fair.c 248.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371 372 373 374 375
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
376
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
377 378 379
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
380
		return se->cfs_rq;
P
Peter Zijlstra 已提交
381

P
Peter Zijlstra 已提交
382
	return NULL;
P
Peter Zijlstra 已提交
383 384 385 386 387 388 389
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

390 391 392 393 394 395 396 397 398 399 400 401 402
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
403 404
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

422 423 424 425 426 427
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
428

429 430 431
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
432 433 434 435
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
436 437
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
438

P
Peter Zijlstra 已提交
439
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440
{
P
Peter Zijlstra 已提交
441
	return &task_rq(p)->cfs;
442 443
}

P
Peter Zijlstra 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

458 459 460 461 462 463 464 465
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

474 475 476 477 478
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
479 480
#endif	/* CONFIG_FAIR_GROUP_SCHED */

481
static __always_inline
482
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 484 485 486 487

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

488
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489
{
490
	s64 delta = (s64)(vruntime - max_vruntime);
491
	if (delta > 0)
492
		max_vruntime = vruntime;
493

494
	return max_vruntime;
495 496
}

497
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

506 507 508 509 510 511
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

512 513
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
514 515
	struct sched_entity *curr = cfs_rq->curr;

516 517
	u64 vruntime = cfs_rq->min_vruntime;

518 519 520 521 522 523
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
524 525 526 527 528 529

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

530
		if (!curr)
531 532 533 534 535
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

536
	/* ensure we never gain time by being placed backwards. */
537
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 539 540 541
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
542 543
}

544 545 546
/*
 * Enqueue an entity into the rb-tree:
 */
547
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
564
		if (entity_before(se, entry)) {
565 566 567 568 569 570 571 572 573 574 575
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
576
	if (leftmost)
I
Ingo Molnar 已提交
577
		cfs_rq->rb_leftmost = &se->run_node;
578 579 580 581 582

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

583
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584
{
P
Peter Zijlstra 已提交
585 586 587 588 589 590
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
591

592 593 594
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

595
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596
{
597 598 599 600 601 602
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
603 604
}

605 606 607 608 609 610 611 612 613 614 615
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
616
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617
{
618
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619

620 621
	if (!last)
		return NULL;
622 623

	return rb_entry(last, struct sched_entity, run_node);
624 625
}

626 627 628 629
/**************************************************************
 * Scheduling class statistics methods:
 */

630
int sched_proc_update_handler(struct ctl_table *table, int write,
631
		void __user *buffer, size_t *lenp,
632 633
		loff_t *ppos)
{
634
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635
	unsigned int factor = get_update_sysctl_factor();
636 637 638 639 640 641 642

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

643 644 645 646 647 648 649
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

650 651 652
	return 0;
}
#endif
653

654
/*
655
 * delta /= w
656
 */
657
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658
{
659
	if (unlikely(se->load.weight != NICE_0_LOAD))
660
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 662 663 664

	return delta;
}

665 666 667
/*
 * The idea is to set a period in which each task runs once.
 *
668
 * When there are too many tasks (sched_nr_latency) we have to stretch
669 670 671 672
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
673 674
static u64 __sched_period(unsigned long nr_running)
{
675 676 677 678
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
679 680
}

681 682 683 684
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
685
 * s = p*P[w/rw]
686
 */
P
Peter Zijlstra 已提交
687
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688
{
M
Mike Galbraith 已提交
689
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690

M
Mike Galbraith 已提交
691
	for_each_sched_entity(se) {
L
Lin Ming 已提交
692
		struct load_weight *load;
693
		struct load_weight lw;
L
Lin Ming 已提交
694 695 696

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
697

M
Mike Galbraith 已提交
698
		if (unlikely(!se->on_rq)) {
699
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
700 701 702 703

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
704
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
705 706
	}
	return slice;
707 708
}

709
/*
A
Andrei Epure 已提交
710
 * We calculate the vruntime slice of a to-be-inserted task.
711
 *
712
 * vs = s/w
713
 */
714
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
715
{
716
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 718
}

719
#ifdef CONFIG_SMP
720
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
721 722
static unsigned long task_h_load(struct task_struct *p);

723 724
/*
 * We choose a half-life close to 1 scheduling period.
725 726
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
727 728 729
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
730
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
731

732 733
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
734
{
735
	struct sched_avg *sa = &se->avg;
736

737 738 739 740 741 742 743
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
744 745 746 747 748 749 750 751
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
752
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
753 754 755 756 757
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
758
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759
}
760

761
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
762
static void attach_entity_cfs_rq(struct sched_entity *se);
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
793
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
794 795 796 797 798 799 800 801 802 803 804 805 806

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
807 808 809 810 811 812 813 814 815 816 817 818 819 820

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
821
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
822 823 824 825
			return;
		}
	}

826
	attach_entity_cfs_rq(se);
827 828
}

829
#else /* !CONFIG_SMP */
830
void init_entity_runnable_average(struct sched_entity *se)
831 832
{
}
833 834 835
void post_init_entity_util_avg(struct sched_entity *se)
{
}
836 837 838
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
839
#endif /* CONFIG_SMP */
840

841
/*
842
 * Update the current task's runtime statistics.
843
 */
844
static void update_curr(struct cfs_rq *cfs_rq)
845
{
846
	struct sched_entity *curr = cfs_rq->curr;
847
	u64 now = rq_clock_task(rq_of(cfs_rq));
848
	u64 delta_exec;
849 850 851 852

	if (unlikely(!curr))
		return;

853 854
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
855
		return;
856

I
Ingo Molnar 已提交
857
	curr->exec_start = now;
858

859 860 861 862
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
863
	schedstat_add(cfs_rq->exec_clock, delta_exec);
864 865 866 867

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

868 869 870
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

871
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872
		cpuacct_charge(curtask, delta_exec);
873
		account_group_exec_runtime(curtask, delta_exec);
874
	}
875 876

	account_cfs_rq_runtime(cfs_rq, delta_exec);
877 878
}

879 880 881 882 883
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

884
static inline void
885
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886
{
887 888 889 890 891 892 893
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
894 895

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 897
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
898

899
	schedstat_set(se->statistics.wait_start, wait_start);
900 901
}

902
static inline void
903 904 905
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
906 907
	u64 delta;

908 909 910 911
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912 913 914 915 916 917 918 919 920

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
921
			schedstat_set(se->statistics.wait_start, delta);
922 923 924 925 926
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

927 928 929 930 931
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
932 933
}

934
static inline void
935 936 937
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
938 939 940 941 942 943 944
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
945 946 947 948

	if (entity_is_task(se))
		tsk = task_of(se);

949 950
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951 952 953 954

		if ((s64)delta < 0)
			delta = 0;

955 956
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
957

958 959
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
960 961 962 963 964 965

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
966 967
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968 969 970 971

		if ((s64)delta < 0)
			delta = 0;

972 973
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
974

975 976
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
977 978 979

		if (tsk) {
			if (tsk->in_iowait) {
980 981
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
1000 1001
}

1002 1003 1004
/*
 * Task is being enqueued - update stats:
 */
1005
static inline void
1006
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007
{
1008 1009 1010
	if (!schedstat_enabled())
		return;

1011 1012 1013 1014
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1015
	if (se != cfs_rq->curr)
1016
		update_stats_wait_start(cfs_rq, se);
1017 1018 1019

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1020 1021 1022
}

static inline void
1023
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024
{
1025 1026 1027 1028

	if (!schedstat_enabled())
		return;

1029 1030 1031 1032
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1033
	if (se != cfs_rq->curr)
1034
		update_stats_wait_end(cfs_rq, se);
1035

1036 1037
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1038

1039 1040 1041 1042 1043 1044
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1045 1046 1047
	}
}

1048 1049 1050 1051
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1052
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 1054 1055 1056
{
	/*
	 * We are starting a new run period:
	 */
1057
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 1059 1060 1061 1062 1063
}

/**************************************************
 * Scheduling class queueing methods:
 */

1064 1065
#ifdef CONFIG_NUMA_BALANCING
/*
1066 1067 1068
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1069
 */
1070 1071
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1072 1073 1074

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1075

1076 1077 1078
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1103
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1104 1105 1106
	unsigned int scan, floor;
	unsigned int windows = 1;

1107 1108
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1137 1138 1139 1140 1141
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1142
	pid_t gid;
1143
	int active_nodes;
1144 1145

	struct rcu_head rcu;
1146
	unsigned long total_faults;
1147
	unsigned long max_faults_cpu;
1148 1149 1150 1151 1152
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1153
	unsigned long *faults_cpu;
1154
	unsigned long faults[0];
1155 1156
};

1157 1158 1159 1160 1161 1162 1163 1164 1165
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1166 1167 1168 1169 1170
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1171 1172 1173 1174 1175 1176 1177
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1178
{
1179
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1180 1181 1182 1183
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1184
	if (!p->numa_faults)
1185 1186
		return 0;

1187 1188
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1189 1190
}

1191 1192 1193 1194 1195
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1196 1197
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1198 1199
}

1200 1201
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1202 1203
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1204 1205
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1283 1284 1285 1286 1287 1288
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1289 1290
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1291
{
1292
	unsigned long faults, total_faults;
1293

1294
	if (!p->numa_faults)
1295 1296 1297 1298 1299 1300 1301
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1302
	faults = task_faults(p, nid);
1303 1304
	faults += score_nearby_nodes(p, nid, dist, true);

1305
	return 1000 * faults / total_faults;
1306 1307
}

1308 1309
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1310
{
1311 1312 1313 1314 1315 1316 1317 1318
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1319 1320
		return 0;

1321
	faults = group_faults(p, nid);
1322 1323
	faults += score_nearby_nodes(p, nid, dist, false);

1324
	return 1000 * faults / total_faults;
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1367 1368
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1369
	 */
1370 1371
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1372 1373 1374
		return true;

	/*
1375 1376 1377 1378 1379 1380
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1381
	 */
1382 1383
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1384 1385
}

1386
static unsigned long weighted_cpuload(const int cpu);
1387 1388
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1389
static unsigned long capacity_of(int cpu);
1390 1391
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1392
/* Cached statistics for all CPUs within a node */
1393
struct numa_stats {
1394
	unsigned long nr_running;
1395
	unsigned long load;
1396 1397

	/* Total compute capacity of CPUs on a node */
1398
	unsigned long compute_capacity;
1399 1400

	/* Approximate capacity in terms of runnable tasks on a node */
1401
	unsigned long task_capacity;
1402
	int has_free_capacity;
1403
};
1404

1405 1406 1407 1408 1409
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1410 1411
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1412 1413 1414 1415 1416 1417 1418

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1419
		ns->compute_capacity += capacity_of(cpu);
1420 1421

		cpus++;
1422 1423
	}

1424 1425 1426 1427 1428
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1429 1430
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1431 1432 1433 1434
	 */
	if (!cpus)
		return;

1435 1436 1437 1438 1439 1440
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1441
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1442 1443
}

1444 1445
struct task_numa_env {
	struct task_struct *p;
1446

1447 1448
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1449

1450
	struct numa_stats src_stats, dst_stats;
1451

1452
	int imbalance_pct;
1453
	int dist;
1454 1455 1456

	struct task_struct *best_task;
	long best_imp;
1457 1458 1459
	int best_cpu;
};

1460 1461 1462 1463 1464
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1465 1466
	if (p)
		get_task_struct(p);
1467 1468 1469 1470 1471 1472

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1473
static bool load_too_imbalanced(long src_load, long dst_load,
1474 1475
				struct task_numa_env *env)
{
1476 1477
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1489 1490

	/* We care about the slope of the imbalance, not the direction. */
1491 1492
	if (dst_load < src_load)
		swap(dst_load, src_load);
1493 1494

	/* Is the difference below the threshold? */
1495 1496
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1497 1498 1499 1500 1501
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1502
	 * Compare it with the old imbalance.
1503
	 */
1504
	orig_src_load = env->src_stats.load;
1505
	orig_dst_load = env->dst_stats.load;
1506

1507 1508
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1509

1510 1511 1512 1513 1514
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1515 1516
}

1517 1518 1519 1520 1521 1522
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1523 1524
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1525 1526 1527 1528
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1529
	long src_load, dst_load;
1530
	long load;
1531
	long imp = env->p->numa_group ? groupimp : taskimp;
1532
	long moveimp = imp;
1533
	int dist = env->dist;
1534 1535

	rcu_read_lock();
1536 1537
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1538 1539
		cur = NULL;

1540 1541 1542 1543 1544 1545 1546
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1547 1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1556
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1557 1558
			goto unlock;

1559 1560
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1561
		 * in any group then look only at task weights.
1562
		 */
1563
		if (cur->numa_group == env->p->numa_group) {
1564 1565
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1566 1567 1568 1569 1570 1571
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1572
		} else {
1573 1574 1575 1576 1577 1578
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1579 1580
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1581
			else
1582 1583
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1584
		}
1585 1586
	}

1587
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1588 1589 1590 1591
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1592
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1593
		    !env->dst_stats.has_free_capacity)
1594 1595 1596 1597 1598 1599
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1600 1601
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1602 1603 1604 1605 1606 1607
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1608 1609 1610
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1629
	if (cur) {
1630 1631 1632
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1633 1634
	}

1635
	if (load_too_imbalanced(src_load, dst_load, env))
1636 1637
		goto unlock;

1638 1639 1640 1641
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1642 1643 1644 1645 1646 1647
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1648 1649
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1650 1651
		local_irq_enable();
	}
1652

1653 1654 1655 1656 1657 1658
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1659 1660
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1661 1662 1663 1664 1665
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1666
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1667 1668 1669
			continue;

		env->dst_cpu = cpu;
1670
		task_numa_compare(env, taskimp, groupimp);
1671 1672 1673
	}
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1691 1692 1693
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1694 1695 1696 1697 1698
		return true;

	return false;
}

1699 1700 1701 1702
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1703

1704
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1705
		.src_nid = task_node(p),
1706 1707 1708 1709 1710

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1711
		.best_cpu = -1,
1712 1713
	};
	struct sched_domain *sd;
1714
	unsigned long taskweight, groupweight;
1715
	int nid, ret, dist;
1716
	long taskimp, groupimp;
1717

1718
	/*
1719 1720 1721 1722 1723 1724
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1725 1726
	 */
	rcu_read_lock();
1727
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1728 1729
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1730 1731
	rcu_read_unlock();

1732 1733 1734 1735 1736 1737 1738
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1739
		p->numa_preferred_nid = task_node(p);
1740 1741 1742
		return -EINVAL;
	}

1743
	env.dst_nid = p->numa_preferred_nid;
1744 1745 1746 1747 1748 1749
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1750
	update_numa_stats(&env.dst_stats, env.dst_nid);
1751

1752
	/* Try to find a spot on the preferred nid. */
1753 1754
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1755

1756 1757 1758 1759 1760 1761 1762
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1763
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1764 1765 1766
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1767

1768
			dist = node_distance(env.src_nid, env.dst_nid);
1769 1770 1771 1772 1773
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1774

1775
			/* Only consider nodes where both task and groups benefit */
1776 1777
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1778
			if (taskimp < 0 && groupimp < 0)
1779 1780
				continue;

1781
			env.dist = dist;
1782 1783
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1784 1785
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1786 1787 1788
		}
	}

1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1797
	if (p->numa_group) {
1798 1799
		struct numa_group *ng = p->numa_group;

1800 1801 1802 1803 1804
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1805
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1806 1807 1808 1809 1810 1811
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1812

1813 1814 1815 1816 1817 1818
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1819
	if (env.best_task == NULL) {
1820 1821 1822
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1823 1824 1825 1826
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1827 1828
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1829 1830
	put_task_struct(env.best_task);
	return ret;
1831 1832
}

1833 1834 1835
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1836 1837
	unsigned long interval = HZ;

1838
	/* This task has no NUMA fault statistics yet */
1839
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1840 1841
		return;

1842
	/* Periodically retry migrating the task to the preferred node */
1843 1844
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1845 1846

	/* Success if task is already running on preferred CPU */
1847
	if (task_node(p) == p->numa_preferred_nid)
1848 1849 1850
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1851
	task_numa_migrate(p);
1852 1853
}

1854
/*
1855
 * Find out how many nodes on the workload is actively running on. Do this by
1856 1857 1858 1859
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1860
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1861 1862
{
	unsigned long faults, max_faults = 0;
1863
	int nid, active_nodes = 0;
1864 1865 1866 1867 1868 1869 1870 1871 1872

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1873 1874
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1875
	}
1876 1877 1878

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1879 1880
}

1881 1882 1883
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1884 1885 1886
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1887 1888
 */
#define NUMA_PERIOD_SLOTS 10
1889
#define NUMA_PERIOD_THRESHOLD 7
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1910 1911 1912
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1913
	 */
1914
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1948
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1949 1950 1951 1952 1953 1954 1955 1956
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1975 1976
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1977 1978 1979 1980 1981 1982 1983 1984
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2032
		nodemask_t max_group = NODE_MASK_NONE;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2066 2067
		if (!max_faults)
			break;
2068 2069 2070 2071 2072
		nodes = max_group;
	}
	return nid;
}

2073 2074
static void task_numa_placement(struct task_struct *p)
{
2075 2076
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2077
	unsigned long fault_types[2] = { 0, 0 };
2078 2079
	unsigned long total_faults;
	u64 runtime, period;
2080
	spinlock_t *group_lock = NULL;
2081

2082 2083 2084 2085 2086
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2087
	seq = READ_ONCE(p->mm->numa_scan_seq);
2088 2089 2090
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2091
	p->numa_scan_period_max = task_scan_max(p);
2092

2093 2094 2095 2096
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2097 2098 2099
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2100
		spin_lock_irq(group_lock);
2101 2102
	}

2103 2104
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2105 2106
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2107
		unsigned long faults = 0, group_faults = 0;
2108
		int priv;
2109

2110
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2111
			long diff, f_diff, f_weight;
2112

2113 2114 2115 2116
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2117

2118
			/* Decay existing window, copy faults since last scan */
2119 2120 2121
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2122

2123 2124 2125 2126 2127 2128 2129 2130
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2131
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2132
				   (total_faults + 1);
2133 2134
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2135

2136 2137 2138
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2139
			p->total_numa_faults += diff;
2140
			if (p->numa_group) {
2141 2142 2143 2144 2145 2146 2147 2148 2149
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2150
				p->numa_group->total_faults += diff;
2151
				group_faults += p->numa_group->faults[mem_idx];
2152
			}
2153 2154
		}

2155 2156 2157 2158
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2159 2160 2161 2162 2163 2164 2165

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2166 2167
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2168
	if (p->numa_group) {
2169
		numa_group_count_active_nodes(p->numa_group);
2170
		spin_unlock_irq(group_lock);
2171
		max_nid = preferred_group_nid(p, max_group_nid);
2172 2173
	}

2174 2175 2176 2177 2178 2179 2180
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2181
	}
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2195 2196
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2197 2198 2199 2200 2201 2202 2203 2204 2205
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2206
				    4*nr_node_ids*sizeof(unsigned long);
2207 2208 2209 2210 2211 2212

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2213 2214
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2215
		spin_lock_init(&grp->lock);
2216
		grp->gid = p->pid;
2217
		/* Second half of the array tracks nids where faults happen */
2218 2219
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2220

2221
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2222
			grp->faults[i] = p->numa_faults[i];
2223

2224
		grp->total_faults = p->total_numa_faults;
2225

2226 2227 2228 2229 2230
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2231
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2232 2233

	if (!cpupid_match_pid(tsk, cpupid))
2234
		goto no_join;
2235 2236 2237

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2238
		goto no_join;
2239 2240 2241

	my_grp = p->numa_group;
	if (grp == my_grp)
2242
		goto no_join;
2243 2244 2245 2246 2247 2248

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2249
		goto no_join;
2250 2251 2252 2253 2254

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2255
		goto no_join;
2256

2257 2258 2259 2260 2261 2262 2263
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2264

2265 2266 2267
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2268
	if (join && !get_numa_group(grp))
2269
		goto no_join;
2270 2271 2272 2273 2274 2275

	rcu_read_unlock();

	if (!join)
		return;

2276 2277
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2278

2279
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2280 2281
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2282
	}
2283 2284
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2285 2286 2287 2288 2289

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2290
	spin_unlock_irq(&grp->lock);
2291 2292 2293 2294

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2295 2296 2297 2298 2299
	return;

no_join:
	rcu_read_unlock();
	return;
2300 2301 2302 2303 2304
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2305
	void *numa_faults = p->numa_faults;
2306 2307
	unsigned long flags;
	int i;
2308 2309

	if (grp) {
2310
		spin_lock_irqsave(&grp->lock, flags);
2311
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2312
			grp->faults[i] -= p->numa_faults[i];
2313
		grp->total_faults -= p->total_numa_faults;
2314

2315
		grp->nr_tasks--;
2316
		spin_unlock_irqrestore(&grp->lock, flags);
2317
		RCU_INIT_POINTER(p->numa_group, NULL);
2318 2319 2320
		put_numa_group(grp);
	}

2321
	p->numa_faults = NULL;
2322
	kfree(numa_faults);
2323 2324
}

2325 2326 2327
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2328
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2329 2330
{
	struct task_struct *p = current;
2331
	bool migrated = flags & TNF_MIGRATED;
2332
	int cpu_node = task_node(current);
2333
	int local = !!(flags & TNF_FAULT_LOCAL);
2334
	struct numa_group *ng;
2335
	int priv;
2336

2337
	if (!static_branch_likely(&sched_numa_balancing))
2338 2339
		return;

2340 2341 2342 2343
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2344
	/* Allocate buffer to track faults on a per-node basis */
2345 2346
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2347
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2348

2349 2350
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2351
			return;
2352

2353
		p->total_numa_faults = 0;
2354
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2355
	}
2356

2357 2358 2359 2360 2361 2362 2363 2364
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2365
		if (!priv && !(flags & TNF_NO_GROUP))
2366
			task_numa_group(p, last_cpupid, flags, &priv);
2367 2368
	}

2369 2370 2371 2372 2373 2374
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2375 2376 2377 2378
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2379 2380
		local = 1;

2381
	task_numa_placement(p);
2382

2383 2384 2385 2386 2387
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2388 2389
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2390 2391
	if (migrated)
		p->numa_pages_migrated += pages;
2392 2393
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2394

2395 2396
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2397
	p->numa_faults_locality[local] += pages;
2398 2399
}

2400 2401
static void reset_ptenuma_scan(struct task_struct *p)
{
2402 2403 2404 2405 2406 2407 2408 2409
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2410
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2411 2412 2413
	p->mm->numa_scan_offset = 0;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2423
	u64 runtime = p->se.sum_exec_runtime;
2424
	struct vm_area_struct *vma;
2425
	unsigned long start, end;
2426
	unsigned long nr_pte_updates = 0;
2427
	long pages, virtpages;
2428

2429
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2443
	if (!mm->numa_next_scan) {
2444 2445
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2446 2447
	}

2448 2449 2450 2451 2452 2453 2454
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2455 2456 2457 2458
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2459

2460
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2461 2462 2463
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2464 2465 2466 2467 2468 2469
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2470 2471 2472
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2473
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2474 2475
	if (!pages)
		return;
2476

2477

2478
	down_read(&mm->mmap_sem);
2479
	vma = find_vma(mm, start);
2480 2481
	if (!vma) {
		reset_ptenuma_scan(p);
2482
		start = 0;
2483 2484
		vma = mm->mmap;
	}
2485
	for (; vma; vma = vma->vm_next) {
2486
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2487
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2488
			continue;
2489
		}
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2501 2502 2503 2504 2505 2506
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2507

2508 2509 2510 2511
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2512
			nr_pte_updates = change_prot_numa(vma, start, end);
2513 2514

			/*
2515 2516 2517 2518 2519 2520
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2521 2522 2523
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2524
			virtpages -= (end - start) >> PAGE_SHIFT;
2525

2526
			start = end;
2527
			if (pages <= 0 || virtpages <= 0)
2528
				goto out;
2529 2530

			cond_resched();
2531
		} while (end != vma->vm_end);
2532
	}
2533

2534
out:
2535
	/*
P
Peter Zijlstra 已提交
2536 2537 2538 2539
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2540 2541
	 */
	if (vma)
2542
		mm->numa_scan_offset = start;
2543 2544 2545
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2582
	if (now > curr->node_stamp + period) {
2583
		if (!curr->node_stamp)
2584
			curr->numa_scan_period = task_scan_min(curr);
2585
		curr->node_stamp += period;
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2597 2598 2599 2600 2601 2602 2603 2604

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2605 2606
#endif /* CONFIG_NUMA_BALANCING */

2607 2608 2609 2610
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2611
	if (!parent_entity(se))
2612
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2613
#ifdef CONFIG_SMP
2614 2615 2616 2617 2618 2619
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2620
#endif
2621 2622 2623 2624 2625 2626 2627
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2628
	if (!parent_entity(se))
2629
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2630
#ifdef CONFIG_SMP
2631 2632
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2633
		list_del_init(&se->group_node);
2634
	}
2635
#endif
2636 2637 2638
	cfs_rq->nr_running--;
}

2639 2640
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2641
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2642
{
2643
	long tg_weight, load, shares;
2644 2645

	/*
2646 2647 2648
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2649
	 */
2650
	load = scale_load_down(cfs_rq->load.weight);
2651

2652
	tg_weight = atomic_long_read(&tg->load_avg);
2653

2654 2655 2656
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2657 2658

	shares = (tg->shares * load);
2659 2660
	if (tg_weight)
		shares /= tg_weight;
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2674 2675 2676 2677 2678 2679 2680 2681
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2682
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2683 2684 2685 2686
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2687

P
Peter Zijlstra 已提交
2688 2689 2690
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2691 2692 2693 2694
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2695
		account_entity_dequeue(cfs_rq, se);
2696
	}
P
Peter Zijlstra 已提交
2697 2698 2699 2700 2701 2702 2703

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2704 2705
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2706
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2707
{
2708
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2709
	struct task_group *tg;
2710
	long shares;
P
Peter Zijlstra 已提交
2711

2712 2713 2714 2715
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2716
		return;
2717 2718 2719

	tg = cfs_rq->tg;

2720 2721 2722 2723
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2724
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2725 2726 2727

	reweight_entity(cfs_rq_of(se), se, shares);
}
2728

P
Peter Zijlstra 已提交
2729
#else /* CONFIG_FAIR_GROUP_SCHED */
2730
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2731 2732 2733 2734
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2735
#ifdef CONFIG_SMP
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2766 2767 2768 2769 2770 2771
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2784 2785
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2786 2787 2788 2789 2790 2791
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2792 2793
	}

2794 2795
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2814 2815 2816
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2817 2818
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2819 2820
}

2821
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2851 2852
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2853
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2854
{
2855
	u64 delta, scaled_delta, periods;
2856
	u32 contrib;
2857
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2858
	unsigned long scale_freq, scale_cpu;
2859

2860
	delta = now - sa->last_update_time;
2861 2862 2863 2864 2865
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2866
		sa->last_update_time = now;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2877
	sa->last_update_time = now;
2878

2879 2880 2881
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2882
	/* delta_w is the amount already accumulated against our next period */
2883
	delta_w = sa->period_contrib;
2884 2885 2886
	if (delta + delta_w >= 1024) {
		decayed = 1;

2887 2888 2889
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2890 2891 2892 2893 2894 2895
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2896
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2897
		if (weight) {
2898 2899 2900 2901 2902
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2903
		}
2904
		if (running)
2905
			sa->util_sum += scaled_delta_w * scale_cpu;
2906 2907 2908 2909 2910 2911 2912

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2913
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2914 2915 2916 2917
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2918
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2919 2920

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2921
		contrib = __compute_runnable_contrib(periods);
2922
		contrib = cap_scale(contrib, scale_freq);
2923
		if (weight) {
2924
			sa->load_sum += weight * contrib;
2925 2926 2927
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2928
		if (running)
2929
			sa->util_sum += contrib * scale_cpu;
2930 2931 2932
	}

	/* Remainder of delta accrued against u_0` */
2933
	scaled_delta = cap_scale(delta, scale_freq);
2934
	if (weight) {
2935
		sa->load_sum += weight * scaled_delta;
2936
		if (cfs_rq)
2937
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2938
	}
2939
	if (running)
2940
		sa->util_sum += scaled_delta * scale_cpu;
2941

2942
	sa->period_contrib += delta;
2943

2944 2945
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2946 2947 2948 2949
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2950
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2951
	}
2952

2953
	return decayed;
2954 2955
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2976
#ifdef CONFIG_FAIR_GROUP_SCHED
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2992
 */
2993
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2994
{
2995
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2996

2997 2998 2999 3000 3001 3002
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3003 3004 3005
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3006
	}
3007
}
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3176
#else /* CONFIG_FAIR_GROUP_SCHED */
3177

3178
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3179 3180 3181 3182 3183 3184 3185 3186

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3187
#endif /* CONFIG_FAIR_GROUP_SCHED */
3188

3189 3190
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3191
	if (&this_rq()->cfs == cfs_rq) {
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3208
		cpufreq_update_util(rq_of(cfs_rq), 0);
3209 3210 3211
	}
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3241 3242 3243 3244
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3245
 */
3246 3247
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3248
{
3249
	struct sched_avg *sa = &cfs_rq->avg;
3250
	int decayed, removed_load = 0, removed_util = 0;
3251

3252
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3253
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3254 3255
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3256
		removed_load = 1;
3257
		set_tg_cfs_propagate(cfs_rq);
3258
	}
3259

3260 3261
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3262 3263
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3264
		removed_util = 1;
3265
		set_tg_cfs_propagate(cfs_rq);
3266
	}
3267

3268
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3269
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3270

3271 3272 3273 3274
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3275

3276 3277
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3278

3279
	return decayed || removed_load;
3280 3281
}

3282 3283 3284 3285 3286 3287
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3288
/* Update task and its cfs_rq load average */
3289
static inline void update_load_avg(struct sched_entity *se, int flags)
3290 3291 3292 3293 3294
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3295
	int decayed;
3296 3297 3298 3299 3300

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3301 3302
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
		__update_load_avg(now, cpu, &se->avg,
3303 3304
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
3305
	}
3306

3307 3308 3309 3310
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3311
		update_tg_load_avg(cfs_rq, 0);
3312 3313
}

3314 3315 3316 3317 3318 3319 3320 3321
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3322 3323 3324 3325 3326 3327 3328
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3329
	set_tg_cfs_propagate(cfs_rq);
3330 3331

	cfs_rq_util_change(cfs_rq);
3332 3333
}

3334 3335 3336 3337 3338 3339 3340 3341
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3342 3343 3344
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3345 3346 3347 3348
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3349
	set_tg_cfs_propagate(cfs_rq);
3350 3351

	cfs_rq_util_change(cfs_rq);
3352 3353
}

3354 3355 3356
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3357
{
3358
	struct sched_avg *sa = &se->avg;
3359

3360 3361 3362
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3363
	if (!sa->last_update_time) {
3364
		attach_entity_load_avg(cfs_rq, se);
3365
		update_tg_load_avg(cfs_rq, 0);
3366
	}
3367 3368
}

3369 3370 3371 3372 3373 3374 3375
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3376
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3377 3378
}

3379
#ifndef CONFIG_64BIT
3380 3381
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3382
	u64 last_update_time_copy;
3383
	u64 last_update_time;
3384

3385 3386 3387 3388 3389
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3390 3391 3392

	return last_update_time;
}
3393
#else
3394 3395 3396 3397
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3398 3399
#endif

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
}

3413 3414 3415 3416 3417 3418 3419 3420 3421
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3422 3423 3424 3425 3426 3427 3428
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3429 3430
	 */

3431
	sync_entity_load_avg(se);
3432 3433
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3434
}
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3446
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3447

3448 3449
#else /* CONFIG_SMP */

3450 3451 3452 3453 3454 3455
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3456 3457 3458 3459
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3460
{
3461
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3462 3463
}

3464 3465
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3466 3467
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3468
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3469

3470 3471 3472 3473 3474
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3475
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3476 3477 3478 3479
{
	return 0;
}

3480
#endif /* CONFIG_SMP */
3481

P
Peter Zijlstra 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3491
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3492 3493 3494
#endif
}

3495 3496 3497
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3498
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3499

3500 3501 3502 3503 3504 3505
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3506
	if (initial && sched_feat(START_DEBIT))
3507
		vruntime += sched_vslice(cfs_rq, se);
3508

3509
	/* sleeps up to a single latency don't count. */
3510
	if (!initial) {
3511
		unsigned long thresh = sysctl_sched_latency;
3512

3513 3514 3515 3516 3517 3518
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3519

3520
		vruntime -= thresh;
3521 3522
	}

3523
	/* ensure we never gain time by being placed backwards. */
3524
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3525 3526
}

3527 3528
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3541
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3542 3543 3544 3545 3546 3547 3548
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3568
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3580
static void
3581
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3582
{
3583 3584 3585
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3586
	/*
3587 3588
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3589
	 */
3590
	if (renorm && curr)
3591 3592
		se->vruntime += cfs_rq->min_vruntime;

3593 3594
	update_curr(cfs_rq);

3595
	/*
3596 3597 3598 3599
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3600
	 */
3601 3602 3603
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3604 3605 3606 3607 3608 3609 3610 3611
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3612
	update_load_avg(se, UPDATE_TG);
3613
	enqueue_entity_load_avg(cfs_rq, se);
3614
	update_cfs_shares(se);
3615
	account_entity_enqueue(cfs_rq, se);
3616

3617
	if (flags & ENQUEUE_WAKEUP)
3618
		place_entity(cfs_rq, se, 0);
3619

3620
	check_schedstat_required();
3621 3622
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3623
	if (!curr)
3624
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3625
	se->on_rq = 1;
3626

3627
	if (cfs_rq->nr_running == 1) {
3628
		list_add_leaf_cfs_rq(cfs_rq);
3629 3630
		check_enqueue_throttle(cfs_rq);
	}
3631 3632
}

3633
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3634
{
3635 3636
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3637
		if (cfs_rq->last != se)
3638
			break;
3639 3640

		cfs_rq->last = NULL;
3641 3642
	}
}
P
Peter Zijlstra 已提交
3643

3644 3645 3646 3647
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3648
		if (cfs_rq->next != se)
3649
			break;
3650 3651

		cfs_rq->next = NULL;
3652
	}
P
Peter Zijlstra 已提交
3653 3654
}

3655 3656 3657 3658
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3659
		if (cfs_rq->skip != se)
3660
			break;
3661 3662

		cfs_rq->skip = NULL;
3663 3664 3665
	}
}

P
Peter Zijlstra 已提交
3666 3667
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3668 3669 3670 3671 3672
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3673 3674 3675

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3676 3677
}

3678
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3679

3680
static void
3681
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3682
{
3683 3684 3685 3686
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3687 3688 3689 3690 3691 3692 3693 3694 3695

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3696
	update_load_avg(se, UPDATE_TG);
3697
	dequeue_entity_load_avg(cfs_rq, se);
3698

3699
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3700

P
Peter Zijlstra 已提交
3701
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3702

3703
	if (se != cfs_rq->curr)
3704
		__dequeue_entity(cfs_rq, se);
3705
	se->on_rq = 0;
3706
	account_entity_dequeue(cfs_rq, se);
3707 3708

	/*
3709 3710 3711 3712
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3713
	 */
3714
	if (!(flags & DEQUEUE_SLEEP))
3715
		se->vruntime -= cfs_rq->min_vruntime;
3716

3717 3718 3719
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3720
	update_cfs_shares(se);
3721 3722 3723 3724 3725 3726 3727 3728 3729

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3730 3731 3732 3733 3734
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3735
static void
I
Ingo Molnar 已提交
3736
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3737
{
3738
	unsigned long ideal_runtime, delta_exec;
3739 3740
	struct sched_entity *se;
	s64 delta;
3741

P
Peter Zijlstra 已提交
3742
	ideal_runtime = sched_slice(cfs_rq, curr);
3743
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3744
	if (delta_exec > ideal_runtime) {
3745
		resched_curr(rq_of(cfs_rq));
3746 3747 3748 3749 3750
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3762 3763
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3764

3765 3766
	if (delta < 0)
		return;
3767

3768
	if (delta > ideal_runtime)
3769
		resched_curr(rq_of(cfs_rq));
3770 3771
}

3772
static void
3773
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3774
{
3775 3776 3777 3778 3779 3780 3781
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3782
		update_stats_wait_end(cfs_rq, se);
3783
		__dequeue_entity(cfs_rq, se);
3784
		update_load_avg(se, UPDATE_TG);
3785 3786
	}

3787
	update_stats_curr_start(cfs_rq, se);
3788
	cfs_rq->curr = se;
3789

I
Ingo Molnar 已提交
3790 3791 3792 3793 3794
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3795
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3796 3797 3798
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3799
	}
3800

3801
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3802 3803
}

3804 3805 3806
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3807 3808 3809 3810 3811 3812 3813
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3814 3815
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3816
{
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3828

3829 3830 3831 3832 3833
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3844 3845 3846
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3847

3848 3849 3850 3851 3852 3853
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3854 3855 3856 3857 3858 3859
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3860
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3861 3862

	return se;
3863 3864
}

3865
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3866

3867
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3868 3869 3870 3871 3872 3873
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3874
		update_curr(cfs_rq);
3875

3876 3877 3878
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3879
	check_spread(cfs_rq, prev);
3880

3881
	if (prev->on_rq) {
3882
		update_stats_wait_start(cfs_rq, prev);
3883 3884
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3885
		/* in !on_rq case, update occurred at dequeue */
3886
		update_load_avg(prev, 0);
3887
	}
3888
	cfs_rq->curr = NULL;
3889 3890
}

P
Peter Zijlstra 已提交
3891 3892
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3893 3894
{
	/*
3895
	 * Update run-time statistics of the 'current'.
3896
	 */
3897
	update_curr(cfs_rq);
3898

3899 3900 3901
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3902
	update_load_avg(curr, UPDATE_TG);
3903
	update_cfs_shares(curr);
3904

P
Peter Zijlstra 已提交
3905 3906 3907 3908 3909
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3910
	if (queued) {
3911
		resched_curr(rq_of(cfs_rq));
3912 3913
		return;
	}
P
Peter Zijlstra 已提交
3914 3915 3916 3917 3918 3919 3920 3921
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3922
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3923
		check_preempt_tick(cfs_rq, curr);
3924 3925
}

3926 3927 3928 3929 3930 3931

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3932 3933

#ifdef HAVE_JUMP_LABEL
3934
static struct static_key __cfs_bandwidth_used;
3935 3936 3937

static inline bool cfs_bandwidth_used(void)
{
3938
	return static_key_false(&__cfs_bandwidth_used);
3939 3940
}

3941
void cfs_bandwidth_usage_inc(void)
3942
{
3943 3944 3945 3946 3947 3948
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3949 3950 3951 3952 3953 3954 3955
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3956 3957
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3958 3959
#endif /* HAVE_JUMP_LABEL */

3960 3961 3962 3963 3964 3965 3966 3967
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3968 3969 3970 3971 3972 3973

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
3974 3975 3976 3977 3978 3979 3980
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
3981
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

3993 3994 3995 3996 3997
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

3998 3999 4000 4001
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4002
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4003

4004
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4005 4006
}

4007 4008
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4009 4010 4011
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4012
	u64 amount = 0, min_amount, expires;
4013 4014 4015 4016 4017 4018 4019

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4020
	else {
P
Peter Zijlstra 已提交
4021
		start_cfs_bandwidth(cfs_b);
4022 4023 4024 4025 4026 4027

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4028
	}
P
Paul Turner 已提交
4029
	expires = cfs_b->runtime_expires;
4030 4031 4032
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4033 4034 4035 4036 4037 4038 4039
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4040 4041

	return cfs_rq->runtime_remaining > 0;
4042 4043
}

P
Paul Turner 已提交
4044 4045 4046 4047 4048
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4049
{
P
Paul Turner 已提交
4050 4051 4052
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4053
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4054 4055
		return;

P
Paul Turner 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4065 4066 4067
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4068 4069
	 */

4070
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4071 4072 4073 4074 4075 4076 4077 4078
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4079
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4080 4081
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4082
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4083 4084 4085
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4086 4087
		return;

4088 4089 4090 4091 4092
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4093
		resched_curr(rq_of(cfs_rq));
4094 4095
}

4096
static __always_inline
4097
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4098
{
4099
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4100 4101 4102 4103 4104
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4105 4106
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4107
	return cfs_bandwidth_used() && cfs_rq->throttled;
4108 4109
}

4110 4111 4112
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4113
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4141
		/* adjust cfs_rq_clock_task() */
4142
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4143
					     cfs_rq->throttled_clock_task;
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4154 4155
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4156
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4157 4158 4159 4160 4161
	cfs_rq->throttle_count++;

	return 0;
}

4162
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4163 4164 4165 4166 4167
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4168
	bool empty;
4169 4170 4171

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4172
	/* freeze hierarchy runnable averages while throttled */
4173 4174 4175
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4193
		sub_nr_running(rq, task_delta);
4194 4195

	cfs_rq->throttled = 1;
4196
	cfs_rq->throttled_clock = rq_clock(rq);
4197
	raw_spin_lock(&cfs_b->lock);
4198
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4199

4200 4201 4202 4203 4204
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4205 4206 4207 4208 4209 4210 4211 4212

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4213 4214 4215
	raw_spin_unlock(&cfs_b->lock);
}

4216
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4217 4218 4219 4220 4221 4222 4223
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4224
	se = cfs_rq->tg->se[cpu_of(rq)];
4225 4226

	cfs_rq->throttled = 0;
4227 4228 4229

	update_rq_clock(rq);

4230
	raw_spin_lock(&cfs_b->lock);
4231
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4232 4233 4234
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4235 4236 4237
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4256
		add_nr_running(rq, task_delta);
4257 4258 4259

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4260
		resched_curr(rq);
4261 4262 4263 4264 4265 4266
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4267 4268
	u64 runtime;
	u64 starting_runtime = remaining;
4269 4270 4271 4272 4273

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4274
		struct rq_flags rf;
4275

4276
		rq_lock(rq, &rf);
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4293
		rq_unlock(rq, &rf);
4294 4295 4296 4297 4298 4299

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4300
	return starting_runtime - remaining;
4301 4302
}

4303 4304 4305 4306 4307 4308 4309 4310
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4311
	u64 runtime, runtime_expires;
4312
	int throttled;
4313 4314 4315

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4316
		goto out_deactivate;
4317

4318
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4319
	cfs_b->nr_periods += overrun;
4320

4321 4322 4323 4324 4325 4326
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4327 4328 4329

	__refill_cfs_bandwidth_runtime(cfs_b);

4330 4331 4332
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4333
		return 0;
4334 4335
	}

4336 4337 4338
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4339 4340 4341
	runtime_expires = cfs_b->runtime_expires;

	/*
4342 4343 4344 4345 4346
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4347
	 */
4348 4349
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4350 4351 4352 4353 4354 4355 4356
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4357 4358

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4359
	}
4360

4361 4362 4363 4364 4365 4366 4367
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4368

4369 4370 4371 4372
	return 0;

out_deactivate:
	return 1;
4373
}
4374

4375 4376 4377 4378 4379 4380 4381
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4382 4383 4384 4385
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4386
 * hrtimer base being cleared by hrtimer_start. In the case of
4387 4388
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4414 4415 4416
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4446 4447 4448
	if (!cfs_bandwidth_used())
		return;

4449
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4465 4466 4467
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4468
		return;
4469
	}
4470

4471
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4472
		runtime = cfs_b->runtime;
4473

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4484
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4485 4486 4487
	raw_spin_unlock(&cfs_b->lock);
}

4488 4489 4490 4491 4492 4493 4494
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4495 4496 4497
	if (!cfs_bandwidth_used())
		return;

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4526
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4527 4528
}

4529
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4530
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4531
{
4532
	if (!cfs_bandwidth_used())
4533
		return false;
4534

4535
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4536
		return false;
4537 4538 4539 4540 4541 4542

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4543
		return true;
4544 4545

	throttle_cfs_rq(cfs_rq);
4546
	return true;
4547
}
4548 4549 4550 4551 4552

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4553

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4566
	raw_spin_lock(&cfs_b->lock);
4567
	for (;;) {
P
Peter Zijlstra 已提交
4568
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4569 4570 4571 4572 4573
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4574 4575
	if (idle)
		cfs_b->period_active = 0;
4576
	raw_spin_unlock(&cfs_b->lock);
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4589
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4601
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4602
{
P
Peter Zijlstra 已提交
4603
	lockdep_assert_held(&cfs_b->lock);
4604

P
Peter Zijlstra 已提交
4605 4606 4607 4608 4609
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4610 4611 4612 4613
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4614 4615 4616 4617
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4618 4619 4620 4621
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4635
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4647
		cfs_rq->runtime_remaining = 1;
4648 4649 4650 4651 4652 4653
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4654 4655 4656 4657 4658 4659
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4660 4661
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4662
	return rq_clock_task(rq_of(cfs_rq));
4663 4664
}

4665
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4666
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4667
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4668
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4669
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4670 4671 4672 4673 4674

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4686 4687 4688 4689 4690

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4691 4692
#endif

4693 4694 4695 4696 4697
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4698
static inline void update_runtime_enabled(struct rq *rq) {}
4699
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4700 4701 4702

#endif /* CONFIG_CFS_BANDWIDTH */

4703 4704 4705 4706
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4707 4708 4709 4710 4711 4712
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4713
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4714

4715
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4716 4717 4718 4719 4720 4721
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4722
				resched_curr(rq);
P
Peter Zijlstra 已提交
4723 4724
			return;
		}
4725
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4726 4727
	}
}
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4738
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4739 4740 4741 4742 4743
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4744
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4745 4746 4747 4748
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4749 4750 4751 4752

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4753 4754
#endif

4755 4756 4757 4758 4759
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4760
static void
4761
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4762 4763
{
	struct cfs_rq *cfs_rq;
4764
	struct sched_entity *se = &p->se;
4765

4766 4767 4768 4769 4770 4771 4772 4773
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4774
	for_each_sched_entity(se) {
4775
		if (se->on_rq)
4776 4777
			break;
		cfs_rq = cfs_rq_of(se);
4778
		enqueue_entity(cfs_rq, se, flags);
4779 4780 4781 4782 4783 4784

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4785
		 */
4786 4787
		if (cfs_rq_throttled(cfs_rq))
			break;
4788
		cfs_rq->h_nr_running++;
4789

4790
		flags = ENQUEUE_WAKEUP;
4791
	}
P
Peter Zijlstra 已提交
4792

P
Peter Zijlstra 已提交
4793
	for_each_sched_entity(se) {
4794
		cfs_rq = cfs_rq_of(se);
4795
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4796

4797 4798 4799
		if (cfs_rq_throttled(cfs_rq))
			break;

4800
		update_load_avg(se, UPDATE_TG);
4801
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4802 4803
	}

Y
Yuyang Du 已提交
4804
	if (!se)
4805
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4806

4807
	hrtick_update(rq);
4808 4809
}

4810 4811
static void set_next_buddy(struct sched_entity *se);

4812 4813 4814 4815 4816
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4817
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4818 4819
{
	struct cfs_rq *cfs_rq;
4820
	struct sched_entity *se = &p->se;
4821
	int task_sleep = flags & DEQUEUE_SLEEP;
4822 4823 4824

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4825
		dequeue_entity(cfs_rq, se, flags);
4826 4827 4828 4829 4830 4831 4832 4833 4834

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4835
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4836

4837
		/* Don't dequeue parent if it has other entities besides us */
4838
		if (cfs_rq->load.weight) {
4839 4840
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4841 4842 4843 4844
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4845 4846
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4847
			break;
4848
		}
4849
		flags |= DEQUEUE_SLEEP;
4850
	}
P
Peter Zijlstra 已提交
4851

P
Peter Zijlstra 已提交
4852
	for_each_sched_entity(se) {
4853
		cfs_rq = cfs_rq_of(se);
4854
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4855

4856 4857 4858
		if (cfs_rq_throttled(cfs_rq))
			break;

4859
		update_load_avg(se, UPDATE_TG);
4860
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4861 4862
	}

Y
Yuyang Du 已提交
4863
	if (!se)
4864
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4865

4866
	hrtick_update(rq);
4867 4868
}

4869
#ifdef CONFIG_SMP
4870 4871 4872 4873 4874

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4875
#ifdef CONFIG_NO_HZ_COMMON
4876 4877 4878 4879 4880
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4881
 * The exact cpuload calculated at every tick would be:
4882
 *
4883 4884 4885 4886 4887 4888 4889
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4890 4891 4892
 *
 * decay_load_missed() below does efficient calculation of
 *
4893 4894 4895 4896 4897 4898
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4899
 *
4900
 * The calculation is approximated on a 128 point scale.
4901 4902
 */
#define DEGRADE_SHIFT		7
4903 4904 4905 4906 4907 4908 4909 4910 4911

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4941
#endif /* CONFIG_NO_HZ_COMMON */
4942

4943
/**
4944
 * __cpu_load_update - update the rq->cpu_load[] statistics
4945 4946 4947 4948
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4949
 * Update rq->cpu_load[] statistics. This function is usually called every
4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4976
 * term.
4977
 */
4978 4979
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
4980
{
4981
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

4993
		old_load = this_rq->cpu_load[i];
4994
#ifdef CONFIG_NO_HZ_COMMON
4995
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
4996 4997 4998 4999 5000 5001 5002 5003 5004
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5005
#endif
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5021 5022 5023 5024 5025 5026
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5027
#ifdef CONFIG_NO_HZ_COMMON
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5056
		cpu_load_update(this_rq, load, pending_updates);
5057 5058 5059
	}
}

5060 5061 5062 5063
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5064
static void cpu_load_update_idle(struct rq *this_rq)
5065 5066 5067 5068
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5069
	if (weighted_cpuload(cpu_of(this_rq)))
5070 5071
		return;

5072
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5073 5074 5075
}

/*
5076 5077 5078 5079
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5080
 */
5081
void cpu_load_update_nohz_start(void)
5082 5083
{
	struct rq *this_rq = this_rq();
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5098
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5099 5100
	struct rq *this_rq = this_rq();
	unsigned long load;
5101
	struct rq_flags rf;
5102 5103 5104 5105

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5106
	load = weighted_cpuload(cpu_of(this_rq));
5107
	rq_lock(this_rq, &rf);
5108
	update_rq_clock(this_rq);
5109
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5110
	rq_unlock(this_rq, &rf);
5111
}
5112 5113 5114 5115 5116 5117 5118 5119
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5120
#ifdef CONFIG_NO_HZ_COMMON
5121 5122
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5123
#endif
5124 5125
	cpu_load_update(this_rq, load, 1);
}
5126 5127 5128 5129

/*
 * Called from scheduler_tick()
 */
5130
void cpu_load_update_active(struct rq *this_rq)
5131
{
5132
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5133 5134 5135 5136 5137

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5138 5139
}

5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5173
static unsigned long capacity_of(int cpu)
5174
{
5175
	return cpu_rq(cpu)->cpu_capacity;
5176 5177
}

5178 5179 5180 5181 5182
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5183 5184 5185
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5186
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5187
	unsigned long load_avg = weighted_cpuload(cpu);
5188 5189

	if (nr_running)
5190
		return load_avg / nr_running;
5191 5192 5193 5194

	return 0;
}

5195
#ifdef CONFIG_FAIR_GROUP_SCHED
5196 5197 5198 5199 5200 5201
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5245
 */
P
Peter Zijlstra 已提交
5246
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5247
{
P
Peter Zijlstra 已提交
5248
	struct sched_entity *se = tg->se[cpu];
5249

5250
	if (!tg->parent)	/* the trivial, non-cgroup case */
5251 5252
		return wl;

P
Peter Zijlstra 已提交
5253
	for_each_sched_entity(se) {
5254 5255
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5256

5257
		tg = cfs_rq->tg;
5258

5259 5260 5261
		/*
		 * W = @wg + \Sum rw_j
		 */
5262 5263 5264 5265 5266
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5267

5268 5269 5270
		/*
		 * w = rw_i + @wl
		 */
5271
		w += wl;
5272

5273 5274 5275 5276
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5277
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5278
		else
5279
			wl = scale_load_down(tg->shares);
5280

5281 5282 5283 5284 5285
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5286 5287
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5288 5289 5290 5291

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5292
		wl -= se->avg.load_avg;
5293 5294 5295 5296 5297 5298 5299 5300

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5301 5302
		wg = 0;
	}
5303

P
Peter Zijlstra 已提交
5304
	return wl;
5305 5306
}
#else
P
Peter Zijlstra 已提交
5307

5308
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5309
{
5310
	return wl;
5311
}
P
Peter Zijlstra 已提交
5312

5313 5314
#endif

P
Peter Zijlstra 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5332 5333
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5334
 *
M
Mike Galbraith 已提交
5335
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5348
 */
5349 5350
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5351 5352
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5353
	int factor = this_cpu_read(sd_llc_size);
5354

M
Mike Galbraith 已提交
5355 5356 5357 5358 5359
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5360 5361
}

5362 5363
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5364
{
5365
	s64 this_load, load;
5366
	s64 this_eff_load, prev_eff_load;
5367
	int idx, this_cpu;
5368
	struct task_group *tg;
5369
	unsigned long weight;
5370
	int balanced;
5371

5372 5373 5374 5375
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5376

5377 5378 5379 5380 5381
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5382 5383
	if (sync) {
		tg = task_group(current);
5384
		weight = current->se.avg.load_avg;
5385

5386
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5387 5388
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5389

5390
	tg = task_group(p);
5391
	weight = p->se.avg.load_avg;
5392

5393 5394
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5395 5396 5397
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5398 5399 5400 5401
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5402 5403
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5404

5405 5406
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5407

5408
	if (this_load > 0) {
5409 5410 5411 5412
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5413
	}
5414

5415
	balanced = this_eff_load <= prev_eff_load;
5416

5417
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5418

5419 5420
	if (!balanced)
		return 0;
5421

5422 5423
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5424 5425

	return 1;
5426 5427
}

5428 5429 5430 5431 5432 5433 5434 5435
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5436 5437 5438 5439 5440
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5441
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5442
		  int this_cpu, int sd_flag)
5443
{
5444
	struct sched_group *idlest = NULL, *group = sd->groups;
5445
	struct sched_group *most_spare_sg = NULL;
5446 5447
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5448
	unsigned long most_spare = 0, this_spare = 0;
5449
	int load_idx = sd->forkexec_idx;
5450 5451 5452
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5453

5454 5455 5456
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5457
	do {
5458 5459
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5460 5461
		int local_group;
		int i;
5462

5463 5464
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5465
					&p->cpus_allowed))
5466 5467 5468 5469 5470
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5471 5472 5473 5474
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5475
		avg_load = 0;
5476
		runnable_load = 0;
5477
		max_spare_cap = 0;
5478 5479 5480 5481 5482 5483 5484 5485

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5486 5487 5488
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5489 5490 5491 5492 5493

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5494 5495
		}

5496
		/* Adjust by relative CPU capacity of the group */
5497 5498 5499 5500
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5501 5502

		if (local_group) {
5503 5504
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5505 5506
			this_spare = max_spare_cap;
		} else {
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5522 5523 5524 5525 5526 5527 5528
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5529 5530 5531
		}
	} while (group = group->next, group != sd->groups);

5532 5533 5534 5535 5536 5537
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5538 5539 5540 5541
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5542
	 */
5543 5544 5545
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5546
	if (this_spare > task_util(p) / 2 &&
5547
	    imbalance_scale*this_spare > 100*most_spare)
5548
		return NULL;
5549 5550

	if (most_spare > task_util(p) / 2)
5551 5552
		return most_spare_sg;

5553
skip_spare:
5554 5555 5556 5557
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5558
		return NULL;
5559 5560 5561 5562 5563

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5574 5575 5576 5577
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5578 5579
	int i;

5580 5581 5582 5583
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5584
	/* Traverse only the allowed CPUs */
5585
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5608
		} else if (shallowest_idle_cpu == -1) {
5609 5610 5611 5612 5613
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5614 5615 5616
		}
	}

5617
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5618
}
5619

5620
/*
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5686
void __update_idle_core(struct rq *rq)
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5718 5719 5720
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5721 5722 5723
	if (!test_idle_cores(target, false))
		return -1;

5724
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5754 5755 5756
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5757
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5758
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5785
 */
5786 5787
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5788 5789
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5790 5791 5792 5793
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5794 5795 5796 5797 5798 5799
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5800 5801 5802 5803
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5804
	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5805 5806 5807 5808 5809
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5810
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5826
 */
5827
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5828
{
5829
	struct sched_domain *sd;
5830
	int i;
5831

5832 5833
	if (idle_cpu(target))
		return target;
5834 5835

	/*
5836
	 * If the previous cpu is cache affine and idle, don't be stupid.
5837
	 */
5838 5839
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5840

5841
	sd = rcu_dereference(per_cpu(sd_llc, target));
5842 5843
	if (!sd)
		return target;
5844

5845 5846 5847
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5848

5849 5850 5851 5852 5853 5854 5855
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5856

5857 5858
	return target;
}
5859

5860
/*
5861
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5862
 * tasks. The unit of the return value must be the one of capacity so we can
5863 5864
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5885
 */
5886
static int cpu_util(int cpu)
5887
{
5888
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5889 5890
	unsigned long capacity = capacity_orig_of(cpu);

5891
	return (util >= capacity) ? capacity : util;
5892
}
5893

5894 5895 5896 5897 5898
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5935 5936 5937
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5938 5939 5940
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5941
/*
5942 5943 5944
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5945
 *
5946 5947
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5948
 *
5949
 * Returns the target cpu number.
5950 5951 5952
 *
 * preempt must be disabled.
 */
5953
static int
5954
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5955
{
5956
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5957
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5958
	int new_cpu = prev_cpu;
5959
	int want_affine = 0;
5960
	int sync = wake_flags & WF_SYNC;
5961

P
Peter Zijlstra 已提交
5962 5963
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5964
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5965
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
5966
	}
5967

5968
	rcu_read_lock();
5969
	for_each_domain(cpu, tmp) {
5970
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
5971
			break;
5972

5973
		/*
5974 5975
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
5976
		 */
5977 5978 5979
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
5980
			break;
5981
		}
5982

5983
		if (tmp->flags & sd_flag)
5984
			sd = tmp;
M
Mike Galbraith 已提交
5985 5986
		else if (!want_affine)
			break;
5987 5988
	}

M
Mike Galbraith 已提交
5989 5990
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
5991
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
5992
			new_cpu = cpu;
5993
	}
5994

M
Mike Galbraith 已提交
5995 5996
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5997
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
5998 5999

	} else while (sd) {
6000
		struct sched_group *group;
6001
		int weight;
6002

6003
		if (!(sd->flags & sd_flag)) {
6004 6005 6006
			sd = sd->child;
			continue;
		}
6007

6008
		group = find_idlest_group(sd, p, cpu, sd_flag);
6009 6010 6011 6012
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6013

6014
		new_cpu = find_idlest_cpu(group, p, cpu);
6015 6016 6017 6018
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6019
		}
6020 6021 6022

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6023
		weight = sd->span_weight;
6024 6025
		sd = NULL;
		for_each_domain(cpu, tmp) {
6026
			if (weight <= tmp->span_weight)
6027
				break;
6028
			if (tmp->flags & sd_flag)
6029 6030 6031
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6032
	}
6033
	rcu_read_unlock();
6034

6035
	return new_cpu;
6036
}
6037 6038 6039 6040

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6041
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6042
 */
6043
static void migrate_task_rq_fair(struct task_struct *p)
6044
{
6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6071
	/*
6072 6073 6074 6075 6076
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6077
	 */
6078 6079 6080 6081
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6082 6083

	/* We have migrated, no longer consider this task hot */
6084
	p->se.exec_start = 0;
6085
}
6086 6087 6088 6089 6090

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6091 6092
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6093 6094
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6095 6096 6097 6098
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6099 6100
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6101 6102 6103 6104 6105 6106 6107 6108 6109
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6110
	 */
6111
	return calc_delta_fair(gran, se);
6112 6113
}

6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6136
	gran = wakeup_gran(curr, se);
6137 6138 6139 6140 6141 6142
	if (vdiff > gran)
		return 1;

	return 0;
}

6143 6144
static void set_last_buddy(struct sched_entity *se)
{
6145 6146 6147 6148 6149
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6150 6151 6152 6153
}

static void set_next_buddy(struct sched_entity *se)
{
6154 6155 6156 6157 6158
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6159 6160
}

6161 6162
static void set_skip_buddy(struct sched_entity *se)
{
6163 6164
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6165 6166
}

6167 6168 6169
/*
 * Preempt the current task with a newly woken task if needed:
 */
6170
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6171 6172
{
	struct task_struct *curr = rq->curr;
6173
	struct sched_entity *se = &curr->se, *pse = &p->se;
6174
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6175
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6176
	int next_buddy_marked = 0;
6177

I
Ingo Molnar 已提交
6178 6179 6180
	if (unlikely(se == pse))
		return;

6181
	/*
6182
	 * This is possible from callers such as attach_tasks(), in which we
6183 6184 6185 6186 6187 6188 6189
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6190
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6191
		set_next_buddy(pse);
6192 6193
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6194

6195 6196 6197
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6198 6199 6200 6201 6202 6203
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6204 6205 6206 6207
	 */
	if (test_tsk_need_resched(curr))
		return;

6208 6209 6210 6211 6212
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6213
	/*
6214 6215
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6216
	 */
6217
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6218
		return;
6219

6220
	find_matching_se(&se, &pse);
6221
	update_curr(cfs_rq_of(se));
6222
	BUG_ON(!pse);
6223 6224 6225 6226 6227 6228 6229
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6230
		goto preempt;
6231
	}
6232

6233
	return;
6234

6235
preempt:
6236
	resched_curr(rq);
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6251 6252
}

6253
static struct task_struct *
6254
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6255 6256 6257
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6258
	struct task_struct *p;
6259
	int new_tasks;
6260

6261
again:
6262 6263
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6264
		goto idle;
6265

6266
	if (prev->sched_class != &fair_sched_class)
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6286 6287 6288 6289 6290
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6291

6292 6293 6294 6295 6296 6297 6298 6299 6300
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6341

6342
	if (!cfs_rq->nr_running)
6343
		goto idle;
6344

6345
	put_prev_task(rq, prev);
6346

6347
	do {
6348
		se = pick_next_entity(cfs_rq, NULL);
6349
		set_next_entity(cfs_rq, se);
6350 6351 6352
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6353
	p = task_of(se);
6354

6355 6356
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6357 6358

	return p;
6359 6360

idle:
6361 6362
	new_tasks = idle_balance(rq, rf);

6363 6364 6365 6366 6367
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6368
	if (new_tasks < 0)
6369 6370
		return RETRY_TASK;

6371
	if (new_tasks > 0)
6372 6373 6374
		goto again;

	return NULL;
6375 6376 6377 6378 6379
}

/*
 * Account for a descheduled task:
 */
6380
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6381 6382 6383 6384 6385 6386
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6387
		put_prev_entity(cfs_rq, se);
6388 6389 6390
	}
}

6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6416 6417 6418 6419 6420
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6421
		rq_clock_skip_update(rq, true);
6422 6423 6424 6425 6426
	}

	set_skip_buddy(se);
}

6427 6428 6429 6430
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6431 6432
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6433 6434 6435 6436 6437 6438 6439 6440 6441 6442
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6443
#ifdef CONFIG_SMP
6444
/**************************************************
P
Peter Zijlstra 已提交
6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6461
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6462 6463 6464 6465 6466 6467
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6468
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6469 6470 6471 6472 6473 6474
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6475
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6514
 *             log_2 n
P
Peter Zijlstra 已提交
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6560
 */
6561

6562 6563
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6564 6565
enum fbq_type { regular, remote, all };

6566
#define LBF_ALL_PINNED	0x01
6567
#define LBF_NEED_BREAK	0x02
6568 6569
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6570 6571 6572 6573 6574

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6575
	int			src_cpu;
6576 6577 6578 6579

	int			dst_cpu;
	struct rq		*dst_rq;

6580 6581
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6582
	enum cpu_idle_type	idle;
6583
	long			imbalance;
6584 6585 6586
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6587
	unsigned int		flags;
6588 6589 6590 6591

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6592 6593

	enum fbq_type		fbq_type;
6594
	struct list_head	tasks;
6595 6596
};

6597 6598 6599
/*
 * Is this task likely cache-hot:
 */
6600
static int task_hot(struct task_struct *p, struct lb_env *env)
6601 6602 6603
{
	s64 delta;

6604 6605
	lockdep_assert_held(&env->src_rq->lock);

6606 6607 6608 6609 6610 6611 6612 6613 6614
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6615
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6616 6617 6618 6619 6620 6621 6622 6623 6624
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6625
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6626 6627 6628 6629

	return delta < (s64)sysctl_sched_migration_cost;
}

6630
#ifdef CONFIG_NUMA_BALANCING
6631
/*
6632 6633 6634
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6635
 */
6636
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6637
{
6638
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6639
	unsigned long src_faults, dst_faults;
6640 6641
	int src_nid, dst_nid;

6642
	if (!static_branch_likely(&sched_numa_balancing))
6643 6644
		return -1;

6645
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6646
		return -1;
6647 6648 6649 6650

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6651
	if (src_nid == dst_nid)
6652
		return -1;
6653

6654 6655 6656 6657 6658 6659 6660
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6661

6662 6663
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6664
		return 0;
6665

6666 6667 6668 6669 6670 6671
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6672 6673
	}

6674
	return dst_faults < src_faults;
6675 6676
}

6677
#else
6678
static inline int migrate_degrades_locality(struct task_struct *p,
6679 6680
					     struct lb_env *env)
{
6681
	return -1;
6682
}
6683 6684
#endif

6685 6686 6687 6688
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6689
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6690
{
6691
	int tsk_cache_hot;
6692 6693 6694

	lockdep_assert_held(&env->src_rq->lock);

6695 6696
	/*
	 * We do not migrate tasks that are:
6697
	 * 1) throttled_lb_pair, or
6698
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6699 6700
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6701
	 */
6702 6703 6704
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6705
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6706
		int cpu;
6707

6708
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6709

6710 6711
		env->flags |= LBF_SOME_PINNED;

6712 6713 6714 6715 6716 6717 6718 6719
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6720
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6721 6722
			return 0;

6723 6724
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6725
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6726
				env->flags |= LBF_DST_PINNED;
6727 6728 6729
				env->new_dst_cpu = cpu;
				break;
			}
6730
		}
6731

6732 6733
		return 0;
	}
6734 6735

	/* Record that we found atleast one task that could run on dst_cpu */
6736
	env->flags &= ~LBF_ALL_PINNED;
6737

6738
	if (task_running(env->src_rq, p)) {
6739
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6740 6741 6742 6743 6744
		return 0;
	}

	/*
	 * Aggressive migration if:
6745 6746 6747
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6748
	 */
6749 6750 6751
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6752

6753
	if (tsk_cache_hot <= 0 ||
6754
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6755
		if (tsk_cache_hot == 1) {
6756 6757
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6758
		}
6759 6760 6761
		return 1;
	}

6762
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6763
	return 0;
6764 6765
}

6766
/*
6767 6768 6769 6770 6771 6772 6773
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6774
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6775 6776 6777
	set_task_cpu(p, env->dst_cpu);
}

6778
/*
6779
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6780 6781
 * part of active balancing operations within "domain".
 *
6782
 * Returns a task if successful and NULL otherwise.
6783
 */
6784
static struct task_struct *detach_one_task(struct lb_env *env)
6785 6786 6787
{
	struct task_struct *p, *n;

6788 6789
	lockdep_assert_held(&env->src_rq->lock);

6790 6791 6792
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6793

6794
		detach_task(p, env);
6795

6796
		/*
6797
		 * Right now, this is only the second place where
6798
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6799
		 * so we can safely collect stats here rather than
6800
		 * inside detach_tasks().
6801
		 */
6802
		schedstat_inc(env->sd->lb_gained[env->idle]);
6803
		return p;
6804
	}
6805
	return NULL;
6806 6807
}

6808 6809
static const unsigned int sched_nr_migrate_break = 32;

6810
/*
6811 6812
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6813
 *
6814
 * Returns number of detached tasks if successful and 0 otherwise.
6815
 */
6816
static int detach_tasks(struct lb_env *env)
6817
{
6818 6819
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6820
	unsigned long load;
6821 6822 6823
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6824

6825
	if (env->imbalance <= 0)
6826
		return 0;
6827

6828
	while (!list_empty(tasks)) {
6829 6830 6831 6832 6833 6834 6835
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6836
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6837

6838 6839
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6840
		if (env->loop > env->loop_max)
6841
			break;
6842 6843

		/* take a breather every nr_migrate tasks */
6844
		if (env->loop > env->loop_break) {
6845
			env->loop_break += sched_nr_migrate_break;
6846
			env->flags |= LBF_NEED_BREAK;
6847
			break;
6848
		}
6849

6850
		if (!can_migrate_task(p, env))
6851 6852 6853
			goto next;

		load = task_h_load(p);
6854

6855
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6856 6857
			goto next;

6858
		if ((load / 2) > env->imbalance)
6859
			goto next;
6860

6861 6862 6863 6864
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6865
		env->imbalance -= load;
6866 6867

#ifdef CONFIG_PREEMPT
6868 6869
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6870
		 * kernels will stop after the first task is detached to minimize
6871 6872
		 * the critical section.
		 */
6873
		if (env->idle == CPU_NEWLY_IDLE)
6874
			break;
6875 6876
#endif

6877 6878 6879 6880
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6881
		if (env->imbalance <= 0)
6882
			break;
6883 6884 6885

		continue;
next:
6886
		list_move_tail(&p->se.group_node, tasks);
6887
	}
6888

6889
	/*
6890 6891 6892
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6893
	 */
6894
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6895

6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6907
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6908
	p->on_rq = TASK_ON_RQ_QUEUED;
6909 6910 6911 6912 6913 6914 6915 6916 6917
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6918 6919 6920
	struct rq_flags rf;

	rq_lock(rq, &rf);
6921
	update_rq_clock(rq);
6922
	attach_task(rq, p);
6923
	rq_unlock(rq, &rf);
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6934
	struct rq_flags rf;
6935

6936
	rq_lock(env->dst_rq, &rf);
6937
	update_rq_clock(env->dst_rq);
6938 6939 6940 6941

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6942

6943 6944 6945
		attach_task(env->dst_rq, p);
	}

6946
	rq_unlock(env->dst_rq, &rf);
6947 6948
}

P
Peter Zijlstra 已提交
6949
#ifdef CONFIG_FAIR_GROUP_SCHED
6950
static void update_blocked_averages(int cpu)
6951 6952
{
	struct rq *rq = cpu_rq(cpu);
6953
	struct cfs_rq *cfs_rq;
6954
	struct rq_flags rf;
6955

6956
	rq_lock_irqsave(rq, &rf);
6957
	update_rq_clock(rq);
6958

6959 6960 6961 6962
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6963
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6964 6965 6966
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6967

6968
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6969
			update_tg_load_avg(cfs_rq, 0);
6970 6971 6972 6973

		/* Propagate pending load changes to the parent */
		if (cfs_rq->tg->se[cpu])
			update_load_avg(cfs_rq->tg->se[cpu], 0);
6974
	}
6975
	rq_unlock_irqrestore(rq, &rf);
6976 6977
}

6978
/*
6979
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6980 6981 6982
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
6983
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6984
{
6985 6986
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6987
	unsigned long now = jiffies;
6988
	unsigned long load;
6989

6990
	if (cfs_rq->last_h_load_update == now)
6991 6992
		return;

6993 6994 6995 6996 6997 6998 6999
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7000

7001
	if (!se) {
7002
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7003 7004 7005 7006 7007
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7008 7009
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7010 7011 7012 7013
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7014 7015
}

7016
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7017
{
7018
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7019

7020
	update_cfs_rq_h_load(cfs_rq);
7021
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7022
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7023 7024
}
#else
7025
static inline void update_blocked_averages(int cpu)
7026
{
7027 7028
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7029
	struct rq_flags rf;
7030

7031
	rq_lock_irqsave(rq, &rf);
7032
	update_rq_clock(rq);
7033
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7034
	rq_unlock_irqrestore(rq, &rf);
7035 7036
}

7037
static unsigned long task_h_load(struct task_struct *p)
7038
{
7039
	return p->se.avg.load_avg;
7040
}
P
Peter Zijlstra 已提交
7041
#endif
7042 7043

/********** Helpers for find_busiest_group ************************/
7044 7045 7046 7047 7048 7049 7050

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7051 7052 7053 7054 7055 7056 7057
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7058
	unsigned long load_per_task;
7059
	unsigned long group_capacity;
7060
	unsigned long group_util; /* Total utilization of the group */
7061 7062 7063
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7064
	enum group_type group_type;
7065
	int group_no_capacity;
7066 7067 7068 7069
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7070 7071
};

J
Joonsoo Kim 已提交
7072 7073 7074 7075 7076 7077 7078 7079
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7080
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7081 7082 7083
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7084
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7085 7086
};

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7099
		.total_capacity = 0UL,
7100 7101
		.busiest_stat = {
			.avg_load = 0UL,
7102 7103
			.sum_nr_running = 0,
			.group_type = group_other,
7104 7105 7106 7107
		},
	};
}

7108 7109 7110
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7111
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7112 7113
 *
 * Return: The load index.
7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7136
static unsigned long scale_rt_capacity(int cpu)
7137 7138
{
	struct rq *rq = cpu_rq(cpu);
7139
	u64 total, used, age_stamp, avg;
7140
	s64 delta;
7141

7142 7143 7144 7145
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7146 7147
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7148
	delta = __rq_clock_broken(rq) - age_stamp;
7149

7150 7151 7152 7153
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7154

7155
	used = div_u64(avg, total);
7156

7157 7158
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7159

7160
	return 1;
7161 7162
}

7163
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7164
{
7165
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7166 7167
	struct sched_group *sdg = sd->groups;

7168
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7169

7170
	capacity *= scale_rt_capacity(cpu);
7171
	capacity >>= SCHED_CAPACITY_SHIFT;
7172

7173 7174
	if (!capacity)
		capacity = 1;
7175

7176 7177
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7178
	sdg->sgc->min_capacity = capacity;
7179 7180
}

7181
void update_group_capacity(struct sched_domain *sd, int cpu)
7182 7183 7184
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7185
	unsigned long capacity, min_capacity;
7186 7187 7188 7189
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7190
	sdg->sgc->next_update = jiffies + interval;
7191 7192

	if (!child) {
7193
		update_cpu_capacity(sd, cpu);
7194 7195 7196
		return;
	}

7197
	capacity = 0;
7198
	min_capacity = ULONG_MAX;
7199

P
Peter Zijlstra 已提交
7200 7201 7202 7203 7204 7205
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7206
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7207
			struct sched_group_capacity *sgc;
7208
			struct rq *rq = cpu_rq(cpu);
7209

7210
			/*
7211
			 * build_sched_domains() -> init_sched_groups_capacity()
7212 7213 7214
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7215 7216
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7217
			 *
7218
			 * This avoids capacity from being 0 and
7219 7220 7221
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7222
				capacity += capacity_of(cpu);
7223 7224 7225
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7226
			}
7227

7228
			min_capacity = min(capacity, min_capacity);
7229
		}
P
Peter Zijlstra 已提交
7230 7231 7232 7233
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7234
		 */
P
Peter Zijlstra 已提交
7235 7236 7237

		group = child->groups;
		do {
7238 7239 7240 7241
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7242 7243 7244
			group = group->next;
		} while (group != child->groups);
	}
7245

7246
	sdg->sgc->capacity = capacity;
7247
	sdg->sgc->min_capacity = min_capacity;
7248 7249
}

7250
/*
7251 7252 7253
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7254 7255
 */
static inline int
7256
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7257
{
7258 7259
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7260 7261
}

7262 7263
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7264
 * groups is inadequate due to ->cpus_allowed constraints.
7265 7266 7267 7268 7269
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7270 7271
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7272 7273 7274 7275 7276 7277
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7278 7279
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7280 7281
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7282
 * update_sd_pick_busiest(). And calculate_imbalance() and
7283
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7284 7285 7286 7287 7288 7289 7290
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7291
static inline int sg_imbalanced(struct sched_group *group)
7292
{
7293
	return group->sgc->imbalance;
7294 7295
}

7296
/*
7297 7298 7299
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7300 7301
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7302 7303 7304 7305 7306
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7307
 */
7308 7309
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7310
{
7311 7312
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7313

7314
	if ((sgs->group_capacity * 100) >
7315
			(sgs->group_util * env->sd->imbalance_pct))
7316
		return true;
7317

7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7334

7335
	if ((sgs->group_capacity * 100) <
7336
			(sgs->group_util * env->sd->imbalance_pct))
7337
		return true;
7338

7339
	return false;
7340 7341
}

7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7353 7354 7355
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7356
{
7357
	if (sgs->group_no_capacity)
7358 7359 7360 7361 7362 7363 7364 7365
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7366 7367
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7368
 * @env: The load balancing environment.
7369 7370 7371 7372
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7373
 * @overload: Indicate more than one runnable task for any CPU.
7374
 */
7375 7376
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7377 7378
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7379
{
7380
	unsigned long load;
7381
	int i, nr_running;
7382

7383 7384
	memset(sgs, 0, sizeof(*sgs));

7385
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7386 7387 7388
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7389
		if (local_group)
7390
			load = target_load(i, load_idx);
7391
		else
7392 7393 7394
			load = source_load(i, load_idx);

		sgs->group_load += load;
7395
		sgs->group_util += cpu_util(i);
7396
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7397

7398 7399
		nr_running = rq->nr_running;
		if (nr_running > 1)
7400 7401
			*overload = true;

7402 7403 7404 7405
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7406
		sgs->sum_weighted_load += weighted_cpuload(i);
7407 7408 7409 7410
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7411
			sgs->idle_cpus++;
7412 7413
	}

7414 7415
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7416
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7417

7418
	if (sgs->sum_nr_running)
7419
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7420

7421
	sgs->group_weight = group->group_weight;
7422

7423
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7424
	sgs->group_type = group_classify(group, sgs);
7425 7426
}

7427 7428
/**
 * update_sd_pick_busiest - return 1 on busiest group
7429
 * @env: The load balancing environment.
7430 7431
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7432
 * @sgs: sched_group statistics
7433 7434 7435
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7436 7437 7438
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7439
 */
7440
static bool update_sd_pick_busiest(struct lb_env *env,
7441 7442
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7443
				   struct sg_lb_stats *sgs)
7444
{
7445
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7446

7447
	if (sgs->group_type > busiest->group_type)
7448 7449
		return true;

7450 7451 7452 7453 7454 7455
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7470 7471
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7472 7473
		return true;

7474 7475 7476
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7477
	/*
T
Tim Chen 已提交
7478 7479 7480
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7481
	 */
T
Tim Chen 已提交
7482 7483
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7484 7485 7486
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7487 7488 7489
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7490 7491 7492 7493 7494 7495
			return true;
	}

	return false;
}

7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7526
/**
7527
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7528
 * @env: The load balancing environment.
7529 7530
 * @sds: variable to hold the statistics for this sched_domain.
 */
7531
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7532
{
7533 7534
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
7535
	struct sg_lb_stats tmp_sgs;
7536
	int load_idx, prefer_sibling = 0;
7537
	bool overload = false;
7538 7539 7540 7541

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7542
	load_idx = get_sd_load_idx(env->sd, env->idle);
7543 7544

	do {
J
Joonsoo Kim 已提交
7545
		struct sg_lb_stats *sgs = &tmp_sgs;
7546 7547
		int local_group;

7548
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7549 7550 7551
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
7552 7553

			if (env->idle != CPU_NEWLY_IDLE ||
7554 7555
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7556
		}
7557

7558 7559
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7560

7561 7562 7563
		if (local_group)
			goto next_group;

7564 7565
		/*
		 * In case the child domain prefers tasks go to siblings
7566
		 * first, lower the sg capacity so that we'll try
7567 7568
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7569 7570 7571 7572
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7573
		 */
7574
		if (prefer_sibling && sds->local &&
7575 7576 7577
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7578
			sgs->group_type = group_classify(sg, sgs);
7579
		}
7580

7581
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7582
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7583
			sds->busiest_stat = *sgs;
7584 7585
		}

7586 7587 7588
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7589
		sds->total_capacity += sgs->group_capacity;
7590

7591
		sg = sg->next;
7592
	} while (sg != env->sd->groups);
7593 7594 7595

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7596 7597 7598 7599 7600 7601 7602

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7622
 * Return: 1 when packing is required and a task should be moved to
7623 7624
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7625
 * @env: The load balancing environment.
7626 7627
 * @sds: Statistics of the sched_domain which is to be packed
 */
7628
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7629 7630 7631
{
	int busiest_cpu;

7632
	if (!(env->sd->flags & SD_ASYM_PACKING))
7633 7634
		return 0;

7635 7636 7637
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7638 7639 7640
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7641 7642
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7643 7644
		return 0;

7645
	env->imbalance = DIV_ROUND_CLOSEST(
7646
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7647
		SCHED_CAPACITY_SCALE);
7648

7649
	return 1;
7650 7651 7652 7653 7654 7655
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7656
 * @env: The load balancing environment.
7657 7658
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7659 7660
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7661
{
7662
	unsigned long tmp, capa_now = 0, capa_move = 0;
7663
	unsigned int imbn = 2;
7664
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7665
	struct sg_lb_stats *local, *busiest;
7666

J
Joonsoo Kim 已提交
7667 7668
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7669

J
Joonsoo Kim 已提交
7670 7671 7672 7673
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7674

J
Joonsoo Kim 已提交
7675
	scaled_busy_load_per_task =
7676
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7677
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7678

7679 7680
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7681
		env->imbalance = busiest->load_per_task;
7682 7683 7684 7685 7686
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7687
	 * however we may be able to increase total CPU capacity used by
7688 7689 7690
	 * moving them.
	 */

7691
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7692
			min(busiest->load_per_task, busiest->avg_load);
7693
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7694
			min(local->load_per_task, local->avg_load);
7695
	capa_now /= SCHED_CAPACITY_SCALE;
7696 7697

	/* Amount of load we'd subtract */
7698
	if (busiest->avg_load > scaled_busy_load_per_task) {
7699
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7700
			    min(busiest->load_per_task,
7701
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7702
	}
7703 7704

	/* Amount of load we'd add */
7705
	if (busiest->avg_load * busiest->group_capacity <
7706
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7707 7708
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7709
	} else {
7710
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7711
		      local->group_capacity;
J
Joonsoo Kim 已提交
7712
	}
7713
	capa_move += local->group_capacity *
7714
		    min(local->load_per_task, local->avg_load + tmp);
7715
	capa_move /= SCHED_CAPACITY_SCALE;
7716 7717

	/* Move if we gain throughput */
7718
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7719
		env->imbalance = busiest->load_per_task;
7720 7721 7722 7723 7724
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7725
 * @env: load balance environment
7726 7727
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7728
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7729
{
7730
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7731 7732 7733 7734
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7735

7736
	if (busiest->group_type == group_imbalanced) {
7737 7738 7739 7740
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7741 7742
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7743 7744
	}

7745
	/*
7746 7747 7748 7749
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7750
	 */
7751 7752
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7753 7754
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7755 7756
	}

7757 7758 7759 7760 7761
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7762
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7763
		if (load_above_capacity > busiest->group_capacity) {
7764
			load_above_capacity -= busiest->group_capacity;
7765
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7766 7767
			load_above_capacity /= busiest->group_capacity;
		} else
7768
			load_above_capacity = ~0UL;
7769 7770 7771 7772 7773 7774
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7775 7776
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7777
	 */
7778
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7779 7780

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7781
	env->imbalance = min(
7782 7783
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7784
	) / SCHED_CAPACITY_SCALE;
7785 7786 7787

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7788
	 * there is no guarantee that any tasks will be moved so we'll have
7789 7790 7791
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7792
	if (env->imbalance < busiest->load_per_task)
7793
		return fix_small_imbalance(env, sds);
7794
}
7795

7796 7797 7798 7799
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7800
 * if there is an imbalance.
7801 7802 7803 7804
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7805
 * @env: The load balancing environment.
7806
 *
7807
 * Return:	- The busiest group if imbalance exists.
7808
 */
J
Joonsoo Kim 已提交
7809
static struct sched_group *find_busiest_group(struct lb_env *env)
7810
{
J
Joonsoo Kim 已提交
7811
	struct sg_lb_stats *local, *busiest;
7812 7813
	struct sd_lb_stats sds;

7814
	init_sd_lb_stats(&sds);
7815 7816 7817 7818 7819

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7820
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7821 7822
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7823

7824
	/* ASYM feature bypasses nice load balance check */
7825
	if (check_asym_packing(env, &sds))
7826 7827
		return sds.busiest;

7828
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7829
	if (!sds.busiest || busiest->sum_nr_running == 0)
7830 7831
		goto out_balanced;

7832 7833
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7834

P
Peter Zijlstra 已提交
7835 7836
	/*
	 * If the busiest group is imbalanced the below checks don't
7837
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7838 7839
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7840
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7841 7842
		goto force_balance;

7843
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7844 7845
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7846 7847
		goto force_balance;

7848
	/*
7849
	 * If the local group is busier than the selected busiest group
7850 7851
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7852
	if (local->avg_load >= busiest->avg_load)
7853 7854
		goto out_balanced;

7855 7856 7857 7858
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7859
	if (local->avg_load >= sds.avg_load)
7860 7861
		goto out_balanced;

7862
	if (env->idle == CPU_IDLE) {
7863
		/*
7864 7865 7866 7867 7868
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7869
		 */
7870 7871
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7872
			goto out_balanced;
7873 7874 7875 7876 7877
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7878 7879
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7880
			goto out_balanced;
7881
	}
7882

7883
force_balance:
7884
	/* Looks like there is an imbalance. Compute it */
7885
	calculate_imbalance(env, &sds);
7886 7887 7888
	return sds.busiest;

out_balanced:
7889
	env->imbalance = 0;
7890 7891 7892 7893 7894 7895
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7896
static struct rq *find_busiest_queue(struct lb_env *env,
7897
				     struct sched_group *group)
7898 7899
{
	struct rq *busiest = NULL, *rq;
7900
	unsigned long busiest_load = 0, busiest_capacity = 1;
7901 7902
	int i;

7903
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7904
		unsigned long capacity, wl;
7905 7906 7907 7908
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7909

7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7932
		capacity = capacity_of(i);
7933

7934
		wl = weighted_cpuload(i);
7935

7936 7937
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7938
		 * which is not scaled with the cpu capacity.
7939
		 */
7940 7941 7942

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7943 7944
			continue;

7945 7946
		/*
		 * For the load comparisons with the other cpu's, consider
7947 7948 7949
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7950
		 *
7951
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7952
		 * multiplication to rid ourselves of the division works out
7953 7954
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7955
		 */
7956
		if (wl * busiest_capacity > busiest_load * capacity) {
7957
			busiest_load = wl;
7958
			busiest_capacity = capacity;
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

7972
static int need_active_balance(struct lb_env *env)
7973
{
7974 7975 7976
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
7977 7978 7979

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
7980 7981
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
7982
		 */
T
Tim Chen 已提交
7983 7984
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
7985
			return 1;
7986 7987
	}

7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8001 8002 8003
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8004 8005
static int active_load_balance_cpu_stop(void *data);

8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8037
	return balance_cpu == env->dst_cpu;
8038 8039
}

8040 8041 8042 8043 8044 8045
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8046
			int *continue_balancing)
8047
{
8048
	int ld_moved, cur_ld_moved, active_balance = 0;
8049
	struct sched_domain *sd_parent = sd->parent;
8050 8051
	struct sched_group *group;
	struct rq *busiest;
8052
	struct rq_flags rf;
8053
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8054

8055 8056
	struct lb_env env = {
		.sd		= sd,
8057 8058
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8059
		.dst_grpmask    = sched_group_cpus(sd->groups),
8060
		.idle		= idle,
8061
		.loop_break	= sched_nr_migrate_break,
8062
		.cpus		= cpus,
8063
		.fbq_type	= all,
8064
		.tasks		= LIST_HEAD_INIT(env.tasks),
8065 8066
	};

8067 8068 8069 8070
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8071
	if (idle == CPU_NEWLY_IDLE)
8072 8073
		env.dst_grpmask = NULL;

8074 8075
	cpumask_copy(cpus, cpu_active_mask);

8076
	schedstat_inc(sd->lb_count[idle]);
8077 8078

redo:
8079 8080
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8081
		goto out_balanced;
8082
	}
8083

8084
	group = find_busiest_group(&env);
8085
	if (!group) {
8086
		schedstat_inc(sd->lb_nobusyg[idle]);
8087 8088 8089
		goto out_balanced;
	}

8090
	busiest = find_busiest_queue(&env, group);
8091
	if (!busiest) {
8092
		schedstat_inc(sd->lb_nobusyq[idle]);
8093 8094 8095
		goto out_balanced;
	}

8096
	BUG_ON(busiest == env.dst_rq);
8097

8098
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8099

8100 8101 8102
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8103 8104 8105 8106 8107 8108 8109 8110
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8111
		env.flags |= LBF_ALL_PINNED;
8112
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8113

8114
more_balance:
8115
		rq_lock_irqsave(busiest, &rf);
8116
		update_rq_clock(busiest);
8117 8118 8119 8120 8121

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8122
		cur_ld_moved = detach_tasks(&env);
8123 8124

		/*
8125 8126 8127 8128 8129
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8130
		 */
8131

8132
		rq_unlock(busiest, &rf);
8133 8134 8135 8136 8137 8138

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8139
		local_irq_restore(rf.flags);
8140

8141 8142 8143 8144 8145
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8165
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8166

8167 8168 8169
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8170
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8171
			env.dst_cpu	 = env.new_dst_cpu;
8172
			env.flags	&= ~LBF_DST_PINNED;
8173 8174
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8175

8176 8177 8178 8179 8180 8181
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8182

8183 8184 8185 8186
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8187
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8188

8189
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8190 8191 8192
				*group_imbalance = 1;
		}

8193
		/* All tasks on this runqueue were pinned by CPU affinity */
8194
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8195
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8196 8197 8198
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8199
				goto redo;
8200
			}
8201
			goto out_all_pinned;
8202 8203 8204 8205
		}
	}

	if (!ld_moved) {
8206
		schedstat_inc(sd->lb_failed[idle]);
8207 8208 8209 8210 8211 8212 8213 8214
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8215

8216
		if (need_active_balance(&env)) {
8217 8218
			unsigned long flags;

8219 8220
			raw_spin_lock_irqsave(&busiest->lock, flags);

8221 8222 8223
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8224
			 */
8225
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8226 8227
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8228
				env.flags |= LBF_ALL_PINNED;
8229 8230 8231
				goto out_one_pinned;
			}

8232 8233 8234 8235 8236
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8237 8238 8239 8240 8241 8242
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8243

8244
			if (active_balance) {
8245 8246 8247
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8248
			}
8249

8250
			/* We've kicked active balancing, force task migration. */
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8264
		 * detach_tasks).
8265 8266 8267 8268 8269 8270 8271 8272
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8290
	schedstat_inc(sd->lb_balanced[idle]);
8291 8292 8293 8294 8295

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8296
	if (((env.flags & LBF_ALL_PINNED) &&
8297
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8298 8299 8300
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8301
	ld_moved = 0;
8302 8303 8304 8305
out:
	return ld_moved;
}

8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8322
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8323 8324 8325
{
	unsigned long interval, next;

8326 8327
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8328 8329 8330 8331 8332 8333
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8334 8335 8336 8337
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8338
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8339
{
8340 8341
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8342 8343
	struct sched_domain *sd;
	int pulled_task = 0;
8344
	u64 curr_cost = 0;
8345

8346 8347 8348 8349 8350 8351
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8352 8353 8354 8355 8356 8357 8358 8359
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8360 8361
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8362 8363 8364
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8365
			update_next_balance(sd, &next_balance);
8366 8367
		rcu_read_unlock();

8368
		goto out;
8369
	}
8370

8371 8372
	raw_spin_unlock(&this_rq->lock);

8373
	update_blocked_averages(this_cpu);
8374
	rcu_read_lock();
8375
	for_each_domain(this_cpu, sd) {
8376
		int continue_balancing = 1;
8377
		u64 t0, domain_cost;
8378 8379 8380 8381

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8382
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8383
			update_next_balance(sd, &next_balance);
8384
			break;
8385
		}
8386

8387
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8388 8389
			t0 = sched_clock_cpu(this_cpu);

8390
			pulled_task = load_balance(this_cpu, this_rq,
8391 8392
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8393 8394 8395 8396 8397 8398

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8399
		}
8400

8401
		update_next_balance(sd, &next_balance);
8402 8403 8404 8405 8406 8407

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8408 8409
			break;
	}
8410
	rcu_read_unlock();
8411 8412 8413

	raw_spin_lock(&this_rq->lock);

8414 8415 8416
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8417
	/*
8418 8419 8420
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8421
	 */
8422
	if (this_rq->cfs.h_nr_running && !pulled_task)
8423
		pulled_task = 1;
8424

8425 8426 8427
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8428
		this_rq->next_balance = next_balance;
8429

8430
	/* Is there a task of a high priority class? */
8431
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8432 8433
		pulled_task = -1;

8434
	if (pulled_task)
8435 8436
		this_rq->idle_stamp = 0;

8437 8438
	rq_repin_lock(this_rq, rf);

8439
	return pulled_task;
8440 8441 8442
}

/*
8443 8444 8445 8446
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8447
 */
8448
static int active_load_balance_cpu_stop(void *data)
8449
{
8450 8451
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8452
	int target_cpu = busiest_rq->push_cpu;
8453
	struct rq *target_rq = cpu_rq(target_cpu);
8454
	struct sched_domain *sd;
8455
	struct task_struct *p = NULL;
8456
	struct rq_flags rf;
8457

8458
	rq_lock_irq(busiest_rq, &rf);
8459 8460 8461 8462 8463

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8464 8465 8466

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8467
		goto out_unlock;
8468 8469 8470 8471 8472 8473 8474 8475 8476

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8477
	rcu_read_lock();
8478 8479 8480 8481 8482 8483 8484
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8485 8486
		struct lb_env env = {
			.sd		= sd,
8487 8488 8489 8490
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8491 8492 8493
			.idle		= CPU_IDLE,
		};

8494
		schedstat_inc(sd->alb_count);
8495
		update_rq_clock(busiest_rq);
8496

8497
		p = detach_one_task(&env);
8498
		if (p) {
8499
			schedstat_inc(sd->alb_pushed);
8500 8501 8502
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8503
			schedstat_inc(sd->alb_failed);
8504
		}
8505
	}
8506
	rcu_read_unlock();
8507 8508
out_unlock:
	busiest_rq->active_balance = 0;
8509
	rq_unlock(busiest_rq, &rf);
8510 8511 8512 8513 8514 8515

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8516
	return 0;
8517 8518
}

8519 8520 8521 8522 8523
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8524
#ifdef CONFIG_NO_HZ_COMMON
8525 8526 8527 8528 8529 8530
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8531
static struct {
8532
	cpumask_var_t idle_cpus_mask;
8533
	atomic_t nr_cpus;
8534 8535
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8536

8537
static inline int find_new_ilb(void)
8538
{
8539
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8540

8541 8542 8543 8544
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8545 8546
}

8547 8548 8549 8550 8551
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8552
static void nohz_balancer_kick(void)
8553 8554 8555 8556 8557
{
	int ilb_cpu;

	nohz.next_balance++;

8558
	ilb_cpu = find_new_ilb();
8559

8560 8561
	if (ilb_cpu >= nr_cpu_ids)
		return;
8562

8563
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8564 8565 8566 8567 8568 8569 8570 8571
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8572 8573 8574
	return;
}

8575
void nohz_balance_exit_idle(unsigned int cpu)
8576 8577
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8578 8579 8580 8581 8582 8583 8584
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8585 8586 8587 8588
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8589 8590 8591
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8592
	int cpu = smp_processor_id();
8593 8594

	rcu_read_lock();
8595
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8596 8597 8598 8599 8600

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8601
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8602
unlock:
8603 8604 8605 8606 8607 8608
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8609
	int cpu = smp_processor_id();
8610 8611

	rcu_read_lock();
8612
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8613 8614 8615 8616 8617

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8618
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8619
unlock:
8620 8621 8622
	rcu_read_unlock();
}

8623
/*
8624
 * This routine will record that the cpu is going idle with tick stopped.
8625
 * This info will be used in performing idle load balancing in the future.
8626
 */
8627
void nohz_balance_enter_idle(int cpu)
8628
{
8629 8630 8631 8632 8633 8634
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8635 8636
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8637

8638 8639 8640 8641 8642 8643
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8644 8645 8646
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8647 8648 8649 8650 8651
}
#endif

static DEFINE_SPINLOCK(balancing);

8652 8653 8654 8655
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8656
void update_max_interval(void)
8657 8658 8659 8660
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8661 8662 8663 8664
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8665
 * Balancing parameters are set up in init_sched_domains.
8666
 */
8667
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8668
{
8669
	int continue_balancing = 1;
8670
	int cpu = rq->cpu;
8671
	unsigned long interval;
8672
	struct sched_domain *sd;
8673 8674 8675
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8676 8677
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8678

8679
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8680

8681
	rcu_read_lock();
8682
	for_each_domain(cpu, sd) {
8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8695 8696 8697
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8709
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8710 8711 8712 8713 8714 8715 8716 8717

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8718
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8719
				/*
8720
				 * The LBF_DST_PINNED logic could have changed
8721 8722
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8723
				 */
8724
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8725 8726
			}
			sd->last_balance = jiffies;
8727
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8728 8729 8730 8731 8732 8733 8734 8735
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8736 8737
	}
	if (need_decay) {
8738
		/*
8739 8740
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8741
		 */
8742 8743
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8744
	}
8745
	rcu_read_unlock();
8746 8747 8748 8749 8750 8751

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8752
	if (likely(update_next_balance)) {
8753
		rq->next_balance = next_balance;
8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8768 8769
}

8770
#ifdef CONFIG_NO_HZ_COMMON
8771
/*
8772
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8773 8774
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8775
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8776
{
8777
	int this_cpu = this_rq->cpu;
8778 8779
	struct rq *rq;
	int balance_cpu;
8780 8781 8782
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8783

8784 8785 8786
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8787 8788

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8789
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8790 8791 8792 8793 8794 8795 8796
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8797
		if (need_resched())
8798 8799
			break;

V
Vincent Guittot 已提交
8800 8801
		rq = cpu_rq(balance_cpu);

8802 8803 8804 8805 8806
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8807 8808 8809
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8810
			update_rq_clock(rq);
8811
			cpu_load_update_idle(rq);
8812 8813
			rq_unlock_irq(rq, &rf);

8814 8815
			rebalance_domains(rq, CPU_IDLE);
		}
8816

8817 8818 8819 8820
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8821
	}
8822 8823 8824 8825 8826 8827 8828 8829

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8830 8831
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8832 8833 8834
}

/*
8835
 * Current heuristic for kicking the idle load balancer in the presence
8836
 * of an idle cpu in the system.
8837
 *   - This rq has more than one task.
8838 8839 8840 8841
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8842 8843
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8844
 */
8845
static inline bool nohz_kick_needed(struct rq *rq)
8846 8847
{
	unsigned long now = jiffies;
8848
	struct sched_domain_shared *sds;
8849
	struct sched_domain *sd;
T
Tim Chen 已提交
8850
	int nr_busy, i, cpu = rq->cpu;
8851
	bool kick = false;
8852

8853
	if (unlikely(rq->idle_balance))
8854
		return false;
8855

8856 8857 8858 8859
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8860
	set_cpu_sd_state_busy();
8861
	nohz_balance_exit_idle(cpu);
8862 8863 8864 8865 8866 8867

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8868
		return false;
8869 8870

	if (time_before(now, nohz.next_balance))
8871
		return false;
8872

8873
	if (rq->nr_running >= 2)
8874
		return true;
8875

8876
	rcu_read_lock();
8877 8878 8879 8880 8881 8882 8883
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8884 8885 8886 8887 8888
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8889
	}
8890

8891 8892 8893 8894 8895 8896 8897 8898
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8899

8900
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8901 8902 8903 8904 8905
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8906

T
Tim Chen 已提交
8907 8908 8909 8910 8911 8912
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8913
unlock:
8914
	rcu_read_unlock();
8915
	return kick;
8916 8917
}
#else
8918
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8919 8920 8921 8922 8923 8924
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8925
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8926
{
8927
	struct rq *this_rq = this_rq();
8928
	enum cpu_idle_type idle = this_rq->idle_balance ?
8929 8930 8931
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8932
	 * If this cpu has a pending nohz_balance_kick, then do the
8933
	 * balancing on behalf of the other idle cpus whose ticks are
8934 8935 8936 8937
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8938
	 */
8939
	nohz_idle_balance(this_rq, idle);
8940
	rebalance_domains(this_rq, idle);
8941 8942 8943 8944 8945
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8946
void trigger_load_balance(struct rq *rq)
8947 8948
{
	/* Don't need to rebalance while attached to NULL domain */
8949 8950 8951 8952
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8953
		raise_softirq(SCHED_SOFTIRQ);
8954
#ifdef CONFIG_NO_HZ_COMMON
8955
	if (nohz_kick_needed(rq))
8956
		nohz_balancer_kick();
8957
#endif
8958 8959
}

8960 8961 8962
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8963 8964

	update_runtime_enabled(rq);
8965 8966 8967 8968 8969
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
8970 8971 8972

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
8973 8974
}

8975
#endif /* CONFIG_SMP */
8976

8977 8978 8979
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
8980
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8981 8982 8983 8984 8985 8986
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
8987
		entity_tick(cfs_rq, se, queued);
8988
	}
8989

8990
	if (static_branch_unlikely(&sched_numa_balancing))
8991
		task_tick_numa(rq, curr);
8992 8993 8994
}

/*
P
Peter Zijlstra 已提交
8995 8996 8997
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
8998
 */
P
Peter Zijlstra 已提交
8999
static void task_fork_fair(struct task_struct *p)
9000
{
9001 9002
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9003
	struct rq *rq = this_rq();
9004
	struct rq_flags rf;
9005

9006
	rq_lock(rq, &rf);
9007 9008
	update_rq_clock(rq);

9009 9010
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9011 9012
	if (curr) {
		update_curr(cfs_rq);
9013
		se->vruntime = curr->vruntime;
9014
	}
9015
	place_entity(cfs_rq, se, 1);
9016

P
Peter Zijlstra 已提交
9017
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9018
		/*
9019 9020 9021
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9022
		swap(curr->vruntime, se->vruntime);
9023
		resched_curr(rq);
9024
	}
9025

9026
	se->vruntime -= cfs_rq->min_vruntime;
9027
	rq_unlock(rq, &rf);
9028 9029
}

9030 9031 9032 9033
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9034 9035
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9036
{
9037
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9038 9039
		return;

9040 9041 9042 9043 9044
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9045
	if (rq->curr == p) {
9046
		if (p->prio > oldprio)
9047
			resched_curr(rq);
9048
	} else
9049
		check_preempt_curr(rq, p, 0);
9050 9051
}

9052
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9053 9054 9055 9056
{
	struct sched_entity *se = &p->se;

	/*
9057 9058 9059 9060 9061 9062 9063 9064 9065 9066
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9067
	 *
9068 9069 9070 9071
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9072
	 */
9073 9074 9075 9076 9077 9078
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9104
static void detach_entity_cfs_rq(struct sched_entity *se)
9105 9106 9107
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9108
	/* Catch up with the cfs_rq and remove our load when we leave */
9109
	update_load_avg(se, 0);
9110
	detach_entity_load_avg(cfs_rq, se);
9111
	update_tg_load_avg(cfs_rq, false);
9112
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9113 9114
}

9115
static void attach_entity_cfs_rq(struct sched_entity *se)
9116
{
9117
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9118 9119

#ifdef CONFIG_FAIR_GROUP_SCHED
9120 9121 9122 9123 9124 9125
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9126

9127
	/* Synchronize entity with its cfs_rq */
9128
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9129
	attach_entity_load_avg(cfs_rq, se);
9130
	update_tg_load_avg(cfs_rq, false);
9131
	propagate_entity_cfs_rq(se);
9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9157 9158 9159 9160

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9161

9162 9163 9164 9165 9166 9167 9168 9169
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9170

9171
	if (task_on_rq_queued(p)) {
9172
		/*
9173 9174 9175
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9176
		 */
9177 9178 9179 9180
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9181
	}
9182 9183
}

9184 9185 9186 9187 9188 9189 9190 9191 9192
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9193 9194 9195 9196 9197 9198 9199
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9200 9201
}

9202 9203 9204 9205 9206 9207 9208
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9209
#ifdef CONFIG_SMP
9210 9211 9212
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9213 9214
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9215
#endif
9216 9217
}

P
Peter Zijlstra 已提交
9218
#ifdef CONFIG_FAIR_GROUP_SCHED
9219 9220 9221 9222 9223 9224 9225 9226
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9227
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9228
{
9229
	detach_task_cfs_rq(p);
9230
	set_task_rq(p, task_cpu(p));
9231 9232 9233 9234 9235

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9236
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9237
}
9238

9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9252 9253 9254 9255 9256 9257 9258 9259 9260
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9261
		if (tg->se)
9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9272
	struct cfs_rq *cfs_rq;
9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9299
		init_entity_runnable_average(se);
9300 9301 9302 9303 9304 9305 9306 9307 9308 9309
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9321
		update_rq_clock(rq);
9322
		attach_entity_cfs_rq(se);
9323
		sync_throttle(tg, i);
9324 9325 9326 9327
		raw_spin_unlock_irq(&rq->lock);
	}
}

9328
void unregister_fair_sched_group(struct task_group *tg)
9329 9330
{
	unsigned long flags;
9331 9332
	struct rq *rq;
	int cpu;
9333

9334 9335 9336
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9337

9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9370
	if (!parent) {
9371
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9372 9373
		se->depth = 0;
	} else {
9374
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9375 9376
		se->depth = parent->depth + 1;
	}
9377 9378

	se->my_q = cfs_rq;
9379 9380
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9405 9406
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9407 9408

		/* Propagate contribution to hierarchy */
9409
		rq_lock_irqsave(rq, &rf);
9410
		update_rq_clock(rq);
9411 9412 9413 9414
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9415
		rq_unlock_irqrestore(rq, &rf);
9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9431 9432
void online_fair_sched_group(struct task_group *tg) { }

9433
void unregister_fair_sched_group(struct task_group *tg) { }
9434 9435 9436

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9437

9438
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9439 9440 9441 9442 9443 9444 9445 9446 9447
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9448
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9449 9450 9451 9452

	return rr_interval;
}

9453 9454 9455
/*
 * All the scheduling class methods:
 */
9456
const struct sched_class fair_sched_class = {
9457
	.next			= &idle_sched_class,
9458 9459 9460
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9461
	.yield_to_task		= yield_to_task_fair,
9462

I
Ingo Molnar 已提交
9463
	.check_preempt_curr	= check_preempt_wakeup,
9464 9465 9466 9467

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9468
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9469
	.select_task_rq		= select_task_rq_fair,
9470
	.migrate_task_rq	= migrate_task_rq_fair,
9471

9472 9473
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9474

9475
	.task_dead		= task_dead_fair,
9476
	.set_cpus_allowed	= set_cpus_allowed_common,
9477
#endif
9478

9479
	.set_curr_task          = set_curr_task_fair,
9480
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9481
	.task_fork		= task_fork_fair,
9482 9483

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9484
	.switched_from		= switched_from_fair,
9485
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9486

9487 9488
	.get_rr_interval	= get_rr_interval_fair,

9489 9490
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9491
#ifdef CONFIG_FAIR_GROUP_SCHED
9492
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9493
#endif
9494 9495 9496
};

#ifdef CONFIG_SCHED_DEBUG
9497
void print_cfs_stats(struct seq_file *m, int cpu)
9498 9499 9500
{
	struct cfs_rq *cfs_rq;

9501
	rcu_read_lock();
9502
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9503
		print_cfs_rq(m, cpu, cfs_rq);
9504
	rcu_read_unlock();
9505
}
9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9527 9528 9529 9530 9531 9532

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9533
#ifdef CONFIG_NO_HZ_COMMON
9534
	nohz.next_balance = jiffies;
9535 9536 9537 9538 9539
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}