fair.c 228.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41
 *
42
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
43 44 45
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
46
 *
I
Ingo Molnar 已提交
47 48
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
49
 */
50 51
unsigned int sysctl_sched_latency = 6000000ULL;
unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52

53 54 55 56 57 58 59 60 61 62 63 64
/*
 * The initial- and re-scaling of tunables is configurable
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
 *
 * Options are:
 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 */
enum sched_tunable_scaling sysctl_sched_tunable_scaling
	= SCHED_TUNABLESCALING_LOG;

65
/*
66
 * Minimal preemption granularity for CPU-bound tasks:
67
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68
 */
69 70
unsigned int sysctl_sched_min_granularity = 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 72

/*
73 74
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
75
static unsigned int sched_nr_latency = 8;
76 77

/*
78
 * After fork, child runs first. If set to 0 (default) then
79
 * parent will (try to) run first.
80
 */
81
unsigned int sysctl_sched_child_runs_first __read_mostly;
82 83 84

/*
 * SCHED_OTHER wake-up granularity.
85
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 87 88 89 90
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
91
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92
unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93

94 95
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

96 97 98 99 100 101 102
/*
 * The exponential sliding  window over which load is averaged for shares
 * distribution.
 * (default: 10msec)
 */
unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;

103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
 * default: 5 msec, units: microseconds
  */
unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
#endif

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

135 136 137 138 139 140 141 142 143
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
144
static unsigned int get_update_sysctl_factor(void)
145
{
146
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

182
#define WMULT_CONST	(~0U)
183 184
#define WMULT_SHIFT	32

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
201 202

/*
203 204 205 206
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
207
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
208 209 210 211 212
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213
 */
214
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215
{
216 217
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
218

219
	__update_inv_weight(lw);
220

221 222 223 224 225
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
226 227
	}

228 229
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
230

231 232 233 234
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
235

236
	return mul_u64_u32_shr(delta_exec, fact, shift);
237 238 239 240
}


const struct sched_class fair_sched_class;
241

242 243 244 245
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

246
#ifdef CONFIG_FAIR_GROUP_SCHED
247

248
/* cpu runqueue to which this cfs_rq is attached */
249 250
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
251
	return cfs_rq->rq;
252 253
}

254 255
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
256

257 258 259 260 261 262 263 264
static inline struct task_struct *task_of(struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!entity_is_task(se));
#endif
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

286 287 288
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
289 290 291 292 293 294 295 296 297 298 299 300
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
		 * enqueued.  The fact that we always enqueue bottom-up
		 * reduces this to two cases.
		 */
		if (cfs_rq->tg->parent &&
		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
		} else {
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301
				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302
		}
303 304 305 306 307 308 309 310 311 312 313 314 315

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
316 317 318 319 320
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
321
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
322 323 324
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
325
		return se->cfs_rq;
P
Peter Zijlstra 已提交
326

P
Peter Zijlstra 已提交
327
	return NULL;
P
Peter Zijlstra 已提交
328 329 330 331 332 333 334
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
348 349
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

367 368 369 370 371 372
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
373

374 375 376
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
377 378 379 380
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
381 382
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
383

P
Peter Zijlstra 已提交
384
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
385
{
P
Peter Zijlstra 已提交
386
	return &task_rq(p)->cfs;
387 388
}

P
Peter Zijlstra 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

403 404 405 406 407 408 409 410
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
411 412 413 414 415 416 417 418
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

419 420 421 422 423
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
424 425
#endif	/* CONFIG_FAIR_GROUP_SCHED */

426
static __always_inline
427
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
428 429 430 431 432

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

433
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
434
{
435
	s64 delta = (s64)(vruntime - max_vruntime);
436
	if (delta > 0)
437
		max_vruntime = vruntime;
438

439
	return max_vruntime;
440 441
}

442
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
443 444 445 446 447 448 449 450
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

451 452 453 454 455 456
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

457 458 459 460 461 462 463 464 465 466 467 468
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
469
		if (!cfs_rq->curr)
470 471 472 473 474
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

475
	/* ensure we never gain time by being placed backwards. */
476
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
477 478 479 480
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
481 482
}

483 484 485
/*
 * Enqueue an entity into the rb-tree:
 */
486
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
503
		if (entity_before(se, entry)) {
504 505 506 507 508 509 510 511 512 513 514
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
515
	if (leftmost)
I
Ingo Molnar 已提交
516
		cfs_rq->rb_leftmost = &se->run_node;
517 518 519 520 521

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

522
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
523
{
P
Peter Zijlstra 已提交
524 525 526 527 528 529
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
530

531 532 533
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

534
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
535
{
536 537 538 539 540 541
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
542 543
}

544 545 546 547 548 549 550 551 552 553 554
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
555
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
556
{
557
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
558

559 560
	if (!last)
		return NULL;
561 562

	return rb_entry(last, struct sched_entity, run_node);
563 564
}

565 566 567 568
/**************************************************************
 * Scheduling class statistics methods:
 */

569
int sched_proc_update_handler(struct ctl_table *table, int write,
570
		void __user *buffer, size_t *lenp,
571 572
		loff_t *ppos)
{
573
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
574
	unsigned int factor = get_update_sysctl_factor();
575 576 577 578 579 580 581

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

582 583 584 585 586 587 588
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

589 590 591
	return 0;
}
#endif
592

593
/*
594
 * delta /= w
595
 */
596
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
597
{
598
	if (unlikely(se->load.weight != NICE_0_LOAD))
599
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
600 601 602 603

	return delta;
}

604 605 606
/*
 * The idea is to set a period in which each task runs once.
 *
607
 * When there are too many tasks (sched_nr_latency) we have to stretch
608 609 610 611
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
612 613
static u64 __sched_period(unsigned long nr_running)
{
614 615 616 617
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
618 619
}

620 621 622 623
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
624
 * s = p*P[w/rw]
625
 */
P
Peter Zijlstra 已提交
626
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
627
{
M
Mike Galbraith 已提交
628
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
629

M
Mike Galbraith 已提交
630
	for_each_sched_entity(se) {
L
Lin Ming 已提交
631
		struct load_weight *load;
632
		struct load_weight lw;
L
Lin Ming 已提交
633 634 635

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
636

M
Mike Galbraith 已提交
637
		if (unlikely(!se->on_rq)) {
638
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
639 640 641 642

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
643
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
644 645
	}
	return slice;
646 647
}

648
/*
A
Andrei Epure 已提交
649
 * We calculate the vruntime slice of a to-be-inserted task.
650
 *
651
 * vs = s/w
652
 */
653
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
654
{
655
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
656 657
}

658
#ifdef CONFIG_SMP
659
static int select_idle_sibling(struct task_struct *p, int cpu);
660 661
static unsigned long task_h_load(struct task_struct *p);

662 663
/*
 * We choose a half-life close to 1 scheduling period.
664 665
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
666 667 668
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
669
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
670

671 672
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
673
{
674
	struct sched_avg *sa = &se->avg;
675

676 677 678 679 680 681 682
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
683
	sa->load_avg = scale_load_down(se->load.weight);
684
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 686 687 688 689
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
690
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
691
}
692

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
722
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
}

738
#else
739
void init_entity_runnable_average(struct sched_entity *se)
740 741
{
}
742 743 744
void post_init_entity_util_avg(struct sched_entity *se)
{
}
745 746
#endif

747
/*
748
 * Update the current task's runtime statistics.
749
 */
750
static void update_curr(struct cfs_rq *cfs_rq)
751
{
752
	struct sched_entity *curr = cfs_rq->curr;
753
	u64 now = rq_clock_task(rq_of(cfs_rq));
754
	u64 delta_exec;
755 756 757 758

	if (unlikely(!curr))
		return;

759 760
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
761
		return;
762

I
Ingo Molnar 已提交
763
	curr->exec_start = now;
764

765 766 767 768 769 770 771 772 773
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
	schedstat_add(cfs_rq, exec_clock, delta_exec);

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

774 775 776
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

777
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
778
		cpuacct_charge(curtask, delta_exec);
779
		account_group_exec_runtime(curtask, delta_exec);
780
	}
781 782

	account_cfs_rq_runtime(cfs_rq, delta_exec);
783 784
}

785 786 787 788 789
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

790
#ifdef CONFIG_SCHEDSTATS
791
static inline void
792
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
793
{
794 795 796 797 798 799 800
	u64 wait_start = rq_clock(rq_of(cfs_rq));

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
	    likely(wait_start > se->statistics.wait_start))
		wait_start -= se->statistics.wait_start;

	se->statistics.wait_start = wait_start;
801 802
}

803 804 805 806
static void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
807 808 809
	u64 delta;

	delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
			se->statistics.wait_start = delta;
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

	se->statistics.wait_max = max(se->statistics.wait_max, delta);
	se->statistics.wait_count++;
	se->statistics.wait_sum += delta;
	se->statistics.wait_start = 0;
}

831 832 833
/*
 * Task is being enqueued - update stats:
 */
834 835
static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
836 837 838 839 840
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
841
	if (se != cfs_rq->curr)
842
		update_stats_wait_start(cfs_rq, se);
843 844 845
}

static inline void
846
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
847 848 849 850 851
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
852
	if (se != cfs_rq->curr)
853
		update_stats_wait_end(cfs_rq, se);
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

	if (flags & DEQUEUE_SLEEP) {
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
			if (tsk->state & TASK_UNINTERRUPTIBLE)
				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
		}
	}

}
#else
static inline void
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
}

static inline void
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
886
}
887
#endif
888 889 890 891 892

/*
 * We are picking a new current task - update its stats:
 */
static inline void
893
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 895 896 897
{
	/*
	 * We are starting a new run period:
	 */
898
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
899 900 901 902 903 904
}

/**************************************************
 * Scheduling class queueing methods:
 */

905 906
#ifdef CONFIG_NUMA_BALANCING
/*
907 908 909
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
910
 */
911 912
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
913 914 915

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
916

917 918 919
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
944
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
945 946 947
	unsigned int scan, floor;
	unsigned int windows = 1;

948 949
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

966 967 968 969 970 971 972 973 974 975 976 977
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

978 979 980 981 982
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
983
	pid_t gid;
984
	int active_nodes;
985 986

	struct rcu_head rcu;
987
	unsigned long total_faults;
988
	unsigned long max_faults_cpu;
989 990 991 992 993
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
994
	unsigned long *faults_cpu;
995
	unsigned long faults[0];
996 997
};

998 999 1000 1001 1002 1003 1004 1005 1006
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1007 1008 1009 1010 1011
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1012 1013 1014 1015 1016 1017 1018
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1019
{
1020
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1021 1022 1023 1024
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1025
	if (!p->numa_faults)
1026 1027
		return 0;

1028 1029
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1030 1031
}

1032 1033 1034 1035 1036
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1037 1038
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1039 1040
}

1041 1042
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1043 1044
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1045 1046
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1124 1125 1126 1127 1128 1129
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1130 1131
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1132
{
1133
	unsigned long faults, total_faults;
1134

1135
	if (!p->numa_faults)
1136 1137 1138 1139 1140 1141 1142
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1143
	faults = task_faults(p, nid);
1144 1145
	faults += score_nearby_nodes(p, nid, dist, true);

1146
	return 1000 * faults / total_faults;
1147 1148
}

1149 1150
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1151
{
1152 1153 1154 1155 1156 1157 1158 1159
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1160 1161
		return 0;

1162
	faults = group_faults(p, nid);
1163 1164
	faults += score_nearby_nodes(p, nid, dist, false);

1165
	return 1000 * faults / total_faults;
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1208 1209
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1210
	 */
1211 1212
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1213 1214 1215
		return true;

	/*
1216 1217 1218 1219 1220 1221
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1222
	 */
1223 1224
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1225 1226
}

1227
static unsigned long weighted_cpuload(const int cpu);
1228 1229
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1230
static unsigned long capacity_of(int cpu);
1231 1232
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1233
/* Cached statistics for all CPUs within a node */
1234
struct numa_stats {
1235
	unsigned long nr_running;
1236
	unsigned long load;
1237 1238

	/* Total compute capacity of CPUs on a node */
1239
	unsigned long compute_capacity;
1240 1241

	/* Approximate capacity in terms of runnable tasks on a node */
1242
	unsigned long task_capacity;
1243
	int has_free_capacity;
1244
};
1245

1246 1247 1248 1249 1250
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1251 1252
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1253 1254 1255 1256 1257 1258 1259

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1260
		ns->compute_capacity += capacity_of(cpu);
1261 1262

		cpus++;
1263 1264
	}

1265 1266 1267 1268 1269
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1270 1271
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1272 1273 1274 1275
	 */
	if (!cpus)
		return;

1276 1277 1278 1279 1280 1281
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1282
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1283 1284
}

1285 1286
struct task_numa_env {
	struct task_struct *p;
1287

1288 1289
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1290

1291
	struct numa_stats src_stats, dst_stats;
1292

1293
	int imbalance_pct;
1294
	int dist;
1295 1296 1297

	struct task_struct *best_task;
	long best_imp;
1298 1299 1300
	int best_cpu;
};

1301 1302 1303 1304 1305
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1306 1307
	if (p)
		get_task_struct(p);
1308 1309 1310 1311 1312 1313

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1314
static bool load_too_imbalanced(long src_load, long dst_load,
1315 1316
				struct task_numa_env *env)
{
1317 1318
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1330 1331

	/* We care about the slope of the imbalance, not the direction. */
1332 1333
	if (dst_load < src_load)
		swap(dst_load, src_load);
1334 1335

	/* Is the difference below the threshold? */
1336 1337
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1338 1339 1340 1341 1342
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1343
	 * Compare it with the old imbalance.
1344
	 */
1345
	orig_src_load = env->src_stats.load;
1346
	orig_dst_load = env->dst_stats.load;
1347

1348 1349
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1350

1351 1352 1353 1354 1355
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1356 1357
}

1358 1359 1360 1361 1362 1363
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1364 1365
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1366 1367 1368 1369
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1370
	long src_load, dst_load;
1371
	long load;
1372
	long imp = env->p->numa_group ? groupimp : taskimp;
1373
	long moveimp = imp;
1374
	int dist = env->dist;
1375 1376

	rcu_read_lock();
1377 1378
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1379 1380
		cur = NULL;

1381 1382 1383 1384 1385 1386 1387
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1400 1401
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1402
		 * in any group then look only at task weights.
1403
		 */
1404
		if (cur->numa_group == env->p->numa_group) {
1405 1406
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1407 1408 1409 1410 1411 1412
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1413
		} else {
1414 1415 1416 1417 1418 1419
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1420 1421
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1422
			else
1423 1424
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1425
		}
1426 1427
	}

1428
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1429 1430 1431 1432
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1433
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1434
		    !env->dst_stats.has_free_capacity)
1435 1436 1437 1438 1439 1440
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1441 1442
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1443 1444 1445 1446 1447 1448
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1449 1450 1451
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1470
	if (cur) {
1471 1472 1473
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1474 1475
	}

1476
	if (load_too_imbalanced(src_load, dst_load, env))
1477 1478
		goto unlock;

1479 1480 1481 1482 1483 1484 1485
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
	if (!cur)
		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);

1486 1487 1488 1489 1490 1491
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1492 1493
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1494 1495 1496 1497 1498 1499 1500 1501 1502
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1503
		task_numa_compare(env, taskimp, groupimp);
1504 1505 1506
	}
}

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1524 1525 1526
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1527 1528 1529 1530 1531
		return true;

	return false;
}

1532 1533 1534 1535
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1536

1537
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1538
		.src_nid = task_node(p),
1539 1540 1541 1542 1543

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1544
		.best_cpu = -1,
1545 1546
	};
	struct sched_domain *sd;
1547
	unsigned long taskweight, groupweight;
1548
	int nid, ret, dist;
1549
	long taskimp, groupimp;
1550

1551
	/*
1552 1553 1554 1555 1556 1557
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1558 1559
	 */
	rcu_read_lock();
1560
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1561 1562
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1563 1564
	rcu_read_unlock();

1565 1566 1567 1568 1569 1570 1571
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1572
		p->numa_preferred_nid = task_node(p);
1573 1574 1575
		return -EINVAL;
	}

1576
	env.dst_nid = p->numa_preferred_nid;
1577 1578 1579 1580 1581 1582
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1583
	update_numa_stats(&env.dst_stats, env.dst_nid);
1584

1585
	/* Try to find a spot on the preferred nid. */
1586 1587
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1588

1589 1590 1591 1592 1593 1594 1595
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1596
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1597 1598 1599
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1600

1601
			dist = node_distance(env.src_nid, env.dst_nid);
1602 1603 1604 1605 1606
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1607

1608
			/* Only consider nodes where both task and groups benefit */
1609 1610
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1611
			if (taskimp < 0 && groupimp < 0)
1612 1613
				continue;

1614
			env.dist = dist;
1615 1616
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1617 1618
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1619 1620 1621
		}
	}

1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1630
	if (p->numa_group) {
1631 1632
		struct numa_group *ng = p->numa_group;

1633 1634 1635 1636 1637
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1638
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1639 1640 1641 1642 1643 1644
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1645

1646 1647 1648 1649 1650 1651
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1652
	if (env.best_task == NULL) {
1653 1654 1655
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1656 1657 1658 1659
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1660 1661
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1662 1663
	put_task_struct(env.best_task);
	return ret;
1664 1665
}

1666 1667 1668
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1669 1670
	unsigned long interval = HZ;

1671
	/* This task has no NUMA fault statistics yet */
1672
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1673 1674
		return;

1675
	/* Periodically retry migrating the task to the preferred node */
1676 1677
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1678 1679

	/* Success if task is already running on preferred CPU */
1680
	if (task_node(p) == p->numa_preferred_nid)
1681 1682 1683
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1684
	task_numa_migrate(p);
1685 1686
}

1687
/*
1688
 * Find out how many nodes on the workload is actively running on. Do this by
1689 1690 1691 1692
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1693
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1694 1695
{
	unsigned long faults, max_faults = 0;
1696
	int nid, active_nodes = 0;
1697 1698 1699 1700 1701 1702 1703 1704 1705

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1706 1707
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1708
	}
1709 1710 1711

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1712 1713
}

1714 1715 1716
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1717 1718 1719
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1720 1721
 */
#define NUMA_PERIOD_SLOTS 10
1722
#define NUMA_PERIOD_THRESHOLD 7
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1743 1744 1745
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1746
	 */
1747
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1781
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1782 1783 1784 1785 1786 1787 1788 1789
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1808 1809
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1810 1811 1812 1813 1814 1815 1816 1817
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
1865
		nodemask_t max_group = NODE_MASK_NONE;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
1899 1900
		if (!max_faults)
			break;
1901 1902 1903 1904 1905
		nodes = max_group;
	}
	return nid;
}

1906 1907
static void task_numa_placement(struct task_struct *p)
{
1908 1909
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
1910
	unsigned long fault_types[2] = { 0, 0 };
1911 1912
	unsigned long total_faults;
	u64 runtime, period;
1913
	spinlock_t *group_lock = NULL;
1914

1915 1916 1917 1918 1919
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
1920
	seq = READ_ONCE(p->mm->numa_scan_seq);
1921 1922 1923
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
1924
	p->numa_scan_period_max = task_scan_max(p);
1925

1926 1927 1928 1929
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

1930 1931 1932
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
1933
		spin_lock_irq(group_lock);
1934 1935
	}

1936 1937
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
1938 1939
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1940
		unsigned long faults = 0, group_faults = 0;
1941
		int priv;
1942

1943
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1944
			long diff, f_diff, f_weight;
1945

1946 1947 1948 1949
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1950

1951
			/* Decay existing window, copy faults since last scan */
1952 1953 1954
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
1955

1956 1957 1958 1959 1960 1961 1962 1963
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
1964
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1965
				   (total_faults + 1);
1966 1967
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
1968

1969 1970 1971
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
1972
			p->total_numa_faults += diff;
1973
			if (p->numa_group) {
1974 1975 1976 1977 1978 1979 1980 1981 1982
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
1983
				p->numa_group->total_faults += diff;
1984
				group_faults += p->numa_group->faults[mem_idx];
1985
			}
1986 1987
		}

1988 1989 1990 1991
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
1992 1993 1994 1995 1996 1997 1998

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

1999 2000
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2001
	if (p->numa_group) {
2002
		numa_group_count_active_nodes(p->numa_group);
2003
		spin_unlock_irq(group_lock);
2004
		max_nid = preferred_group_nid(p, max_group_nid);
2005 2006
	}

2007 2008 2009 2010 2011 2012 2013
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2014
	}
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2028 2029
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2030 2031 2032 2033 2034 2035 2036 2037 2038
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2039
				    4*nr_node_ids*sizeof(unsigned long);
2040 2041 2042 2043 2044 2045

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2046 2047
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2048
		spin_lock_init(&grp->lock);
2049
		grp->gid = p->pid;
2050
		/* Second half of the array tracks nids where faults happen */
2051 2052
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2053

2054
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2055
			grp->faults[i] = p->numa_faults[i];
2056

2057
		grp->total_faults = p->total_numa_faults;
2058

2059 2060 2061 2062 2063
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2064
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2065 2066

	if (!cpupid_match_pid(tsk, cpupid))
2067
		goto no_join;
2068 2069 2070

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2071
		goto no_join;
2072 2073 2074

	my_grp = p->numa_group;
	if (grp == my_grp)
2075
		goto no_join;
2076 2077 2078 2079 2080 2081

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2082
		goto no_join;
2083 2084 2085 2086 2087

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2088
		goto no_join;
2089

2090 2091 2092 2093 2094 2095 2096
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2097

2098 2099 2100
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2101
	if (join && !get_numa_group(grp))
2102
		goto no_join;
2103 2104 2105 2106 2107 2108

	rcu_read_unlock();

	if (!join)
		return;

2109 2110
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2111

2112
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2113 2114
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2115
	}
2116 2117
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2118 2119 2120 2121 2122

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2123
	spin_unlock_irq(&grp->lock);
2124 2125 2126 2127

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2128 2129 2130 2131 2132
	return;

no_join:
	rcu_read_unlock();
	return;
2133 2134 2135 2136 2137
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2138
	void *numa_faults = p->numa_faults;
2139 2140
	unsigned long flags;
	int i;
2141 2142

	if (grp) {
2143
		spin_lock_irqsave(&grp->lock, flags);
2144
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2145
			grp->faults[i] -= p->numa_faults[i];
2146
		grp->total_faults -= p->total_numa_faults;
2147

2148
		grp->nr_tasks--;
2149
		spin_unlock_irqrestore(&grp->lock, flags);
2150
		RCU_INIT_POINTER(p->numa_group, NULL);
2151 2152 2153
		put_numa_group(grp);
	}

2154
	p->numa_faults = NULL;
2155
	kfree(numa_faults);
2156 2157
}

2158 2159 2160
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2161
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2162 2163
{
	struct task_struct *p = current;
2164
	bool migrated = flags & TNF_MIGRATED;
2165
	int cpu_node = task_node(current);
2166
	int local = !!(flags & TNF_FAULT_LOCAL);
2167
	struct numa_group *ng;
2168
	int priv;
2169

2170
	if (!static_branch_likely(&sched_numa_balancing))
2171 2172
		return;

2173 2174 2175 2176
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2177
	/* Allocate buffer to track faults on a per-node basis */
2178 2179
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2180
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2181

2182 2183
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2184
			return;
2185

2186
		p->total_numa_faults = 0;
2187
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2188
	}
2189

2190 2191 2192 2193 2194 2195 2196 2197
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2198
		if (!priv && !(flags & TNF_NO_GROUP))
2199
			task_numa_group(p, last_cpupid, flags, &priv);
2200 2201
	}

2202 2203 2204 2205 2206 2207
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2208 2209 2210 2211
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2212 2213
		local = 1;

2214
	task_numa_placement(p);
2215

2216 2217 2218 2219 2220
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2221 2222
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2223 2224
	if (migrated)
		p->numa_pages_migrated += pages;
2225 2226
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2227

2228 2229
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2230
	p->numa_faults_locality[local] += pages;
2231 2232
}

2233 2234
static void reset_ptenuma_scan(struct task_struct *p)
{
2235 2236 2237 2238 2239 2240 2241 2242
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2243
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2244 2245 2246
	p->mm->numa_scan_offset = 0;
}

2247 2248 2249 2250 2251 2252 2253 2254 2255
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2256
	u64 runtime = p->se.sum_exec_runtime;
2257
	struct vm_area_struct *vma;
2258
	unsigned long start, end;
2259
	unsigned long nr_pte_updates = 0;
2260
	long pages, virtpages;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2276
	if (!mm->numa_next_scan) {
2277 2278
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2279 2280
	}

2281 2282 2283 2284 2285 2286 2287
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2288 2289 2290 2291
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2292

2293
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2294 2295 2296
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2297 2298 2299 2300 2301 2302
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2303 2304 2305
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2306
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2307 2308
	if (!pages)
		return;
2309

2310

2311
	down_read(&mm->mmap_sem);
2312
	vma = find_vma(mm, start);
2313 2314
	if (!vma) {
		reset_ptenuma_scan(p);
2315
		start = 0;
2316 2317
		vma = mm->mmap;
	}
2318
	for (; vma; vma = vma->vm_next) {
2319
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2320
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2321
			continue;
2322
		}
2323

2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2334 2335 2336 2337 2338 2339
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2340

2341 2342 2343 2344
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2345
			nr_pte_updates = change_prot_numa(vma, start, end);
2346 2347

			/*
2348 2349 2350 2351 2352 2353
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2354 2355 2356
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2357
			virtpages -= (end - start) >> PAGE_SHIFT;
2358

2359
			start = end;
2360
			if (pages <= 0 || virtpages <= 0)
2361
				goto out;
2362 2363

			cond_resched();
2364
		} while (end != vma->vm_end);
2365
	}
2366

2367
out:
2368
	/*
P
Peter Zijlstra 已提交
2369 2370 2371 2372
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2373 2374
	 */
	if (vma)
2375
		mm->numa_scan_offset = start;
2376 2377 2378
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2415
	if (now > curr->node_stamp + period) {
2416
		if (!curr->node_stamp)
2417
			curr->numa_scan_period = task_scan_min(curr);
2418
		curr->node_stamp += period;
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2430 2431 2432 2433 2434 2435 2436 2437

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2438 2439
#endif /* CONFIG_NUMA_BALANCING */

2440 2441 2442 2443
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2444
	if (!parent_entity(se))
2445
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2446
#ifdef CONFIG_SMP
2447 2448 2449 2450 2451 2452
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2453
#endif
2454 2455 2456 2457 2458 2459 2460
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2461
	if (!parent_entity(se))
2462
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2463
#ifdef CONFIG_SMP
2464 2465
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2466
		list_del_init(&se->group_node);
2467
	}
2468
#endif
2469 2470 2471
	cfs_rq->nr_running--;
}

2472 2473
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2474
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2475
{
2476
	long tg_weight, load, shares;
2477 2478

	/*
2479 2480 2481
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2482
	 */
2483
	load = scale_load_down(cfs_rq->load.weight);
2484

2485
	tg_weight = atomic_long_read(&tg->load_avg);
2486

2487 2488 2489
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2490 2491

	shares = (tg->shares * load);
2492 2493
	if (tg_weight)
		shares /= tg_weight;
2494 2495 2496 2497 2498 2499 2500 2501 2502

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2503
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2504 2505 2506 2507
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2508

P
Peter Zijlstra 已提交
2509 2510 2511
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2512 2513 2514 2515
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2516
		account_entity_dequeue(cfs_rq, se);
2517
	}
P
Peter Zijlstra 已提交
2518 2519 2520 2521 2522 2523 2524

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2525 2526
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2527
static void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2528 2529 2530
{
	struct task_group *tg;
	struct sched_entity *se;
2531
	long shares;
P
Peter Zijlstra 已提交
2532 2533 2534

	tg = cfs_rq->tg;
	se = tg->se[cpu_of(rq_of(cfs_rq))];
2535
	if (!se || throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2536
		return;
2537 2538 2539 2540
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2541
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2542 2543 2544 2545

	reweight_entity(cfs_rq_of(se), se, shares);
}
#else /* CONFIG_FAIR_GROUP_SCHED */
2546
static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
P
Peter Zijlstra 已提交
2547 2548 2549 2550
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2551
#ifdef CONFIG_SMP
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2582 2583 2584 2585 2586 2587
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2600 2601
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2602 2603 2604 2605 2606 2607
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2608 2609
	}

2610 2611
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2630 2631 2632
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2633 2634
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2635 2636
}

2637
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2667 2668
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2669
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2670
{
2671
	u64 delta, scaled_delta, periods;
2672
	u32 contrib;
2673
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2674
	unsigned long scale_freq, scale_cpu;
2675

2676
	delta = now - sa->last_update_time;
2677 2678 2679 2680 2681
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2682
		sa->last_update_time = now;
2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2693
	sa->last_update_time = now;
2694

2695 2696 2697
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2698
	/* delta_w is the amount already accumulated against our next period */
2699
	delta_w = sa->period_contrib;
2700 2701 2702
	if (delta + delta_w >= 1024) {
		decayed = 1;

2703 2704 2705
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2706 2707 2708 2709 2710 2711
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2712
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2713
		if (weight) {
2714 2715 2716 2717 2718
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2719
		}
2720
		if (running)
2721
			sa->util_sum += scaled_delta_w * scale_cpu;
2722 2723 2724 2725 2726 2727 2728

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2729
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2730 2731 2732 2733
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2734
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2735 2736

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2737
		contrib = __compute_runnable_contrib(periods);
2738
		contrib = cap_scale(contrib, scale_freq);
2739
		if (weight) {
2740
			sa->load_sum += weight * contrib;
2741 2742 2743
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2744
		if (running)
2745
			sa->util_sum += contrib * scale_cpu;
2746 2747 2748
	}

	/* Remainder of delta accrued against u_0` */
2749
	scaled_delta = cap_scale(delta, scale_freq);
2750
	if (weight) {
2751
		sa->load_sum += weight * scaled_delta;
2752
		if (cfs_rq)
2753
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2754
	}
2755
	if (running)
2756
		sa->util_sum += scaled_delta * scale_cpu;
2757

2758
	sa->period_contrib += delta;
2759

2760 2761
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2762 2763 2764 2765
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2766
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2767
	}
2768

2769
	return decayed;
2770 2771
}

2772
#ifdef CONFIG_FAIR_GROUP_SCHED
2773
/*
2774 2775
 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
 * and effective_load (which is not done because it is too costly).
2776
 */
2777
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2778
{
2779
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2780

2781 2782 2783 2784 2785 2786
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2787 2788 2789
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2790
	}
2791
}
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
2839
#else /* CONFIG_FAIR_GROUP_SCHED */
2840
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2841
#endif /* CONFIG_FAIR_GROUP_SCHED */
2842

2843
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2844

2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
		unsigned long max = rq->cpu_capacity_orig;

		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
		cpufreq_update_util(rq_clock(rq),
				    min(cfs_rq->avg.util_avg, max), max);
	}
}

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

2891
/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2892 2893
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2894
{
2895
	struct sched_avg *sa = &cfs_rq->avg;
2896
	int decayed, removed_load = 0, removed_util = 0;
2897

2898
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2899
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2900 2901
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
2902
		removed_load = 1;
2903
	}
2904

2905 2906
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2907 2908
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
2909
		removed_util = 1;
2910
	}
2911

2912
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2913
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2914

2915 2916 2917 2918
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
2919

2920 2921
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
2922

2923
	return decayed || removed_load;
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
}

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	__update_load_avg(now, cpu, &se->avg,
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

2942
	if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
2943
		update_tg_load_avg(cfs_rq, 0);
2944 2945
}

2946 2947
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2948 2949 2950
	if (!sched_feat(ATTACH_AGE_LOAD))
		goto skip_aging;

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * If we got migrated (either between CPUs or between cgroups) we'll
	 * have aged the average right before clearing @last_update_time.
	 */
	if (se->avg.last_update_time) {
		__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
				  &se->avg, 0, 0, NULL);

		/*
		 * XXX: we could have just aged the entire load away if we've been
		 * absent from the fair class for too long.
		 */
	}

2965
skip_aging:
2966 2967 2968 2969 2970
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
2971 2972

	cfs_rq_util_change(cfs_rq);
2973 2974 2975 2976 2977 2978 2979 2980
}

static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	__update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
			  &se->avg, se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);

2981 2982 2983 2984
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
2985 2986

	cfs_rq_util_change(cfs_rq);
2987 2988
}

2989 2990 2991
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2992
{
2993 2994
	struct sched_avg *sa = &se->avg;
	u64 now = cfs_rq_clock_task(cfs_rq);
2995
	int migrated, decayed;
2996

2997 2998
	migrated = !sa->last_update_time;
	if (!migrated) {
2999
		__update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3000 3001
			se->on_rq * scale_load_down(se->load.weight),
			cfs_rq->curr == se, NULL);
3002
	}
3003

3004
	decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
3005

3006 3007 3008
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3009 3010
	if (migrated)
		attach_entity_load_avg(cfs_rq, se);
3011

3012 3013
	if (decayed || migrated)
		update_tg_load_avg(cfs_rq, 0);
3014 3015
}

3016 3017 3018 3019 3020 3021 3022 3023 3024
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_avg(se, 1);

	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3025
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3026 3027
}

3028
#ifndef CONFIG_64BIT
3029 3030
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3031
	u64 last_update_time_copy;
3032
	u64 last_update_time;
3033

3034 3035 3036 3037 3038
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3039 3040 3041

	return last_update_time;
}
3042
#else
3043 3044 3045 3046
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3047 3048
#endif

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	/*
	 * Newly created task or never used group entity should not be removed
	 * from its (source) cfs_rq
	 */
	if (se->avg.last_update_time == 0)
		return;

	last_update_time = cfs_rq_last_update_time(cfs_rq);

3067
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3068 3069
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3070
}
3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3082 3083
static int idle_balance(struct rq *this_rq);

3084 3085
#else /* CONFIG_SMP */

3086 3087 3088 3089 3090 3091 3092 3093
static inline void update_load_avg(struct sched_entity *se, int not_used)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct rq *rq = rq_of(cfs_rq);

	cpufreq_trigger_update(rq_clock(rq));
}

3094 3095
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3096 3097
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3098
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3099

3100 3101 3102 3103 3104
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3105 3106 3107 3108 3109
static inline int idle_balance(struct rq *rq)
{
	return 0;
}

3110
#endif /* CONFIG_SMP */
3111

3112
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
3113 3114
{
#ifdef CONFIG_SCHEDSTATS
3115 3116 3117 3118 3119
	struct task_struct *tsk = NULL;

	if (entity_is_task(se))
		tsk = task_of(se);

3120
	if (se->statistics.sleep_start) {
3121
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
3122 3123 3124 3125

		if ((s64)delta < 0)
			delta = 0;

3126 3127
		if (unlikely(delta > se->statistics.sleep_max))
			se->statistics.sleep_max = delta;
3128

3129
		se->statistics.sleep_start = 0;
3130
		se->statistics.sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
3131

3132
		if (tsk) {
3133
			account_scheduler_latency(tsk, delta >> 10, 1);
3134 3135
			trace_sched_stat_sleep(tsk, delta);
		}
3136
	}
3137
	if (se->statistics.block_start) {
3138
		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
3139 3140 3141 3142

		if ((s64)delta < 0)
			delta = 0;

3143 3144
		if (unlikely(delta > se->statistics.block_max))
			se->statistics.block_max = delta;
3145

3146
		se->statistics.block_start = 0;
3147
		se->statistics.sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
3148

3149
		if (tsk) {
3150
			if (tsk->in_iowait) {
3151 3152
				se->statistics.iowait_sum += delta;
				se->statistics.iowait_count++;
3153
				trace_sched_stat_iowait(tsk, delta);
3154 3155
			}

3156 3157
			trace_sched_stat_blocked(tsk, delta);

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
I
Ingo Molnar 已提交
3169
		}
3170 3171 3172 3173
	}
#endif
}

P
Peter Zijlstra 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

3187 3188 3189
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3190
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3191

3192 3193 3194 3195 3196 3197
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3198
	if (initial && sched_feat(START_DEBIT))
3199
		vruntime += sched_vslice(cfs_rq, se);
3200

3201
	/* sleeps up to a single latency don't count. */
3202
	if (!initial) {
3203
		unsigned long thresh = sysctl_sched_latency;
3204

3205 3206 3207 3208 3209 3210
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3211

3212
		vruntime -= thresh;
3213 3214
	}

3215
	/* ensure we never gain time by being placed backwards. */
3216
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3217 3218
}

3219 3220
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3233
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3234 3235 3236 3237 3238 3239 3240
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3260
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3272
static void
3273
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3274
{
3275 3276 3277
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3278
	/*
3279 3280
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3281
	 */
3282
	if (renorm && curr)
3283 3284
		se->vruntime += cfs_rq->min_vruntime;

3285 3286
	update_curr(cfs_rq);

3287
	/*
3288 3289 3290 3291
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3292
	 */
3293 3294 3295
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3296
	enqueue_entity_load_avg(cfs_rq, se);
3297 3298
	account_entity_enqueue(cfs_rq, se);
	update_cfs_shares(cfs_rq);
3299

3300
	if (flags & ENQUEUE_WAKEUP) {
3301
		place_entity(cfs_rq, se, 0);
3302 3303
		if (schedstat_enabled())
			enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
3304
	}
3305

3306 3307 3308 3309 3310
	check_schedstat_required();
	if (schedstat_enabled()) {
		update_stats_enqueue(cfs_rq, se);
		check_spread(cfs_rq, se);
	}
3311
	if (!curr)
3312
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3313
	se->on_rq = 1;
3314

3315
	if (cfs_rq->nr_running == 1) {
3316
		list_add_leaf_cfs_rq(cfs_rq);
3317 3318
		check_enqueue_throttle(cfs_rq);
	}
3319 3320
}

3321
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3322
{
3323 3324
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3325
		if (cfs_rq->last != se)
3326
			break;
3327 3328

		cfs_rq->last = NULL;
3329 3330
	}
}
P
Peter Zijlstra 已提交
3331

3332 3333 3334 3335
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3336
		if (cfs_rq->next != se)
3337
			break;
3338 3339

		cfs_rq->next = NULL;
3340
	}
P
Peter Zijlstra 已提交
3341 3342
}

3343 3344 3345 3346
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3347
		if (cfs_rq->skip != se)
3348
			break;
3349 3350

		cfs_rq->skip = NULL;
3351 3352 3353
	}
}

P
Peter Zijlstra 已提交
3354 3355
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3356 3357 3358 3359 3360
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3361 3362 3363

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3364 3365
}

3366
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3367

3368
static void
3369
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3370
{
3371 3372 3373 3374
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3375
	dequeue_entity_load_avg(cfs_rq, se);
3376

3377 3378
	if (schedstat_enabled())
		update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3379

P
Peter Zijlstra 已提交
3380
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3381

3382
	if (se != cfs_rq->curr)
3383
		__dequeue_entity(cfs_rq, se);
3384
	se->on_rq = 0;
3385
	account_entity_dequeue(cfs_rq, se);
3386 3387 3388 3389 3390 3391

	/*
	 * Normalize the entity after updating the min_vruntime because the
	 * update can refer to the ->curr item and we need to reflect this
	 * movement in our normalized position.
	 */
3392
	if (!(flags & DEQUEUE_SLEEP))
3393
		se->vruntime -= cfs_rq->min_vruntime;
3394

3395 3396 3397
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3398
	update_min_vruntime(cfs_rq);
3399
	update_cfs_shares(cfs_rq);
3400 3401 3402 3403 3404
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3405
static void
I
Ingo Molnar 已提交
3406
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3407
{
3408
	unsigned long ideal_runtime, delta_exec;
3409 3410
	struct sched_entity *se;
	s64 delta;
3411

P
Peter Zijlstra 已提交
3412
	ideal_runtime = sched_slice(cfs_rq, curr);
3413
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3414
	if (delta_exec > ideal_runtime) {
3415
		resched_curr(rq_of(cfs_rq));
3416 3417 3418 3419 3420
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3432 3433
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3434

3435 3436
	if (delta < 0)
		return;
3437

3438
	if (delta > ideal_runtime)
3439
		resched_curr(rq_of(cfs_rq));
3440 3441
}

3442
static void
3443
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3444
{
3445 3446 3447 3448 3449 3450 3451
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3452 3453
		if (schedstat_enabled())
			update_stats_wait_end(cfs_rq, se);
3454
		__dequeue_entity(cfs_rq, se);
3455
		update_load_avg(se, 1);
3456 3457
	}

3458
	update_stats_curr_start(cfs_rq, se);
3459
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
3460 3461 3462 3463 3464 3465
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3466
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3467
		se->statistics.slice_max = max(se->statistics.slice_max,
I
Ingo Molnar 已提交
3468 3469 3470
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
3471
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3472 3473
}

3474 3475 3476
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3477 3478 3479 3480 3481 3482 3483
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3484 3485
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3486
{
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3498

3499 3500 3501 3502 3503
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3514 3515 3516
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3517

3518 3519 3520 3521 3522 3523
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3524 3525 3526 3527 3528 3529
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3530
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3531 3532

	return se;
3533 3534
}

3535
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3536

3537
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3538 3539 3540 3541 3542 3543
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3544
		update_curr(cfs_rq);
3545

3546 3547 3548
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3549 3550 3551 3552 3553 3554
	if (schedstat_enabled()) {
		check_spread(cfs_rq, prev);
		if (prev->on_rq)
			update_stats_wait_start(cfs_rq, prev);
	}

3555 3556 3557
	if (prev->on_rq) {
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3558
		/* in !on_rq case, update occurred at dequeue */
3559
		update_load_avg(prev, 0);
3560
	}
3561
	cfs_rq->curr = NULL;
3562 3563
}

P
Peter Zijlstra 已提交
3564 3565
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3566 3567
{
	/*
3568
	 * Update run-time statistics of the 'current'.
3569
	 */
3570
	update_curr(cfs_rq);
3571

3572 3573 3574
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3575
	update_load_avg(curr, 1);
3576
	update_cfs_shares(cfs_rq);
3577

P
Peter Zijlstra 已提交
3578 3579 3580 3581 3582
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3583
	if (queued) {
3584
		resched_curr(rq_of(cfs_rq));
3585 3586
		return;
	}
P
Peter Zijlstra 已提交
3587 3588 3589 3590 3591 3592 3593 3594
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3595
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3596
		check_preempt_tick(cfs_rq, curr);
3597 3598
}

3599 3600 3601 3602 3603 3604

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3605 3606

#ifdef HAVE_JUMP_LABEL
3607
static struct static_key __cfs_bandwidth_used;
3608 3609 3610

static inline bool cfs_bandwidth_used(void)
{
3611
	return static_key_false(&__cfs_bandwidth_used);
3612 3613
}

3614
void cfs_bandwidth_usage_inc(void)
3615
{
3616 3617 3618 3619 3620 3621
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3622 3623 3624 3625 3626 3627 3628
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3629 3630
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3631 3632
#endif /* HAVE_JUMP_LABEL */

3633 3634 3635 3636 3637 3638 3639 3640
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3641 3642 3643 3644 3645 3646

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3647 3648 3649 3650 3651 3652 3653
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3654
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3666 3667 3668 3669 3670
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3671 3672 3673 3674
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3675
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3676

3677
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3678 3679
}

3680 3681
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3682 3683 3684
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3685
	u64 amount = 0, min_amount, expires;
3686 3687 3688 3689 3690 3691 3692

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
3693
	else {
P
Peter Zijlstra 已提交
3694
		start_cfs_bandwidth(cfs_b);
3695 3696 3697 3698 3699 3700

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
3701
	}
P
Paul Turner 已提交
3702
	expires = cfs_b->runtime_expires;
3703 3704 3705
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
3706 3707 3708 3709 3710 3711 3712
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
3713 3714

	return cfs_rq->runtime_remaining > 0;
3715 3716
}

P
Paul Turner 已提交
3717 3718 3719 3720 3721
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3722
{
P
Paul Turner 已提交
3723 3724 3725
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
3726
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3727 3728
		return;

P
Paul Turner 已提交
3729 3730 3731 3732 3733 3734 3735 3736 3737
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
3738 3739 3740
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
3741 3742
	 */

3743
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
3744 3745 3746 3747 3748 3749 3750 3751
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

3752
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
3753 3754
{
	/* dock delta_exec before expiring quota (as it could span periods) */
3755
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
3756 3757 3758
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
3759 3760
		return;

3761 3762 3763 3764 3765
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3766
		resched_curr(rq_of(cfs_rq));
3767 3768
}

3769
static __always_inline
3770
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3771
{
3772
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3773 3774 3775 3776 3777
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

3778 3779
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
3780
	return cfs_bandwidth_used() && cfs_rq->throttled;
3781 3782
}

3783 3784 3785
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
3786
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
3814
		/* adjust cfs_rq_clock_task() */
3815
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3816
					     cfs_rq->throttled_clock_task;
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

3827 3828
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
3829
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3830 3831 3832 3833 3834
	cfs_rq->throttle_count++;

	return 0;
}

3835
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3836 3837 3838 3839 3840
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
3841
	bool empty;
3842 3843 3844

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

3845
	/* freeze hierarchy runnable averages while throttled */
3846 3847 3848
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
3866
		sub_nr_running(rq, task_delta);
3867 3868

	cfs_rq->throttled = 1;
3869
	cfs_rq->throttled_clock = rq_clock(rq);
3870
	raw_spin_lock(&cfs_b->lock);
3871
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3872

3873 3874 3875 3876 3877
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
3878 3879 3880 3881 3882 3883 3884 3885

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

3886 3887 3888
	raw_spin_unlock(&cfs_b->lock);
}

3889
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3890 3891 3892 3893 3894 3895 3896
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

3897
	se = cfs_rq->tg->se[cpu_of(rq)];
3898 3899

	cfs_rq->throttled = 0;
3900 3901 3902

	update_rq_clock(rq);

3903
	raw_spin_lock(&cfs_b->lock);
3904
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3905 3906 3907
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

3908 3909 3910
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
3929
		add_nr_running(rq, task_delta);
3930 3931 3932

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
3933
		resched_curr(rq);
3934 3935 3936 3937 3938 3939
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
3940 3941
	u64 runtime;
	u64 starting_runtime = remaining;
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

3972
	return starting_runtime - remaining;
3973 3974
}

3975 3976 3977 3978 3979 3980 3981 3982
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
3983
	u64 runtime, runtime_expires;
3984
	int throttled;
3985 3986 3987

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
3988
		goto out_deactivate;
3989

3990
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3991
	cfs_b->nr_periods += overrun;
3992

3993 3994 3995 3996 3997 3998
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
3999 4000 4001

	__refill_cfs_bandwidth_runtime(cfs_b);

4002 4003 4004
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4005
		return 0;
4006 4007
	}

4008 4009 4010
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4011 4012 4013
	runtime_expires = cfs_b->runtime_expires;

	/*
4014 4015 4016 4017 4018
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4019
	 */
4020 4021
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4022 4023 4024 4025 4026 4027 4028
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4029 4030

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4031
	}
4032

4033 4034 4035 4036 4037 4038 4039
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4040

4041 4042 4043 4044
	return 0;

out_deactivate:
	return 1;
4045
}
4046

4047 4048 4049 4050 4051 4052 4053
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4054 4055 4056 4057
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4058
 * hrtimer base being cleared by hrtimer_start. In the case of
4059 4060
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4086 4087 4088
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4118 4119 4120
	if (!cfs_bandwidth_used())
		return;

4121
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4137 4138 4139
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4140
		return;
4141
	}
4142

4143
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4144
		runtime = cfs_b->runtime;
4145

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4156
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4157 4158 4159
	raw_spin_unlock(&cfs_b->lock);
}

4160 4161 4162 4163 4164 4165 4166
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4167 4168 4169
	if (!cfs_bandwidth_used())
		return;

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
	/* Synchronize hierarchical throttle counter: */
	if (unlikely(!cfs_rq->throttle_uptodate)) {
		struct rq *rq = rq_of(cfs_rq);
		struct cfs_rq *pcfs_rq;
		struct task_group *tg;

		cfs_rq->throttle_uptodate = 1;

		/* Get closest up-to-date node, because leaves go first: */
		for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
			pcfs_rq = tg->cfs_rq[cpu_of(rq)];
			if (pcfs_rq->throttle_uptodate)
				break;
		}
		if (tg) {
			cfs_rq->throttle_count = pcfs_rq->throttle_count;
			cfs_rq->throttled_clock_task = rq_clock_task(rq);
		}
	}

4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

/* conditionally throttle active cfs_rq's from put_prev_entity() */
4205
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4206
{
4207
	if (!cfs_bandwidth_used())
4208
		return false;
4209

4210
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4211
		return false;
4212 4213 4214 4215 4216 4217

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4218
		return true;
4219 4220

	throttle_cfs_rq(cfs_rq);
4221
	return true;
4222
}
4223 4224 4225 4226 4227

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4228

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4241
	raw_spin_lock(&cfs_b->lock);
4242
	for (;;) {
P
Peter Zijlstra 已提交
4243
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4244 4245 4246 4247 4248
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4249 4250
	if (idle)
		cfs_b->period_active = 0;
4251
	raw_spin_unlock(&cfs_b->lock);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4264
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4276
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4277
{
P
Peter Zijlstra 已提交
4278
	lockdep_assert_held(&cfs_b->lock);
4279

P
Peter Zijlstra 已提交
4280 4281 4282 4283 4284
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4285 4286 4287 4288
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4289 4290 4291 4292
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4293 4294 4295 4296
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4310
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4322
		cfs_rq->runtime_remaining = 1;
4323 4324 4325 4326 4327 4328
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4329 4330 4331 4332 4333 4334
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4335 4336
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4337
	return rq_clock_task(rq_of(cfs_rq));
4338 4339
}

4340
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4341
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4342
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4343
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4344 4345 4346 4347 4348

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4360 4361 4362 4363 4364

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4365 4366
#endif

4367 4368 4369 4370 4371
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4372
static inline void update_runtime_enabled(struct rq *rq) {}
4373
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4374 4375 4376

#endif /* CONFIG_CFS_BANDWIDTH */

4377 4378 4379 4380
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4381 4382 4383 4384 4385 4386 4387 4388
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

4389
	if (cfs_rq->nr_running > 1) {
P
Peter Zijlstra 已提交
4390 4391 4392 4393 4394 4395
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4396
				resched_curr(rq);
P
Peter Zijlstra 已提交
4397 4398
			return;
		}
4399
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4400 4401
	}
}
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4412
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4413 4414 4415 4416 4417
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4418
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4419 4420 4421 4422
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4423 4424 4425 4426

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4427 4428
#endif

4429 4430 4431 4432 4433
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4434
static void
4435
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4436 4437
{
	struct cfs_rq *cfs_rq;
4438
	struct sched_entity *se = &p->se;
4439 4440

	for_each_sched_entity(se) {
4441
		if (se->on_rq)
4442 4443
			break;
		cfs_rq = cfs_rq_of(se);
4444
		enqueue_entity(cfs_rq, se, flags);
4445 4446 4447 4448 4449 4450 4451 4452 4453

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4454
		cfs_rq->h_nr_running++;
4455

4456
		flags = ENQUEUE_WAKEUP;
4457
	}
P
Peter Zijlstra 已提交
4458

P
Peter Zijlstra 已提交
4459
	for_each_sched_entity(se) {
4460
		cfs_rq = cfs_rq_of(se);
4461
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4462

4463 4464 4465
		if (cfs_rq_throttled(cfs_rq))
			break;

4466
		update_load_avg(se, 1);
4467
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4468 4469
	}

Y
Yuyang Du 已提交
4470
	if (!se)
4471
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4472

4473
	hrtick_update(rq);
4474 4475
}

4476 4477
static void set_next_buddy(struct sched_entity *se);

4478 4479 4480 4481 4482
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4483
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4484 4485
{
	struct cfs_rq *cfs_rq;
4486
	struct sched_entity *se = &p->se;
4487
	int task_sleep = flags & DEQUEUE_SLEEP;
4488 4489 4490

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4491
		dequeue_entity(cfs_rq, se, flags);
4492 4493 4494 4495 4496 4497 4498 4499 4500

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4501
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4502

4503
		/* Don't dequeue parent if it has other entities besides us */
4504
		if (cfs_rq->load.weight) {
4505 4506
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4507 4508 4509 4510
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4511 4512
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4513
			break;
4514
		}
4515
		flags |= DEQUEUE_SLEEP;
4516
	}
P
Peter Zijlstra 已提交
4517

P
Peter Zijlstra 已提交
4518
	for_each_sched_entity(se) {
4519
		cfs_rq = cfs_rq_of(se);
4520
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4521

4522 4523 4524
		if (cfs_rq_throttled(cfs_rq))
			break;

4525
		update_load_avg(se, 1);
4526
		update_cfs_shares(cfs_rq);
P
Peter Zijlstra 已提交
4527 4528
	}

Y
Yuyang Du 已提交
4529
	if (!se)
4530
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4531

4532
	hrtick_update(rq);
4533 4534
}

4535
#ifdef CONFIG_SMP
4536
#ifdef CONFIG_NO_HZ_COMMON
4537 4538 4539 4540 4541
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4542
 * The exact cpuload calculated at every tick would be:
4543
 *
4544 4545 4546 4547 4548 4549 4550
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4551 4552 4553
 *
 * decay_load_missed() below does efficient calculation of
 *
4554 4555 4556 4557 4558 4559
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4560
 *
4561
 * The calculation is approximated on a 128 point scale.
4562 4563
 */
#define DEGRADE_SHIFT		7
4564 4565 4566 4567 4568 4569 4570 4571 4572

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4602
#endif /* CONFIG_NO_HZ_COMMON */
4603

4604
/**
4605
 * __cpu_load_update - update the rq->cpu_load[] statistics
4606 4607 4608 4609
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4610
 * Update rq->cpu_load[] statistics. This function is usually called every
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4637
 * term.
4638
 */
4639 4640
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4641
{
4642
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4654
		old_load = this_rq->cpu_load[i];
4655
#ifdef CONFIG_NO_HZ_COMMON
4656
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4657 4658 4659 4660 4661 4662 4663 4664 4665
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4666
#endif
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

4682 4683 4684 4685 4686 4687
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

4688
#ifdef CONFIG_NO_HZ_COMMON
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
4717
		cpu_load_update(this_rq, load, pending_updates);
4718 4719 4720
	}
}

4721 4722 4723 4724
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
4725
static void cpu_load_update_idle(struct rq *this_rq)
4726 4727 4728 4729
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
4730
	if (weighted_cpuload(cpu_of(this_rq)))
4731 4732
		return;

4733
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
4734 4735 4736
}

/*
4737 4738 4739 4740
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
4741
 */
4742
void cpu_load_update_nohz_start(void)
4743 4744
{
	struct rq *this_rq = this_rq();
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
4759
	unsigned long curr_jiffies = READ_ONCE(jiffies);
4760 4761
	struct rq *this_rq = this_rq();
	unsigned long load;
4762 4763 4764 4765

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

4766
	load = weighted_cpuload(cpu_of(this_rq));
4767
	raw_spin_lock(&this_rq->lock);
4768
	update_rq_clock(this_rq);
4769
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
4770 4771
	raw_spin_unlock(&this_rq->lock);
}
4772 4773 4774 4775 4776 4777 4778 4779
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
4780
#ifdef CONFIG_NO_HZ_COMMON
4781 4782
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
4783
#endif
4784 4785
	cpu_load_update(this_rq, load, 1);
}
4786 4787 4788 4789

/*
 * Called from scheduler_tick()
 */
4790
void cpu_load_update_active(struct rq *this_rq)
4791
{
4792
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
4793 4794 4795 4796 4797

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
4798 4799
}

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

4833
static unsigned long capacity_of(int cpu)
4834
{
4835
	return cpu_rq(cpu)->cpu_capacity;
4836 4837
}

4838 4839 4840 4841 4842
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

4843 4844 4845
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
4846
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4847
	unsigned long load_avg = weighted_cpuload(cpu);
4848 4849

	if (nr_running)
4850
		return load_avg / nr_running;
4851 4852 4853 4854

	return 0;
}

4855
#ifdef CONFIG_FAIR_GROUP_SCHED
4856 4857 4858 4859 4860 4861
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
4905
 */
P
Peter Zijlstra 已提交
4906
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4907
{
P
Peter Zijlstra 已提交
4908
	struct sched_entity *se = tg->se[cpu];
4909

4910
	if (!tg->parent)	/* the trivial, non-cgroup case */
4911 4912
		return wl;

P
Peter Zijlstra 已提交
4913
	for_each_sched_entity(se) {
4914 4915
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
4916

4917
		tg = cfs_rq->tg;
4918

4919 4920 4921
		/*
		 * W = @wg + \Sum rw_j
		 */
4922 4923 4924 4925 4926
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
4927

4928 4929 4930
		/*
		 * w = rw_i + @wl
		 */
4931
		w += wl;
4932

4933 4934 4935 4936
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
4937
			wl = (w * (long)tg->shares) / W;
4938 4939
		else
			wl = tg->shares;
4940

4941 4942 4943 4944 4945
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
4946 4947
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
4948 4949 4950 4951

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
4952
		wl -= se->avg.load_avg;
4953 4954 4955 4956 4957 4958 4959 4960

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
4961 4962
		wg = 0;
	}
4963

P
Peter Zijlstra 已提交
4964
	return wl;
4965 4966
}
#else
P
Peter Zijlstra 已提交
4967

4968
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
4969
{
4970
	return wl;
4971
}
P
Peter Zijlstra 已提交
4972

4973 4974
#endif

P
Peter Zijlstra 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
4992 4993
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
4994
 *
M
Mike Galbraith 已提交
4995
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5008
 */
5009 5010
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5011 5012
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5013
	int factor = this_cpu_read(sd_llc_size);
5014

M
Mike Galbraith 已提交
5015 5016 5017 5018 5019
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5020 5021
}

5022
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5023
{
5024
	s64 this_load, load;
5025
	s64 this_eff_load, prev_eff_load;
5026 5027
	int idx, this_cpu, prev_cpu;
	struct task_group *tg;
5028
	unsigned long weight;
5029
	int balanced;
5030

5031 5032 5033 5034 5035
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	prev_cpu  = task_cpu(p);
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5036

5037 5038 5039 5040 5041
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5042 5043
	if (sync) {
		tg = task_group(current);
5044
		weight = current->se.avg.load_avg;
5045

5046
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5047 5048
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5049

5050
	tg = task_group(p);
5051
	weight = p->se.avg.load_avg;
5052

5053 5054
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5055 5056 5057
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5058 5059 5060 5061
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5062 5063
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5064

5065 5066
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5067

5068
	if (this_load > 0) {
5069 5070 5071 5072
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5073
	}
5074

5075
	balanced = this_eff_load <= prev_eff_load;
5076

5077
	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5078

5079 5080
	if (!balanced)
		return 0;
5081

5082 5083 5084 5085
	schedstat_inc(sd, ttwu_move_affine);
	schedstat_inc(p, se.statistics.nr_wakeups_affine);

	return 1;
5086 5087
}

5088 5089 5090 5091 5092
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5093
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5094
		  int this_cpu, int sd_flag)
5095
{
5096
	struct sched_group *idlest = NULL, *group = sd->groups;
5097
	unsigned long min_load = ULONG_MAX, this_load = 0;
5098
	int load_idx = sd->forkexec_idx;
5099
	int imbalance = 100 + (sd->imbalance_pct-100)/2;
5100

5101 5102 5103
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5104 5105 5106 5107
	do {
		unsigned long load, avg_load;
		int local_group;
		int i;
5108

5109 5110
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5111
					tsk_cpus_allowed(p)))
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

5130
		/* Adjust by relative CPU capacity of the group */
5131
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152

		if (local_group) {
			this_load = avg_load;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
	} while (group = group->next, group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5153 5154 5155 5156
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5157 5158 5159
	int i;

	/* Traverse only the allowed CPUs */
5160
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5183
		} else if (shallowest_idle_cpu == -1) {
5184 5185 5186 5187 5188
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5189 5190 5191
		}
	}

5192
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5193
}
5194

5195 5196 5197
/*
 * Try and locate an idle CPU in the sched_domain.
 */
5198
static int select_idle_sibling(struct task_struct *p, int target)
5199
{
5200
	struct sched_domain *sd;
5201
	struct sched_group *sg;
5202
	int i = task_cpu(p);
5203

5204 5205
	if (idle_cpu(target))
		return target;
5206 5207

	/*
5208
	 * If the prevous cpu is cache affine and idle, don't be stupid.
5209
	 */
5210 5211
	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
		return i;
5212 5213

	/*
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	 * Otherwise, iterate the domains and find an eligible idle cpu.
	 *
	 * A completely idle sched group at higher domains is more
	 * desirable than an idle group at a lower level, because lower
	 * domains have smaller groups and usually share hardware
	 * resources which causes tasks to contend on them, e.g. x86
	 * hyperthread siblings in the lowest domain (SMT) can contend
	 * on the shared cpu pipeline.
	 *
	 * However, while we prefer idle groups at higher domains
	 * finding an idle cpu at the lowest domain is still better than
	 * returning 'target', which we've already established, isn't
	 * idle.
5227
	 */
5228
	sd = rcu_dereference(per_cpu(sd_llc, target));
5229
	for_each_lower_domain(sd) {
5230 5231 5232 5233 5234 5235
		sg = sd->groups;
		do {
			if (!cpumask_intersects(sched_group_cpus(sg),
						tsk_cpus_allowed(p)))
				goto next;

5236
			/* Ensure the entire group is idle */
5237
			for_each_cpu(i, sched_group_cpus(sg)) {
5238
				if (i == target || !idle_cpu(i))
5239 5240
					goto next;
			}
5241

5242 5243 5244 5245
			/*
			 * It doesn't matter which cpu we pick, the
			 * whole group is idle.
			 */
5246 5247 5248 5249 5250 5251 5252 5253
			target = cpumask_first_and(sched_group_cpus(sg),
					tsk_cpus_allowed(p));
			goto done;
next:
			sg = sg->next;
		} while (sg != sd->groups);
	}
done:
5254 5255
	return target;
}
5256

5257
/*
5258
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5259
 * tasks. The unit of the return value must be the one of capacity so we can
5260 5261
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5282
 */
5283
static int cpu_util(int cpu)
5284
{
5285
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5286 5287
	unsigned long capacity = capacity_orig_of(cpu);

5288
	return (util >= capacity) ? capacity : util;
5289
}
5290

5291
/*
5292 5293 5294
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5295
 *
5296 5297
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5298
 *
5299
 * Returns the target cpu number.
5300 5301 5302
 *
 * preempt must be disabled.
 */
5303
static int
5304
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5305
{
5306
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5307
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5308
	int new_cpu = prev_cpu;
5309
	int want_affine = 0;
5310
	int sync = wake_flags & WF_SYNC;
5311

P
Peter Zijlstra 已提交
5312 5313
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
M
Mike Galbraith 已提交
5314
		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5315
	}
5316

5317
	rcu_read_lock();
5318
	for_each_domain(cpu, tmp) {
5319
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5320
			break;
5321

5322
		/*
5323 5324
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5325
		 */
5326 5327 5328
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5329
			break;
5330
		}
5331

5332
		if (tmp->flags & sd_flag)
5333
			sd = tmp;
M
Mike Galbraith 已提交
5334 5335
		else if (!want_affine)
			break;
5336 5337
	}

M
Mike Galbraith 已提交
5338 5339 5340 5341
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
		if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
			new_cpu = cpu;
5342
	}
5343

M
Mike Galbraith 已提交
5344 5345 5346 5347 5348
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
			new_cpu = select_idle_sibling(p, new_cpu);

	} else while (sd) {
5349
		struct sched_group *group;
5350
		int weight;
5351

5352
		if (!(sd->flags & sd_flag)) {
5353 5354 5355
			sd = sd->child;
			continue;
		}
5356

5357
		group = find_idlest_group(sd, p, cpu, sd_flag);
5358 5359 5360 5361
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5362

5363
		new_cpu = find_idlest_cpu(group, p, cpu);
5364 5365 5366 5367
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
5368
		}
5369 5370 5371

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
5372
		weight = sd->span_weight;
5373 5374
		sd = NULL;
		for_each_domain(cpu, tmp) {
5375
			if (weight <= tmp->span_weight)
5376
				break;
5377
			if (tmp->flags & sd_flag)
5378 5379 5380
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
5381
	}
5382
	rcu_read_unlock();
5383

5384
	return new_cpu;
5385
}
5386 5387 5388 5389

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
5390
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5391
 */
5392
static void migrate_task_rq_fair(struct task_struct *p)
5393
{
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

5420
	/*
5421 5422 5423 5424 5425
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
5426
	 */
5427 5428 5429 5430
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
5431 5432

	/* We have migrated, no longer consider this task hot */
5433
	p->se.exec_start = 0;
5434
}
5435 5436 5437 5438 5439

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
5440 5441
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
5442 5443
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5444 5445 5446 5447
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
5448 5449
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
5459
	 */
5460
	return calc_delta_fair(gran, se);
5461 5462
}

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
5485
	gran = wakeup_gran(curr, se);
5486 5487 5488 5489 5490 5491
	if (vdiff > gran)
		return 1;

	return 0;
}

5492 5493
static void set_last_buddy(struct sched_entity *se)
{
5494 5495 5496 5497 5498
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
5499 5500 5501 5502
}

static void set_next_buddy(struct sched_entity *se)
{
5503 5504 5505 5506 5507
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
5508 5509
}

5510 5511
static void set_skip_buddy(struct sched_entity *se)
{
5512 5513
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
5514 5515
}

5516 5517 5518
/*
 * Preempt the current task with a newly woken task if needed:
 */
5519
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5520 5521
{
	struct task_struct *curr = rq->curr;
5522
	struct sched_entity *se = &curr->se, *pse = &p->se;
5523
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5524
	int scale = cfs_rq->nr_running >= sched_nr_latency;
5525
	int next_buddy_marked = 0;
5526

I
Ingo Molnar 已提交
5527 5528 5529
	if (unlikely(se == pse))
		return;

5530
	/*
5531
	 * This is possible from callers such as attach_tasks(), in which we
5532 5533 5534 5535 5536 5537 5538
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

5539
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
5540
		set_next_buddy(pse);
5541 5542
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
5543

5544 5545 5546
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
5547 5548 5549 5550 5551 5552
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
5553 5554 5555 5556
	 */
	if (test_tsk_need_resched(curr))
		return;

5557 5558 5559 5560 5561
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

5562
	/*
5563 5564
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
5565
	 */
5566
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5567
		return;
5568

5569
	find_matching_se(&se, &pse);
5570
	update_curr(cfs_rq_of(se));
5571
	BUG_ON(!pse);
5572 5573 5574 5575 5576 5577 5578
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
5579
		goto preempt;
5580
	}
5581

5582
	return;
5583

5584
preempt:
5585
	resched_curr(rq);
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
5600 5601
}

5602
static struct task_struct *
5603
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
5604 5605 5606
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
5607
	struct task_struct *p;
5608
	int new_tasks;
5609

5610
again:
5611 5612
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
5613
		goto idle;
5614

5615
	if (prev->sched_class != &fair_sched_class)
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
5635 5636 5637 5638 5639
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
5640

5641 5642 5643 5644 5645 5646 5647 5648 5649
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
5690

5691
	if (!cfs_rq->nr_running)
5692
		goto idle;
5693

5694
	put_prev_task(rq, prev);
5695

5696
	do {
5697
		se = pick_next_entity(cfs_rq, NULL);
5698
		set_next_entity(cfs_rq, se);
5699 5700 5701
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
5702
	p = task_of(se);
5703

5704 5705
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
5706 5707

	return p;
5708 5709

idle:
5710 5711 5712 5713 5714 5715
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
5716
	lockdep_unpin_lock(&rq->lock, cookie);
5717
	new_tasks = idle_balance(rq);
5718
	lockdep_repin_lock(&rq->lock, cookie);
5719 5720 5721 5722 5723
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
5724
	if (new_tasks < 0)
5725 5726
		return RETRY_TASK;

5727
	if (new_tasks > 0)
5728 5729 5730
		goto again;

	return NULL;
5731 5732 5733 5734 5735
}

/*
 * Account for a descheduled task:
 */
5736
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5737 5738 5739 5740 5741 5742
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5743
		put_prev_entity(cfs_rq, se);
5744 5745 5746
	}
}

5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
5772 5773 5774 5775 5776
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
5777
		rq_clock_skip_update(rq, true);
5778 5779 5780 5781 5782
	}

	set_skip_buddy(se);
}

5783 5784 5785 5786
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

5787 5788
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

5799
#ifdef CONFIG_SMP
5800
/**************************************************
P
Peter Zijlstra 已提交
5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5817
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
5818 5819 5820 5821 5822 5823
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
5824
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
5825 5826 5827 5828 5829 5830
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
5831
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
 *             log_2 n     
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
 */ 
5917

5918 5919
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

5920 5921
enum fbq_type { regular, remote, all };

5922
#define LBF_ALL_PINNED	0x01
5923
#define LBF_NEED_BREAK	0x02
5924 5925
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
5926 5927 5928 5929 5930

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
5931
	int			src_cpu;
5932 5933 5934 5935

	int			dst_cpu;
	struct rq		*dst_rq;

5936 5937
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
5938
	enum cpu_idle_type	idle;
5939
	long			imbalance;
5940 5941 5942
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

5943
	unsigned int		flags;
5944 5945 5946 5947

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
5948 5949

	enum fbq_type		fbq_type;
5950
	struct list_head	tasks;
5951 5952
};

5953 5954 5955
/*
 * Is this task likely cache-hot:
 */
5956
static int task_hot(struct task_struct *p, struct lb_env *env)
5957 5958 5959
{
	s64 delta;

5960 5961
	lockdep_assert_held(&env->src_rq->lock);

5962 5963 5964 5965 5966 5967 5968 5969 5970
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
5971
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5972 5973 5974 5975 5976 5977 5978 5979 5980
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

5981
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5982 5983 5984 5985

	return delta < (s64)sysctl_sched_migration_cost;
}

5986
#ifdef CONFIG_NUMA_BALANCING
5987
/*
5988 5989 5990
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
5991
 */
5992
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5993
{
5994
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5995
	unsigned long src_faults, dst_faults;
5996 5997
	int src_nid, dst_nid;

5998
	if (!static_branch_likely(&sched_numa_balancing))
5999 6000
		return -1;

6001
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6002
		return -1;
6003 6004 6005 6006

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6007
	if (src_nid == dst_nid)
6008
		return -1;
6009

6010 6011 6012 6013 6014 6015 6016
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6017

6018 6019
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6020
		return 0;
6021

6022 6023 6024 6025 6026 6027
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6028 6029
	}

6030
	return dst_faults < src_faults;
6031 6032
}

6033
#else
6034
static inline int migrate_degrades_locality(struct task_struct *p,
6035 6036
					     struct lb_env *env)
{
6037
	return -1;
6038
}
6039 6040
#endif

6041 6042 6043 6044
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6045
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6046
{
6047
	int tsk_cache_hot;
6048 6049 6050

	lockdep_assert_held(&env->src_rq->lock);

6051 6052
	/*
	 * We do not migrate tasks that are:
6053
	 * 1) throttled_lb_pair, or
6054
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6055 6056
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6057
	 */
6058 6059 6060
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6061
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6062
		int cpu;
6063

6064
		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6065

6066 6067
		env->flags |= LBF_SOME_PINNED;

6068 6069 6070 6071 6072 6073 6074 6075
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6076
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6077 6078
			return 0;

6079 6080 6081
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6082
				env->flags |= LBF_DST_PINNED;
6083 6084 6085
				env->new_dst_cpu = cpu;
				break;
			}
6086
		}
6087

6088 6089
		return 0;
	}
6090 6091

	/* Record that we found atleast one task that could run on dst_cpu */
6092
	env->flags &= ~LBF_ALL_PINNED;
6093

6094
	if (task_running(env->src_rq, p)) {
6095
		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6096 6097 6098 6099 6100
		return 0;
	}

	/*
	 * Aggressive migration if:
6101 6102 6103
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6104
	 */
6105 6106 6107
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6108

6109
	if (tsk_cache_hot <= 0 ||
6110
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6111
		if (tsk_cache_hot == 1) {
6112 6113 6114
			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
			schedstat_inc(p, se.statistics.nr_forced_migrations);
		}
6115 6116 6117
		return 1;
	}

Z
Zhang Hang 已提交
6118 6119
	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
	return 0;
6120 6121
}

6122
/*
6123 6124 6125 6126 6127 6128 6129
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6130
	deactivate_task(env->src_rq, p, 0);
6131 6132 6133
	set_task_cpu(p, env->dst_cpu);
}

6134
/*
6135
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6136 6137
 * part of active balancing operations within "domain".
 *
6138
 * Returns a task if successful and NULL otherwise.
6139
 */
6140
static struct task_struct *detach_one_task(struct lb_env *env)
6141 6142 6143
{
	struct task_struct *p, *n;

6144 6145
	lockdep_assert_held(&env->src_rq->lock);

6146 6147 6148
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6149

6150
		detach_task(p, env);
6151

6152
		/*
6153
		 * Right now, this is only the second place where
6154
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6155
		 * so we can safely collect stats here rather than
6156
		 * inside detach_tasks().
6157 6158
		 */
		schedstat_inc(env->sd, lb_gained[env->idle]);
6159
		return p;
6160
	}
6161
	return NULL;
6162 6163
}

6164 6165
static const unsigned int sched_nr_migrate_break = 32;

6166
/*
6167 6168
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6169
 *
6170
 * Returns number of detached tasks if successful and 0 otherwise.
6171
 */
6172
static int detach_tasks(struct lb_env *env)
6173
{
6174 6175
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6176
	unsigned long load;
6177 6178 6179
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6180

6181
	if (env->imbalance <= 0)
6182
		return 0;
6183

6184
	while (!list_empty(tasks)) {
6185 6186 6187 6188 6189 6190 6191
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6192
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6193

6194 6195
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6196
		if (env->loop > env->loop_max)
6197
			break;
6198 6199

		/* take a breather every nr_migrate tasks */
6200
		if (env->loop > env->loop_break) {
6201
			env->loop_break += sched_nr_migrate_break;
6202
			env->flags |= LBF_NEED_BREAK;
6203
			break;
6204
		}
6205

6206
		if (!can_migrate_task(p, env))
6207 6208 6209
			goto next;

		load = task_h_load(p);
6210

6211
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6212 6213
			goto next;

6214
		if ((load / 2) > env->imbalance)
6215
			goto next;
6216

6217 6218 6219 6220
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6221
		env->imbalance -= load;
6222 6223

#ifdef CONFIG_PREEMPT
6224 6225
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6226
		 * kernels will stop after the first task is detached to minimize
6227 6228
		 * the critical section.
		 */
6229
		if (env->idle == CPU_NEWLY_IDLE)
6230
			break;
6231 6232
#endif

6233 6234 6235 6236
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6237
		if (env->imbalance <= 0)
6238
			break;
6239 6240 6241

		continue;
next:
6242
		list_move_tail(&p->se.group_node, tasks);
6243
	}
6244

6245
	/*
6246 6247 6248
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6249
	 */
6250
	schedstat_add(env->sd, lb_gained[env->idle], detached);
6251

6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6264
	p->on_rq = TASK_ON_RQ_QUEUED;
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6293

6294 6295 6296 6297
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6298 6299
}

P
Peter Zijlstra 已提交
6300
#ifdef CONFIG_FAIR_GROUP_SCHED
6301
static void update_blocked_averages(int cpu)
6302 6303
{
	struct rq *rq = cpu_rq(cpu);
6304 6305
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6306

6307 6308
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6309

6310 6311 6312 6313
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6314
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6315 6316 6317
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6318

6319
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6320 6321
			update_tg_load_avg(cfs_rq, 0);
	}
6322
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6323 6324
}

6325
/*
6326
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6327 6328 6329
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6330
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6331
{
6332 6333
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6334
	unsigned long now = jiffies;
6335
	unsigned long load;
6336

6337
	if (cfs_rq->last_h_load_update == now)
6338 6339
		return;

6340 6341 6342 6343 6344 6345 6346
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6347

6348
	if (!se) {
6349
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6350 6351 6352 6353 6354
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6355 6356
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6357 6358 6359 6360
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6361 6362
}

6363
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6364
{
6365
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6366

6367
	update_cfs_rq_h_load(cfs_rq);
6368
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6369
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
6370 6371
}
#else
6372
static inline void update_blocked_averages(int cpu)
6373
{
6374 6375 6376 6377 6378 6379
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6380
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6381
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6382 6383
}

6384
static unsigned long task_h_load(struct task_struct *p)
6385
{
6386
	return p->se.avg.load_avg;
6387
}
P
Peter Zijlstra 已提交
6388
#endif
6389 6390

/********** Helpers for find_busiest_group ************************/
6391 6392 6393 6394 6395 6396 6397

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

6398 6399 6400 6401 6402 6403 6404
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
6405
	unsigned long load_per_task;
6406
	unsigned long group_capacity;
6407
	unsigned long group_util; /* Total utilization of the group */
6408 6409 6410
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
6411
	enum group_type group_type;
6412
	int group_no_capacity;
6413 6414 6415 6416
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
6417 6418
};

J
Joonsoo Kim 已提交
6419 6420 6421 6422 6423 6424 6425 6426
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
6427
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
6428 6429 6430
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6431
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
6432 6433
};

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
6446
		.total_capacity = 0UL,
6447 6448
		.busiest_stat = {
			.avg_load = 0UL,
6449 6450
			.sum_nr_running = 0,
			.group_type = group_other,
6451 6452 6453 6454
		},
	};
}

6455 6456 6457
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
6458
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6459 6460
 *
 * Return: The load index.
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

6483
static unsigned long scale_rt_capacity(int cpu)
6484 6485
{
	struct rq *rq = cpu_rq(cpu);
6486
	u64 total, used, age_stamp, avg;
6487
	s64 delta;
6488

6489 6490 6491 6492
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
6493 6494
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
6495
	delta = __rq_clock_broken(rq) - age_stamp;
6496

6497 6498 6499 6500
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
6501

6502
	used = div_u64(avg, total);
6503

6504 6505
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
6506

6507
	return 1;
6508 6509
}

6510
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6511
{
6512
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6513 6514
	struct sched_group *sdg = sd->groups;

6515
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
6516

6517
	capacity *= scale_rt_capacity(cpu);
6518
	capacity >>= SCHED_CAPACITY_SHIFT;
6519

6520 6521
	if (!capacity)
		capacity = 1;
6522

6523 6524
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
6525 6526
}

6527
void update_group_capacity(struct sched_domain *sd, int cpu)
6528 6529 6530
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
6531
	unsigned long capacity;
6532 6533 6534 6535
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
6536
	sdg->sgc->next_update = jiffies + interval;
6537 6538

	if (!child) {
6539
		update_cpu_capacity(sd, cpu);
6540 6541 6542
		return;
	}

6543
	capacity = 0;
6544

P
Peter Zijlstra 已提交
6545 6546 6547 6548 6549 6550
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

6551
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6552
			struct sched_group_capacity *sgc;
6553
			struct rq *rq = cpu_rq(cpu);
6554

6555
			/*
6556
			 * build_sched_domains() -> init_sched_groups_capacity()
6557 6558 6559
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
6560 6561
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
6562
			 *
6563
			 * This avoids capacity from being 0 and
6564 6565 6566
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
6567
				capacity += capacity_of(cpu);
6568 6569
				continue;
			}
6570

6571 6572
			sgc = rq->sd->groups->sgc;
			capacity += sgc->capacity;
6573
		}
P
Peter Zijlstra 已提交
6574 6575 6576 6577 6578 6579 6580 6581
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
		 */ 

		group = child->groups;
		do {
6582
			capacity += group->sgc->capacity;
P
Peter Zijlstra 已提交
6583 6584 6585
			group = group->next;
		} while (group != child->groups);
	}
6586

6587
	sdg->sgc->capacity = capacity;
6588 6589
}

6590
/*
6591 6592 6593
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
6594 6595
 */
static inline int
6596
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
6597
{
6598 6599
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
6600 6601
}

6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
 * 	{ 0 1 2 3 } { 4 5 6 7 }
 * 	        *     * * *
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
6618 6619
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
6620 6621
 *
 * When this is so detected; this group becomes a candidate for busiest; see
6622
 * update_sd_pick_busiest(). And calculate_imbalance() and
6623
 * find_busiest_group() avoid some of the usual balance conditions to allow it
6624 6625 6626 6627 6628 6629 6630
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

6631
static inline int sg_imbalanced(struct sched_group *group)
6632
{
6633
	return group->sgc->imbalance;
6634 6635
}

6636
/*
6637 6638 6639
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
6640 6641
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
6642 6643 6644 6645 6646
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
6647
 */
6648 6649
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
6650
{
6651 6652
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
6653

6654
	if ((sgs->group_capacity * 100) >
6655
			(sgs->group_util * env->sd->imbalance_pct))
6656
		return true;
6657

6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
6674

6675
	if ((sgs->group_capacity * 100) <
6676
			(sgs->group_util * env->sd->imbalance_pct))
6677
		return true;
6678

6679
	return false;
6680 6681
}

6682 6683 6684
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
6685
{
6686
	if (sgs->group_no_capacity)
6687 6688 6689 6690 6691 6692 6693 6694
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

6695 6696
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6697
 * @env: The load balancing environment.
6698 6699 6700 6701
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
6702
 * @overload: Indicate more than one runnable task for any CPU.
6703
 */
6704 6705
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
6706 6707
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
6708
{
6709
	unsigned long load;
6710
	int i, nr_running;
6711

6712 6713
	memset(sgs, 0, sizeof(*sgs));

6714
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6715 6716 6717
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
6718
		if (local_group)
6719
			load = target_load(i, load_idx);
6720
		else
6721 6722 6723
			load = source_load(i, load_idx);

		sgs->group_load += load;
6724
		sgs->group_util += cpu_util(i);
6725
		sgs->sum_nr_running += rq->cfs.h_nr_running;
6726

6727 6728
		nr_running = rq->nr_running;
		if (nr_running > 1)
6729 6730
			*overload = true;

6731 6732 6733 6734
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
6735
		sgs->sum_weighted_load += weighted_cpuload(i);
6736 6737 6738 6739
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
6740
			sgs->idle_cpus++;
6741 6742
	}

6743 6744
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
6745
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6746

6747
	if (sgs->sum_nr_running)
6748
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6749

6750
	sgs->group_weight = group->group_weight;
6751

6752
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
6753
	sgs->group_type = group_classify(group, sgs);
6754 6755
}

6756 6757
/**
 * update_sd_pick_busiest - return 1 on busiest group
6758
 * @env: The load balancing environment.
6759 6760
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
6761
 * @sgs: sched_group statistics
6762 6763 6764
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
6765 6766 6767
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
6768
 */
6769
static bool update_sd_pick_busiest(struct lb_env *env,
6770 6771
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
6772
				   struct sg_lb_stats *sgs)
6773
{
6774
	struct sg_lb_stats *busiest = &sds->busiest_stat;
6775

6776
	if (sgs->group_type > busiest->group_type)
6777 6778
		return true;

6779 6780 6781 6782 6783 6784 6785 6786
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
6787 6788
		return true;

6789 6790 6791
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
6792 6793 6794 6795 6796
	/*
	 * ASYM_PACKING needs to move all the work to the lowest
	 * numbered CPUs in the group, therefore mark all groups
	 * higher than ourself as busy.
	 */
6797
	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6798 6799 6800
		if (!sds->busiest)
			return true;

6801 6802
		/* Prefer to move from highest possible cpu's work */
		if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
6803 6804 6805 6806 6807 6808
			return true;
	}

	return false;
}

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

6839
/**
6840
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6841
 * @env: The load balancing environment.
6842 6843
 * @sds: variable to hold the statistics for this sched_domain.
 */
6844
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6845
{
6846 6847
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
6848
	struct sg_lb_stats tmp_sgs;
6849
	int load_idx, prefer_sibling = 0;
6850
	bool overload = false;
6851 6852 6853 6854

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

6855
	load_idx = get_sd_load_idx(env->sd, env->idle);
6856 6857

	do {
J
Joonsoo Kim 已提交
6858
		struct sg_lb_stats *sgs = &tmp_sgs;
6859 6860
		int local_group;

6861
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
6862 6863 6864
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
6865 6866

			if (env->idle != CPU_NEWLY_IDLE ||
6867 6868
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
6869
		}
6870

6871 6872
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
6873

6874 6875 6876
		if (local_group)
			goto next_group;

6877 6878
		/*
		 * In case the child domain prefers tasks go to siblings
6879
		 * first, lower the sg capacity so that we'll try
6880 6881
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
6882 6883 6884 6885
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
6886
		 */
6887
		if (prefer_sibling && sds->local &&
6888 6889 6890
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
6891
			sgs->group_type = group_classify(sg, sgs);
6892
		}
6893

6894
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6895
			sds->busiest = sg;
J
Joonsoo Kim 已提交
6896
			sds->busiest_stat = *sgs;
6897 6898
		}

6899 6900 6901
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
6902
		sds->total_capacity += sgs->group_capacity;
6903

6904
		sg = sg->next;
6905
	} while (sg != env->sd->groups);
6906 6907 6908

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6909 6910 6911 6912 6913 6914 6915

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
6935
 * Return: 1 when packing is required and a task should be moved to
6936 6937
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
6938
 * @env: The load balancing environment.
6939 6940
 * @sds: Statistics of the sched_domain which is to be packed
 */
6941
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6942 6943 6944
{
	int busiest_cpu;

6945
	if (!(env->sd->flags & SD_ASYM_PACKING))
6946 6947
		return 0;

6948 6949 6950
	if (env->idle == CPU_NOT_IDLE)
		return 0;

6951 6952 6953 6954
	if (!sds->busiest)
		return 0;

	busiest_cpu = group_first_cpu(sds->busiest);
6955
	if (env->dst_cpu > busiest_cpu)
6956 6957
		return 0;

6958
	env->imbalance = DIV_ROUND_CLOSEST(
6959
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6960
		SCHED_CAPACITY_SCALE);
6961

6962
	return 1;
6963 6964 6965 6966 6967 6968
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
6969
 * @env: The load balancing environment.
6970 6971
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
6972 6973
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6974
{
6975
	unsigned long tmp, capa_now = 0, capa_move = 0;
6976
	unsigned int imbn = 2;
6977
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
6978
	struct sg_lb_stats *local, *busiest;
6979

J
Joonsoo Kim 已提交
6980 6981
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
6982

J
Joonsoo Kim 已提交
6983 6984 6985 6986
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
6987

J
Joonsoo Kim 已提交
6988
	scaled_busy_load_per_task =
6989
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6990
		busiest->group_capacity;
J
Joonsoo Kim 已提交
6991

6992 6993
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
6994
		env->imbalance = busiest->load_per_task;
6995 6996 6997 6998 6999
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7000
	 * however we may be able to increase total CPU capacity used by
7001 7002 7003
	 * moving them.
	 */

7004
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7005
			min(busiest->load_per_task, busiest->avg_load);
7006
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7007
			min(local->load_per_task, local->avg_load);
7008
	capa_now /= SCHED_CAPACITY_SCALE;
7009 7010

	/* Amount of load we'd subtract */
7011
	if (busiest->avg_load > scaled_busy_load_per_task) {
7012
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7013
			    min(busiest->load_per_task,
7014
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7015
	}
7016 7017

	/* Amount of load we'd add */
7018
	if (busiest->avg_load * busiest->group_capacity <
7019
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7020 7021
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7022
	} else {
7023
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7024
		      local->group_capacity;
J
Joonsoo Kim 已提交
7025
	}
7026
	capa_move += local->group_capacity *
7027
		    min(local->load_per_task, local->avg_load + tmp);
7028
	capa_move /= SCHED_CAPACITY_SCALE;
7029 7030

	/* Move if we gain throughput */
7031
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7032
		env->imbalance = busiest->load_per_task;
7033 7034 7035 7036 7037
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7038
 * @env: load balance environment
7039 7040
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7041
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7042
{
7043
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7044 7045 7046 7047
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7048

7049
	if (busiest->group_type == group_imbalanced) {
7050 7051 7052 7053
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7054 7055
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7056 7057
	}

7058
	/*
7059 7060 7061 7062
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7063
	 */
7064 7065
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7066 7067
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7068 7069
	}

7070 7071 7072 7073 7074
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7075
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7076
		if (load_above_capacity > busiest->group_capacity) {
7077
			load_above_capacity -= busiest->group_capacity;
7078 7079 7080
			load_above_capacity *= NICE_0_LOAD;
			load_above_capacity /= busiest->group_capacity;
		} else
7081
			load_above_capacity = ~0UL;
7082 7083 7084 7085 7086 7087
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7088 7089
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7090
	 */
7091
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7092 7093

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7094
	env->imbalance = min(
7095 7096
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7097
	) / SCHED_CAPACITY_SCALE;
7098 7099 7100

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7101
	 * there is no guarantee that any tasks will be moved so we'll have
7102 7103 7104
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7105
	if (env->imbalance < busiest->load_per_task)
7106
		return fix_small_imbalance(env, sds);
7107
}
7108

7109 7110 7111 7112
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7113
 * if there is an imbalance.
7114 7115 7116 7117
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7118
 * @env: The load balancing environment.
7119
 *
7120
 * Return:	- The busiest group if imbalance exists.
7121
 */
J
Joonsoo Kim 已提交
7122
static struct sched_group *find_busiest_group(struct lb_env *env)
7123
{
J
Joonsoo Kim 已提交
7124
	struct sg_lb_stats *local, *busiest;
7125 7126
	struct sd_lb_stats sds;

7127
	init_sd_lb_stats(&sds);
7128 7129 7130 7131 7132

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7133
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7134 7135
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7136

7137
	/* ASYM feature bypasses nice load balance check */
7138
	if (check_asym_packing(env, &sds))
7139 7140
		return sds.busiest;

7141
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7142
	if (!sds.busiest || busiest->sum_nr_running == 0)
7143 7144
		goto out_balanced;

7145 7146
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7147

P
Peter Zijlstra 已提交
7148 7149
	/*
	 * If the busiest group is imbalanced the below checks don't
7150
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7151 7152
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7153
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7154 7155
		goto force_balance;

7156
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7157 7158
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7159 7160
		goto force_balance;

7161
	/*
7162
	 * If the local group is busier than the selected busiest group
7163 7164
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7165
	if (local->avg_load >= busiest->avg_load)
7166 7167
		goto out_balanced;

7168 7169 7170 7171
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7172
	if (local->avg_load >= sds.avg_load)
7173 7174
		goto out_balanced;

7175
	if (env->idle == CPU_IDLE) {
7176
		/*
7177 7178 7179 7180 7181
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7182
		 */
7183 7184
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7185
			goto out_balanced;
7186 7187 7188 7189 7190
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7191 7192
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7193
			goto out_balanced;
7194
	}
7195

7196
force_balance:
7197
	/* Looks like there is an imbalance. Compute it */
7198
	calculate_imbalance(env, &sds);
7199 7200 7201
	return sds.busiest;

out_balanced:
7202
	env->imbalance = 0;
7203 7204 7205 7206 7207 7208
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7209
static struct rq *find_busiest_queue(struct lb_env *env,
7210
				     struct sched_group *group)
7211 7212
{
	struct rq *busiest = NULL, *rq;
7213
	unsigned long busiest_load = 0, busiest_capacity = 1;
7214 7215
	int i;

7216
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7217
		unsigned long capacity, wl;
7218 7219 7220 7221
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7222

7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7245
		capacity = capacity_of(i);
7246

7247
		wl = weighted_cpuload(i);
7248

7249 7250
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7251
		 * which is not scaled with the cpu capacity.
7252
		 */
7253 7254 7255

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7256 7257
			continue;

7258 7259
		/*
		 * For the load comparisons with the other cpu's, consider
7260 7261 7262
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7263
		 *
7264
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7265
		 * multiplication to rid ourselves of the division works out
7266 7267
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7268
		 */
7269
		if (wl * busiest_capacity > busiest_load * capacity) {
7270
			busiest_load = wl;
7271
			busiest_capacity = capacity;
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

/* Working cpumask for load_balance and load_balance_newidle. */
7286
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7287

7288
static int need_active_balance(struct lb_env *env)
7289
{
7290 7291 7292
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7293 7294 7295 7296 7297 7298

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
		 * higher numbered CPUs in order to pack all tasks in the
		 * lowest numbered CPUs.
		 */
7299
		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7300
			return 1;
7301 7302
	}

7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7316 7317 7318
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7319 7320
static int active_load_balance_cpu_stop(void *data);

7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
7352
	return balance_cpu == env->dst_cpu;
7353 7354
}

7355 7356 7357 7358 7359 7360
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
7361
			int *continue_balancing)
7362
{
7363
	int ld_moved, cur_ld_moved, active_balance = 0;
7364
	struct sched_domain *sd_parent = sd->parent;
7365 7366 7367
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
7368
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7369

7370 7371
	struct lb_env env = {
		.sd		= sd,
7372 7373
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
7374
		.dst_grpmask    = sched_group_cpus(sd->groups),
7375
		.idle		= idle,
7376
		.loop_break	= sched_nr_migrate_break,
7377
		.cpus		= cpus,
7378
		.fbq_type	= all,
7379
		.tasks		= LIST_HEAD_INIT(env.tasks),
7380 7381
	};

7382 7383 7384 7385
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
7386
	if (idle == CPU_NEWLY_IDLE)
7387 7388
		env.dst_grpmask = NULL;

7389 7390 7391 7392 7393
	cpumask_copy(cpus, cpu_active_mask);

	schedstat_inc(sd, lb_count[idle]);

redo:
7394 7395
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
7396
		goto out_balanced;
7397
	}
7398

7399
	group = find_busiest_group(&env);
7400 7401 7402 7403 7404
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

7405
	busiest = find_busiest_queue(&env, group);
7406 7407 7408 7409 7410
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

7411
	BUG_ON(busiest == env.dst_rq);
7412

7413
	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7414

7415 7416 7417
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

7418 7419 7420 7421 7422 7423 7424 7425
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
7426
		env.flags |= LBF_ALL_PINNED;
7427
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
7428

7429
more_balance:
7430
		raw_spin_lock_irqsave(&busiest->lock, flags);
7431 7432 7433 7434 7435

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
7436
		cur_ld_moved = detach_tasks(&env);
7437 7438

		/*
7439 7440 7441 7442 7443
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
7444
		 */
7445 7446 7447 7448 7449 7450 7451 7452

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

7453
		local_irq_restore(flags);
7454

7455 7456 7457 7458 7459
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
7479
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7480

7481 7482 7483
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

7484
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
7485
			env.dst_cpu	 = env.new_dst_cpu;
7486
			env.flags	&= ~LBF_DST_PINNED;
7487 7488
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
7489

7490 7491 7492 7493 7494 7495
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
7496

7497 7498 7499 7500
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
7501
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7502

7503
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7504 7505 7506
				*group_imbalance = 1;
		}

7507
		/* All tasks on this runqueue were pinned by CPU affinity */
7508
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
7509
			cpumask_clear_cpu(cpu_of(busiest), cpus);
7510 7511 7512
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
7513
				goto redo;
7514
			}
7515
			goto out_all_pinned;
7516 7517 7518 7519 7520
		}
	}

	if (!ld_moved) {
		schedstat_inc(sd, lb_failed[idle]);
7521 7522 7523 7524 7525 7526 7527 7528
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
7529

7530
		if (need_active_balance(&env)) {
7531 7532
			raw_spin_lock_irqsave(&busiest->lock, flags);

7533 7534 7535
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
7536 7537
			 */
			if (!cpumask_test_cpu(this_cpu,
7538
					tsk_cpus_allowed(busiest->curr))) {
7539 7540
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
7541
				env.flags |= LBF_ALL_PINNED;
7542 7543 7544
				goto out_one_pinned;
			}

7545 7546 7547 7548 7549
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
7550 7551 7552 7553 7554 7555
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7556

7557
			if (active_balance) {
7558 7559 7560
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
7561
			}
7562

7563
			/* We've kicked active balancing, force task migration. */
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
7577
		 * detach_tasks).
7578 7579 7580 7581 7582 7583 7584 7585
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
7603 7604 7605 7606 7607 7608
	schedstat_inc(sd, lb_balanced[idle]);

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
7609
	if (((env.flags & LBF_ALL_PINNED) &&
7610
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7611 7612 7613
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

7614
	ld_moved = 0;
7615 7616 7617 7618
out:
	return ld_moved;
}

7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
{
	unsigned long interval, next;

	interval = get_sd_balance_interval(sd, cpu_busy);
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

7646 7647 7648 7649
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
7650
static int idle_balance(struct rq *this_rq)
7651
{
7652 7653
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
7654 7655
	struct sched_domain *sd;
	int pulled_task = 0;
7656
	u64 curr_cost = 0;
7657

7658 7659 7660 7661 7662 7663
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

7664 7665
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
7666 7667 7668 7669 7670 7671
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
			update_next_balance(sd, 0, &next_balance);
		rcu_read_unlock();

7672
		goto out;
7673
	}
7674

7675 7676
	raw_spin_unlock(&this_rq->lock);

7677
	update_blocked_averages(this_cpu);
7678
	rcu_read_lock();
7679
	for_each_domain(this_cpu, sd) {
7680
		int continue_balancing = 1;
7681
		u64 t0, domain_cost;
7682 7683 7684 7685

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7686 7687
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
			update_next_balance(sd, 0, &next_balance);
7688
			break;
7689
		}
7690

7691
		if (sd->flags & SD_BALANCE_NEWIDLE) {
7692 7693
			t0 = sched_clock_cpu(this_cpu);

7694
			pulled_task = load_balance(this_cpu, this_rq,
7695 7696
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
7697 7698 7699 7700 7701 7702

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
7703
		}
7704

7705
		update_next_balance(sd, 0, &next_balance);
7706 7707 7708 7709 7710 7711

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
7712 7713
			break;
	}
7714
	rcu_read_unlock();
7715 7716 7717

	raw_spin_lock(&this_rq->lock);

7718 7719 7720
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

7721
	/*
7722 7723 7724
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
7725
	 */
7726
	if (this_rq->cfs.h_nr_running && !pulled_task)
7727
		pulled_task = 1;
7728

7729 7730 7731
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
7732
		this_rq->next_balance = next_balance;
7733

7734
	/* Is there a task of a high priority class? */
7735
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7736 7737
		pulled_task = -1;

7738
	if (pulled_task)
7739 7740
		this_rq->idle_stamp = 0;

7741
	return pulled_task;
7742 7743 7744
}

/*
7745 7746 7747 7748
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
7749
 */
7750
static int active_load_balance_cpu_stop(void *data)
7751
{
7752 7753
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
7754
	int target_cpu = busiest_rq->push_cpu;
7755
	struct rq *target_rq = cpu_rq(target_cpu);
7756
	struct sched_domain *sd;
7757
	struct task_struct *p = NULL;
7758 7759 7760 7761 7762 7763 7764

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
7765 7766 7767

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
7768
		goto out_unlock;
7769 7770 7771 7772 7773 7774 7775 7776 7777

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
7778
	rcu_read_lock();
7779 7780 7781 7782 7783 7784 7785
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
7786 7787
		struct lb_env env = {
			.sd		= sd,
7788 7789 7790 7791
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
7792 7793 7794
			.idle		= CPU_IDLE,
		};

7795 7796
		schedstat_inc(sd, alb_count);

7797
		p = detach_one_task(&env);
7798
		if (p) {
7799
			schedstat_inc(sd, alb_pushed);
7800 7801 7802
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
7803
			schedstat_inc(sd, alb_failed);
7804
		}
7805
	}
7806
	rcu_read_unlock();
7807 7808
out_unlock:
	busiest_rq->active_balance = 0;
7809 7810 7811 7812 7813 7814 7815
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

7816
	return 0;
7817 7818
}

7819 7820 7821 7822 7823
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

7824
#ifdef CONFIG_NO_HZ_COMMON
7825 7826 7827 7828 7829 7830
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
7831
static struct {
7832
	cpumask_var_t idle_cpus_mask;
7833
	atomic_t nr_cpus;
7834 7835
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
7836

7837
static inline int find_new_ilb(void)
7838
{
7839
	int ilb = cpumask_first(nohz.idle_cpus_mask);
7840

7841 7842 7843 7844
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
7845 7846
}

7847 7848 7849 7850 7851
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
7852
static void nohz_balancer_kick(void)
7853 7854 7855 7856 7857
{
	int ilb_cpu;

	nohz.next_balance++;

7858
	ilb_cpu = find_new_ilb();
7859

7860 7861
	if (ilb_cpu >= nr_cpu_ids)
		return;
7862

7863
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7864 7865 7866 7867 7868 7869 7870 7871
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
7872 7873 7874
	return;
}

7875
void nohz_balance_exit_idle(unsigned int cpu)
7876 7877
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7878 7879 7880 7881 7882 7883 7884
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
7885 7886 7887 7888
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

7889 7890 7891
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
7892
	int cpu = smp_processor_id();
7893 7894

	rcu_read_lock();
7895
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7896 7897 7898 7899 7900

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

7901
	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7902
unlock:
7903 7904 7905 7906 7907 7908
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
7909
	int cpu = smp_processor_id();
7910 7911

	rcu_read_lock();
7912
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
V
Vincent Guittot 已提交
7913 7914 7915 7916 7917

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

7918
	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
V
Vincent Guittot 已提交
7919
unlock:
7920 7921 7922
	rcu_read_unlock();
}

7923
/*
7924
 * This routine will record that the cpu is going idle with tick stopped.
7925
 * This info will be used in performing idle load balancing in the future.
7926
 */
7927
void nohz_balance_enter_idle(int cpu)
7928
{
7929 7930 7931 7932 7933 7934
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

7935 7936
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
7937

7938 7939 7940 7941 7942 7943
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

7944 7945 7946
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7947 7948 7949 7950 7951
}
#endif

static DEFINE_SPINLOCK(balancing);

7952 7953 7954 7955
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
7956
void update_max_interval(void)
7957 7958 7959 7960
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

7961 7962 7963 7964
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
7965
 * Balancing parameters are set up in init_sched_domains.
7966
 */
7967
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7968
{
7969
	int continue_balancing = 1;
7970
	int cpu = rq->cpu;
7971
	unsigned long interval;
7972
	struct sched_domain *sd;
7973 7974 7975
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
7976 7977
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
7978

7979
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
7980

7981
	rcu_read_lock();
7982
	for_each_domain(cpu, sd) {
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

7995 7996 7997
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8009
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8010 8011 8012 8013 8014 8015 8016 8017

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8018
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8019
				/*
8020
				 * The LBF_DST_PINNED logic could have changed
8021 8022
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8023
				 */
8024
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8025 8026
			}
			sd->last_balance = jiffies;
8027
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8028 8029 8030 8031 8032 8033 8034 8035
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8036 8037
	}
	if (need_decay) {
8038
		/*
8039 8040
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8041
		 */
8042 8043
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8044
	}
8045
	rcu_read_unlock();
8046 8047 8048 8049 8050 8051

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8052
	if (likely(update_next_balance)) {
8053
		rq->next_balance = next_balance;
8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8068 8069
}

8070
#ifdef CONFIG_NO_HZ_COMMON
8071
/*
8072
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8073 8074
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8075
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8076
{
8077
	int this_cpu = this_rq->cpu;
8078 8079
	struct rq *rq;
	int balance_cpu;
8080 8081 8082
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8083

8084 8085 8086
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8087 8088

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8089
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8090 8091 8092 8093 8094 8095 8096
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8097
		if (need_resched())
8098 8099
			break;

V
Vincent Guittot 已提交
8100 8101
		rq = cpu_rq(balance_cpu);

8102 8103 8104 8105 8106 8107 8108
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8109
			cpu_load_update_idle(rq);
8110 8111 8112
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8113

8114 8115 8116 8117
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8118
	}
8119 8120 8121 8122 8123 8124 8125 8126

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8127 8128
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8129 8130 8131
}

/*
8132
 * Current heuristic for kicking the idle load balancer in the presence
8133
 * of an idle cpu in the system.
8134
 *   - This rq has more than one task.
8135 8136 8137 8138
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8139 8140
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8141
 */
8142
static inline bool nohz_kick_needed(struct rq *rq)
8143 8144
{
	unsigned long now = jiffies;
8145
	struct sched_domain *sd;
8146
	struct sched_group_capacity *sgc;
8147
	int nr_busy, cpu = rq->cpu;
8148
	bool kick = false;
8149

8150
	if (unlikely(rq->idle_balance))
8151
		return false;
8152

8153 8154 8155 8156
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8157
	set_cpu_sd_state_busy();
8158
	nohz_balance_exit_idle(cpu);
8159 8160 8161 8162 8163 8164

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8165
		return false;
8166 8167

	if (time_before(now, nohz.next_balance))
8168
		return false;
8169

8170
	if (rq->nr_running >= 2)
8171
		return true;
8172

8173
	rcu_read_lock();
8174 8175
	sd = rcu_dereference(per_cpu(sd_busy, cpu));
	if (sd) {
8176 8177
		sgc = sd->groups->sgc;
		nr_busy = atomic_read(&sgc->nr_busy_cpus);
8178

8179 8180 8181 8182 8183
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8184
	}
8185

8186 8187 8188 8189 8190 8191 8192 8193
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8194

8195
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8196
	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8197 8198 8199 8200
				  sched_domain_span(sd)) < cpu)) {
		kick = true;
		goto unlock;
	}
8201

8202
unlock:
8203
	rcu_read_unlock();
8204
	return kick;
8205 8206
}
#else
8207
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8208 8209 8210 8211 8212 8213
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8214 8215
static void run_rebalance_domains(struct softirq_action *h)
{
8216
	struct rq *this_rq = this_rq();
8217
	enum cpu_idle_type idle = this_rq->idle_balance ?
8218 8219 8220
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8221
	 * If this cpu has a pending nohz_balance_kick, then do the
8222
	 * balancing on behalf of the other idle cpus whose ticks are
8223 8224 8225 8226
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8227
	 */
8228
	nohz_idle_balance(this_rq, idle);
8229
	rebalance_domains(this_rq, idle);
8230 8231 8232 8233 8234
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8235
void trigger_load_balance(struct rq *rq)
8236 8237
{
	/* Don't need to rebalance while attached to NULL domain */
8238 8239 8240 8241
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8242
		raise_softirq(SCHED_SOFTIRQ);
8243
#ifdef CONFIG_NO_HZ_COMMON
8244
	if (nohz_kick_needed(rq))
8245
		nohz_balancer_kick();
8246
#endif
8247 8248
}

8249 8250 8251
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8252 8253

	update_runtime_enabled(rq);
8254 8255 8256 8257 8258
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8259 8260 8261

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8262 8263
}

8264
#endif /* CONFIG_SMP */
8265

8266 8267 8268
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8269
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8270 8271 8272 8273 8274 8275
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8276
		entity_tick(cfs_rq, se, queued);
8277
	}
8278

8279
	if (static_branch_unlikely(&sched_numa_balancing))
8280
		task_tick_numa(rq, curr);
8281 8282 8283
}

/*
P
Peter Zijlstra 已提交
8284 8285 8286
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8287
 */
P
Peter Zijlstra 已提交
8288
static void task_fork_fair(struct task_struct *p)
8289
{
8290 8291
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
8292
	int this_cpu = smp_processor_id();
P
Peter Zijlstra 已提交
8293 8294 8295
	struct rq *rq = this_rq();
	unsigned long flags;

8296
	raw_spin_lock_irqsave(&rq->lock, flags);
8297

8298 8299
	update_rq_clock(rq);

8300 8301 8302
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;

8303 8304 8305 8306 8307 8308 8309 8310 8311
	/*
	 * Not only the cpu but also the task_group of the parent might have
	 * been changed after parent->se.parent,cfs_rq were copied to
	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
	 * of child point to valid ones.
	 */
	rcu_read_lock();
	__set_task_cpu(p, this_cpu);
	rcu_read_unlock();
8312

8313
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
8314

8315 8316
	if (curr)
		se->vruntime = curr->vruntime;
8317
	place_entity(cfs_rq, se, 1);
8318

P
Peter Zijlstra 已提交
8319
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8320
		/*
8321 8322 8323
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8324
		swap(curr->vruntime, se->vruntime);
8325
		resched_curr(rq);
8326
	}
8327

8328 8329
	se->vruntime -= cfs_rq->min_vruntime;

8330
	raw_spin_unlock_irqrestore(&rq->lock, flags);
8331 8332
}

8333 8334 8335 8336
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
8337 8338
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8339
{
8340
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
8341 8342
		return;

8343 8344 8345 8346 8347
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
8348
	if (rq->curr == p) {
8349
		if (p->prio > oldprio)
8350
			resched_curr(rq);
8351
	} else
8352
		check_preempt_curr(rq, p, 0);
8353 8354
}

8355
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
8356 8357 8358 8359
{
	struct sched_entity *se = &p->se;

	/*
8360 8361 8362 8363 8364 8365 8366 8367 8368 8369
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
8370
	 *
8371 8372 8373 8374
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
8375
	 */
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
P
Peter Zijlstra 已提交
8388 8389 8390 8391 8392 8393 8394
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}
8395

8396
	/* Catch up with the cfs_rq and remove our load when we leave */
8397
	detach_entity_load_avg(cfs_rq, se);
P
Peter Zijlstra 已提交
8398 8399
}

8400
static void attach_task_cfs_rq(struct task_struct *p)
8401
{
8402
	struct sched_entity *se = &p->se;
8403
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
8404 8405

#ifdef CONFIG_FAIR_GROUP_SCHED
8406 8407 8408 8409 8410 8411
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
8412

8413
	/* Synchronize task with its cfs_rq */
8414 8415 8416 8417 8418
	attach_entity_load_avg(cfs_rq, se);

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
8419

8420 8421 8422 8423 8424 8425 8426 8427
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
8428

8429
	if (task_on_rq_queued(p)) {
8430
		/*
8431 8432 8433
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
8434
		 */
8435 8436 8437 8438
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
8439
	}
8440 8441
}

8442 8443 8444 8445 8446 8447 8448 8449 8450
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

8451 8452 8453 8454 8455 8456 8457
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
8458 8459
}

8460 8461 8462 8463 8464 8465 8466
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
8467
#ifdef CONFIG_SMP
8468 8469
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
8470
#endif
8471 8472
}

P
Peter Zijlstra 已提交
8473
#ifdef CONFIG_FAIR_GROUP_SCHED
8474
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
8475
{
8476
	detach_task_cfs_rq(p);
8477
	set_task_rq(p, task_cpu(p));
8478 8479 8480 8481 8482

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
8483
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
8484
}
8485 8486 8487 8488 8489 8490 8491 8492 8493 8494

void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
8495
		if (tg->se)
8496 8497 8498 8499 8500 8501 8502 8503 8504 8505
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
8506 8507
	struct cfs_rq *cfs_rq;
	struct rq *rq;
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
8522 8523
		rq = cpu_rq(i);

8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8536
		init_entity_runnable_average(se);
8537 8538

		raw_spin_lock_irq(&rq->lock);
8539
		post_init_entity_util_avg(se);
8540
		raw_spin_unlock_irq(&rq->lock);
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

8551
void unregister_fair_sched_group(struct task_group *tg)
8552 8553
{
	unsigned long flags;
8554 8555
	struct rq *rq;
	int cpu;
8556

8557 8558 8559
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
8560

8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
8593
	if (!parent) {
8594
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
8595 8596
		se->depth = 0;
	} else {
8597
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
8598 8599
		se->depth = parent->depth + 1;
	}
8600 8601

	se->my_q = cfs_rq;
8602 8603
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
8634 8635 8636

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
8637
		for_each_sched_entity(se)
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654
			update_cfs_shares(group_cfs_rq(se));
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

8655
void unregister_fair_sched_group(struct task_group *tg) { }
8656 8657 8658

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
8659

8660
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8661 8662 8663 8664 8665 8666 8667 8668 8669
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
8670
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8671 8672 8673 8674

	return rr_interval;
}

8675 8676 8677
/*
 * All the scheduling class methods:
 */
8678
const struct sched_class fair_sched_class = {
8679
	.next			= &idle_sched_class,
8680 8681 8682
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
8683
	.yield_to_task		= yield_to_task_fair,
8684

I
Ingo Molnar 已提交
8685
	.check_preempt_curr	= check_preempt_wakeup,
8686 8687 8688 8689

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

8690
#ifdef CONFIG_SMP
L
Li Zefan 已提交
8691
	.select_task_rq		= select_task_rq_fair,
8692
	.migrate_task_rq	= migrate_task_rq_fair,
8693

8694 8695
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
8696

8697
	.task_dead		= task_dead_fair,
8698
	.set_cpus_allowed	= set_cpus_allowed_common,
8699
#endif
8700

8701
	.set_curr_task          = set_curr_task_fair,
8702
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
8703
	.task_fork		= task_fork_fair,
8704 8705

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
8706
	.switched_from		= switched_from_fair,
8707
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
8708

8709 8710
	.get_rr_interval	= get_rr_interval_fair,

8711 8712
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
8713
#ifdef CONFIG_FAIR_GROUP_SCHED
8714
	.task_move_group	= task_move_group_fair,
P
Peter Zijlstra 已提交
8715
#endif
8716 8717 8718
};

#ifdef CONFIG_SCHED_DEBUG
8719
void print_cfs_stats(struct seq_file *m, int cpu)
8720 8721 8722
{
	struct cfs_rq *cfs_rq;

8723
	rcu_read_lock();
8724
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8725
		print_cfs_rq(m, cpu, cfs_rq);
8726
	rcu_read_unlock();
8727
}
8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
8749 8750 8751 8752 8753 8754

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

8755
#ifdef CONFIG_NO_HZ_COMMON
8756
	nohz.next_balance = jiffies;
8757 8758 8759 8760 8761
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}