:
5550 5551 5552 5553 5554 5555 5556
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	lockdep_unpin_lock(&rq->lock);
5557
	new_tasks = idle_balance(rq);
5558
	lockdep_pin_lock(&rq->lock);
5559 5560 5561 5562 5563
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5564
	if (new_tasks < 0)
5565 5566
		return RETRY_TASK;

5567
	if (new_tasks > 0)
5568 5569 5570
		goto again;

	return NULL;
5571 5572 5573 5574 5575
}

/*
 * Account for a descheduled task:
 */
5576
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5577 5578 5579 5580 5581 5582
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5583
		put_prev_entity(cfs_rq, se);
5584 5585 5586
	}
}

5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5612 5613 5614 5615 5616
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5617
		rq_clock_skip_update(rq, true);
5618 5619 5620 5621 5622
	}

	set_skip_buddy(se);
}

5623 5624 5625 5626
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5627 5628
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5639
#ifdef CONFIG_SMP
5640
/**************************************************
P
Peter Zijlstra 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
 * is derived from the nice value as per prio_to_weight[].
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5664
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5665 5666 5667 5668 5669 5670
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5671
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5757

5758 5759
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5760 5761
enum fbq_type { regular, remote, all };

5762
#define LBF_ALL_PINNED	0x01
5763
#define LBF_NEED_BREAK	0x02
5764 5765
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5766 5767 5768 5769 5770

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5771
	int			src_cpu;
5772 5773 5774 5775

	int			dst_cpu;
	struct rq		*dst_rq;

5776 5777
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5778
	enum cpu_idle_type	idle;
5779
	long			imbalance;
5780 5781 5782
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5783
	unsigned int		flags;
5784 5785 5786 5787

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5788 5789

	enum fbq_type		fbq_type;
5790
	struct list_head	tasks;
5791 5792
};

5793 5794 5795
/*
 * Is this task likely cache-hot:
 */
5796
static int task_hot(struct task_struct *p, struct lb_env *env)
5797 5798 5799
{
	s64 delta;

5800 5801
	lockdep_assert_held(&env->src_rq->lock);

5802 5803 5804 5805 5806 5807 5808 5809 5810
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5811
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5812 5813 5814 5815 5816 5817 5818 5819 5820
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5821
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5822 5823 5824 5825

	return delta < (s64)sysctl_sched_migration_cost;
}

5826
#ifdef CONFIG_NUMA_BALANCING
5827
/*
5828 5829 5830
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5831
 */
5832
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5833
{
5834
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5835
	unsigned long src_faults, dst_faults;
5836 5837
	int src_nid, dst_nid;

5838
	if (!static_branch_likely(&sched_numa_balancing))
5839 5840
		return -1;

5841
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5842
		return -1;
5843 5844 5845 5846

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

5847
	if (src_nid == dst_nid)
5848
		return -1;
5849

5850 5851 5852 5853 5854 5855 5856
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
5857

5858 5859
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
5860
		return 0;
5861

5862 5863 5864 5865 5866 5867
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
5868 5869
	}

5870
	return dst_faults < src_faults;
5871 5872
}

5873
#else
5874
static inline int migrate_degrades_locality(struct task_struct *p,
5875 5876
					     struct lb_env *env)
{
5877
	return -1;
5878
}
5879 5880
#endif

5881 5882 5883 5884
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
5885
int can_migrate_task(struct task_struct *p, struct lb_env *env)
5886
{
5887
	int tsk_cache_hot;
5888 5889 5890

	lockdep_assert_held(&env->src_rq->lock);

5891 5892
	/*
	 * We do not migrate tasks that are:
5893
	 * 1) throttled_lb_pair, or
5894
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5895 5896
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
5897
	 */
5898 5899 5900
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

5901
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5902
		int cpu;
5903

5904
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5905

5906 5907
		env->flags |= LBF_SOME_PINNED;

5908 5909 5910 5911 5912 5913 5914 5915
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
5916
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5917 5918
			return 0;

5919 5920 5921
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5922
				env->flags |= LBF_DST_PINNED;
5923 5924 5925
				env->new_dst_cpu = cpu;
				break;
			}
5926
		}
5927

5928 5929
		return 0;
	}
5930 5931

	/* Record that we found atleast one task that could run on dst_cpu */
5932
	env->flags &= ~LBF_ALL_PINNED;
5933

5934
	if (task_running(env->src_rq, p)) {
5935
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5936 5937 5938 5939 5940
		return 0;
	}

	/*
	 * Aggressive migration if:
5941 5942 5943
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
5944
	 */
5945 5946 5947
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
5948

5949
	if (tsk_cache_hot <= 0 ||
5950
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5951
		if (tsk_cache_hot == 1) {
5952 5953 5954
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
5955 5956 5957
		return 1;
	}

Z
Zhang Hang 已提交
5958 5959
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
5960 5961
}

5962
/*
5963 5964 5965 5966 5967 5968 5969
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
5970
	deactivate_task(env->src_rq, p, 0);
5971 5972 5973
	set_task_cpu(p, env->dst_cpu);
}

5974
/*
5975
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5976 5977
 * part of active balancing operations within "domain".
 *
5978
 * Returns a task if successful and NULL otherwise.
5979
 */
5980
static struct task_struct *detach_one_task(struct lb_env *env)
5981 5982 5983
{
	struct task_struct *p, *n;

5984 5985
	lockdep_assert_held(&env->src_rq->lock);

5986 5987 5988
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
5989

5990
		detach_task(p, env);
5991

5992
		/*
5993
		 * Right now, this is only the second place where
5994
		 * lb_gained[env->idle] is updated (other is detach_tasks)
5995
		 * so we can safely collect stats here rather than
5996
		 * inside detach_tasks().
5997 5998
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
5999
		return p;
6000
	}
6001
	return NULL;
6002 6003
}

6004 6005
static const unsigned int sched_nr_migrate_break = 32;

6006
/*
6007 6008
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6009
 *
6010
 * Returns number of detached tasks if successful and 0 otherwise.
6011
 */
6012
static int detach_tasks(struct lb_env *env)
6013
{
6014 6015
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6016
	unsigned long load;
6017 6018 6019
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6020

6021
	if (env->imbalance <= 0)
6022
		return 0;
6023

6024
	while (!list_empty(tasks)) {
6025 6026 6027 6028 6029 6030 6031
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6032
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6033

6034 6035
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6036
		if (env->loop > env->loop_max)
6037
			break;
6038 6039

		/* take a breather every nr_migrate tasks */
6040
		if (env->loop > env->loop_break) {
6041
			env->loop_break += sched_nr_migrate_break;
6042
			env->flags |= LBF_NEED_BREAK;
6043
			break;
6044
		}
6045

6046
		if (!can_migrate_task(p, env))
6047 6048 6049
			goto next;

		load = task_h_load(p);
6050

6051
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6052 6053
			goto next;

6054
		if ((load / 2) > env->imbalance)
6055
			goto next;
6056

6057 6058 6059 6060
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6061
		env->imbalance -= load;
6062 6063

#ifdef CONFIG_PREEMPT
6064 6065
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6066
		 * kernels will stop after the first task is detached to minimize
6067 6068
		 * the critical section.
		 */
6069
		if (env->idle == CPU_NEWLY_IDLE)
6070
			break;
6071 6072
#endif

6073 6074 6075 6076
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6077
		if (env->imbalance <= 0)
6078
			break;
6079 6080 6081

		continue;
next:
6082
		list_move_tail(&p->se.group_node, tasks);
6083
	}
6084

6085
	/*
6086 6087 6088
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6089
	 */
6090
	schedstat_add(env->sd, lb_gained[env->idle], detached);
6091

6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6104
	p->on_rq = TASK_ON_RQ_QUEUED;
6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6133

6134 6135 6136 6137
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6138 6139
}

P
Peter Zijlstra 已提交
6140
#ifdef CONFIG_FAIR_GROUP_SCHED
6141
static void update_blocked_averages(int cpu)
6142 6143
{
	struct rq *rq = cpu_rq(cpu);
6144 6145
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6146

6147 6148
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6149

6150 6151 6152 6153
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6154
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6155 6156 6157
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6158

6159 6160 6161
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
			update_tg_load_avg(cfs_rq, 0);
	}
6162
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6163 6164
}

6165
/*
6166
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6167 6168 6169
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6170
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6171
{
6172 6173
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6174
	unsigned long now = jiffies;
6175
	unsigned long load;
6176

6177
	if (cfs_rq->last_h_load_update == now)
6178 6179
		return;

6180 6181 6182 6183 6184 6185 6186
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6187

6188
	if (!se) {
6189
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6190 6191 6192 6193 6194
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6195 6196
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6197 6198 6199 6200
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6201 6202
}

6203
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6204
{
6205
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6206

6207
	update_cfs_rq_h_load(cfs_rq);
6208
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6209
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6210 6211
}
#else
6212
static inline void update_blocked_averages(int cpu)
6213
{
6214 6215 6216 6217 6218 6219 6220 6221
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6222 6223
}

6224
static unsigned long task_h_load(struct task_struct *p)
6225
{
6226
	return p->se.avg.load_avg;
6227
}
P
Peter Zijlstra 已提交
6228
#endif
6229 6230

/********** Helpers for find_busiest_group ************************/
6231 6232 6233 6234 6235 6236 6237

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6238 6239 6240 6241 6242 6243 6244
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6245
	unsigned long load_per_task;
6246
	unsigned long group_capacity;
6247
	unsigned long group_util; /* Total utilization of the group */
6248 6249 6250
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6251
	enum group_type group_type;
6252
	int group_no_capacity;
6253 6254 6255 6256
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6257 6258
};

J
Joonsoo Kim 已提交
6259 6260 6261 6262 6263 6264 6265 6266
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6267
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6268 6269 6270
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6271
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6272 6273
};

6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6286
		.total_capacity = 0UL,
6287 6288
		.busiest_stat = {
			.avg_load = 0UL,
6289 6290
			.sum_nr_running = 0,
			.group_type = group_other,
6291 6292 6293 6294
		},
	};
}

6295 6296 6297
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6298
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6299 6300
 *
 * Return: The load index.
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6323
static unsigned long scale_rt_capacity(int cpu)
6324 6325
{
	struct rq *rq = cpu_rq(cpu);
6326
	u64 total, used, age_stamp, avg;
6327
	s64 delta;
6328

6329 6330 6331 6332
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6333 6334
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6335
	delta = __rq_clock_broken(rq) - age_stamp;
6336

6337 6338 6339 6340
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6341

6342
	used = div_u64(avg, total);
6343

6344 6345
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6346

6347
	return 1;
6348 6349
}

6350
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6351
{
6352
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6353 6354
	struct sched_group *sdg = sd->groups;

6355
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6356

6357
	capacity *= scale_rt_capacity(cpu);
6358
	capacity >>= SCHED_CAPACITY_SHIFT;
6359

6360 6361
	if (!capacity)
		capacity = 1;
6362

6363 6364
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6365 6366
}

6367
void update_group_capacity(struct sched_domain *sd, int cpu)
6368 6369 6370
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6371
	unsigned long capacity;
6372 6373 6374 6375
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6376
	sdg->sgc->next_update = jiffies + interval;
6377 6378

	if (!child) {
6379
		update_cpu_capacity(sd, cpu);
6380 6381 6382
		return;
	}

6383
	capacity = 0;
6384

P
Peter Zijlstra 已提交
6385 6386 6387 6388 6389 6390
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6391
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6392
			struct sched_group_capacity *sgc;
6393
			struct rq *rq = cpu_rq(cpu);
6394

6395
			/*
6396
			 * build_sched_domains() -> init_sched_groups_capacity()
6397 6398 6399
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6400 6401
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6402
			 *
6403
			 * This avoids capacity from being 0 and
6404 6405 6406
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6407
				capacity += capacity_of(cpu);
6408 6409
				continue;
			}
6410

6411 6412
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6413
		}
P
Peter Zijlstra 已提交
6414 6415 6416 6417 6418 6419 6420 6421
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6422
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6423 6424 6425
			group = group->next;
		} while (group != child->groups);
	}
6426

6427
	sdg->sgc->capacity = capacity;
6428 6429
}

6430
/*
6431 6432 6433
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6434 6435
 */
static inline int
6436
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6437
{
6438 6439
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6440 6441
}

6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6458 6459
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6460 6461
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6462
 * update_sd_pick_busiest(). And calculate_imbalance() and
6463
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6464 6465 6466 6467 6468 6469 6470
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6471
static inline int sg_imbalanced(struct sched_group *group)
6472
{
6473
	return group->sgc->imbalance;
6474 6475
}

6476
/*
6477 6478 6479
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6480 6481
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6482 6483 6484 6485 6486
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6487
 */
6488 6489
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6490
{
6491 6492
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6493

6494
	if ((sgs->group_capacity * 100) >
6495
			(sgs->group_util * env->sd->imbalance_pct))
6496
		return true;
6497

6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6514

6515
	if ((sgs->group_capacity * 100) <
6516
			(sgs->group_util * env->sd->imbalance_pct))
6517
		return true;
6518

6519
	return false;
6520 6521
}

6522 6523 6524
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6525
{
6526
	if (sgs->group_no_capacity)
6527 6528 6529 6530 6531 6532 6533 6534
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6535 6536
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6537
 * @env: The load balancing environment.
6538 6539 6540 6541
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6542
 * @overload: Indicate more than one runnable task for any CPU.
6543
 */
6544 6545
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6546 6547
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6548
{
6549
	unsigned long load;
6550
	int i, nr_running;
6551

6552 6553
	memset(sgs, 0, sizeof(*sgs));

6554
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6555 6556 6557
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6558
		if (local_group)
6559
			load = target_load(i, load_idx);
6560
		else
6561 6562 6563
			load = source_load(i, load_idx);

		sgs->group_load += load;
6564
		sgs->group_util += cpu_util(i);
6565
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6566

6567 6568
		nr_running = rq->nr_running;
		if (nr_running > 1)
6569 6570
			*overload = true;

6571 6572 6573 6574
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6575
		sgs->sum_weighted_load += weighted_cpuload(i);
6576 6577 6578 6579
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6580
			sgs->idle_cpus++;
6581 6582
	}

6583 6584
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6585
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6586

6587
	if (sgs->sum_nr_running)
6588
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6589

6590
	sgs->group_weight = group->group_weight;
6591

6592
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6593
	sgs->group_type = group_classify(group, sgs);
6594 6595
}

6596 6597
/**
 * update_sd_pick_busiest - return 1 on busiest group
6598
 * @env: The load balancing environment.
6599 6600
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6601
 * @sgs: sched_group statistics
6602 6603 6604
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6605 6606 6607
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6608
 */
6609
static bool update_sd_pick_busiest(struct lb_env *env,
6610 6611
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6612
				   struct sg_lb_stats *sgs)
6613
{
6614
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6615

6616
	if (sgs->group_type > busiest->group_type)
6617 6618
		return true;

6619 6620 6621 6622 6623 6624 6625 6626
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6627 6628 6629 6630 6631 6632 6633
		return true;

	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6634
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
		if (!sds->busiest)
			return true;

		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
			return true;
	}

	return false;
}

6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6675
/**
6676
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6677
 * @env: The load balancing environment.
6678 6679
 * @sds: variable to hold the statistics for this sched_domain.
 */
6680
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6681
{
6682 6683
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6684
	struct sg_lb_stats tmp_sgs;
6685
	int load_idx, prefer_sibling = 0;
6686
	bool overload = false;
6687 6688 6689 6690

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6691
	load_idx = get_sd_load_idx(env->sd, env->idle);
6692 6693

	do {
J
Joonsoo Kim 已提交
6694
		struct sg_lb_stats *sgs = &tmp_sgs;
6695 6696
		int local_group;

6697
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6698 6699 6700
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6701 6702

			if (env->idle != CPU_NEWLY_IDLE ||
6703 6704
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6705
		}
6706

6707 6708
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6709

6710 6711 6712
		if (local_group)
			goto next_group;

6713 6714
		/*
		 * In case the child domain prefers tasks go to siblings
6715
		 * first, lower the sg capacity so that we'll try
6716 6717
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6718 6719 6720 6721
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6722
		 */
6723
		if (prefer_sibling && sds->local &&
6724 6725 6726
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6727
			sgs->group_type = group_classify(sg, sgs);
6728
		}
6729

6730
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6731
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6732
			sds->busiest_stat = *sgs;
6733 6734
		}

6735 6736 6737
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6738
		sds->total_capacity += sgs->group_capacity;
6739

6740
		sg = sg->next;
6741
	} while (sg != env->sd->groups);
6742 6743 6744

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6745 6746 6747 6748 6749 6750 6751

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6771
 * Return: 1 when packing is required and a task should be moved to
6772 6773
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6774
 * @env: The load balancing environment.
6775 6776
 * @sds: Statistics of the sched_domain which is to be packed
 */
6777
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6778 6779 6780
{
	int busiest_cpu;

6781
	if (!(env->sd->flags & SD_ASYM_PACKING))
6782 6783 6784 6785 6786 6787
		return 0;

	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6788
	if (env->dst_cpu > busiest_cpu)
6789 6790
		return 0;

6791
	env->imbalance = DIV_ROUND_CLOSEST(
6792
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6793
		SCHED_CAPACITY_SCALE);
6794

6795
	return 1;
6796 6797 6798 6799 6800 6801
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6802
 * @env: The load balancing environment.
6803 6804
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6805 6806
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6807
{
6808
	unsigned long tmp, capa_now = 0, capa_move = 0;
6809
	unsigned int imbn = 2;
6810
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6811
	struct sg_lb_stats *local, *busiest;
6812

J
Joonsoo Kim 已提交
6813 6814
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6815

J
Joonsoo Kim 已提交
6816 6817 6818 6819
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6820

J
Joonsoo Kim 已提交
6821
	scaled_busy_load_per_task =
6822
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6823
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6824

6825 6826
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6827
		env->imbalance = busiest->load_per_task;
6828 6829 6830 6831 6832
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
6833
	 * however we may be able to increase total CPU capacity used by
6834 6835 6836
	 * moving them.
	 */

6837
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
6838
			min(busiest->load_per_task, busiest->avg_load);
6839
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
6840
			min(local->load_per_task, local->avg_load);
6841
	capa_now /= SCHED_CAPACITY_SCALE;
6842 6843

	/* Amount of load we'd subtract */
6844
	if (busiest->avg_load > scaled_busy_load_per_task) {
6845
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
6846
			    min(busiest->load_per_task,
6847
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
6848
	}
6849 6850

	/* Amount of load we'd add */
6851
	if (busiest->avg_load * busiest->group_capacity <
6852
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6853 6854
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
6855
	} else {
6856
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6857
		      local->group_capacity;
J
Joonsoo Kim 已提交
6858
	}
6859
	capa_move += local->group_capacity *
6860
		    min(local->load_per_task, local->avg_load + tmp);
6861
	capa_move /= SCHED_CAPACITY_SCALE;
6862 6863

	/* Move if we gain throughput */
6864
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
6865
		env->imbalance = busiest->load_per_task;
6866 6867 6868 6869 6870
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
6871
 * @env: load balance environment
6872 6873
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
6874
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6875
{
6876
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
6877 6878 6879 6880
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6881

6882
	if (busiest->group_type == group_imbalanced) {
6883 6884 6885 6886
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
6887 6888
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
6889 6890
	}

6891 6892 6893
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
6894
	 * its cpu_capacity, while calculating max_load..)
6895
	 */
6896 6897
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
6898 6899
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
6900 6901
	}

6902 6903 6904 6905 6906
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
6907 6908 6909 6910 6911 6912
		load_above_capacity = busiest->sum_nr_running *
					SCHED_LOAD_SCALE;
		if (load_above_capacity > busiest->group_capacity)
			load_above_capacity -= busiest->group_capacity;
		else
			load_above_capacity = ~0UL;
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
	 * we also don't want to reduce the group load below the group capacity
	 * (so that we can implement power-savings policies etc). Thus we look
	 * for the minimum possible imbalance.
	 */
6923
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6924 6925

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
6926
	env->imbalance = min(
6927 6928
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
6929
	) / SCHED_CAPACITY_SCALE;
6930 6931 6932

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
6933
	 * there is no guarantee that any tasks will be moved so we'll have
6934 6935 6936
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
6937
	if (env->imbalance < busiest->load_per_task)
6938
		return fix_small_imbalance(env, sds);
6939
}
6940

6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
6953
 * @env: The load balancing environment.
6954
 *
6955
 * Return:	- The busiest group if imbalance exists.
6956 6957 6958 6959
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
 */
J
Joonsoo Kim 已提交
6960
static struct sched_group *find_busiest_group(struct lb_env *env)
6961
{
J
Joonsoo Kim 已提交
6962
	struct sg_lb_stats *local, *busiest;
6963 6964
	struct sd_lb_stats sds;

6965
	init_sd_lb_stats(&sds);
6966 6967 6968 6969 6970

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
6971
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
6972 6973
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
6974

6975
	/* ASYM feature bypasses nice load balance check */
6976 6977
	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
	    check_asym_packing(env, &sds))
6978 6979
		return sds.busiest;

6980
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
6981
	if (!sds.busiest || busiest->sum_nr_running == 0)
6982 6983
		goto out_balanced;

6984 6985
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
6986

P
Peter Zijlstra 已提交
6987 6988
	/*
	 * If the busiest group is imbalanced the below checks don't
6989
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
6990 6991
	 * isn't true due to cpus_allowed constraints and the like.
	 */
6992
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
6993 6994
		goto force_balance;

6995
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6996 6997
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
6998 6999
		goto force_balance;

7000
	/*
7001
	 * If the local group is busier than the selected busiest group
7002 7003
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7004
	if (local->avg_load >= busiest->avg_load)
7005 7006
		goto out_balanced;

7007 7008 7009 7010
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7011
	if (local->avg_load >= sds.avg_load)
7012 7013
		goto out_balanced;

7014
	if (env->idle == CPU_IDLE) {
7015
		/*
7016 7017 7018 7019 7020
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7021
		 */
7022 7023
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7024
			goto out_balanced;
7025 7026 7027 7028 7029
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7030 7031
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7032
			goto out_balanced;
7033
	}
7034

7035
force_balance:
7036
	/* Looks like there is an imbalance. Compute it */
7037
	calculate_imbalance(env, &sds);
7038 7039 7040
	return sds.busiest;

out_balanced:
7041
	env->imbalance = 0;
7042 7043 7044 7045 7046 7047
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7048
static struct rq *find_busiest_queue(struct lb_env *env,
7049
				     struct sched_group *group)
7050 7051
{
	struct rq *busiest = NULL, *rq;
7052
	unsigned long busiest_load = 0, busiest_capacity = 1;
7053 7054
	int i;

7055
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7056
		unsigned long capacity, wl;
7057 7058 7059 7060
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7061

7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7084
		capacity = capacity_of(i);
7085

7086
		wl = weighted_cpuload(i);
7087

7088 7089
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7090
		 * which is not scaled with the cpu capacity.
7091
		 */
7092 7093 7094

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7095 7096
			continue;

7097 7098
		/*
		 * For the load comparisons with the other cpu's, consider
7099 7100 7101
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7102
		 *
7103
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7104
		 * multiplication to rid ourselves of the division works out
7105 7106
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7107
		 */
7108
		if (wl * busiest_capacity > busiest_load * capacity) {
7109
			busiest_load = wl;
7110
			busiest_capacity = capacity;
7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7125
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7126

7127
static int need_active_balance(struct lb_env *env)
7128
{
7129 7130 7131
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7132 7133 7134 7135 7136 7137

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7138
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7139
			return 1;
7140 7141
	}

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7155 7156 7157
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7158 7159
static int active_load_balance_cpu_stop(void *data);

7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7191
	return balance_cpu == env->dst_cpu;
7192 7193
}

7194 7195 7196 7197 7198 7199
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7200
			int *continue_balancing)
7201
{
7202
	int ld_moved, cur_ld_moved, active_balance = 0;
7203
	struct sched_domain *sd_parent = sd->parent;
7204 7205 7206
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7207
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7208

7209 7210
	struct lb_env env = {
		.sd		= sd,
7211 7212
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7213
		.dst_grpmask    = sched_group_cpus(sd->groups),
7214
		.idle		= idle,
7215
		.loop_break	= sched_nr_migrate_break,
7216
		.cpus		= cpus,
7217
		.fbq_type	= all,
7218
		.tasks		= LIST_HEAD_INIT(env.tasks),
7219 7220
	};

7221 7222 7223 7224
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7225
	if (idle == CPU_NEWLY_IDLE)
7226 7227
		env.dst_grpmask = NULL;

7228 7229 7230 7231 7232
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7233 7234
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7235
		goto out_balanced;
7236
	}
7237

7238
	group = find_busiest_group(&env);
7239 7240 7241 7242 7243
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7244
	busiest = find_busiest_queue(&env, group);
7245 7246 7247 7248 7249
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7250
	BUG_ON(busiest == env.dst_rq);
7251

7252
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7253

7254 7255 7256
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7257 7258 7259 7260 7261 7262 7263 7264
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7265
		env.flags |= LBF_ALL_PINNED;
7266
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7267

7268
more_balance:
7269
		raw_spin_lock_irqsave(&busiest->lock, flags);
7270 7271 7272 7273 7274

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7275
		cur_ld_moved = detach_tasks(&env);
7276 7277

		/*
7278 7279 7280 7281 7282
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7283
		 */
7284 7285 7286 7287 7288 7289 7290 7291

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7292
		local_irq_restore(flags);
7293

7294 7295 7296 7297 7298
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7318
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7319

7320 7321 7322
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7323
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7324
			env.dst_cpu	 = env.new_dst_cpu;
7325
			env.flags	&= ~LBF_DST_PINNED;
7326 7327
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7328

7329 7330 7331 7332 7333 7334
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7335

7336 7337 7338 7339
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7340
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7341

7342
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7343 7344 7345
				*group_imbalance = 1;
		}

7346
		/* All tasks on this runqueue were pinned by CPU affinity */
7347
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7348
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7349 7350 7351
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7352
				goto redo;
7353
			}
7354
			goto out_all_pinned;
7355 7356 7357 7358 7359
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7360 7361 7362 7363 7364 7365 7366 7367
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7368

7369
		if (need_active_balance(&env)) {
7370 7371
			raw_spin_lock_irqsave(&busiest->lock, flags);

7372 7373 7374
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7375 7376
			 */
			if (!cpumask_test_cpu(this_cpu,
7377
					tsk_cpus_allowed(busiest->curr))) {
7378 7379
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7380
				env.flags |= LBF_ALL_PINNED;
7381 7382 7383
				goto out_one_pinned;
			}

7384 7385 7386 7387 7388
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7389 7390 7391 7392 7393 7394
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7395

7396
			if (active_balance) {
7397 7398 7399
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7400
			}
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7419
		 * detach_tasks).
7420 7421 7422 7423 7424 7425 7426 7427
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7445 7446 7447 7448 7449 7450
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7451
	if (((env.flags & LBF_ALL_PINNED) &&
7452
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7453 7454 7455
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7456
	ld_moved = 0;
7457 7458 7459 7460
out:
	return ld_moved;
}

7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7488 7489 7490 7491
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7492
static int idle_balance(struct rq *this_rq)
7493
{
7494 7495
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7496 7497
	struct sched_domain *sd;
	int pulled_task = 0;
7498
	u64 curr_cost = 0;
7499

7500 7501 7502 7503 7504 7505
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7506 7507
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7508 7509 7510 7511 7512 7513
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7514
		goto out;
7515
	}
7516

7517 7518
	raw_spin_unlock(&this_rq->lock);

7519
	update_blocked_averages(this_cpu);
7520
	rcu_read_lock();
7521
	for_each_domain(this_cpu, sd) {
7522
		int continue_balancing = 1;
7523
		u64 t0, domain_cost;
7524 7525 7526 7527

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7528 7529
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7530
			break;
7531
		}
7532

7533
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7534 7535
			t0 = sched_clock_cpu(this_cpu);

7536
			pulled_task = load_balance(this_cpu, this_rq,
7537 7538
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7539 7540 7541 7542 7543 7544

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7545
		}
7546

7547
		update_next_balance(sd, 0, &next_balance);
7548 7549 7550 7551 7552 7553

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7554 7555
			break;
	}
7556
	rcu_read_unlock();
7557 7558 7559

	raw_spin_lock(&this_rq->lock);

7560 7561 7562
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7563
	/*
7564 7565 7566
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7567
	 */
7568
	if (this_rq->cfs.h_nr_running && !pulled_task)
7569
		pulled_task = 1;
7570

7571 7572 7573
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7574
		this_rq->next_balance = next_balance;
7575

7576
	/* Is there a task of a high priority class? */
7577
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7578 7579
		pulled_task = -1;

7580
	if (pulled_task)
7581 7582
		this_rq->idle_stamp = 0;

7583
	return pulled_task;
7584 7585 7586
}

/*
7587 7588 7589 7590
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7591
 */
7592
static int active_load_balance_cpu_stop(void *data)
7593
{
7594 7595
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7596
	int target_cpu = busiest_rq->push_cpu;
7597
	struct rq *target_rq = cpu_rq(target_cpu);
7598
	struct sched_domain *sd;
7599
	struct task_struct *p = NULL;
7600 7601 7602 7603 7604 7605 7606

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7607 7608 7609

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7610
		goto out_unlock;
7611 7612 7613 7614 7615 7616 7617 7618 7619

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7620
	rcu_read_lock();
7621 7622 7623 7624 7625 7626 7627
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7628 7629
		struct lb_env env = {
			.sd		= sd,
7630 7631 7632 7633
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7634 7635 7636
			.idle		= CPU_IDLE,
		};

7637 7638
		schedstat_inc(sd, alb_count);

7639 7640
		p = detach_one_task(&env);
		if (p)
7641 7642 7643 7644
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
7645
	rcu_read_unlock();
7646 7647
out_unlock:
	busiest_rq->active_balance = 0;
7648 7649 7650 7651 7652 7653 7654
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7655
	return 0;
7656 7657
}

7658 7659 7660 7661 7662
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7663
#ifdef CONFIG_NO_HZ_COMMON
7664 7665 7666 7667 7668 7669
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7670
static struct {
7671
	cpumask_var_t idle_cpus_mask;
7672
	atomic_t nr_cpus;
7673 7674
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7675

7676
static inline int find_new_ilb(void)
7677
{
7678
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7679

7680 7681 7682 7683
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7684 7685
}

7686 7687 7688 7689 7690
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7691
static void nohz_balancer_kick(void)
7692 7693 7694 7695 7696
{
	int ilb_cpu;

	nohz.next_balance++;

7697
	ilb_cpu = find_new_ilb();
7698

7699 7700
	if (ilb_cpu >= nr_cpu_ids)
		return;
7701

7702
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7703 7704 7705 7706 7707 7708 7709 7710
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7711 7712 7713
	return;
}

7714
static inline void nohz_balance_exit_idle(int cpu)
7715 7716
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7717 7718 7719 7720 7721 7722 7723
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7724 7725 7726 7727
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7728 7729 7730
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7731
	int cpu = smp_processor_id();
7732 7733

	rcu_read_lock();
7734
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7735 7736 7737 7738 7739

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7740
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7741
unlock:
7742 7743 7744 7745 7746 7747
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7748
	int cpu = smp_processor_id();
7749 7750

	rcu_read_lock();
7751
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7752 7753 7754 7755 7756

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7757
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7758
unlock:
7759 7760 7761
	rcu_read_unlock();
}

7762
/*
7763
 * This routine will record that the cpu is going idle with tick stopped.
7764
 * This info will be used in performing idle load balancing in the future.
7765
 */
7766
void nohz_balance_enter_idle(int cpu)
7767
{
7768 7769 7770 7771 7772 7773
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7774 7775
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7776

7777 7778 7779 7780 7781 7782
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7783 7784 7785
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7786
}
7787

7788
static int sched_ilb_notifier(struct notifier_block *nfb,
7789 7790 7791 7792
					unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DYING:
7793
		nohz_balance_exit_idle(smp_processor_id());
7794 7795 7796 7797 7798
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}
7799 7800 7801 7802
#endif

static DEFINE_SPINLOCK(balancing);

7803 7804 7805 7806
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7807
void update_max_interval(void)
7808 7809 7810 7811
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7812 7813 7814 7815
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7816
 * Balancing parameters are set up in init_sched_domains.
7817
 */
7818
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7819
{
7820
	int continue_balancing = 1;
7821
	int cpu = rq->cpu;
7822
	unsigned long interval;
7823
	struct sched_domain *sd;
7824 7825 7826
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7827 7828
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7829

7830
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7831

7832
	rcu_read_lock();
7833
	for_each_domain(cpu, sd) {
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7846 7847 7848
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

7860
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7861 7862 7863 7864 7865 7866 7867 7868

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7869
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7870
				/*
7871
				 * The LBF_DST_PINNED logic could have changed
7872 7873
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
7874
				 */
7875
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7876 7877
			}
			sd->last_balance = jiffies;
7878
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7879 7880 7881 7882 7883 7884 7885 7886
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
7887 7888
	}
	if (need_decay) {
7889
		/*
7890 7891
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
7892
		 */
7893 7894
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
7895
	}
7896
	rcu_read_unlock();
7897 7898 7899 7900 7901 7902

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
7903
	if (likely(update_next_balance)) {
7904
		rq->next_balance = next_balance;
7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
7919 7920
}

7921
#ifdef CONFIG_NO_HZ_COMMON
7922
/*
7923
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7924 7925
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
7926
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7927
{
7928
	int this_cpu = this_rq->cpu;
7929 7930
	struct rq *rq;
	int balance_cpu;
7931 7932 7933
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7934

7935 7936 7937
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
7938 7939

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7940
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7941 7942 7943 7944 7945 7946 7947
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
7948
		if (need_resched())
7949 7950
			break;

V
Vincent Guittot 已提交
7951 7952
		rq = cpu_rq(balance_cpu);

7953 7954 7955 7956 7957 7958 7959
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
7960
			update_cpu_load_idle(rq);
7961 7962 7963
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
7964

7965 7966 7967 7968
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
7969
	}
7970 7971 7972 7973 7974 7975 7976 7977

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
7978 7979
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7980 7981 7982
}

/*
7983
 * Current heuristic for kicking the idle load balancer in the presence
7984
 * of an idle cpu in the system.
7985
 *   - This rq has more than one task.
7986 7987 7988 7989
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
7990 7991
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
7992
 */
7993
static inline bool nohz_kick_needed(struct rq *rq)
7994 7995
{
	unsigned long now = jiffies;
7996
	struct sched_domain *sd;
7997
	struct sched_group_capacity *sgc;
7998
	int nr_busy, cpu = rq->cpu;
7999
	bool kick = false;
8000

8001
	if (unlikely(rq->idle_balance))
8002
		return false;
8003

8004 8005 8006 8007
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8008
	set_cpu_sd_state_busy();
8009
	nohz_balance_exit_idle(cpu);
8010 8011 8012 8013 8014 8015

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8016
		return false;
8017 8018

	if (time_before(now, nohz.next_balance))
8019
		return false;
8020

8021
	if (rq->nr_running >= 2)
8022
		return true;
8023

8024
	rcu_read_lock();
8025 8026
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8027 8028
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8029

8030 8031 8032 8033 8034
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8035
	}
8036

8037 8038 8039 8040 8041 8042 8043 8044
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8045

8046
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8047
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8048 8049 8050 8051
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8052

8053
unlock:
8054
	rcu_read_unlock();
8055
	return kick;
8056 8057
}
#else
8058
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8059 8060 8061 8062 8063 8064
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8065 8066
static void run_rebalance_domains(struct softirq_action *h)
{
8067
	struct rq *this_rq = this_rq();
8068
	enum cpu_idle_type idle = this_rq->idle_balance ?
8069 8070 8071
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8072
	 * If this cpu has a pending nohz_balance_kick, then do the
8073
	 * balancing on behalf of the other idle cpus whose ticks are
8074 8075 8076 8077
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8078
	 */
8079
	nohz_idle_balance(this_rq, idle);
8080
	rebalance_domains(this_rq, idle);
8081 8082 8083 8084 8085
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8086
void trigger_load_balance(struct rq *rq)
8087 8088
{
	/* Don't need to rebalance while attached to NULL domain */
8089 8090 8091 8092
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8093
		raise_softirq(SCHED_SOFTIRQ);
8094
#ifdef CONFIG_NO_HZ_COMMON
8095
	if (nohz_kick_needed(rq))
8096
		nohz_balancer_kick();
8097
#endif
8098 8099
}

8100 8101 8102
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8103 8104

	update_runtime_enabled(rq);
8105 8106 8107 8108 8109
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8110 8111 8112

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8113 8114
}

8115
#endif /* CONFIG_SMP */
8116

8117 8118 8119
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8120
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8121 8122 8123 8124 8125 8126
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8127
		entity_tick(cfs_rq, se, queued);
8128
	}
8129

8130
	if (static_branch_unlikely(&sched_numa_balancing))
8131
		task_tick_numa(rq, curr);
8132 8133 8134
}

/*
P
Peter Zijlstra 已提交
8135 8136 8137
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8138
 */
P
Peter Zijlstra 已提交
8139
static void task_fork_fair(struct task_struct *p)
8140
{
8141 8142
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
8143
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
8144 8145 8146
	struct rq *rq = this_rq();
	unsigned long flags;

8147
	raw_spin_lock_irqsave(&rq->lock, flags);
8148

8149 8150
	update_rq_clock(rq);

8151 8152 8153
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

8154 8155 8156 8157 8158 8159 8160 8161 8162
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
8163

8164
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
8165

8166 8167
	if (curr)
		se->vruntime = curr->vruntime;
8168
	place_entity(cfs_rq, se, 1);
8169

P
Peter Zijlstra 已提交
8170
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8171
		/*
8172 8173 8174
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8175
		swap(curr->vruntime, se->vruntime);
8176
		resched_curr(rq);
8177
	}
8178

8179 8180
	se->vruntime -= cfs_rq->min_vruntime;

8181
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8182 8183
}

8184 8185 8186 8187
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8188 8189
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8190
{
8191
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8192 8193
		return;

8194 8195 8196 8197 8198
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8199
	if (rq->curr == p) {
8200
		if (p->prio > oldprio)
8201
			resched_curr(rq);
8202
	} else
8203
		check_preempt_curr(rq, p, 0);
8204 8205
}

8206
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8207 8208 8209 8210
{
	struct sched_entity *se = &p->se;

	/*
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8221
	 *
8222 8223 8224 8225
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8226
	 */
8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8239 8240 8241 8242 8243 8244 8245
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8246

8247
	/* Catch up with the cfs_rq and remove our load when we leave */
8248
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8249 8250
}

8251
static void attach_task_cfs_rq(struct task_struct *p)
8252
{
8253
	struct sched_entity *se = &p->se;
8254
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8255 8256

#ifdef CONFIG_FAIR_GROUP_SCHED
8257 8258 8259 8260 8261 8262
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8263

8264
	/* Synchronize task with its cfs_rq */
8265 8266 8267 8268 8269
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8270

8271 8272 8273 8274 8275 8276 8277 8278
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8279

8280
	if (task_on_rq_queued(p)) {
8281
		/*
8282 8283 8284
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8285
		 */
8286 8287 8288 8289
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8290
	}
8291 8292
}

8293 8294 8295 8296 8297 8298 8299 8300 8301
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8302 8303 8304 8305 8306 8307 8308
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8309 8310
}

8311 8312 8313 8314 8315 8316 8317
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8318
#ifdef CONFIG_SMP
8319 8320
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8321
#endif
8322 8323
}

P
Peter Zijlstra 已提交
8324
#ifdef CONFIG_FAIR_GROUP_SCHED
8325
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8326
{
8327
	detach_task_cfs_rq(p);
8328
	set_task_rq(p, task_cpu(p));
8329 8330 8331 8332 8333

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8334
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8335
}
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8346
		if (tg->se)
8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8384
		init_entity_runnable_average(se);
8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8395
void unregister_fair_sched_group(struct task_group *tg)
8396 8397
{
	unsigned long flags;
8398 8399
	struct rq *rq;
	int cpu;
8400

8401 8402 8403
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8404

8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8437
	if (!parent) {
8438
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8439 8440
		se->depth = 0;
	} else {
8441
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8442 8443
		se->depth = parent->depth + 1;
	}
8444 8445

	se->my_q = cfs_rq;
8446 8447
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8478 8479 8480

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8481
		for_each_sched_entity(se)
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8499
void unregister_fair_sched_group(struct task_group *tg) { }
8500 8501 8502

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8503

8504
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8505 8506 8507 8508 8509 8510 8511 8512 8513
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8514
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8515 8516 8517 8518

	return rr_interval;
}

8519 8520 8521
/*
 * All the scheduling class methods:
 */
8522
const struct sched_class fair_sched_class = {
8523
	.next			= &idle_sched_class,
8524 8525 8526
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8527
	.yield_to_task		= yield_to_task_fair,
8528

I
Ingo Molnar 已提交
8529
	.check_preempt_curr	= check_preempt_wakeup,
8530 8531 8532 8533

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8534
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8535
	.select_task_rq		= select_task_rq_fair,
8536
	.migrate_task_rq	= migrate_task_rq_fair,
8537

8538 8539
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8540 8541

	.task_waking		= task_waking_fair,
8542
	.task_dead		= task_dead_fair,
8543
	.set_cpus_allowed	= set_cpus_allowed_common,
8544
#endif
8545

8546
	.set_curr_task          = set_curr_task_fair,
8547
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8548
	.task_fork		= task_fork_fair,
8549 8550

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8551
	.switched_from		= switched_from_fair,
8552
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8553

8554 8555
	.get_rr_interval	= get_rr_interval_fair,

8556 8557
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8558
#ifdef CONFIG_FAIR_GROUP_SCHED
8559
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8560
#endif
8561 8562 8563
};

#ifdef CONFIG_SCHED_DEBUG
8564
void print_cfs_stats(struct seq_file *m, int cpu)
8565 8566 8567
{
	struct cfs_rq *cfs_rq;

8568
	rcu_read_lock();
8569
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8570
		print_cfs_rq(m, cpu, cfs_rq);
8571
	rcu_read_unlock();
8572
}
8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8594 8595 8596 8597 8598 8599

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8600
#ifdef CONFIG_NO_HZ_COMMON
8601
	nohz.next_balance = jiffies;
8602
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8603
	cpu_notifier(sched_ilb_notifier, 0);
8604 8605 8606 8607
#endif
#endif /* SMP */

}