fair.c 247.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched.h>
24
#include <linux/latencytop.h>
25
#include <linux/cpumask.h>
26
#include <linux/cpuidle.h>
27 28 29
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
30
#include <linux/mempolicy.h>
31
#include <linux/migrate.h>
32
#include <linux/task_work.h>
33 34 35 36

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
37

38
/*
39
 * Targeted preemption latency for CPU-bound tasks:
40
 *
41
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
42 43 44
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
45
 *
I
Ingo Molnar 已提交
46 47
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
48 49
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
50
 */
51 52
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
53

54 55 56 57
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
58 59 60 61 62 63
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
64
 */
65
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
66

67
/*
68
 * Minimal preemption granularity for CPU-bound tasks:
69
 *
70
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
71
 */
72 73
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
74 75

/*
76
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
77
 */
78
static unsigned int sched_nr_latency = 8;
79 80

/*
81
 * After fork, child runs first. If set to 0 (default) then
82
 * parent will (try to) run first.
83
 */
84
unsigned int sysctl_sched_child_runs_first __read_mostly;
85 86 87 88 89 90 91

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
92 93
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
94
 */
95 96
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
97

98
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
99

T
Tim Chen 已提交
100 101 102 103 104 105 106 107 108 109
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

110 111 112 113 114 115 116 117 118
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
119 120 121
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
122 123
#endif

124 125
/*
 * The margin used when comparing utilization with CPU capacity:
126
 * util * margin < capacity * 1024
127 128
 *
 * (default: ~20%)
129
 */
130
unsigned int capacity_margin				= 1280;
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

150 151 152 153 154 155 156 157 158
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
159
static unsigned int get_update_sysctl_factor(void)
160
{
161
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

197
#define WMULT_CONST	(~0U)
198 199
#define WMULT_SHIFT	32

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
216 217

/*
218 219 220 221
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
222
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 224 225 226 227
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228
 */
229
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230
{
231 232
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
233

234
	__update_inv_weight(lw);
235

236 237 238 239 240
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
241 242
	}

243 244
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
245

246 247 248 249
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
250

251
	return mul_u64_u32_shr(delta_exec, fact, shift);
252 253 254 255
}


const struct sched_class fair_sched_class;
256

257 258 259 260
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

261
#ifdef CONFIG_FAIR_GROUP_SCHED
262

263
/* cpu runqueue to which this cfs_rq is attached */
264 265
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
266
	return cfs_rq->rq;
267 268
}

269 270
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
271

272 273
static inline struct task_struct *task_of(struct sched_entity *se)
{
274
	SCHED_WARN_ON(!entity_is_task(se));
275 276 277
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

299 300 301
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
302 303
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
304 305 306
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
307 308 309 310 311
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
312 313
		 */
		if (cfs_rq->tg->parent &&
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
334
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
355
		}
356 357 358 359 360 361 362 363 364 365 366 367 368

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
369 370 371 372 373
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
374
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
375 376 377
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
378
		return se->cfs_rq;
P
Peter Zijlstra 已提交
379

P
Peter Zijlstra 已提交
380
	return NULL;
P
Peter Zijlstra 已提交
381 382 383 384 385 386 387
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

388 389 390 391 392 393 394 395 396 397 398 399 400
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
401 402
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

420 421 422 423 424 425
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
426

427 428 429
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
430 431 432 433
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
434 435
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
436

P
Peter Zijlstra 已提交
437
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
438
{
P
Peter Zijlstra 已提交
439
	return &task_rq(p)->cfs;
440 441
}

P
Peter Zijlstra 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

456 457 458 459 460 461 462 463
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
464 465 466 467 468 469 470 471
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

472 473 474 475 476
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
477 478
#endif	/* CONFIG_FAIR_GROUP_SCHED */

479
static __always_inline
480
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
481 482 483 484 485

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

486
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
487
{
488
	s64 delta = (s64)(vruntime - max_vruntime);
489
	if (delta > 0)
490
		max_vruntime = vruntime;
491

492
	return max_vruntime;
493 494
}

495
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
496 497 498 499 500 501 502 503
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

504 505 506 507 508 509
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

510 511
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
512 513
	struct sched_entity *curr = cfs_rq->curr;

514 515
	u64 vruntime = cfs_rq->min_vruntime;

516 517 518 519 520 521
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
522 523 524 525 526 527

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

528
		if (!curr)
529 530 531 532 533
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

534
	/* ensure we never gain time by being placed backwards. */
535
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
536 537 538 539
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
540 541
}

542 543 544
/*
 * Enqueue an entity into the rb-tree:
 */
545
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
562
		if (entity_before(se, entry)) {
563 564 565 566 567 568 569 570 571 572 573
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
574
	if (leftmost)
I
Ingo Molnar 已提交
575
		cfs_rq->rb_leftmost = &se->run_node;
576 577 578 579 580

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

581
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
582
{
P
Peter Zijlstra 已提交
583 584 585 586 587 588
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
589

590 591 592
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

593
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
594
{
595 596 597 598 599 600
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
601 602
}

603 604 605 606 607 608 609 610 611 612 613
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
614
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
615
{
616
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
617

618 619
	if (!last)
		return NULL;
620 621

	return rb_entry(last, struct sched_entity, run_node);
622 623
}

624 625 626 627
/**************************************************************
 * Scheduling class statistics methods:
 */

628
int sched_proc_update_handler(struct ctl_table *table, int write,
629
		void __user *buffer, size_t *lenp,
630 631
		loff_t *ppos)
{
632
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
633
	unsigned int factor = get_update_sysctl_factor();
634 635 636 637 638 639 640

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

641 642 643 644 645 646 647
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

648 649 650
	return 0;
}
#endif
651

652
/*
653
 * delta /= w
654
 */
655
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
656
{
657
	if (unlikely(se->load.weight != NICE_0_LOAD))
658
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
659 660 661 662

	return delta;
}

663 664 665
/*
 * The idea is to set a period in which each task runs once.
 *
666
 * When there are too many tasks (sched_nr_latency) we have to stretch
667 668 669 670
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
671 672
static u64 __sched_period(unsigned long nr_running)
{
673 674 675 676
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
677 678
}

679 680 681 682
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
683
 * s = p*P[w/rw]
684
 */
P
Peter Zijlstra 已提交
685
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686
{
M
Mike Galbraith 已提交
687
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
688

M
Mike Galbraith 已提交
689
	for_each_sched_entity(se) {
L
Lin Ming 已提交
690
		struct load_weight *load;
691
		struct load_weight lw;
L
Lin Ming 已提交
692 693 694

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
695

M
Mike Galbraith 已提交
696
		if (unlikely(!se->on_rq)) {
697
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
698 699 700 701

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
702
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
703 704
	}
	return slice;
705 706
}

707
/*
A
Andrei Epure 已提交
708
 * We calculate the vruntime slice of a to-be-inserted task.
709
 *
710
 * vs = s/w
711
 */
712
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
713
{
714
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
715 716
}

717
#ifdef CONFIG_SMP
718
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
719 720
static unsigned long task_h_load(struct task_struct *p);

721 722
/*
 * We choose a half-life close to 1 scheduling period.
723 724
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
725 726 727
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
728
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
729

730 731
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
732
{
733
	struct sched_avg *sa = &se->avg;
734

735 736 737 738 739 740 741
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
742 743 744 745 746 747 748 749
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
750
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
751 752 753 754 755
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
756
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757
}
758

759
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
760
static void attach_entity_cfs_rq(struct sched_entity *se);
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
791
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
792 793 794 795 796 797 798 799 800 801 802 803 804

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
805 806 807 808 809 810 811 812 813 814 815 816 817 818

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
819
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
820 821 822 823
			return;
		}
	}

824
	attach_entity_cfs_rq(se);
825 826
}

827
#else /* !CONFIG_SMP */
828
void init_entity_runnable_average(struct sched_entity *se)
829 830
{
}
831 832 833
void post_init_entity_util_avg(struct sched_entity *se)
{
}
834 835 836
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
837
#endif /* CONFIG_SMP */
838

839
/*
840
 * Update the current task's runtime statistics.
841
 */
842
static void update_curr(struct cfs_rq *cfs_rq)
843
{
844
	struct sched_entity *curr = cfs_rq->curr;
845
	u64 now = rq_clock_task(rq_of(cfs_rq));
846
	u64 delta_exec;
847 848 849 850

	if (unlikely(!curr))
		return;

851 852
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
853
		return;
854

I
Ingo Molnar 已提交
855
	curr->exec_start = now;
856

857 858 859 860
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
861
	schedstat_add(cfs_rq->exec_clock, delta_exec);
862 863 864 865

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

866 867 868
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

869
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870
		cpuacct_charge(curtask, delta_exec);
871
		account_group_exec_runtime(curtask, delta_exec);
872
	}
873 874

	account_cfs_rq_runtime(cfs_rq, delta_exec);
875 876
}

877 878 879 880 881
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

882
static inline void
883
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884
{
885 886 887 888 889 890 891
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
892 893

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 895
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
896

897
	schedstat_set(se->statistics.wait_start, wait_start);
898 899
}

900
static inline void
901 902 903
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
904 905
	u64 delta;

906 907 908 909
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910 911 912 913 914 915 916 917 918

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
919
			schedstat_set(se->statistics.wait_start, delta);
920 921 922 923 924
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

925 926 927 928 929
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
930 931
}

932
static inline void
933 934 935
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
936 937 938 939 940 941 942
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
943 944 945 946

	if (entity_is_task(se))
		tsk = task_of(se);

947 948
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949 950 951 952

		if ((s64)delta < 0)
			delta = 0;

953 954
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
955

956 957
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
958 959 960 961 962 963

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
964 965
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966 967 968 969

		if ((s64)delta < 0)
			delta = 0;

970 971
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
972

973 974
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
975 976 977

		if (tsk) {
			if (tsk->in_iowait) {
978 979
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
998 999
}

1000 1001 1002
/*
 * Task is being enqueued - update stats:
 */
1003
static inline void
1004
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005
{
1006 1007 1008
	if (!schedstat_enabled())
		return;

1009 1010 1011 1012
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1013
	if (se != cfs_rq->curr)
1014
		update_stats_wait_start(cfs_rq, se);
1015 1016 1017

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1018 1019 1020
}

static inline void
1021
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022
{
1023 1024 1025 1026

	if (!schedstat_enabled())
		return;

1027 1028 1029 1030
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1031
	if (se != cfs_rq->curr)
1032
		update_stats_wait_end(cfs_rq, se);
1033

1034 1035
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1036

1037 1038 1039 1040 1041 1042
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1043 1044 1045
	}
}

1046 1047 1048 1049
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1050
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 1052 1053 1054
{
	/*
	 * We are starting a new run period:
	 */
1055
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 1057 1058 1059 1060 1061
}

/**************************************************
 * Scheduling class queueing methods:
 */

1062 1063
#ifdef CONFIG_NUMA_BALANCING
/*
1064 1065 1066
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1067
 */
1068 1069
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070 1071 1072

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1073

1074 1075 1076
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1101
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 1103 1104
	unsigned int scan, floor;
	unsigned int windows = 1;

1105 1106
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1135 1136 1137 1138 1139
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1140
	pid_t gid;
1141
	int active_nodes;
1142 1143

	struct rcu_head rcu;
1144
	unsigned long total_faults;
1145
	unsigned long max_faults_cpu;
1146 1147 1148 1149 1150
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1151
	unsigned long *faults_cpu;
1152
	unsigned long faults[0];
1153 1154
};

1155 1156 1157 1158 1159 1160 1161 1162 1163
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1164 1165 1166 1167 1168
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1169 1170 1171 1172 1173 1174 1175
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1176
{
1177
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1178 1179 1180 1181
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1182
	if (!p->numa_faults)
1183 1184
		return 0;

1185 1186
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1187 1188
}

1189 1190 1191 1192 1193
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1194 1195
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1196 1197
}

1198 1199
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1200 1201
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1281 1282 1283 1284 1285 1286
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1287 1288
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1289
{
1290
	unsigned long faults, total_faults;
1291

1292
	if (!p->numa_faults)
1293 1294 1295 1296 1297 1298 1299
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1300
	faults = task_faults(p, nid);
1301 1302
	faults += score_nearby_nodes(p, nid, dist, true);

1303
	return 1000 * faults / total_faults;
1304 1305
}

1306 1307
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1308
{
1309 1310 1311 1312 1313 1314 1315 1316
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1317 1318
		return 0;

1319
	faults = group_faults(p, nid);
1320 1321
	faults += score_nearby_nodes(p, nid, dist, false);

1322
	return 1000 * faults / total_faults;
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1365 1366
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1367
	 */
1368 1369
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1370 1371 1372
		return true;

	/*
1373 1374 1375 1376 1377 1378
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1379
	 */
1380 1381
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1382 1383
}

1384
static unsigned long weighted_cpuload(const int cpu);
1385 1386
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1387
static unsigned long capacity_of(int cpu);
1388 1389
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1390
/* Cached statistics for all CPUs within a node */
1391
struct numa_stats {
1392
	unsigned long nr_running;
1393
	unsigned long load;
1394 1395

	/* Total compute capacity of CPUs on a node */
1396
	unsigned long compute_capacity;
1397 1398

	/* Approximate capacity in terms of runnable tasks on a node */
1399
	unsigned long task_capacity;
1400
	int has_free_capacity;
1401
};
1402

1403 1404 1405 1406 1407
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1408 1409
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1410 1411 1412 1413 1414 1415 1416

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1417
		ns->compute_capacity += capacity_of(cpu);
1418 1419

		cpus++;
1420 1421
	}

1422 1423 1424 1425 1426
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1427 1428
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1429 1430 1431 1432
	 */
	if (!cpus)
		return;

1433 1434 1435 1436 1437 1438
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1439
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1440 1441
}

1442 1443
struct task_numa_env {
	struct task_struct *p;
1444

1445 1446
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1447

1448
	struct numa_stats src_stats, dst_stats;
1449

1450
	int imbalance_pct;
1451
	int dist;
1452 1453 1454

	struct task_struct *best_task;
	long best_imp;
1455 1456 1457
	int best_cpu;
};

1458 1459 1460 1461 1462
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1463 1464
	if (p)
		get_task_struct(p);
1465 1466 1467 1468 1469 1470

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1471
static bool load_too_imbalanced(long src_load, long dst_load,
1472 1473
				struct task_numa_env *env)
{
1474 1475
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1487 1488

	/* We care about the slope of the imbalance, not the direction. */
1489 1490
	if (dst_load < src_load)
		swap(dst_load, src_load);
1491 1492

	/* Is the difference below the threshold? */
1493 1494
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1495 1496 1497 1498 1499
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1500
	 * Compare it with the old imbalance.
1501
	 */
1502
	orig_src_load = env->src_stats.load;
1503
	orig_dst_load = env->dst_stats.load;
1504

1505 1506
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1507

1508 1509 1510 1511 1512
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1513 1514
}

1515 1516 1517 1518 1519 1520
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1521 1522
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1523 1524 1525 1526
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1527
	long src_load, dst_load;
1528
	long load;
1529
	long imp = env->p->numa_group ? groupimp : taskimp;
1530
	long moveimp = imp;
1531
	int dist = env->dist;
1532 1533

	rcu_read_lock();
1534 1535
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1536 1537
		cur = NULL;

1538 1539 1540 1541 1542 1543 1544
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
			goto unlock;

1557 1558
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1559
		 * in any group then look only at task weights.
1560
		 */
1561
		if (cur->numa_group == env->p->numa_group) {
1562 1563
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1564 1565 1566 1567 1568 1569
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1570
		} else {
1571 1572 1573 1574 1575 1576
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1577 1578
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1579
			else
1580 1581
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1582
		}
1583 1584
	}

1585
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1586 1587 1588 1589
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1590
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1591
		    !env->dst_stats.has_free_capacity)
1592 1593 1594 1595 1596 1597
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1598 1599
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1600 1601 1602 1603 1604 1605
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1606 1607 1608
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1609

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1627
	if (cur) {
1628 1629 1630
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1631 1632
	}

1633
	if (load_too_imbalanced(src_load, dst_load, env))
1634 1635
		goto unlock;

1636 1637 1638 1639
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1640 1641 1642 1643 1644 1645
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1646 1647
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1648 1649
		local_irq_enable();
	}
1650

1651 1652 1653 1654 1655 1656
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1657 1658
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1659 1660 1661 1662 1663 1664 1665 1666 1667
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
			continue;

		env->dst_cpu = cpu;
1668
		task_numa_compare(env, taskimp, groupimp);
1669 1670 1671
	}
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1689 1690 1691
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1692 1693 1694 1695 1696
		return true;

	return false;
}

1697 1698 1699 1700
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1701

1702
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1703
		.src_nid = task_node(p),
1704 1705 1706 1707 1708

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1709
		.best_cpu = -1,
1710 1711
	};
	struct sched_domain *sd;
1712
	unsigned long taskweight, groupweight;
1713
	int nid, ret, dist;
1714
	long taskimp, groupimp;
1715

1716
	/*
1717 1718 1719 1720 1721 1722
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1723 1724
	 */
	rcu_read_lock();
1725
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1726 1727
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1728 1729
	rcu_read_unlock();

1730 1731 1732 1733 1734 1735 1736
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1737
		p->numa_preferred_nid = task_node(p);
1738 1739 1740
		return -EINVAL;
	}

1741
	env.dst_nid = p->numa_preferred_nid;
1742 1743 1744 1745 1746 1747
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1748
	update_numa_stats(&env.dst_stats, env.dst_nid);
1749

1750
	/* Try to find a spot on the preferred nid. */
1751 1752
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1753

1754 1755 1756 1757 1758 1759 1760
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1761
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1762 1763 1764
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1765

1766
			dist = node_distance(env.src_nid, env.dst_nid);
1767 1768 1769 1770 1771
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1772

1773
			/* Only consider nodes where both task and groups benefit */
1774 1775
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1776
			if (taskimp < 0 && groupimp < 0)
1777 1778
				continue;

1779
			env.dist = dist;
1780 1781
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1782 1783
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1784 1785 1786
		}
	}

1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1795
	if (p->numa_group) {
1796 1797
		struct numa_group *ng = p->numa_group;

1798 1799 1800 1801 1802
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1803
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1804 1805 1806 1807 1808 1809
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1810

1811 1812 1813 1814 1815 1816
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1817
	if (env.best_task == NULL) {
1818 1819 1820
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1821 1822 1823 1824
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1825 1826
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1827 1828
	put_task_struct(env.best_task);
	return ret;
1829 1830
}

1831 1832 1833
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1834 1835
	unsigned long interval = HZ;

1836
	/* This task has no NUMA fault statistics yet */
1837
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1838 1839
		return;

1840
	/* Periodically retry migrating the task to the preferred node */
1841 1842
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1843 1844

	/* Success if task is already running on preferred CPU */
1845
	if (task_node(p) == p->numa_preferred_nid)
1846 1847 1848
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1849
	task_numa_migrate(p);
1850 1851
}

1852
/*
1853
 * Find out how many nodes on the workload is actively running on. Do this by
1854 1855 1856 1857
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1858
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1859 1860
{
	unsigned long faults, max_faults = 0;
1861
	int nid, active_nodes = 0;
1862 1863 1864 1865 1866 1867 1868 1869 1870

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1871 1872
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1873
	}
1874 1875 1876

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1877 1878
}

1879 1880 1881
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1882 1883 1884
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1885 1886
 */
#define NUMA_PERIOD_SLOTS 10
1887
#define NUMA_PERIOD_THRESHOLD 7
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1908 1909 1910
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1911
	 */
1912
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1946
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1947 1948 1949 1950 1951 1952 1953 1954
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1973 1974
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1975 1976 1977 1978 1979 1980 1981 1982
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2030
		nodemask_t max_group = NODE_MASK_NONE;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2064 2065
		if (!max_faults)
			break;
2066 2067 2068 2069 2070
		nodes = max_group;
	}
	return nid;
}

2071 2072
static void task_numa_placement(struct task_struct *p)
{
2073 2074
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2075
	unsigned long fault_types[2] = { 0, 0 };
2076 2077
	unsigned long total_faults;
	u64 runtime, period;
2078
	spinlock_t *group_lock = NULL;
2079

2080 2081 2082 2083 2084
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2085
	seq = READ_ONCE(p->mm->numa_scan_seq);
2086 2087 2088
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2089
	p->numa_scan_period_max = task_scan_max(p);
2090

2091 2092 2093 2094
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2095 2096 2097
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2098
		spin_lock_irq(group_lock);
2099 2100
	}

2101 2102
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2103 2104
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2105
		unsigned long faults = 0, group_faults = 0;
2106
		int priv;
2107

2108
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2109
			long diff, f_diff, f_weight;
2110

2111 2112 2113 2114
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2115

2116
			/* Decay existing window, copy faults since last scan */
2117 2118 2119
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2120

2121 2122 2123 2124 2125 2126 2127 2128
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2129
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2130
				   (total_faults + 1);
2131 2132
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2133

2134 2135 2136
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2137
			p->total_numa_faults += diff;
2138
			if (p->numa_group) {
2139 2140 2141 2142 2143 2144 2145 2146 2147
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2148
				p->numa_group->total_faults += diff;
2149
				group_faults += p->numa_group->faults[mem_idx];
2150
			}
2151 2152
		}

2153 2154 2155 2156
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2157 2158 2159 2160 2161 2162 2163

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2164 2165
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2166
	if (p->numa_group) {
2167
		numa_group_count_active_nodes(p->numa_group);
2168
		spin_unlock_irq(group_lock);
2169
		max_nid = preferred_group_nid(p, max_group_nid);
2170 2171
	}

2172 2173 2174 2175 2176 2177 2178
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2179
	}
2180 2181
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2193 2194
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2195 2196 2197 2198 2199 2200 2201 2202 2203
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2204
				    4*nr_node_ids*sizeof(unsigned long);
2205 2206 2207 2208 2209 2210

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2211 2212
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2213
		spin_lock_init(&grp->lock);
2214
		grp->gid = p->pid;
2215
		/* Second half of the array tracks nids where faults happen */
2216 2217
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2218

2219
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2220
			grp->faults[i] = p->numa_faults[i];
2221

2222
		grp->total_faults = p->total_numa_faults;
2223

2224 2225 2226 2227 2228
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2229
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2230 2231

	if (!cpupid_match_pid(tsk, cpupid))
2232
		goto no_join;
2233 2234 2235

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2236
		goto no_join;
2237 2238 2239

	my_grp = p->numa_group;
	if (grp == my_grp)
2240
		goto no_join;
2241 2242 2243 2244 2245 2246

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2247
		goto no_join;
2248 2249 2250 2251 2252

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2253
		goto no_join;
2254

2255 2256 2257 2258 2259 2260 2261
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2262

2263 2264 2265
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2266
	if (join && !get_numa_group(grp))
2267
		goto no_join;
2268 2269 2270 2271 2272 2273

	rcu_read_unlock();

	if (!join)
		return;

2274 2275
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2276

2277
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2278 2279
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2280
	}
2281 2282
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2283 2284 2285 2286 2287

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2288
	spin_unlock_irq(&grp->lock);
2289 2290 2291 2292

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2293 2294 2295 2296 2297
	return;

no_join:
	rcu_read_unlock();
	return;
2298 2299 2300 2301 2302
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2303
	void *numa_faults = p->numa_faults;
2304 2305
	unsigned long flags;
	int i;
2306 2307

	if (grp) {
2308
		spin_lock_irqsave(&grp->lock, flags);
2309
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2310
			grp->faults[i] -= p->numa_faults[i];
2311
		grp->total_faults -= p->total_numa_faults;
2312

2313
		grp->nr_tasks--;
2314
		spin_unlock_irqrestore(&grp->lock, flags);
2315
		RCU_INIT_POINTER(p->numa_group, NULL);
2316 2317 2318
		put_numa_group(grp);
	}

2319
	p->numa_faults = NULL;
2320
	kfree(numa_faults);
2321 2322
}

2323 2324 2325
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2326
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2327 2328
{
	struct task_struct *p = current;
2329
	bool migrated = flags & TNF_MIGRATED;
2330
	int cpu_node = task_node(current);
2331
	int local = !!(flags & TNF_FAULT_LOCAL);
2332
	struct numa_group *ng;
2333
	int priv;
2334

2335
	if (!static_branch_likely(&sched_numa_balancing))
2336 2337
		return;

2338 2339 2340 2341
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2342
	/* Allocate buffer to track faults on a per-node basis */
2343 2344
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2345
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2346

2347 2348
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2349
			return;
2350

2351
		p->total_numa_faults = 0;
2352
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2353
	}
2354

2355 2356 2357 2358 2359 2360 2361 2362
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2363
		if (!priv && !(flags & TNF_NO_GROUP))
2364
			task_numa_group(p, last_cpupid, flags, &priv);
2365 2366
	}

2367 2368 2369 2370 2371 2372
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2373 2374 2375 2376
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2377 2378
		local = 1;

2379
	task_numa_placement(p);
2380

2381 2382 2383 2384 2385
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2386 2387
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2388 2389
	if (migrated)
		p->numa_pages_migrated += pages;
2390 2391
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2392

2393 2394
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2395
	p->numa_faults_locality[local] += pages;
2396 2397
}

2398 2399
static void reset_ptenuma_scan(struct task_struct *p)
{
2400 2401 2402 2403 2404 2405 2406 2407
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2408
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2409 2410 2411
	p->mm->numa_scan_offset = 0;
}

2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2421
	u64 runtime = p->se.sum_exec_runtime;
2422
	struct vm_area_struct *vma;
2423
	unsigned long start, end;
2424
	unsigned long nr_pte_updates = 0;
2425
	long pages, virtpages;
2426

2427
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2441
	if (!mm->numa_next_scan) {
2442 2443
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2444 2445
	}

2446 2447 2448 2449 2450 2451 2452
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2453 2454 2455 2456
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2457

2458
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2459 2460 2461
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2462 2463 2464 2465 2466 2467
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2468 2469 2470
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2471
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2472 2473
	if (!pages)
		return;
2474

2475

2476
	down_read(&mm->mmap_sem);
2477
	vma = find_vma(mm, start);
2478 2479
	if (!vma) {
		reset_ptenuma_scan(p);
2480
		start = 0;
2481 2482
		vma = mm->mmap;
	}
2483
	for (; vma; vma = vma->vm_next) {
2484
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2485
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2486
			continue;
2487
		}
2488

2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2499 2500 2501 2502 2503 2504
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2505

2506 2507 2508 2509
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2510
			nr_pte_updates = change_prot_numa(vma, start, end);
2511 2512

			/*
2513 2514 2515 2516 2517 2518
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2519 2520 2521
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2522
			virtpages -= (end - start) >> PAGE_SHIFT;
2523

2524
			start = end;
2525
			if (pages <= 0 || virtpages <= 0)
2526
				goto out;
2527 2528

			cond_resched();
2529
		} while (end != vma->vm_end);
2530
	}
2531

2532
out:
2533
	/*
P
Peter Zijlstra 已提交
2534 2535 2536 2537
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2538 2539
	 */
	if (vma)
2540
		mm->numa_scan_offset = start;
2541 2542 2543
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2580
	if (now > curr->node_stamp + period) {
2581
		if (!curr->node_stamp)
2582
			curr->numa_scan_period = task_scan_min(curr);
2583
		curr->node_stamp += period;
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2595 2596 2597 2598 2599 2600 2601 2602

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2603 2604
#endif /* CONFIG_NUMA_BALANCING */

2605 2606 2607 2608
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2609
	if (!parent_entity(se))
2610
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2611
#ifdef CONFIG_SMP
2612 2613 2614 2615 2616 2617
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2618
#endif
2619 2620 2621 2622 2623 2624 2625
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2626
	if (!parent_entity(se))
2627
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2628
#ifdef CONFIG_SMP
2629 2630
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2631
		list_del_init(&se->group_node);
2632
	}
2633
#endif
2634 2635 2636
	cfs_rq->nr_running--;
}

2637 2638
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2639
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2640
{
2641
	long tg_weight, load, shares;
2642 2643

	/*
2644 2645 2646
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2647
	 */
2648
	load = scale_load_down(cfs_rq->load.weight);
2649

2650
	tg_weight = atomic_long_read(&tg->load_avg);
2651

2652 2653 2654
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2655 2656

	shares = (tg->shares * load);
2657 2658
	if (tg_weight)
		shares /= tg_weight;
2659 2660 2661 2662 2663 2664 2665 2666 2667

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2668
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2669 2670 2671 2672
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2673

P
Peter Zijlstra 已提交
2674 2675 2676
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2677 2678 2679 2680
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2681
		account_entity_dequeue(cfs_rq, se);
2682
	}
P
Peter Zijlstra 已提交
2683 2684 2685 2686 2687 2688 2689

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2690 2691
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2692
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2693
{
2694
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2695
	struct task_group *tg;
2696
	long shares;
P
Peter Zijlstra 已提交
2697

2698 2699 2700 2701
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2702
		return;
2703 2704 2705

	tg = cfs_rq->tg;

2706 2707 2708 2709
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2710
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2711 2712 2713

	reweight_entity(cfs_rq_of(se), se, shares);
}
2714

P
Peter Zijlstra 已提交
2715
#else /* CONFIG_FAIR_GROUP_SCHED */
2716
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2717 2718 2719 2720
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2721
#ifdef CONFIG_SMP
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2752 2753 2754 2755 2756 2757
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2770 2771
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2772 2773 2774 2775 2776 2777
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2778 2779
	}

2780 2781
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2800 2801 2802
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2803 2804
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2805 2806
}

2807
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2837 2838
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2839
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2840
{
2841
	u64 delta, scaled_delta, periods;
2842
	u32 contrib;
2843
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2844
	unsigned long scale_freq, scale_cpu;
2845

2846
	delta = now - sa->last_update_time;
2847 2848 2849 2850 2851
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2852
		sa->last_update_time = now;
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2863
	sa->last_update_time = now;
2864

2865 2866 2867
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2868
	/* delta_w is the amount already accumulated against our next period */
2869
	delta_w = sa->period_contrib;
2870 2871 2872
	if (delta + delta_w >= 1024) {
		decayed = 1;

2873 2874 2875
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2876 2877 2878 2879 2880 2881
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2882
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2883
		if (weight) {
2884 2885 2886 2887 2888
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2889
		}
2890
		if (running)
2891
			sa->util_sum += scaled_delta_w * scale_cpu;
2892 2893 2894 2895 2896 2897 2898

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2899
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2900 2901 2902 2903
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2904
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2905 2906

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2907
		contrib = __compute_runnable_contrib(periods);
2908
		contrib = cap_scale(contrib, scale_freq);
2909
		if (weight) {
2910
			sa->load_sum += weight * contrib;
2911 2912 2913
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2914
		if (running)
2915
			sa->util_sum += contrib * scale_cpu;
2916 2917 2918
	}

	/* Remainder of delta accrued against u_0` */
2919
	scaled_delta = cap_scale(delta, scale_freq);
2920
	if (weight) {
2921
		sa->load_sum += weight * scaled_delta;
2922
		if (cfs_rq)
2923
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2924
	}
2925
	if (running)
2926
		sa->util_sum += scaled_delta * scale_cpu;
2927

2928
	sa->period_contrib += delta;
2929

2930 2931
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2932 2933 2934 2935
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2936
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2937
	}
2938

2939
	return decayed;
2940 2941
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2962
#ifdef CONFIG_FAIR_GROUP_SCHED
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2978
 */
2979
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2980
{
2981
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2982

2983 2984 2985 2986 2987 2988
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

2989 2990 2991
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2992
	}
2993
}
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3162
#else /* CONFIG_FAIR_GROUP_SCHED */
3163

3164
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3165 3166 3167 3168 3169 3170 3171 3172

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3173
#endif /* CONFIG_FAIR_GROUP_SCHED */
3174

3175 3176
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3177
	if (&this_rq()->cfs == cfs_rq) {
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3194
		cpufreq_update_util(rq_of(cfs_rq), 0);
3195 3196 3197
	}
}

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3227 3228 3229 3230
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3231
 */
3232 3233
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3234
{
3235
	struct sched_avg *sa = &cfs_rq->avg;
3236
	int decayed, removed_load = 0, removed_util = 0;
3237

3238
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3239
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3240 3241
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3242
		removed_load = 1;
3243
		set_tg_cfs_propagate(cfs_rq);
3244
	}
3245

3246 3247
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3248 3249
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3250
		removed_util = 1;
3251
		set_tg_cfs_propagate(cfs_rq);
3252
	}
3253

3254
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3255
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3256

3257 3258 3259 3260
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3261

3262 3263
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3264

3265
	return decayed || removed_load;
3266 3267
}

3268 3269 3270 3271 3272 3273
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3274
/* Update task and its cfs_rq load average */
3275
static inline void update_load_avg(struct sched_entity *se, int flags)
3276 3277 3278 3279 3280
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3281
	int decayed;
3282 3283 3284 3285 3286

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3287 3288
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
		__update_load_avg(now, cpu, &se->avg,
3289 3290
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
3291
	}
3292

3293 3294 3295 3296
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3297
		update_tg_load_avg(cfs_rq, 0);
3298 3299
}

3300 3301 3302 3303 3304 3305 3306 3307
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3308 3309 3310 3311 3312 3313 3314
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3315
	set_tg_cfs_propagate(cfs_rq);
3316 3317

	cfs_rq_util_change(cfs_rq);
3318 3319
}

3320 3321 3322 3323 3324 3325 3326 3327
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3328 3329 3330
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3331 3332 3333 3334
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3335
	set_tg_cfs_propagate(cfs_rq);
3336 3337

	cfs_rq_util_change(cfs_rq);
3338 3339
}

3340 3341 3342
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3343
{
3344
	struct sched_avg *sa = &se->avg;
3345

3346 3347 3348
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3349
	if (!sa->last_update_time) {
3350
		attach_entity_load_avg(cfs_rq, se);
3351
		update_tg_load_avg(cfs_rq, 0);
3352
	}
3353 3354
}

3355 3356 3357 3358 3359 3360 3361
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3362
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3363 3364
}

3365
#ifndef CONFIG_64BIT
3366 3367
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3368
	u64 last_update_time_copy;
3369
	u64 last_update_time;
3370

3371 3372 3373 3374 3375
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3376 3377 3378

	return last_update_time;
}
3379
#else
3380 3381 3382 3383
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3384 3385
#endif

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
}

3399 3400 3401 3402 3403 3404 3405 3406 3407
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3408 3409 3410 3411 3412 3413 3414
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3415 3416
	 */

3417
	sync_entity_load_avg(se);
3418 3419
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3420
}
3421

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3432
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3433

3434 3435
#else /* CONFIG_SMP */

3436 3437 3438 3439 3440 3441
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3442 3443 3444 3445
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3446
{
3447
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3448 3449
}

3450 3451
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3452 3453
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3454
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3455

3456 3457 3458 3459 3460
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3461
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3462 3463 3464 3465
{
	return 0;
}

3466
#endif /* CONFIG_SMP */
3467

P
Peter Zijlstra 已提交
3468 3469 3470 3471 3472 3473 3474 3475 3476
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3477
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3478 3479 3480
#endif
}

3481 3482 3483
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3484
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3485

3486 3487 3488 3489 3490 3491
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3492
	if (initial && sched_feat(START_DEBIT))
3493
		vruntime += sched_vslice(cfs_rq, se);
3494

3495
	/* sleeps up to a single latency don't count. */
3496
	if (!initial) {
3497
		unsigned long thresh = sysctl_sched_latency;
3498

3499 3500 3501 3502 3503 3504
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3505

3506
		vruntime -= thresh;
3507 3508
	}

3509
	/* ensure we never gain time by being placed backwards. */
3510
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3511 3512
}

3513 3514
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3527
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3528 3529 3530 3531 3532 3533 3534
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3554
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3566
static void
3567
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3568
{
3569 3570 3571
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3572
	/*
3573 3574
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3575
	 */
3576
	if (renorm && curr)
3577 3578
		se->vruntime += cfs_rq->min_vruntime;

3579 3580
	update_curr(cfs_rq);

3581
	/*
3582 3583 3584 3585
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3586
	 */
3587 3588 3589
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3590 3591 3592 3593 3594 3595 3596 3597
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3598
	update_load_avg(se, UPDATE_TG);
3599
	enqueue_entity_load_avg(cfs_rq, se);
3600
	update_cfs_shares(se);
3601
	account_entity_enqueue(cfs_rq, se);
3602

3603
	if (flags & ENQUEUE_WAKEUP)
3604
		place_entity(cfs_rq, se, 0);
3605

3606
	check_schedstat_required();
3607 3608
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3609
	if (!curr)
3610
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3611
	se->on_rq = 1;
3612

3613
	if (cfs_rq->nr_running == 1) {
3614
		list_add_leaf_cfs_rq(cfs_rq);
3615 3616
		check_enqueue_throttle(cfs_rq);
	}
3617 3618
}

3619
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3620
{
3621 3622
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3623
		if (cfs_rq->last != se)
3624
			break;
3625 3626

		cfs_rq->last = NULL;
3627 3628
	}
}
P
Peter Zijlstra 已提交
3629

3630 3631 3632 3633
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3634
		if (cfs_rq->next != se)
3635
			break;
3636 3637

		cfs_rq->next = NULL;
3638
	}
P
Peter Zijlstra 已提交
3639 3640
}

3641 3642 3643 3644
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3645
		if (cfs_rq->skip != se)
3646
			break;
3647 3648

		cfs_rq->skip = NULL;
3649 3650 3651
	}
}

P
Peter Zijlstra 已提交
3652 3653
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3654 3655 3656 3657 3658
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3659 3660 3661

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3662 3663
}

3664
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3665

3666
static void
3667
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3668
{
3669 3670 3671 3672
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3673 3674 3675 3676 3677 3678 3679 3680 3681

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3682
	update_load_avg(se, UPDATE_TG);
3683
	dequeue_entity_load_avg(cfs_rq, se);
3684

3685
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3686

P
Peter Zijlstra 已提交
3687
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3688

3689
	if (se != cfs_rq->curr)
3690
		__dequeue_entity(cfs_rq, se);
3691
	se->on_rq = 0;
3692
	account_entity_dequeue(cfs_rq, se);
3693 3694

	/*
3695 3696 3697 3698
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3699
	 */
3700
	if (!(flags & DEQUEUE_SLEEP))
3701
		se->vruntime -= cfs_rq->min_vruntime;
3702

3703 3704 3705
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3706
	update_cfs_shares(se);
3707 3708 3709 3710 3711 3712 3713 3714 3715

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3716 3717 3718 3719 3720
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3721
static void
I
Ingo Molnar 已提交
3722
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3723
{
3724
	unsigned long ideal_runtime, delta_exec;
3725 3726
	struct sched_entity *se;
	s64 delta;
3727

P
Peter Zijlstra 已提交
3728
	ideal_runtime = sched_slice(cfs_rq, curr);
3729
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3730
	if (delta_exec > ideal_runtime) {
3731
		resched_curr(rq_of(cfs_rq));
3732 3733 3734 3735 3736
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3748 3749
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3750

3751 3752
	if (delta < 0)
		return;
3753

3754
	if (delta > ideal_runtime)
3755
		resched_curr(rq_of(cfs_rq));
3756 3757
}

3758
static void
3759
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760
{
3761 3762 3763 3764 3765 3766 3767
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3768
		update_stats_wait_end(cfs_rq, se);
3769
		__dequeue_entity(cfs_rq, se);
3770
		update_load_avg(se, UPDATE_TG);
3771 3772
	}

3773
	update_stats_curr_start(cfs_rq, se);
3774
	cfs_rq->curr = se;
3775

I
Ingo Molnar 已提交
3776 3777 3778 3779 3780
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3781
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3782 3783 3784
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3785
	}
3786

3787
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3788 3789
}

3790 3791 3792
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3793 3794 3795 3796 3797 3798 3799
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3800 3801
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3802
{
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3814

3815 3816 3817 3818 3819
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3830 3831 3832
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3833

3834 3835 3836 3837 3838 3839
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3840 3841 3842 3843 3844 3845
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3846
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3847 3848

	return se;
3849 3850
}

3851
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3852

3853
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3854 3855 3856 3857 3858 3859
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3860
		update_curr(cfs_rq);
3861

3862 3863 3864
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3865
	check_spread(cfs_rq, prev);
3866

3867
	if (prev->on_rq) {
3868
		update_stats_wait_start(cfs_rq, prev);
3869 3870
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3871
		/* in !on_rq case, update occurred at dequeue */
3872
		update_load_avg(prev, 0);
3873
	}
3874
	cfs_rq->curr = NULL;
3875 3876
}

P
Peter Zijlstra 已提交
3877 3878
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3879 3880
{
	/*
3881
	 * Update run-time statistics of the 'current'.
3882
	 */
3883
	update_curr(cfs_rq);
3884

3885 3886 3887
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3888
	update_load_avg(curr, UPDATE_TG);
3889
	update_cfs_shares(curr);
3890

P
Peter Zijlstra 已提交
3891 3892 3893 3894 3895
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3896
	if (queued) {
3897
		resched_curr(rq_of(cfs_rq));
3898 3899
		return;
	}
P
Peter Zijlstra 已提交
3900 3901 3902 3903 3904 3905 3906 3907
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3908
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3909
		check_preempt_tick(cfs_rq, curr);
3910 3911
}

3912 3913 3914 3915 3916 3917

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3918 3919

#ifdef HAVE_JUMP_LABEL
3920
static struct static_key __cfs_bandwidth_used;
3921 3922 3923

static inline bool cfs_bandwidth_used(void)
{
3924
	return static_key_false(&__cfs_bandwidth_used);
3925 3926
}

3927
void cfs_bandwidth_usage_inc(void)
3928
{
3929 3930 3931 3932 3933 3934
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3935 3936 3937 3938 3939 3940 3941
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3942 3943
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3944 3945
#endif /* HAVE_JUMP_LABEL */

3946 3947 3948 3949 3950 3951 3952 3953
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3954 3955 3956 3957 3958 3959

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3960 3961 3962 3963 3964 3965 3966
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3967
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3979 3980 3981 3982 3983
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3984 3985 3986 3987
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
3988
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
3989

3990
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3991 3992
}

3993 3994
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3995 3996 3997
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
3998
	u64 amount = 0, min_amount, expires;
3999 4000 4001 4002 4003 4004 4005

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4006
	else {
P
Peter Zijlstra 已提交
4007
		start_cfs_bandwidth(cfs_b);
4008 4009 4010 4011 4012 4013

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4014
	}
P
Paul Turner 已提交
4015
	expires = cfs_b->runtime_expires;
4016 4017 4018
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4019 4020 4021 4022 4023 4024 4025
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4026 4027

	return cfs_rq->runtime_remaining > 0;
4028 4029
}

P
Paul Turner 已提交
4030 4031 4032 4033 4034
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4035
{
P
Paul Turner 已提交
4036 4037 4038
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4039
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4040 4041
		return;

P
Paul Turner 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4051 4052 4053
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4054 4055
	 */

4056
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4057 4058 4059 4060 4061 4062 4063 4064
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4065
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4066 4067
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4068
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4069 4070 4071
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4072 4073
		return;

4074 4075 4076 4077 4078
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4079
		resched_curr(rq_of(cfs_rq));
4080 4081
}

4082
static __always_inline
4083
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4084
{
4085
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4086 4087 4088 4089 4090
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4091 4092
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4093
	return cfs_bandwidth_used() && cfs_rq->throttled;
4094 4095
}

4096 4097 4098
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4099
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4127
		/* adjust cfs_rq_clock_task() */
4128
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4129
					     cfs_rq->throttled_clock_task;
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4140 4141
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4142
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4143 4144 4145 4146 4147
	cfs_rq->throttle_count++;

	return 0;
}

4148
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4149 4150 4151 4152 4153
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4154
	bool empty;
4155 4156 4157

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4158
	/* freeze hierarchy runnable averages while throttled */
4159 4160 4161
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4179
		sub_nr_running(rq, task_delta);
4180 4181

	cfs_rq->throttled = 1;
4182
	cfs_rq->throttled_clock = rq_clock(rq);
4183
	raw_spin_lock(&cfs_b->lock);
4184
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4185

4186 4187 4188 4189 4190
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4191 4192 4193 4194 4195 4196 4197 4198

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4199 4200 4201
	raw_spin_unlock(&cfs_b->lock);
}

4202
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4203 4204 4205 4206 4207 4208 4209
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4210
	se = cfs_rq->tg->se[cpu_of(rq)];
4211 4212

	cfs_rq->throttled = 0;
4213 4214 4215

	update_rq_clock(rq);

4216
	raw_spin_lock(&cfs_b->lock);
4217
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4218 4219 4220
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4221 4222 4223
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4242
		add_nr_running(rq, task_delta);
4243 4244 4245

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4246
		resched_curr(rq);
4247 4248 4249 4250 4251 4252
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4253 4254
	u64 runtime;
	u64 starting_runtime = remaining;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);

		raw_spin_lock(&rq->lock);
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
		raw_spin_unlock(&rq->lock);

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4285
	return starting_runtime - remaining;
4286 4287
}

4288 4289 4290 4291 4292 4293 4294 4295
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4296
	u64 runtime, runtime_expires;
4297
	int throttled;
4298 4299 4300

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4301
		goto out_deactivate;
4302

4303
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4304
	cfs_b->nr_periods += overrun;
4305

4306 4307 4308 4309 4310 4311
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4312 4313 4314

	__refill_cfs_bandwidth_runtime(cfs_b);

4315 4316 4317
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4318
		return 0;
4319 4320
	}

4321 4322 4323
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4324 4325 4326
	runtime_expires = cfs_b->runtime_expires;

	/*
4327 4328 4329 4330 4331
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4332
	 */
4333 4334
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4335 4336 4337 4338 4339 4340 4341
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4342 4343

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4344
	}
4345

4346 4347 4348 4349 4350 4351 4352
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4353

4354 4355 4356 4357
	return 0;

out_deactivate:
	return 1;
4358
}
4359

4360 4361 4362 4363 4364 4365 4366
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4367 4368 4369 4370
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4371
 * hrtimer base being cleared by hrtimer_start. In the case of
4372 4373
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4399 4400 4401
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4431 4432 4433
	if (!cfs_bandwidth_used())
		return;

4434
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4450 4451 4452
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4453
		return;
4454
	}
4455

4456
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4457
		runtime = cfs_b->runtime;
4458

4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4469
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4470 4471 4472
	raw_spin_unlock(&cfs_b->lock);
}

4473 4474 4475 4476 4477 4478 4479
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4480 4481 4482
	if (!cfs_bandwidth_used())
		return;

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4511
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4512 4513
}

4514
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4515
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4516
{
4517
	if (!cfs_bandwidth_used())
4518
		return false;
4519

4520
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4521
		return false;
4522 4523 4524 4525 4526 4527

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4528
		return true;
4529 4530

	throttle_cfs_rq(cfs_rq);
4531
	return true;
4532
}
4533 4534 4535 4536 4537

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4538

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4551
	raw_spin_lock(&cfs_b->lock);
4552
	for (;;) {
P
Peter Zijlstra 已提交
4553
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4554 4555 4556 4557 4558
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4559 4560
	if (idle)
		cfs_b->period_active = 0;
4561
	raw_spin_unlock(&cfs_b->lock);
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4574
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4586
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4587
{
P
Peter Zijlstra 已提交
4588
	lockdep_assert_held(&cfs_b->lock);
4589

P
Peter Zijlstra 已提交
4590 4591 4592 4593 4594
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4595 4596 4597 4598
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4599 4600 4601 4602
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4603 4604 4605 4606
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4620
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4632
		cfs_rq->runtime_remaining = 1;
4633 4634 4635 4636 4637 4638
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4639 4640 4641 4642 4643 4644
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4645 4646
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4647
	return rq_clock_task(rq_of(cfs_rq));
4648 4649
}

4650
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4651
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4652
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4653
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4654
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4655 4656 4657 4658 4659

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4671 4672 4673 4674 4675

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4676 4677
#endif

4678 4679 4680 4681 4682
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4683
static inline void update_runtime_enabled(struct rq *rq) {}
4684
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4685 4686 4687

#endif /* CONFIG_CFS_BANDWIDTH */

4688 4689 4690 4691
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4692 4693 4694 4695 4696 4697
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4698
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4699

4700
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4701 4702 4703 4704 4705 4706
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4707
				resched_curr(rq);
P
Peter Zijlstra 已提交
4708 4709
			return;
		}
4710
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4711 4712
	}
}
4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4723
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4724 4725 4726 4727 4728
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4729
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4730 4731 4732 4733
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4734 4735 4736 4737

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4738 4739
#endif

4740 4741 4742 4743 4744
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4745
static void
4746
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4747 4748
{
	struct cfs_rq *cfs_rq;
4749
	struct sched_entity *se = &p->se;
4750

4751 4752 4753 4754 4755 4756 4757 4758
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4759
	for_each_sched_entity(se) {
4760
		if (se->on_rq)
4761 4762
			break;
		cfs_rq = cfs_rq_of(se);
4763
		enqueue_entity(cfs_rq, se, flags);
4764 4765 4766 4767 4768 4769

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4770
		 */
4771 4772
		if (cfs_rq_throttled(cfs_rq))
			break;
4773
		cfs_rq->h_nr_running++;
4774

4775
		flags = ENQUEUE_WAKEUP;
4776
	}
P
Peter Zijlstra 已提交
4777

P
Peter Zijlstra 已提交
4778
	for_each_sched_entity(se) {
4779
		cfs_rq = cfs_rq_of(se);
4780
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4781

4782 4783 4784
		if (cfs_rq_throttled(cfs_rq))
			break;

4785
		update_load_avg(se, UPDATE_TG);
4786
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4787 4788
	}

Y
Yuyang Du 已提交
4789
	if (!se)
4790
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4791

4792
	hrtick_update(rq);
4793 4794
}

4795 4796
static void set_next_buddy(struct sched_entity *se);

4797 4798 4799 4800 4801
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4802
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4803 4804
{
	struct cfs_rq *cfs_rq;
4805
	struct sched_entity *se = &p->se;
4806
	int task_sleep = flags & DEQUEUE_SLEEP;
4807 4808 4809

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4810
		dequeue_entity(cfs_rq, se, flags);
4811 4812 4813 4814 4815 4816 4817 4818 4819

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4820
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4821

4822
		/* Don't dequeue parent if it has other entities besides us */
4823
		if (cfs_rq->load.weight) {
4824 4825
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4826 4827 4828 4829
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4830 4831
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4832
			break;
4833
		}
4834
		flags |= DEQUEUE_SLEEP;
4835
	}
P
Peter Zijlstra 已提交
4836

P
Peter Zijlstra 已提交
4837
	for_each_sched_entity(se) {
4838
		cfs_rq = cfs_rq_of(se);
4839
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4840

4841 4842 4843
		if (cfs_rq_throttled(cfs_rq))
			break;

4844
		update_load_avg(se, UPDATE_TG);
4845
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4846 4847
	}

Y
Yuyang Du 已提交
4848
	if (!se)
4849
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4850

4851
	hrtick_update(rq);
4852 4853
}

4854
#ifdef CONFIG_SMP
4855 4856 4857 4858 4859

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4860
#ifdef CONFIG_NO_HZ_COMMON
4861 4862 4863 4864 4865
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4866
 * The exact cpuload calculated at every tick would be:
4867
 *
4868 4869 4870 4871 4872 4873 4874
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4875 4876 4877
 *
 * decay_load_missed() below does efficient calculation of
 *
4878 4879 4880 4881 4882 4883
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4884
 *
4885
 * The calculation is approximated on a 128 point scale.
4886 4887
 */
#define DEGRADE_SHIFT		7
4888 4889 4890 4891 4892 4893 4894 4895 4896

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4926
#endif /* CONFIG_NO_HZ_COMMON */
4927

4928
/**
4929
 * __cpu_load_update - update the rq->cpu_load[] statistics
4930 4931 4932 4933
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4934
 * Update rq->cpu_load[] statistics. This function is usually called every
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4961
 * term.
4962
 */
4963 4964
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4965
{
4966
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4978
		old_load = this_rq->cpu_load[i];
4979
#ifdef CONFIG_NO_HZ_COMMON
4980
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4981 4982 4983 4984 4985 4986 4987 4988 4989
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
4990
#endif
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5006 5007 5008 5009 5010 5011
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5012
#ifdef CONFIG_NO_HZ_COMMON
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5041
		cpu_load_update(this_rq, load, pending_updates);
5042 5043 5044
	}
}

5045 5046 5047 5048
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5049
static void cpu_load_update_idle(struct rq *this_rq)
5050 5051 5052 5053
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5054
	if (weighted_cpuload(cpu_of(this_rq)))
5055 5056
		return;

5057
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5058 5059 5060
}

/*
5061 5062 5063 5064
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5065
 */
5066
void cpu_load_update_nohz_start(void)
5067 5068
{
	struct rq *this_rq = this_rq();
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5083
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5084 5085
	struct rq *this_rq = this_rq();
	unsigned long load;
5086 5087 5088 5089

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5090
	load = weighted_cpuload(cpu_of(this_rq));
5091
	raw_spin_lock(&this_rq->lock);
5092
	update_rq_clock(this_rq);
5093
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5094 5095
	raw_spin_unlock(&this_rq->lock);
}
5096 5097 5098 5099 5100 5101 5102 5103
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5104
#ifdef CONFIG_NO_HZ_COMMON
5105 5106
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5107
#endif
5108 5109
	cpu_load_update(this_rq, load, 1);
}
5110 5111 5112 5113

/*
 * Called from scheduler_tick()
 */
5114
void cpu_load_update_active(struct rq *this_rq)
5115
{
5116
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5117 5118 5119 5120 5121

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5122 5123
}

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5157
static unsigned long capacity_of(int cpu)
5158
{
5159
	return cpu_rq(cpu)->cpu_capacity;
5160 5161
}

5162 5163 5164 5165 5166
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5167 5168 5169
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5170
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5171
	unsigned long load_avg = weighted_cpuload(cpu);
5172 5173

	if (nr_running)
5174
		return load_avg / nr_running;
5175 5176 5177 5178

	return 0;
}

5179
#ifdef CONFIG_FAIR_GROUP_SCHED
5180 5181 5182 5183 5184 5185
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5229
 */
P
Peter Zijlstra 已提交
5230
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5231
{
P
Peter Zijlstra 已提交
5232
	struct sched_entity *se = tg->se[cpu];
5233

5234
	if (!tg->parent)	/* the trivial, non-cgroup case */
5235 5236
		return wl;

P
Peter Zijlstra 已提交
5237
	for_each_sched_entity(se) {
5238 5239
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5240

5241
		tg = cfs_rq->tg;
5242

5243 5244 5245
		/*
		 * W = @wg + \Sum rw_j
		 */
5246 5247 5248 5249 5250
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5251

5252 5253 5254
		/*
		 * w = rw_i + @wl
		 */
5255
		w += wl;
5256

5257 5258 5259 5260
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5261
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5262
		else
5263
			wl = scale_load_down(tg->shares);
5264

5265 5266 5267 5268 5269
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5270 5271
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5272 5273 5274 5275

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5276
		wl -= se->avg.load_avg;
5277 5278 5279 5280 5281 5282 5283 5284

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5285 5286
		wg = 0;
	}
5287

P
Peter Zijlstra 已提交
5288
	return wl;
5289 5290
}
#else
P
Peter Zijlstra 已提交
5291

5292
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5293
{
5294
	return wl;
5295
}
P
Peter Zijlstra 已提交
5296

5297 5298
#endif

P
Peter Zijlstra 已提交
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5316 5317
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5318
 *
M
Mike Galbraith 已提交
5319
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5332
 */
5333 5334
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5335 5336
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5337
	int factor = this_cpu_read(sd_llc_size);
5338

M
Mike Galbraith 已提交
5339 5340 5341 5342 5343
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5344 5345
}

5346 5347
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5348
{
5349
	s64 this_load, load;
5350
	s64 this_eff_load, prev_eff_load;
5351
	int idx, this_cpu;
5352
	struct task_group *tg;
5353
	unsigned long weight;
5354
	int balanced;
5355

5356 5357 5358 5359
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5360

5361 5362 5363 5364 5365
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5366 5367
	if (sync) {
		tg = task_group(current);
5368
		weight = current->se.avg.load_avg;
5369

5370
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5371 5372
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5373

5374
	tg = task_group(p);
5375
	weight = p->se.avg.load_avg;
5376

5377 5378
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5379 5380 5381
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5382 5383 5384 5385
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5386 5387
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5388

5389 5390
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5391

5392
	if (this_load > 0) {
5393 5394 5395 5396
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5397
	}
5398

5399
	balanced = this_eff_load <= prev_eff_load;
5400

5401
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5402

5403 5404
	if (!balanced)
		return 0;
5405

5406 5407
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5408 5409

	return 1;
5410 5411
}

5412 5413 5414 5415 5416 5417 5418 5419
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5420 5421 5422 5423 5424
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5425
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5426
		  int this_cpu, int sd_flag)
5427
{
5428
	struct sched_group *idlest = NULL, *group = sd->groups;
5429
	struct sched_group *most_spare_sg = NULL;
5430 5431
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5432
	unsigned long most_spare = 0, this_spare = 0;
5433
	int load_idx = sd->forkexec_idx;
5434 5435 5436
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5437

5438 5439 5440
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5441
	do {
5442 5443
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5444 5445
		int local_group;
		int i;
5446

5447 5448
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5449
					tsk_cpus_allowed(p)))
5450 5451 5452 5453 5454
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5455 5456 5457 5458
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5459
		avg_load = 0;
5460
		runnable_load = 0;
5461
		max_spare_cap = 0;
5462 5463 5464 5465 5466 5467 5468 5469

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5470 5471 5472
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5473 5474 5475 5476 5477

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5478 5479
		}

5480
		/* Adjust by relative CPU capacity of the group */
5481 5482 5483 5484
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5485 5486

		if (local_group) {
5487 5488
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5489 5490
			this_spare = max_spare_cap;
		} else {
5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5506 5507 5508 5509 5510 5511 5512
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5513 5514 5515
		}
	} while (group = group->next, group != sd->groups);

5516 5517 5518 5519 5520 5521
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5522 5523 5524 5525
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5526
	 */
5527 5528 5529
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5530
	if (this_spare > task_util(p) / 2 &&
5531
	    imbalance_scale*this_spare > 100*most_spare)
5532
		return NULL;
5533 5534

	if (most_spare > task_util(p) / 2)
5535 5536
		return most_spare_sg;

5537
skip_spare:
5538 5539 5540 5541
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5542
		return NULL;
5543 5544 5545 5546 5547

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5548 5549 5550 5551 5552 5553 5554 5555 5556 5557
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5558 5559 5560 5561
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5562 5563
	int i;

5564 5565 5566 5567
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5568
	/* Traverse only the allowed CPUs */
5569
	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5592
		} else if (shallowest_idle_cpu == -1) {
5593 5594 5595 5596 5597
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5598 5599 5600
		}
	}

5601
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5602
}
5603

5604
/*
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5670
void __update_idle_core(struct rq *rq)
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5702 5703 5704
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737
	if (!test_idle_cores(target, false))
		return -1;

	cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5738 5739 5740
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768
	for_each_cpu(cpu, cpu_smt_mask(target)) {
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5769
 */
5770 5771
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5772 5773
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5774 5775 5776 5777
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5778 5779 5780 5781 5782 5783
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
	if ((avg_idle / 512) < avg_cost)
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5810
 */
5811
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5812
{
5813
	struct sched_domain *sd;
5814
	int i;
5815

5816 5817
	if (idle_cpu(target))
		return target;
5818 5819

	/*
5820
	 * If the previous cpu is cache affine and idle, don't be stupid.
5821
	 */
5822 5823
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5824

5825
	sd = rcu_dereference(per_cpu(sd_llc, target));
5826 5827
	if (!sd)
		return target;
5828

5829 5830 5831
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5832

5833 5834 5835 5836 5837 5838 5839
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5840

5841 5842
	return target;
}
5843

5844
/*
5845
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5846
 * tasks. The unit of the return value must be the one of capacity so we can
5847 5848
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5869
 */
5870
static int cpu_util(int cpu)
5871
{
5872
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5873 5874
	unsigned long capacity = capacity_orig_of(cpu);

5875
	return (util >= capacity) ? capacity : util;
5876
}
5877

5878 5879 5880 5881 5882
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5919 5920 5921
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5922 5923 5924
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5925
/*
5926 5927 5928
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5929
 *
5930 5931
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5932
 *
5933
 * Returns the target cpu number.
5934 5935 5936
 *
 * preempt must be disabled.
 */
5937
static int
5938
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5939
{
5940
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5941
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5942
	int new_cpu = prev_cpu;
5943
	int want_affine = 0;
5944
	int sync = wake_flags & WF_SYNC;
5945

P
Peter Zijlstra 已提交
5946 5947
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5948 5949
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
			      && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
P
Peter Zijlstra 已提交
5950
	}
5951

5952
	rcu_read_lock();
5953
	for_each_domain(cpu, tmp) {
5954
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5955
			break;
5956

5957
		/*
5958 5959
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5960
		 */
5961 5962 5963
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5964
			break;
5965
		}
5966

5967
		if (tmp->flags & sd_flag)
5968
			sd = tmp;
M
Mike Galbraith 已提交
5969 5970
		else if (!want_affine)
			break;
5971 5972
	}

M
Mike Galbraith 已提交
5973 5974
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5975
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5976
			new_cpu = cpu;
5977
	}
5978

M
Mike Galbraith 已提交
5979 5980
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5981
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5982 5983

	} else while (sd) {
5984
		struct sched_group *group;
5985
		int weight;
5986

5987
		if (!(sd->flags & sd_flag)) {
5988 5989 5990
			sd = sd->child;
			continue;
		}
5991

5992
		group = find_idlest_group(sd, p, cpu, sd_flag);
5993 5994 5995 5996
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
5997

5998
		new_cpu = find_idlest_cpu(group, p, cpu);
5999 6000 6001 6002
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6003
		}
6004 6005 6006

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6007
		weight = sd->span_weight;
6008 6009
		sd = NULL;
		for_each_domain(cpu, tmp) {
6010
			if (weight <= tmp->span_weight)
6011
				break;
6012
			if (tmp->flags & sd_flag)
6013 6014 6015
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6016
	}
6017
	rcu_read_unlock();
6018

6019
	return new_cpu;
6020
}
6021 6022 6023 6024

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6025
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6026
 */
6027
static void migrate_task_rq_fair(struct task_struct *p)
6028
{
6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6055
	/*
6056 6057 6058 6059 6060
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6061
	 */
6062 6063 6064 6065
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6066 6067

	/* We have migrated, no longer consider this task hot */
6068
	p->se.exec_start = 0;
6069
}
6070 6071 6072 6073 6074

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6075 6076
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6077 6078
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6079 6080 6081 6082
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6083 6084
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6094
	 */
6095
	return calc_delta_fair(gran, se);
6096 6097
}

6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6120
	gran = wakeup_gran(curr, se);
6121 6122 6123 6124 6125 6126
	if (vdiff > gran)
		return 1;

	return 0;
}

6127 6128
static void set_last_buddy(struct sched_entity *se)
{
6129 6130 6131 6132 6133
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6134 6135 6136 6137
}

static void set_next_buddy(struct sched_entity *se)
{
6138 6139 6140 6141 6142
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6143 6144
}

6145 6146
static void set_skip_buddy(struct sched_entity *se)
{
6147 6148
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6149 6150
}

6151 6152 6153
/*
 * Preempt the current task with a newly woken task if needed:
 */
6154
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6155 6156
{
	struct task_struct *curr = rq->curr;
6157
	struct sched_entity *se = &curr->se, *pse = &p->se;
6158
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6159
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6160
	int next_buddy_marked = 0;
6161

I
Ingo Molnar 已提交
6162 6163 6164
	if (unlikely(se == pse))
		return;

6165
	/*
6166
	 * This is possible from callers such as attach_tasks(), in which we
6167 6168 6169 6170 6171 6172 6173
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6174
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6175
		set_next_buddy(pse);
6176 6177
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6178

6179 6180 6181
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6182 6183 6184 6185 6186 6187
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6188 6189 6190 6191
	 */
	if (test_tsk_need_resched(curr))
		return;

6192 6193 6194 6195 6196
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6197
	/*
6198 6199
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6200
	 */
6201
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6202
		return;
6203

6204
	find_matching_se(&se, &pse);
6205
	update_curr(cfs_rq_of(se));
6206
	BUG_ON(!pse);
6207 6208 6209 6210 6211 6212 6213
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6214
		goto preempt;
6215
	}
6216

6217
	return;
6218

6219
preempt:
6220
	resched_curr(rq);
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6235 6236
}

6237
static struct task_struct *
6238
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6239 6240 6241
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6242
	struct task_struct *p;
6243
	int new_tasks;
6244

6245
again:
6246 6247
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6248
		goto idle;
6249

6250
	if (prev->sched_class != &fair_sched_class)
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6270 6271 6272 6273 6274
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6275

6276 6277 6278 6279 6280 6281 6282 6283 6284
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6325

6326
	if (!cfs_rq->nr_running)
6327
		goto idle;
6328

6329
	put_prev_task(rq, prev);
6330

6331
	do {
6332
		se = pick_next_entity(cfs_rq, NULL);
6333
		set_next_entity(cfs_rq, se);
6334 6335 6336
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6337
	p = task_of(se);
6338

6339 6340
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6341 6342

	return p;
6343 6344

idle:
6345 6346
	new_tasks = idle_balance(rq, rf);

6347 6348 6349 6350 6351
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6352
	if (new_tasks < 0)
6353 6354
		return RETRY_TASK;

6355
	if (new_tasks > 0)
6356 6357 6358
		goto again;

	return NULL;
6359 6360 6361 6362 6363
}

/*
 * Account for a descheduled task:
 */
6364
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6365 6366 6367 6368 6369 6370
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6371
		put_prev_entity(cfs_rq, se);
6372 6373 6374
	}
}

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6400 6401 6402 6403 6404
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6405
		rq_clock_skip_update(rq, true);
6406 6407 6408 6409 6410
	}

	set_skip_buddy(se);
}

6411 6412 6413 6414
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6415 6416
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6417 6418 6419 6420 6421 6422 6423 6424 6425 6426
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6427
#ifdef CONFIG_SMP
6428
/**************************************************
P
Peter Zijlstra 已提交
6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6445
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6446 6447 6448 6449 6450 6451
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6452
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6453 6454 6455 6456 6457 6458
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6459
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6498
 *             log_2 n
P
Peter Zijlstra 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6544
 */
6545

6546 6547
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6548 6549
enum fbq_type { regular, remote, all };

6550
#define LBF_ALL_PINNED	0x01
6551
#define LBF_NEED_BREAK	0x02
6552 6553
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6554 6555 6556 6557 6558

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6559
	int			src_cpu;
6560 6561 6562 6563

	int			dst_cpu;
	struct rq		*dst_rq;

6564 6565
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6566
	enum cpu_idle_type	idle;
6567
	long			imbalance;
6568 6569 6570
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6571
	unsigned int		flags;
6572 6573 6574 6575

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6576 6577

	enum fbq_type		fbq_type;
6578
	struct list_head	tasks;
6579 6580
};

6581 6582 6583
/*
 * Is this task likely cache-hot:
 */
6584
static int task_hot(struct task_struct *p, struct lb_env *env)
6585 6586 6587
{
	s64 delta;

6588 6589
	lockdep_assert_held(&env->src_rq->lock);

6590 6591 6592 6593 6594 6595 6596 6597 6598
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6599
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6600 6601 6602 6603 6604 6605 6606 6607 6608
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6609
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6610 6611 6612 6613

	return delta < (s64)sysctl_sched_migration_cost;
}

6614
#ifdef CONFIG_NUMA_BALANCING
6615
/*
6616 6617 6618
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6619
 */
6620
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6621
{
6622
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6623
	unsigned long src_faults, dst_faults;
6624 6625
	int src_nid, dst_nid;

6626
	if (!static_branch_likely(&sched_numa_balancing))
6627 6628
		return -1;

6629
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6630
		return -1;
6631 6632 6633 6634

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6635
	if (src_nid == dst_nid)
6636
		return -1;
6637

6638 6639 6640 6641 6642 6643 6644
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6645

6646 6647
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6648
		return 0;
6649

6650 6651 6652 6653 6654 6655
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6656 6657
	}

6658
	return dst_faults < src_faults;
6659 6660
}

6661
#else
6662
static inline int migrate_degrades_locality(struct task_struct *p,
6663 6664
					     struct lb_env *env)
{
6665
	return -1;
6666
}
6667 6668
#endif

6669 6670 6671 6672
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6673
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6674
{
6675
	int tsk_cache_hot;
6676 6677 6678

	lockdep_assert_held(&env->src_rq->lock);

6679 6680
	/*
	 * We do not migrate tasks that are:
6681
	 * 1) throttled_lb_pair, or
6682
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6683 6684
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6685
	 */
6686 6687 6688
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6689
	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6690
		int cpu;
6691

6692
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6693

6694 6695
		env->flags |= LBF_SOME_PINNED;

6696 6697 6698 6699 6700 6701 6702 6703
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6704
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6705 6706
			return 0;

6707 6708 6709
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6710
				env->flags |= LBF_DST_PINNED;
6711 6712 6713
				env->new_dst_cpu = cpu;
				break;
			}
6714
		}
6715

6716 6717
		return 0;
	}
6718 6719

	/* Record that we found atleast one task that could run on dst_cpu */
6720
	env->flags &= ~LBF_ALL_PINNED;
6721

6722
	if (task_running(env->src_rq, p)) {
6723
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6724 6725 6726 6727 6728
		return 0;
	}

	/*
	 * Aggressive migration if:
6729 6730 6731
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6732
	 */
6733 6734 6735
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6736

6737
	if (tsk_cache_hot <= 0 ||
6738
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6739
		if (tsk_cache_hot == 1) {
6740 6741
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6742
		}
6743 6744 6745
		return 1;
	}

6746
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6747
	return 0;
6748 6749
}

6750
/*
6751 6752 6753 6754 6755 6756 6757
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6758
	deactivate_task(env->src_rq, p, 0);
6759 6760 6761
	set_task_cpu(p, env->dst_cpu);
}

6762
/*
6763
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6764 6765
 * part of active balancing operations within "domain".
 *
6766
 * Returns a task if successful and NULL otherwise.
6767
 */
6768
static struct task_struct *detach_one_task(struct lb_env *env)
6769 6770 6771
{
	struct task_struct *p, *n;

6772 6773
	lockdep_assert_held(&env->src_rq->lock);

6774 6775 6776
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6777

6778
		detach_task(p, env);
6779

6780
		/*
6781
		 * Right now, this is only the second place where
6782
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6783
		 * so we can safely collect stats here rather than
6784
		 * inside detach_tasks().
6785
		 */
6786
		schedstat_inc(env->sd->lb_gained[env->idle]);
6787
		return p;
6788
	}
6789
	return NULL;
6790 6791
}

6792 6793
static const unsigned int sched_nr_migrate_break = 32;

6794
/*
6795 6796
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6797
 *
6798
 * Returns number of detached tasks if successful and 0 otherwise.
6799
 */
6800
static int detach_tasks(struct lb_env *env)
6801
{
6802 6803
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6804
	unsigned long load;
6805 6806 6807
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6808

6809
	if (env->imbalance <= 0)
6810
		return 0;
6811

6812
	while (!list_empty(tasks)) {
6813 6814 6815 6816 6817 6818 6819
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6820
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6821

6822 6823
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6824
		if (env->loop > env->loop_max)
6825
			break;
6826 6827

		/* take a breather every nr_migrate tasks */
6828
		if (env->loop > env->loop_break) {
6829
			env->loop_break += sched_nr_migrate_break;
6830
			env->flags |= LBF_NEED_BREAK;
6831
			break;
6832
		}
6833

6834
		if (!can_migrate_task(p, env))
6835 6836 6837
			goto next;

		load = task_h_load(p);
6838

6839
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6840 6841
			goto next;

6842
		if ((load / 2) > env->imbalance)
6843
			goto next;
6844

6845 6846 6847 6848
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6849
		env->imbalance -= load;
6850 6851

#ifdef CONFIG_PREEMPT
6852 6853
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6854
		 * kernels will stop after the first task is detached to minimize
6855 6856
		 * the critical section.
		 */
6857
		if (env->idle == CPU_NEWLY_IDLE)
6858
			break;
6859 6860
#endif

6861 6862 6863 6864
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6865
		if (env->imbalance <= 0)
6866
			break;
6867 6868 6869

		continue;
next:
6870
		list_move_tail(&p->se.group_node, tasks);
6871
	}
6872

6873
	/*
6874 6875 6876
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6877
	 */
6878
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6879

6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
	activate_task(rq, p, 0);
6892
	p->on_rq = TASK_ON_RQ_QUEUED;
6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
	raw_spin_lock(&rq->lock);
	attach_task(rq, p);
	raw_spin_unlock(&rq->lock);
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;

	raw_spin_lock(&env->dst_rq->lock);

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6921

6922 6923 6924 6925
		attach_task(env->dst_rq, p);
	}

	raw_spin_unlock(&env->dst_rq->lock);
6926 6927
}

P
Peter Zijlstra 已提交
6928
#ifdef CONFIG_FAIR_GROUP_SCHED
6929
static void update_blocked_averages(int cpu)
6930 6931
{
	struct rq *rq = cpu_rq(cpu);
6932 6933
	struct cfs_rq *cfs_rq;
	unsigned long flags;
6934

6935 6936
	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
6937

6938 6939 6940 6941
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6942
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6943 6944 6945
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6946

6947
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6948
			update_tg_load_avg(cfs_rq, 0);
6949 6950 6951 6952

		/* Propagate pending load changes to the parent */
		if (cfs_rq->tg->se[cpu])
			update_load_avg(cfs_rq->tg->se[cpu], 0);
6953
	}
6954
	raw_spin_unlock_irqrestore(&rq->lock, flags);
6955 6956
}

6957
/*
6958
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6959 6960 6961
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6962
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6963
{
6964 6965
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6966
	unsigned long now = jiffies;
6967
	unsigned long load;
6968

6969
	if (cfs_rq->last_h_load_update == now)
6970 6971
		return;

6972 6973 6974 6975 6976 6977 6978
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
6979

6980
	if (!se) {
6981
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6982 6983 6984 6985 6986
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
6987 6988
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
6989 6990 6991 6992
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
6993 6994
}

6995
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
6996
{
6997
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
6998

6999
	update_cfs_rq_h_load(cfs_rq);
7000
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7001
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7002 7003
}
#else
7004
static inline void update_blocked_averages(int cpu)
7005
{
7006 7007 7008 7009 7010 7011
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
	unsigned long flags;

	raw_spin_lock_irqsave(&rq->lock, flags);
	update_rq_clock(rq);
7012
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7013
	raw_spin_unlock_irqrestore(&rq->lock, flags);
7014 7015
}

7016
static unsigned long task_h_load(struct task_struct *p)
7017
{
7018
	return p->se.avg.load_avg;
7019
}
P
Peter Zijlstra 已提交
7020
#endif
7021 7022

/********** Helpers for find_busiest_group ************************/
7023 7024 7025 7026 7027 7028 7029

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7030 7031 7032 7033 7034 7035 7036
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7037
	unsigned long load_per_task;
7038
	unsigned long group_capacity;
7039
	unsigned long group_util; /* Total utilization of the group */
7040 7041 7042
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7043
	enum group_type group_type;
7044
	int group_no_capacity;
7045 7046 7047 7048
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7049 7050
};

J
Joonsoo Kim 已提交
7051 7052 7053 7054 7055 7056 7057 7058
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7059
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7060 7061 7062
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7063
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7064 7065
};

7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7078
		.total_capacity = 0UL,
7079 7080
		.busiest_stat = {
			.avg_load = 0UL,
7081 7082
			.sum_nr_running = 0,
			.group_type = group_other,
7083 7084 7085 7086
		},
	};
}

7087 7088 7089
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7090
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7091 7092
 *
 * Return: The load index.
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7115
static unsigned long scale_rt_capacity(int cpu)
7116 7117
{
	struct rq *rq = cpu_rq(cpu);
7118
	u64 total, used, age_stamp, avg;
7119
	s64 delta;
7120

7121 7122 7123 7124
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7125 7126
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7127
	delta = __rq_clock_broken(rq) - age_stamp;
7128

7129 7130 7131 7132
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7133

7134
	used = div_u64(avg, total);
7135

7136 7137
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7138

7139
	return 1;
7140 7141
}

7142
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7143
{
7144
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7145 7146
	struct sched_group *sdg = sd->groups;

7147
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7148

7149
	capacity *= scale_rt_capacity(cpu);
7150
	capacity >>= SCHED_CAPACITY_SHIFT;
7151

7152 7153
	if (!capacity)
		capacity = 1;
7154

7155 7156
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7157
	sdg->sgc->min_capacity = capacity;
7158 7159
}

7160
void update_group_capacity(struct sched_domain *sd, int cpu)
7161 7162 7163
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7164
	unsigned long capacity, min_capacity;
7165 7166 7167 7168
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7169
	sdg->sgc->next_update = jiffies + interval;
7170 7171

	if (!child) {
7172
		update_cpu_capacity(sd, cpu);
7173 7174 7175
		return;
	}

7176
	capacity = 0;
7177
	min_capacity = ULONG_MAX;
7178

P
Peter Zijlstra 已提交
7179 7180 7181 7182 7183 7184
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7185
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7186
			struct sched_group_capacity *sgc;
7187
			struct rq *rq = cpu_rq(cpu);
7188

7189
			/*
7190
			 * build_sched_domains() -> init_sched_groups_capacity()
7191 7192 7193
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7194 7195
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7196
			 *
7197
			 * This avoids capacity from being 0 and
7198 7199 7200
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7201
				capacity += capacity_of(cpu);
7202 7203 7204
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7205
			}
7206

7207
			min_capacity = min(capacity, min_capacity);
7208
		}
P
Peter Zijlstra 已提交
7209 7210 7211 7212
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7213
		 */
P
Peter Zijlstra 已提交
7214 7215 7216

		group = child->groups;
		do {
7217 7218 7219 7220
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7221 7222 7223
			group = group->next;
		} while (group != child->groups);
	}
7224

7225
	sdg->sgc->capacity = capacity;
7226
	sdg->sgc->min_capacity = min_capacity;
7227 7228
}

7229
/*
7230 7231 7232
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7233 7234
 */
static inline int
7235
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7236
{
7237 7238
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7239 7240
}

7241 7242 7243 7244 7245 7246 7247 7248
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
 * groups is inadequate due to tsk_cpus_allowed() constraints.
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7249 7250
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7251 7252 7253 7254 7255 7256
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7257 7258
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7259 7260
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7261
 * update_sd_pick_busiest(). And calculate_imbalance() and
7262
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7263 7264 7265 7266 7267 7268 7269
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7270
static inline int sg_imbalanced(struct sched_group *group)
7271
{
7272
	return group->sgc->imbalance;
7273 7274
}

7275
/*
7276 7277 7278
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7279 7280
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7281 7282 7283 7284 7285
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7286
 */
7287 7288
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7289
{
7290 7291
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7292

7293
	if ((sgs->group_capacity * 100) >
7294
			(sgs->group_util * env->sd->imbalance_pct))
7295
		return true;
7296

7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7313

7314
	if ((sgs->group_capacity * 100) <
7315
			(sgs->group_util * env->sd->imbalance_pct))
7316
		return true;
7317

7318
	return false;
7319 7320
}

7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7332 7333 7334
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7335
{
7336
	if (sgs->group_no_capacity)
7337 7338 7339 7340 7341 7342 7343 7344
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7345 7346
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7347
 * @env: The load balancing environment.
7348 7349 7350 7351
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7352
 * @overload: Indicate more than one runnable task for any CPU.
7353
 */
7354 7355
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7356 7357
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7358
{
7359
	unsigned long load;
7360
	int i, nr_running;
7361

7362 7363
	memset(sgs, 0, sizeof(*sgs));

7364
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7365 7366 7367
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7368
		if (local_group)
7369
			load = target_load(i, load_idx);
7370
		else
7371 7372 7373
			load = source_load(i, load_idx);

		sgs->group_load += load;
7374
		sgs->group_util += cpu_util(i);
7375
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7376

7377 7378
		nr_running = rq->nr_running;
		if (nr_running > 1)
7379 7380
			*overload = true;

7381 7382 7383 7384
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7385
		sgs->sum_weighted_load += weighted_cpuload(i);
7386 7387 7388 7389
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7390
			sgs->idle_cpus++;
7391 7392
	}

7393 7394
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7395
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7396

7397
	if (sgs->sum_nr_running)
7398
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7399

7400
	sgs->group_weight = group->group_weight;
7401

7402
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7403
	sgs->group_type = group_classify(group, sgs);
7404 7405
}

7406 7407
/**
 * update_sd_pick_busiest - return 1 on busiest group
7408
 * @env: The load balancing environment.
7409 7410
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7411
 * @sgs: sched_group statistics
7412 7413 7414
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7415 7416 7417
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7418
 */
7419
static bool update_sd_pick_busiest(struct lb_env *env,
7420 7421
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7422
				   struct sg_lb_stats *sgs)
7423
{
7424
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7425

7426
	if (sgs->group_type > busiest->group_type)
7427 7428
		return true;

7429 7430 7431 7432 7433 7434
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7449 7450
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7451 7452
		return true;

7453 7454 7455
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7456
	/*
T
Tim Chen 已提交
7457 7458 7459
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7460
	 */
T
Tim Chen 已提交
7461 7462
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7463 7464 7465
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7466 7467 7468
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7469 7470 7471 7472 7473 7474
			return true;
	}

	return false;
}

7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7505
/**
7506
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7507
 * @env: The load balancing environment.
7508 7509
 * @sds: variable to hold the statistics for this sched_domain.
 */
7510
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7511
{
7512 7513
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
7514
	struct sg_lb_stats tmp_sgs;
7515
	int load_idx, prefer_sibling = 0;
7516
	bool overload = false;
7517 7518 7519 7520

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7521
	load_idx = get_sd_load_idx(env->sd, env->idle);
7522 7523

	do {
J
Joonsoo Kim 已提交
7524
		struct sg_lb_stats *sgs = &tmp_sgs;
7525 7526
		int local_group;

7527
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7528 7529 7530
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
7531 7532

			if (env->idle != CPU_NEWLY_IDLE ||
7533 7534
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7535
		}
7536

7537 7538
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7539

7540 7541 7542
		if (local_group)
			goto next_group;

7543 7544
		/*
		 * In case the child domain prefers tasks go to siblings
7545
		 * first, lower the sg capacity so that we'll try
7546 7547
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7548 7549 7550 7551
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7552
		 */
7553
		if (prefer_sibling && sds->local &&
7554 7555 7556
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7557
			sgs->group_type = group_classify(sg, sgs);
7558
		}
7559

7560
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7561
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7562
			sds->busiest_stat = *sgs;
7563 7564
		}

7565 7566 7567
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7568
		sds->total_capacity += sgs->group_capacity;
7569

7570
		sg = sg->next;
7571
	} while (sg != env->sd->groups);
7572 7573 7574

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7575 7576 7577 7578 7579 7580 7581

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7601
 * Return: 1 when packing is required and a task should be moved to
7602 7603
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7604
 * @env: The load balancing environment.
7605 7606
 * @sds: Statistics of the sched_domain which is to be packed
 */
7607
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7608 7609 7610
{
	int busiest_cpu;

7611
	if (!(env->sd->flags & SD_ASYM_PACKING))
7612 7613
		return 0;

7614 7615 7616
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7617 7618 7619
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7620 7621
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7622 7623
		return 0;

7624
	env->imbalance = DIV_ROUND_CLOSEST(
7625
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7626
		SCHED_CAPACITY_SCALE);
7627

7628
	return 1;
7629 7630 7631 7632 7633 7634
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7635
 * @env: The load balancing environment.
7636 7637
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7638 7639
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7640
{
7641
	unsigned long tmp, capa_now = 0, capa_move = 0;
7642
	unsigned int imbn = 2;
7643
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7644
	struct sg_lb_stats *local, *busiest;
7645

J
Joonsoo Kim 已提交
7646 7647
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7648

J
Joonsoo Kim 已提交
7649 7650 7651 7652
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7653

J
Joonsoo Kim 已提交
7654
	scaled_busy_load_per_task =
7655
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7656
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7657

7658 7659
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7660
		env->imbalance = busiest->load_per_task;
7661 7662 7663 7664 7665
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7666
	 * however we may be able to increase total CPU capacity used by
7667 7668 7669
	 * moving them.
	 */

7670
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7671
			min(busiest->load_per_task, busiest->avg_load);
7672
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7673
			min(local->load_per_task, local->avg_load);
7674
	capa_now /= SCHED_CAPACITY_SCALE;
7675 7676

	/* Amount of load we'd subtract */
7677
	if (busiest->avg_load > scaled_busy_load_per_task) {
7678
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7679
			    min(busiest->load_per_task,
7680
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7681
	}
7682 7683

	/* Amount of load we'd add */
7684
	if (busiest->avg_load * busiest->group_capacity <
7685
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7686 7687
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7688
	} else {
7689
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7690
		      local->group_capacity;
J
Joonsoo Kim 已提交
7691
	}
7692
	capa_move += local->group_capacity *
7693
		    min(local->load_per_task, local->avg_load + tmp);
7694
	capa_move /= SCHED_CAPACITY_SCALE;
7695 7696

	/* Move if we gain throughput */
7697
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7698
		env->imbalance = busiest->load_per_task;
7699 7700 7701 7702 7703
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7704
 * @env: load balance environment
7705 7706
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7707
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7708
{
7709
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7710 7711 7712 7713
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7714

7715
	if (busiest->group_type == group_imbalanced) {
7716 7717 7718 7719
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7720 7721
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7722 7723
	}

7724
	/*
7725 7726 7727 7728
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7729
	 */
7730 7731
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7732 7733
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7734 7735
	}

7736 7737 7738 7739 7740
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7741
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7742
		if (load_above_capacity > busiest->group_capacity) {
7743
			load_above_capacity -= busiest->group_capacity;
7744
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7745 7746
			load_above_capacity /= busiest->group_capacity;
		} else
7747
			load_above_capacity = ~0UL;
7748 7749 7750 7751 7752 7753
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7754 7755
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7756
	 */
7757
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7758 7759

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7760
	env->imbalance = min(
7761 7762
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7763
	) / SCHED_CAPACITY_SCALE;
7764 7765 7766

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7767
	 * there is no guarantee that any tasks will be moved so we'll have
7768 7769 7770
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7771
	if (env->imbalance < busiest->load_per_task)
7772
		return fix_small_imbalance(env, sds);
7773
}
7774

7775 7776 7777 7778
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7779
 * if there is an imbalance.
7780 7781 7782 7783
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7784
 * @env: The load balancing environment.
7785
 *
7786
 * Return:	- The busiest group if imbalance exists.
7787
 */
J
Joonsoo Kim 已提交
7788
static struct sched_group *find_busiest_group(struct lb_env *env)
7789
{
J
Joonsoo Kim 已提交
7790
	struct sg_lb_stats *local, *busiest;
7791 7792
	struct sd_lb_stats sds;

7793
	init_sd_lb_stats(&sds);
7794 7795 7796 7797 7798

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7799
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7800 7801
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7802

7803
	/* ASYM feature bypasses nice load balance check */
7804
	if (check_asym_packing(env, &sds))
7805 7806
		return sds.busiest;

7807
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7808
	if (!sds.busiest || busiest->sum_nr_running == 0)
7809 7810
		goto out_balanced;

7811 7812
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7813

P
Peter Zijlstra 已提交
7814 7815
	/*
	 * If the busiest group is imbalanced the below checks don't
7816
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7817 7818
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7819
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7820 7821
		goto force_balance;

7822
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7823 7824
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7825 7826
		goto force_balance;

7827
	/*
7828
	 * If the local group is busier than the selected busiest group
7829 7830
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7831
	if (local->avg_load >= busiest->avg_load)
7832 7833
		goto out_balanced;

7834 7835 7836 7837
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7838
	if (local->avg_load >= sds.avg_load)
7839 7840
		goto out_balanced;

7841
	if (env->idle == CPU_IDLE) {
7842
		/*
7843 7844 7845 7846 7847
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7848
		 */
7849 7850
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7851
			goto out_balanced;
7852 7853 7854 7855 7856
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7857 7858
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7859
			goto out_balanced;
7860
	}
7861

7862
force_balance:
7863
	/* Looks like there is an imbalance. Compute it */
7864
	calculate_imbalance(env, &sds);
7865 7866 7867
	return sds.busiest;

out_balanced:
7868
	env->imbalance = 0;
7869 7870 7871 7872 7873 7874
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7875
static struct rq *find_busiest_queue(struct lb_env *env,
7876
				     struct sched_group *group)
7877 7878
{
	struct rq *busiest = NULL, *rq;
7879
	unsigned long busiest_load = 0, busiest_capacity = 1;
7880 7881
	int i;

7882
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7883
		unsigned long capacity, wl;
7884 7885 7886 7887
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7888

7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7911
		capacity = capacity_of(i);
7912

7913
		wl = weighted_cpuload(i);
7914

7915 7916
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7917
		 * which is not scaled with the cpu capacity.
7918
		 */
7919 7920 7921

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7922 7923
			continue;

7924 7925
		/*
		 * For the load comparisons with the other cpu's, consider
7926 7927 7928
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7929
		 *
7930
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7931
		 * multiplication to rid ourselves of the division works out
7932 7933
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7934
		 */
7935
		if (wl * busiest_capacity > busiest_load * capacity) {
7936
			busiest_load = wl;
7937
			busiest_capacity = capacity;
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

7951
static int need_active_balance(struct lb_env *env)
7952
{
7953 7954 7955
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7956 7957 7958

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
7959 7960
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
7961
		 */
T
Tim Chen 已提交
7962 7963
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7964
			return 1;
7965 7966
	}

7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

7980 7981 7982
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

7983 7984
static int active_load_balance_cpu_stop(void *data);

7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8016
	return balance_cpu == env->dst_cpu;
8017 8018
}

8019 8020 8021 8022 8023 8024
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8025
			int *continue_balancing)
8026
{
8027
	int ld_moved, cur_ld_moved, active_balance = 0;
8028
	struct sched_domain *sd_parent = sd->parent;
8029 8030 8031
	struct sched_group *group;
	struct rq *busiest;
	unsigned long flags;
8032
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8033

8034 8035
	struct lb_env env = {
		.sd		= sd,
8036 8037
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8038
		.dst_grpmask    = sched_group_cpus(sd->groups),
8039
		.idle		= idle,
8040
		.loop_break	= sched_nr_migrate_break,
8041
		.cpus		= cpus,
8042
		.fbq_type	= all,
8043
		.tasks		= LIST_HEAD_INIT(env.tasks),
8044 8045
	};

8046 8047 8048 8049
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8050
	if (idle == CPU_NEWLY_IDLE)
8051 8052
		env.dst_grpmask = NULL;

8053 8054
	cpumask_copy(cpus, cpu_active_mask);

8055
	schedstat_inc(sd->lb_count[idle]);
8056 8057

redo:
8058 8059
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8060
		goto out_balanced;
8061
	}
8062

8063
	group = find_busiest_group(&env);
8064
	if (!group) {
8065
		schedstat_inc(sd->lb_nobusyg[idle]);
8066 8067 8068
		goto out_balanced;
	}

8069
	busiest = find_busiest_queue(&env, group);
8070
	if (!busiest) {
8071
		schedstat_inc(sd->lb_nobusyq[idle]);
8072 8073 8074
		goto out_balanced;
	}

8075
	BUG_ON(busiest == env.dst_rq);
8076

8077
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8078

8079 8080 8081
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8082 8083 8084 8085 8086 8087 8088 8089
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8090
		env.flags |= LBF_ALL_PINNED;
8091
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8092

8093
more_balance:
8094
		raw_spin_lock_irqsave(&busiest->lock, flags);
8095
		update_rq_clock(busiest);
8096 8097 8098 8099 8100

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8101
		cur_ld_moved = detach_tasks(&env);
8102 8103

		/*
8104 8105 8106 8107 8108
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8109
		 */
8110 8111 8112 8113 8114 8115 8116 8117

		raw_spin_unlock(&busiest->lock);

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8118
		local_irq_restore(flags);
8119

8120 8121 8122 8123 8124
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8144
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8145

8146 8147 8148
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8149
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8150
			env.dst_cpu	 = env.new_dst_cpu;
8151
			env.flags	&= ~LBF_DST_PINNED;
8152 8153
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8154

8155 8156 8157 8158 8159 8160
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8161

8162 8163 8164 8165
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8166
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8167

8168
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8169 8170 8171
				*group_imbalance = 1;
		}

8172
		/* All tasks on this runqueue were pinned by CPU affinity */
8173
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8174
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8175 8176 8177
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8178
				goto redo;
8179
			}
8180
			goto out_all_pinned;
8181 8182 8183 8184
		}
	}

	if (!ld_moved) {
8185
		schedstat_inc(sd->lb_failed[idle]);
8186 8187 8188 8189 8190 8191 8192 8193
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8194

8195
		if (need_active_balance(&env)) {
8196 8197
			raw_spin_lock_irqsave(&busiest->lock, flags);

8198 8199 8200
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8201 8202
			 */
			if (!cpumask_test_cpu(this_cpu,
8203
					tsk_cpus_allowed(busiest->curr))) {
8204 8205
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8206
				env.flags |= LBF_ALL_PINNED;
8207 8208 8209
				goto out_one_pinned;
			}

8210 8211 8212 8213 8214
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8215 8216 8217 8218 8219 8220
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8221

8222
			if (active_balance) {
8223 8224 8225
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8226
			}
8227

8228
			/* We've kicked active balancing, force task migration. */
8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8242
		 * detach_tasks).
8243 8244 8245 8246 8247 8248 8249 8250
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8268
	schedstat_inc(sd->lb_balanced[idle]);
8269 8270 8271 8272 8273

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8274
	if (((env.flags & LBF_ALL_PINNED) &&
8275
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8276 8277 8278
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8279
	ld_moved = 0;
8280 8281 8282 8283
out:
	return ld_moved;
}

8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8300
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8301 8302 8303
{
	unsigned long interval, next;

8304 8305
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8306 8307 8308 8309 8310 8311
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8312 8313 8314 8315
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8316
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8317
{
8318 8319
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8320 8321
	struct sched_domain *sd;
	int pulled_task = 0;
8322
	u64 curr_cost = 0;
8323

8324 8325 8326 8327 8328 8329
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8330 8331 8332 8333 8334 8335 8336 8337
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8338 8339
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8340 8341 8342
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8343
			update_next_balance(sd, &next_balance);
8344 8345
		rcu_read_unlock();

8346
		goto out;
8347
	}
8348

8349 8350
	raw_spin_unlock(&this_rq->lock);

8351
	update_blocked_averages(this_cpu);
8352
	rcu_read_lock();
8353
	for_each_domain(this_cpu, sd) {
8354
		int continue_balancing = 1;
8355
		u64 t0, domain_cost;
8356 8357 8358 8359

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8360
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8361
			update_next_balance(sd, &next_balance);
8362
			break;
8363
		}
8364

8365
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8366 8367
			t0 = sched_clock_cpu(this_cpu);

8368
			pulled_task = load_balance(this_cpu, this_rq,
8369 8370
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8371 8372 8373 8374 8375 8376

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8377
		}
8378

8379
		update_next_balance(sd, &next_balance);
8380 8381 8382 8383 8384 8385

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8386 8387
			break;
	}
8388
	rcu_read_unlock();
8389 8390 8391

	raw_spin_lock(&this_rq->lock);

8392 8393 8394
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8395
	/*
8396 8397 8398
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8399
	 */
8400
	if (this_rq->cfs.h_nr_running && !pulled_task)
8401
		pulled_task = 1;
8402

8403 8404 8405
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8406
		this_rq->next_balance = next_balance;
8407

8408
	/* Is there a task of a high priority class? */
8409
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8410 8411
		pulled_task = -1;

8412
	if (pulled_task)
8413 8414
		this_rq->idle_stamp = 0;

8415 8416
	rq_repin_lock(this_rq, rf);

8417
	return pulled_task;
8418 8419 8420
}

/*
8421 8422 8423 8424
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8425
 */
8426
static int active_load_balance_cpu_stop(void *data)
8427
{
8428 8429
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8430
	int target_cpu = busiest_rq->push_cpu;
8431
	struct rq *target_rq = cpu_rq(target_cpu);
8432
	struct sched_domain *sd;
8433
	struct task_struct *p = NULL;
8434 8435 8436 8437 8438 8439 8440

	raw_spin_lock_irq(&busiest_rq->lock);

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8441 8442 8443

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8444
		goto out_unlock;
8445 8446 8447 8448 8449 8450 8451 8452 8453

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8454
	rcu_read_lock();
8455 8456 8457 8458 8459 8460 8461
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8462 8463
		struct lb_env env = {
			.sd		= sd,
8464 8465 8466 8467
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8468 8469 8470
			.idle		= CPU_IDLE,
		};

8471
		schedstat_inc(sd->alb_count);
8472
		update_rq_clock(busiest_rq);
8473

8474
		p = detach_one_task(&env);
8475
		if (p) {
8476
			schedstat_inc(sd->alb_pushed);
8477 8478 8479
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8480
			schedstat_inc(sd->alb_failed);
8481
		}
8482
	}
8483
	rcu_read_unlock();
8484 8485
out_unlock:
	busiest_rq->active_balance = 0;
8486 8487 8488 8489 8490 8491 8492
	raw_spin_unlock(&busiest_rq->lock);

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8493
	return 0;
8494 8495
}

8496 8497 8498 8499 8500
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8501
#ifdef CONFIG_NO_HZ_COMMON
8502 8503 8504 8505 8506 8507
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8508
static struct {
8509
	cpumask_var_t idle_cpus_mask;
8510
	atomic_t nr_cpus;
8511 8512
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8513

8514
static inline int find_new_ilb(void)
8515
{
8516
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8517

8518 8519 8520 8521
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8522 8523
}

8524 8525 8526 8527 8528
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8529
static void nohz_balancer_kick(void)
8530 8531 8532 8533 8534
{
	int ilb_cpu;

	nohz.next_balance++;

8535
	ilb_cpu = find_new_ilb();
8536

8537 8538
	if (ilb_cpu >= nr_cpu_ids)
		return;
8539

8540
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8541 8542 8543 8544 8545 8546 8547 8548
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8549 8550 8551
	return;
}

8552
void nohz_balance_exit_idle(unsigned int cpu)
8553 8554
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8555 8556 8557 8558 8559 8560 8561
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8562 8563 8564 8565
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8566 8567 8568
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8569
	int cpu = smp_processor_id();
8570 8571

	rcu_read_lock();
8572
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8573 8574 8575 8576 8577

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8578
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8579
unlock:
8580 8581 8582 8583 8584 8585
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8586
	int cpu = smp_processor_id();
8587 8588

	rcu_read_lock();
8589
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8590 8591 8592 8593 8594

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8595
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8596
unlock:
8597 8598 8599
	rcu_read_unlock();
}

8600
/*
8601
 * This routine will record that the cpu is going idle with tick stopped.
8602
 * This info will be used in performing idle load balancing in the future.
8603
 */
8604
void nohz_balance_enter_idle(int cpu)
8605
{
8606 8607 8608 8609 8610 8611
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8612 8613
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8614

8615 8616 8617 8618 8619 8620
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8621 8622 8623
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8624 8625 8626 8627 8628
}
#endif

static DEFINE_SPINLOCK(balancing);

8629 8630 8631 8632
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8633
void update_max_interval(void)
8634 8635 8636 8637
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8638 8639 8640 8641
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8642
 * Balancing parameters are set up in init_sched_domains.
8643
 */
8644
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8645
{
8646
	int continue_balancing = 1;
8647
	int cpu = rq->cpu;
8648
	unsigned long interval;
8649
	struct sched_domain *sd;
8650 8651 8652
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8653 8654
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8655

8656
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8657

8658
	rcu_read_lock();
8659
	for_each_domain(cpu, sd) {
8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8672 8673 8674
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8686
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8687 8688 8689 8690 8691 8692 8693 8694

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8695
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8696
				/*
8697
				 * The LBF_DST_PINNED logic could have changed
8698 8699
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8700
				 */
8701
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8702 8703
			}
			sd->last_balance = jiffies;
8704
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8705 8706 8707 8708 8709 8710 8711 8712
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8713 8714
	}
	if (need_decay) {
8715
		/*
8716 8717
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8718
		 */
8719 8720
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8721
	}
8722
	rcu_read_unlock();
8723 8724 8725 8726 8727 8728

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8729
	if (likely(update_next_balance)) {
8730
		rq->next_balance = next_balance;
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8745 8746
}

8747
#ifdef CONFIG_NO_HZ_COMMON
8748
/*
8749
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8750 8751
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8752
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8753
{
8754
	int this_cpu = this_rq->cpu;
8755 8756
	struct rq *rq;
	int balance_cpu;
8757 8758 8759
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8760

8761 8762 8763
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8764 8765

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8766
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8767 8768 8769 8770 8771 8772 8773
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8774
		if (need_resched())
8775 8776
			break;

V
Vincent Guittot 已提交
8777 8778
		rq = cpu_rq(balance_cpu);

8779 8780 8781 8782 8783 8784 8785
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
			raw_spin_lock_irq(&rq->lock);
			update_rq_clock(rq);
8786
			cpu_load_update_idle(rq);
8787 8788 8789
			raw_spin_unlock_irq(&rq->lock);
			rebalance_domains(rq, CPU_IDLE);
		}
8790

8791 8792 8793 8794
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8795
	}
8796 8797 8798 8799 8800 8801 8802 8803

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8804 8805
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8806 8807 8808
}

/*
8809
 * Current heuristic for kicking the idle load balancer in the presence
8810
 * of an idle cpu in the system.
8811
 *   - This rq has more than one task.
8812 8813 8814 8815
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8816 8817
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8818
 */
8819
static inline bool nohz_kick_needed(struct rq *rq)
8820 8821
{
	unsigned long now = jiffies;
8822
	struct sched_domain_shared *sds;
8823
	struct sched_domain *sd;
T
Tim Chen 已提交
8824
	int nr_busy, i, cpu = rq->cpu;
8825
	bool kick = false;
8826

8827
	if (unlikely(rq->idle_balance))
8828
		return false;
8829

8830 8831 8832 8833
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8834
	set_cpu_sd_state_busy();
8835
	nohz_balance_exit_idle(cpu);
8836 8837 8838 8839 8840 8841

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8842
		return false;
8843 8844

	if (time_before(now, nohz.next_balance))
8845
		return false;
8846

8847
	if (rq->nr_running >= 2)
8848
		return true;
8849

8850
	rcu_read_lock();
8851 8852 8853 8854 8855 8856 8857
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8858 8859 8860 8861 8862
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8863
	}
8864

8865 8866 8867 8868 8869 8870 8871 8872
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8873

8874
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8875 8876 8877 8878 8879
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8880

T
Tim Chen 已提交
8881 8882 8883 8884 8885 8886
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8887
unlock:
8888
	rcu_read_unlock();
8889
	return kick;
8890 8891
}
#else
8892
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8893 8894 8895 8896 8897 8898
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8899
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8900
{
8901
	struct rq *this_rq = this_rq();
8902
	enum cpu_idle_type idle = this_rq->idle_balance ?
8903 8904 8905
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8906
	 * If this cpu has a pending nohz_balance_kick, then do the
8907
	 * balancing on behalf of the other idle cpus whose ticks are
8908 8909 8910 8911
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8912
	 */
8913
	nohz_idle_balance(this_rq, idle);
8914
	rebalance_domains(this_rq, idle);
8915 8916 8917 8918 8919
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8920
void trigger_load_balance(struct rq *rq)
8921 8922
{
	/* Don't need to rebalance while attached to NULL domain */
8923 8924 8925 8926
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8927
		raise_softirq(SCHED_SOFTIRQ);
8928
#ifdef CONFIG_NO_HZ_COMMON
8929
	if (nohz_kick_needed(rq))
8930
		nohz_balancer_kick();
8931
#endif
8932 8933
}

8934 8935 8936
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8937 8938

	update_runtime_enabled(rq);
8939 8940 8941 8942 8943
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8944 8945 8946

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8947 8948
}

8949
#endif /* CONFIG_SMP */
8950

8951 8952 8953
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8954
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8955 8956 8957 8958 8959 8960
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8961
		entity_tick(cfs_rq, se, queued);
8962
	}
8963

8964
	if (static_branch_unlikely(&sched_numa_balancing))
8965
		task_tick_numa(rq, curr);
8966 8967 8968
}

/*
P
Peter Zijlstra 已提交
8969 8970 8971
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8972
 */
P
Peter Zijlstra 已提交
8973
static void task_fork_fair(struct task_struct *p)
8974
{
8975 8976
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
8977
	struct rq *rq = this_rq();
8978

8979
	raw_spin_lock(&rq->lock);
8980 8981
	update_rq_clock(rq);

8982 8983
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
8984 8985
	if (curr) {
		update_curr(cfs_rq);
8986
		se->vruntime = curr->vruntime;
8987
	}
8988
	place_entity(cfs_rq, se, 1);
8989

P
Peter Zijlstra 已提交
8990
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
8991
		/*
8992 8993 8994
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
8995
		swap(curr->vruntime, se->vruntime);
8996
		resched_curr(rq);
8997
	}
8998

8999
	se->vruntime -= cfs_rq->min_vruntime;
9000
	raw_spin_unlock(&rq->lock);
9001 9002
}

9003 9004 9005 9006
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9007 9008
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9009
{
9010
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9011 9012
		return;

9013 9014 9015 9016 9017
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9018
	if (rq->curr == p) {
9019
		if (p->prio > oldprio)
9020
			resched_curr(rq);
9021
	} else
9022
		check_preempt_curr(rq, p, 0);
9023 9024
}

9025
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9026 9027 9028 9029
{
	struct sched_entity *se = &p->se;

	/*
9030 9031 9032 9033 9034 9035 9036 9037 9038 9039
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9040
	 *
9041 9042 9043 9044
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9045
	 */
9046 9047 9048 9049 9050 9051
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9077
static void detach_entity_cfs_rq(struct sched_entity *se)
9078 9079 9080
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9081
	/* Catch up with the cfs_rq and remove our load when we leave */
9082
	update_load_avg(se, 0);
9083
	detach_entity_load_avg(cfs_rq, se);
9084
	update_tg_load_avg(cfs_rq, false);
9085
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9086 9087
}

9088
static void attach_entity_cfs_rq(struct sched_entity *se)
9089
{
9090
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9091 9092

#ifdef CONFIG_FAIR_GROUP_SCHED
9093 9094 9095 9096 9097 9098
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9099

9100
	/* Synchronize entity with its cfs_rq */
9101
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9102
	attach_entity_load_avg(cfs_rq, se);
9103
	update_tg_load_avg(cfs_rq, false);
9104
	propagate_entity_cfs_rq(se);
9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9130 9131 9132 9133

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9134

9135 9136 9137 9138 9139 9140 9141 9142
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9143

9144
	if (task_on_rq_queued(p)) {
9145
		/*
9146 9147 9148
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9149
		 */
9150 9151 9152 9153
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9154
	}
9155 9156
}

9157 9158 9159 9160 9161 9162 9163 9164 9165
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9166 9167 9168 9169 9170 9171 9172
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9173 9174
}

9175 9176 9177 9178 9179 9180 9181
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9182
#ifdef CONFIG_SMP
9183 9184 9185
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9186 9187
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9188
#endif
9189 9190
}

P
Peter Zijlstra 已提交
9191
#ifdef CONFIG_FAIR_GROUP_SCHED
9192 9193 9194 9195 9196 9197 9198 9199
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9200
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9201
{
9202
	detach_task_cfs_rq(p);
9203
	set_task_rq(p, task_cpu(p));
9204 9205 9206 9207 9208

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9209
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9210
}
9211

9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9225 9226 9227 9228 9229 9230 9231 9232 9233
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9234
		if (tg->se)
9235 9236 9237 9238 9239 9240 9241 9242 9243 9244
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9245
	struct cfs_rq *cfs_rq;
9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9272
		init_entity_runnable_average(se);
9273 9274 9275 9276 9277 9278 9279 9280 9281 9282
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9294
		update_rq_clock(rq);
9295
		attach_entity_cfs_rq(se);
9296
		sync_throttle(tg, i);
9297 9298 9299 9300
		raw_spin_unlock_irq(&rq->lock);
	}
}

9301
void unregister_fair_sched_group(struct task_group *tg)
9302 9303
{
	unsigned long flags;
9304 9305
	struct rq *rq;
	int cpu;
9306

9307 9308 9309
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9310

9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9343
	if (!parent) {
9344
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9345 9346
		se->depth = 0;
	} else {
9347
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9348 9349
		se->depth = parent->depth + 1;
	}
9350 9351

	se->my_q = cfs_rq;
9352 9353
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;
	unsigned long flags;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
		struct sched_entity *se;

		se = tg->se[i];
		/* Propagate contribution to hierarchy */
		raw_spin_lock_irqsave(&rq->lock, flags);
9384 9385 9386

		/* Possible calls to update_curr() need rq clock */
		update_rq_clock(rq);
9387 9388 9389 9390
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9407 9408
void online_fair_sched_group(struct task_group *tg) { }

9409
void unregister_fair_sched_group(struct task_group *tg) { }
9410 9411 9412

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9413

9414
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9415 9416 9417 9418 9419 9420 9421 9422 9423
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9424
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9425 9426 9427 9428

	return rr_interval;
}

9429 9430 9431
/*
 * All the scheduling class methods:
 */
9432
const struct sched_class fair_sched_class = {
9433
	.next			= &idle_sched_class,
9434 9435 9436
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9437
	.yield_to_task		= yield_to_task_fair,
9438

I
Ingo Molnar 已提交
9439
	.check_preempt_curr	= check_preempt_wakeup,
9440 9441 9442 9443

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9444
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9445
	.select_task_rq		= select_task_rq_fair,
9446
	.migrate_task_rq	= migrate_task_rq_fair,
9447

9448 9449
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9450

9451
	.task_dead		= task_dead_fair,
9452
	.set_cpus_allowed	= set_cpus_allowed_common,
9453
#endif
9454

9455
	.set_curr_task          = set_curr_task_fair,
9456
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9457
	.task_fork		= task_fork_fair,
9458 9459

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9460
	.switched_from		= switched_from_fair,
9461
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9462

9463 9464
	.get_rr_interval	= get_rr_interval_fair,

9465 9466
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9467
#ifdef CONFIG_FAIR_GROUP_SCHED
9468
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9469
#endif
9470 9471 9472
};

#ifdef CONFIG_SCHED_DEBUG
9473
void print_cfs_stats(struct seq_file *m, int cpu)
9474 9475 9476
{
	struct cfs_rq *cfs_rq;

9477
	rcu_read_lock();
9478
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9479
		print_cfs_rq(m, cpu, cfs_rq);
9480
	rcu_read_unlock();
9481
}
9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9503 9504 9505 9506 9507 9508

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9509
#ifdef CONFIG_NO_HZ_COMMON
9510
	nohz.next_balance = jiffies;
9511 9512 9513 9514 9515
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}