fair.c 249.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 22
 */

23
#include <linux/sched/mm.h>
24 25
#include <linux/sched/topology.h>

26
#include <linux/latencytop.h>
27
#include <linux/cpumask.h>
28
#include <linux/cpuidle.h>
29 30 31
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
32
#include <linux/mempolicy.h>
33
#include <linux/migrate.h>
34
#include <linux/task_work.h>
35 36 37 38

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
39

40
/*
41
 * Targeted preemption latency for CPU-bound tasks:
42
 *
43
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
44 45 46
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
47
 *
I
Ingo Molnar 已提交
48 49
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
50 51
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52
 */
53 54
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55

56 57 58 59
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
60 61 62 63 64 65
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66
 */
67
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68

69
/*
70
 * Minimal preemption granularity for CPU-bound tasks:
71
 *
72
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73
 */
74 75
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 77

/*
78
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79
 */
80
static unsigned int sched_nr_latency = 8;
81 82

/*
83
 * After fork, child runs first. If set to 0 (default) then
84
 * parent will (try to) run first.
85
 */
86
unsigned int sysctl_sched_child_runs_first __read_mostly;
87 88 89 90 91 92 93

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
94 95
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96
 */
97 98
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99

100
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101

T
Tim Chen 已提交
102 103 104 105 106 107 108 109 110 111
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

112 113 114 115 116 117 118 119 120
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
121 122 123
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 125
#endif

126 127
/*
 * The margin used when comparing utilization with CPU capacity:
128
 * util * margin < capacity * 1024
129 130
 *
 * (default: ~20%)
131
 */
132
unsigned int capacity_margin				= 1280;
133

134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

152 153 154 155 156 157 158 159 160
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
161
static unsigned int get_update_sysctl_factor(void)
162
{
163
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

199
#define WMULT_CONST	(~0U)
200 201
#define WMULT_SHIFT	32

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
218 219

/*
220 221 222 223
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
224
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 226 227 228 229
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230
 */
231
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232
{
233 234
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
235

236
	__update_inv_weight(lw);
237

238 239 240 241 242
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
243 244
	}

245 246
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
247

248 249 250 251
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
252

253
	return mul_u64_u32_shr(delta_exec, fact, shift);
254 255 256 257
}


const struct sched_class fair_sched_class;
258

259 260 261 262
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

263
#ifdef CONFIG_FAIR_GROUP_SCHED
264

265
/* cpu runqueue to which this cfs_rq is attached */
266 267
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
268
	return cfs_rq->rq;
269 270
}

271 272
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
273

274 275
static inline struct task_struct *task_of(struct sched_entity *se)
{
276
	SCHED_WARN_ON(!entity_is_task(se));
277 278 279
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

301 302 303
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
304 305
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
306 307 308
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
309 310 311 312 313
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
314 315
		 */
		if (cfs_rq->tg->parent &&
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
336
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357
		}
358 359 360 361 362 363 364 365 366 367 368 369 370

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
371 372 373 374 375
/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
376
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
377 378 379
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
380
		return se->cfs_rq;
P
Peter Zijlstra 已提交
381

P
Peter Zijlstra 已提交
382
	return NULL;
P
Peter Zijlstra 已提交
383 384 385 386 387 388 389
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

390 391 392 393 394 395 396 397 398 399 400 401 402
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
403 404
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

422 423 424 425 426 427
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
428

429 430 431
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
432 433 434 435
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
436 437
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
438

P
Peter Zijlstra 已提交
439
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440
{
P
Peter Zijlstra 已提交
441
	return &task_rq(p)->cfs;
442 443
}

P
Peter Zijlstra 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

458 459 460 461 462 463 464 465
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

P
Peter Zijlstra 已提交
466 467 468 469 470 471 472 473
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

474 475 476 477 478
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
479 480
#endif	/* CONFIG_FAIR_GROUP_SCHED */

481
static __always_inline
482
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 484 485 486 487

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

488
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489
{
490
	s64 delta = (s64)(vruntime - max_vruntime);
491
	if (delta > 0)
492
		max_vruntime = vruntime;
493

494
	return max_vruntime;
495 496
}

497
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
498 499 500 501 502 503 504 505
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

506 507 508 509 510 511
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

512 513
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
514 515
	struct sched_entity *curr = cfs_rq->curr;

516 517
	u64 vruntime = cfs_rq->min_vruntime;

518 519 520 521 522 523
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
524 525 526 527 528 529

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

530
		if (!curr)
531 532 533 534 535
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

536
	/* ensure we never gain time by being placed backwards. */
537
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 539 540 541
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
542 543
}

544 545 546
/*
 * Enqueue an entity into the rb-tree:
 */
547
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
564
		if (entity_before(se, entry)) {
565 566 567 568 569 570 571 572 573 574 575
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
576
	if (leftmost)
I
Ingo Molnar 已提交
577
		cfs_rq->rb_leftmost = &se->run_node;
578 579 580 581 582

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

583
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584
{
P
Peter Zijlstra 已提交
585 586 587 588 589 590
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
591

592 593 594
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

595
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596
{
597 598 599 600 601 602
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
603 604
}

605 606 607 608 609 610 611 612 613 614 615
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
616
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617
{
618
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619

620 621
	if (!last)
		return NULL;
622 623

	return rb_entry(last, struct sched_entity, run_node);
624 625
}

626 627 628 629
/**************************************************************
 * Scheduling class statistics methods:
 */

630
int sched_proc_update_handler(struct ctl_table *table, int write,
631
		void __user *buffer, size_t *lenp,
632 633
		loff_t *ppos)
{
634
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635
	unsigned int factor = get_update_sysctl_factor();
636 637 638 639 640 641 642

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

643 644 645 646 647 648 649
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

650 651 652
	return 0;
}
#endif
653

654
/*
655
 * delta /= w
656
 */
657
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658
{
659
	if (unlikely(se->load.weight != NICE_0_LOAD))
660
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 662 663 664

	return delta;
}

665 666 667
/*
 * The idea is to set a period in which each task runs once.
 *
668
 * When there are too many tasks (sched_nr_latency) we have to stretch
669 670 671 672
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
673 674
static u64 __sched_period(unsigned long nr_running)
{
675 676 677 678
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
679 680
}

681 682 683 684
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
685
 * s = p*P[w/rw]
686
 */
P
Peter Zijlstra 已提交
687
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688
{
M
Mike Galbraith 已提交
689
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690

M
Mike Galbraith 已提交
691
	for_each_sched_entity(se) {
L
Lin Ming 已提交
692
		struct load_weight *load;
693
		struct load_weight lw;
L
Lin Ming 已提交
694 695 696

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
697

M
Mike Galbraith 已提交
698
		if (unlikely(!se->on_rq)) {
699
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
700 701 702 703

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
704
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
705 706
	}
	return slice;
707 708
}

709
/*
A
Andrei Epure 已提交
710
 * We calculate the vruntime slice of a to-be-inserted task.
711
 *
712
 * vs = s/w
713
 */
714
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
715
{
716
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 718
}

719
#ifdef CONFIG_SMP
720
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
721 722
static unsigned long task_h_load(struct task_struct *p);

723 724
/*
 * We choose a half-life close to 1 scheduling period.
725 726
 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
 * dependent on this value.
727 728 729
 */
#define LOAD_AVG_PERIOD 32
#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
730
#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
731

732 733
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
734
{
735
	struct sched_avg *sa = &se->avg;
736

737 738 739 740 741 742 743
	sa->last_update_time = 0;
	/*
	 * sched_avg's period_contrib should be strictly less then 1024, so
	 * we give it 1023 to make sure it is almost a period (1024us), and
	 * will definitely be update (after enqueue).
	 */
	sa->period_contrib = 1023;
744 745 746 747 748 749 750 751
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
		sa->load_avg = scale_load_down(se->load.weight);
752
	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
753 754 755 756 757
	/*
	 * At this point, util_avg won't be used in select_task_rq_fair anyway
	 */
	sa->util_avg = 0;
	sa->util_sum = 0;
758
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759
}
760

761
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
762
static void attach_entity_cfs_rq(struct sched_entity *se);
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
793
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
794 795 796 797 798 799 800 801 802 803 804 805 806

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
	}
807 808 809 810 811 812 813 814 815 816 817 818 819 820

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
			update_cfs_rq_load_avg(now, cfs_rq, false);
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
821
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
822 823 824 825
			return;
		}
	}

826
	attach_entity_cfs_rq(se);
827 828
}

829
#else /* !CONFIG_SMP */
830
void init_entity_runnable_average(struct sched_entity *se)
831 832
{
}
833 834 835
void post_init_entity_util_avg(struct sched_entity *se)
{
}
836 837 838
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
839
#endif /* CONFIG_SMP */
840

841
/*
842
 * Update the current task's runtime statistics.
843
 */
844
static void update_curr(struct cfs_rq *cfs_rq)
845
{
846
	struct sched_entity *curr = cfs_rq->curr;
847
	u64 now = rq_clock_task(rq_of(cfs_rq));
848
	u64 delta_exec;
849 850 851 852

	if (unlikely(!curr))
		return;

853 854
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
855
		return;
856

I
Ingo Molnar 已提交
857
	curr->exec_start = now;
858

859 860 861 862
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
863
	schedstat_add(cfs_rq->exec_clock, delta_exec);
864 865 866 867

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

868 869 870
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

871
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872
		cpuacct_charge(curtask, delta_exec);
873
		account_group_exec_runtime(curtask, delta_exec);
874
	}
875 876

	account_cfs_rq_runtime(cfs_rq, delta_exec);
877 878
}

879 880 881 882 883
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

884
static inline void
885
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886
{
887 888 889 890 891 892 893
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
894 895

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 897
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
898

899
	schedstat_set(se->statistics.wait_start, wait_start);
900 901
}

902
static inline void
903 904 905
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
906 907
	u64 delta;

908 909 910 911
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912 913 914 915 916 917 918 919 920

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
921
			schedstat_set(se->statistics.wait_start, delta);
922 923 924 925 926
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

927 928 929 930 931
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
932 933
}

934
static inline void
935 936 937
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
938 939 940 941 942 943 944
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
945 946 947 948

	if (entity_is_task(se))
		tsk = task_of(se);

949 950
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951 952 953 954

		if ((s64)delta < 0)
			delta = 0;

955 956
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
957

958 959
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
960 961 962 963 964 965

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
966 967
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968 969 970 971

		if ((s64)delta < 0)
			delta = 0;

972 973
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
974

975 976
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
977 978 979

		if (tsk) {
			if (tsk->in_iowait) {
980 981
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
1000 1001
}

1002 1003 1004
/*
 * Task is being enqueued - update stats:
 */
1005
static inline void
1006
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007
{
1008 1009 1010
	if (!schedstat_enabled())
		return;

1011 1012 1013 1014
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
1015
	if (se != cfs_rq->curr)
1016
		update_stats_wait_start(cfs_rq, se);
1017 1018 1019

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
1020 1021 1022
}

static inline void
1023
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024
{
1025 1026 1027 1028

	if (!schedstat_enabled())
		return;

1029 1030 1031 1032
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1033
	if (se != cfs_rq->curr)
1034
		update_stats_wait_end(cfs_rq, se);
1035

1036 1037
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1038

1039 1040 1041 1042 1043 1044
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1045 1046 1047
	}
}

1048 1049 1050 1051
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1052
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 1054 1055 1056
{
	/*
	 * We are starting a new run period:
	 */
1057
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 1059 1060 1061 1062 1063
}

/**************************************************
 * Scheduling class queueing methods:
 */

1064 1065
#ifdef CONFIG_NUMA_BALANCING
/*
1066 1067 1068
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1069
 */
1070 1071
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1072 1073 1074

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1075

1076 1077 1078
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1103
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1104 1105 1106
	unsigned int scan, floor;
	unsigned int windows = 1;

1107 1108
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

static unsigned int task_scan_max(struct task_struct *p)
{
	unsigned int smin = task_scan_min(p);
	unsigned int smax;

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
	return max(smin, smax);
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1137 1138 1139 1140 1141
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
1142
	pid_t gid;
1143
	int active_nodes;
1144 1145

	struct rcu_head rcu;
1146
	unsigned long total_faults;
1147
	unsigned long max_faults_cpu;
1148 1149 1150 1151 1152
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
1153
	unsigned long *faults_cpu;
1154
	unsigned long faults[0];
1155 1156
};

1157 1158 1159 1160 1161 1162 1163 1164 1165
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1166 1167 1168 1169 1170
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1171 1172 1173 1174 1175 1176 1177
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1178
{
1179
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1180 1181 1182 1183
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1184
	if (!p->numa_faults)
1185 1186
		return 0;

1187 1188
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1189 1190
}

1191 1192 1193 1194 1195
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1196 1197
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1198 1199
}

1200 1201
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1202 1203
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1204 1205
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1283 1284 1285 1286 1287 1288
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1289 1290
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1291
{
1292
	unsigned long faults, total_faults;
1293

1294
	if (!p->numa_faults)
1295 1296 1297 1298 1299 1300 1301
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1302
	faults = task_faults(p, nid);
1303 1304
	faults += score_nearby_nodes(p, nid, dist, true);

1305
	return 1000 * faults / total_faults;
1306 1307
}

1308 1309
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1310
{
1311 1312 1313 1314 1315 1316 1317 1318
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1319 1320
		return 0;

1321
	faults = group_faults(p, nid);
1322 1323
	faults += score_nearby_nodes(p, nid, dist, false);

1324
	return 1000 * faults / total_faults;
1325 1326
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1367 1368
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1369
	 */
1370 1371
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1372 1373 1374
		return true;

	/*
1375 1376 1377 1378 1379 1380
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1381
	 */
1382 1383
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1384 1385
}

1386
static unsigned long weighted_cpuload(const int cpu);
1387 1388
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1389
static unsigned long capacity_of(int cpu);
1390 1391
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);

1392
/* Cached statistics for all CPUs within a node */
1393
struct numa_stats {
1394
	unsigned long nr_running;
1395
	unsigned long load;
1396 1397

	/* Total compute capacity of CPUs on a node */
1398
	unsigned long compute_capacity;
1399 1400

	/* Approximate capacity in terms of runnable tasks on a node */
1401
	unsigned long task_capacity;
1402
	int has_free_capacity;
1403
};
1404

1405 1406 1407 1408 1409
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1410 1411
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1412 1413 1414 1415 1416 1417 1418

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
		ns->load += weighted_cpuload(cpu);
1419
		ns->compute_capacity += capacity_of(cpu);
1420 1421

		cpus++;
1422 1423
	}

1424 1425 1426 1427 1428
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1429 1430
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1431 1432 1433 1434
	 */
	if (!cpus)
		return;

1435 1436 1437 1438 1439 1440
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1441
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1442 1443
}

1444 1445
struct task_numa_env {
	struct task_struct *p;
1446

1447 1448
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1449

1450
	struct numa_stats src_stats, dst_stats;
1451

1452
	int imbalance_pct;
1453
	int dist;
1454 1455 1456

	struct task_struct *best_task;
	long best_imp;
1457 1458 1459
	int best_cpu;
};

1460 1461 1462 1463 1464
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1465 1466
	if (p)
		get_task_struct(p);
1467 1468 1469 1470 1471 1472

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1473
static bool load_too_imbalanced(long src_load, long dst_load,
1474 1475
				struct task_numa_env *env)
{
1476 1477
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1489 1490

	/* We care about the slope of the imbalance, not the direction. */
1491 1492
	if (dst_load < src_load)
		swap(dst_load, src_load);
1493 1494

	/* Is the difference below the threshold? */
1495 1496
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1497 1498 1499 1500 1501
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1502
	 * Compare it with the old imbalance.
1503
	 */
1504
	orig_src_load = env->src_stats.load;
1505
	orig_dst_load = env->dst_stats.load;
1506

1507 1508
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1509

1510 1511 1512 1513 1514
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1515 1516
}

1517 1518 1519 1520 1521 1522
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1523 1524
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1525 1526 1527 1528
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1529
	long src_load, dst_load;
1530
	long load;
1531
	long imp = env->p->numa_group ? groupimp : taskimp;
1532
	long moveimp = imp;
1533
	int dist = env->dist;
1534 1535

	rcu_read_lock();
1536 1537
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1538 1539
		cur = NULL;

1540 1541 1542 1543 1544 1545 1546
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1547 1548 1549 1550 1551 1552 1553 1554 1555
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1556
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1557 1558
			goto unlock;

1559 1560
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1561
		 * in any group then look only at task weights.
1562
		 */
1563
		if (cur->numa_group == env->p->numa_group) {
1564 1565
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1566 1567 1568 1569 1570 1571
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1572
		} else {
1573 1574 1575 1576 1577 1578
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1579 1580
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1581
			else
1582 1583
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1584
		}
1585 1586
	}

1587
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1588 1589 1590 1591
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1592
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1593
		    !env->dst_stats.has_free_capacity)
1594 1595 1596 1597 1598 1599
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1600 1601
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1602 1603 1604 1605 1606 1607
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1608 1609 1610
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1611

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1629
	if (cur) {
1630 1631 1632
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1633 1634
	}

1635
	if (load_too_imbalanced(src_load, dst_load, env))
1636 1637
		goto unlock;

1638 1639 1640 1641
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1642 1643 1644 1645 1646 1647
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1648 1649
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1650 1651
		local_irq_enable();
	}
1652

1653 1654 1655 1656 1657 1658
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1659 1660
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1661 1662 1663 1664 1665
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1666
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1667 1668 1669
			continue;

		env->dst_cpu = cpu;
1670
		task_numa_compare(env, taskimp, groupimp);
1671 1672 1673
	}
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1691 1692 1693
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1694 1695 1696 1697 1698
		return true;

	return false;
}

1699 1700 1701 1702
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1703

1704
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1705
		.src_nid = task_node(p),
1706 1707 1708 1709 1710

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1711
		.best_cpu = -1,
1712 1713
	};
	struct sched_domain *sd;
1714
	unsigned long taskweight, groupweight;
1715
	int nid, ret, dist;
1716
	long taskimp, groupimp;
1717

1718
	/*
1719 1720 1721 1722 1723 1724
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1725 1726
	 */
	rcu_read_lock();
1727
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1728 1729
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1730 1731
	rcu_read_unlock();

1732 1733 1734 1735 1736 1737 1738
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1739
		p->numa_preferred_nid = task_node(p);
1740 1741 1742
		return -EINVAL;
	}

1743
	env.dst_nid = p->numa_preferred_nid;
1744 1745 1746 1747 1748 1749
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1750
	update_numa_stats(&env.dst_stats, env.dst_nid);
1751

1752
	/* Try to find a spot on the preferred nid. */
1753 1754
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1755

1756 1757 1758 1759 1760 1761 1762
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1763
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1764 1765 1766
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1767

1768
			dist = node_distance(env.src_nid, env.dst_nid);
1769 1770 1771 1772 1773
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1774

1775
			/* Only consider nodes where both task and groups benefit */
1776 1777
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1778
			if (taskimp < 0 && groupimp < 0)
1779 1780
				continue;

1781
			env.dist = dist;
1782 1783
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1784 1785
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1786 1787 1788
		}
	}

1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1797
	if (p->numa_group) {
1798 1799
		struct numa_group *ng = p->numa_group;

1800 1801 1802 1803 1804
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1805
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1806 1807 1808 1809 1810 1811
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1812

1813 1814 1815 1816 1817 1818
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
	p->numa_scan_period = task_scan_min(p);

1819
	if (env.best_task == NULL) {
1820 1821 1822
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1823 1824 1825 1826
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1827 1828
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1829 1830
	put_task_struct(env.best_task);
	return ret;
1831 1832
}

1833 1834 1835
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1836 1837
	unsigned long interval = HZ;

1838
	/* This task has no NUMA fault statistics yet */
1839
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1840 1841
		return;

1842
	/* Periodically retry migrating the task to the preferred node */
1843 1844
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1845 1846

	/* Success if task is already running on preferred CPU */
1847
	if (task_node(p) == p->numa_preferred_nid)
1848 1849 1850
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1851
	task_numa_migrate(p);
1852 1853
}

1854
/*
1855
 * Find out how many nodes on the workload is actively running on. Do this by
1856 1857 1858 1859
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1860
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1861 1862
{
	unsigned long faults, max_faults = 0;
1863
	int nid, active_nodes = 0;
1864 1865 1866 1867 1868 1869 1870 1871 1872

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1873 1874
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1875
	}
1876 1877 1878

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1879 1880
}

1881 1882 1883
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1884 1885 1886
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1887 1888
 */
#define NUMA_PERIOD_SLOTS 10
1889
#define NUMA_PERIOD_THRESHOLD 7
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
	int ratio;
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1910 1911 1912
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1913
	 */
1914
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	if (ratio >= NUMA_PERIOD_THRESHOLD) {
		int slot = ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;

		/*
		 * Scale scan rate increases based on sharing. There is an
		 * inverse relationship between the degree of sharing and
		 * the adjustment made to the scanning period. Broadly
		 * speaking the intent is that there is little point
		 * scanning faster if shared accesses dominate as it may
		 * simply bounce migrations uselessly
		 */
1948
		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1949 1950 1951 1952 1953 1954 1955 1956
		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
1975 1976
		delta = p->se.avg.load_sum / p->se.load.weight;
		*period = LOAD_AVG_MAX;
1977 1978 1979 1980 1981 1982 1983 1984
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2032
		nodemask_t max_group = NODE_MASK_NONE;
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2066 2067
		if (!max_faults)
			break;
2068 2069 2070 2071 2072
		nodes = max_group;
	}
	return nid;
}

2073 2074
static void task_numa_placement(struct task_struct *p)
{
2075 2076
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2077
	unsigned long fault_types[2] = { 0, 0 };
2078 2079
	unsigned long total_faults;
	u64 runtime, period;
2080
	spinlock_t *group_lock = NULL;
2081

2082 2083 2084 2085 2086
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2087
	seq = READ_ONCE(p->mm->numa_scan_seq);
2088 2089 2090
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2091
	p->numa_scan_period_max = task_scan_max(p);
2092

2093 2094 2095 2096
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2097 2098 2099
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2100
		spin_lock_irq(group_lock);
2101 2102
	}

2103 2104
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2105 2106
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2107
		unsigned long faults = 0, group_faults = 0;
2108
		int priv;
2109

2110
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2111
			long diff, f_diff, f_weight;
2112

2113 2114 2115 2116
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2117

2118
			/* Decay existing window, copy faults since last scan */
2119 2120 2121
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2122

2123 2124 2125 2126 2127 2128 2129 2130
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2131
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2132
				   (total_faults + 1);
2133 2134
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2135

2136 2137 2138
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2139
			p->total_numa_faults += diff;
2140
			if (p->numa_group) {
2141 2142 2143 2144 2145 2146 2147 2148 2149
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2150
				p->numa_group->total_faults += diff;
2151
				group_faults += p->numa_group->faults[mem_idx];
2152
			}
2153 2154
		}

2155 2156 2157 2158
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2159 2160 2161 2162 2163 2164 2165

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2166 2167
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2168
	if (p->numa_group) {
2169
		numa_group_count_active_nodes(p->numa_group);
2170
		spin_unlock_irq(group_lock);
2171
		max_nid = preferred_group_nid(p, max_group_nid);
2172 2173
	}

2174 2175 2176 2177 2178 2179 2180
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2181
	}
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2195 2196
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2197 2198 2199 2200 2201 2202 2203 2204 2205
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2206
				    4*nr_node_ids*sizeof(unsigned long);
2207 2208 2209 2210 2211 2212

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2213 2214
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2215
		spin_lock_init(&grp->lock);
2216
		grp->gid = p->pid;
2217
		/* Second half of the array tracks nids where faults happen */
2218 2219
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2220

2221
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2222
			grp->faults[i] = p->numa_faults[i];
2223

2224
		grp->total_faults = p->total_numa_faults;
2225

2226 2227 2228 2229 2230
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2231
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2232 2233

	if (!cpupid_match_pid(tsk, cpupid))
2234
		goto no_join;
2235 2236 2237

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2238
		goto no_join;
2239 2240 2241

	my_grp = p->numa_group;
	if (grp == my_grp)
2242
		goto no_join;
2243 2244 2245 2246 2247 2248

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2249
		goto no_join;
2250 2251 2252 2253 2254

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2255
		goto no_join;
2256

2257 2258 2259 2260 2261 2262 2263
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2264

2265 2266 2267
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2268
	if (join && !get_numa_group(grp))
2269
		goto no_join;
2270 2271 2272 2273 2274 2275

	rcu_read_unlock();

	if (!join)
		return;

2276 2277
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2278

2279
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2280 2281
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2282
	}
2283 2284
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2285 2286 2287 2288 2289

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2290
	spin_unlock_irq(&grp->lock);
2291 2292 2293 2294

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2295 2296 2297 2298 2299
	return;

no_join:
	rcu_read_unlock();
	return;
2300 2301 2302 2303 2304
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2305
	void *numa_faults = p->numa_faults;
2306 2307
	unsigned long flags;
	int i;
2308 2309

	if (grp) {
2310
		spin_lock_irqsave(&grp->lock, flags);
2311
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2312
			grp->faults[i] -= p->numa_faults[i];
2313
		grp->total_faults -= p->total_numa_faults;
2314

2315
		grp->nr_tasks--;
2316
		spin_unlock_irqrestore(&grp->lock, flags);
2317
		RCU_INIT_POINTER(p->numa_group, NULL);
2318 2319 2320
		put_numa_group(grp);
	}

2321
	p->numa_faults = NULL;
2322
	kfree(numa_faults);
2323 2324
}

2325 2326 2327
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2328
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2329 2330
{
	struct task_struct *p = current;
2331
	bool migrated = flags & TNF_MIGRATED;
2332
	int cpu_node = task_node(current);
2333
	int local = !!(flags & TNF_FAULT_LOCAL);
2334
	struct numa_group *ng;
2335
	int priv;
2336

2337
	if (!static_branch_likely(&sched_numa_balancing))
2338 2339
		return;

2340 2341 2342 2343
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2344
	/* Allocate buffer to track faults on a per-node basis */
2345 2346
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2347
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2348

2349 2350
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2351
			return;
2352

2353
		p->total_numa_faults = 0;
2354
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2355
	}
2356

2357 2358 2359 2360 2361 2362 2363 2364
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2365
		if (!priv && !(flags & TNF_NO_GROUP))
2366
			task_numa_group(p, last_cpupid, flags, &priv);
2367 2368
	}

2369 2370 2371 2372 2373 2374
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2375 2376 2377 2378
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2379 2380
		local = 1;

2381
	task_numa_placement(p);
2382

2383 2384 2385 2386 2387
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2388 2389
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2390 2391
	if (migrated)
		p->numa_pages_migrated += pages;
2392 2393
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2394

2395 2396
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2397
	p->numa_faults_locality[local] += pages;
2398 2399
}

2400 2401
static void reset_ptenuma_scan(struct task_struct *p)
{
2402 2403 2404 2405 2406 2407 2408 2409
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2410
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2411 2412 2413
	p->mm->numa_scan_offset = 0;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2423
	u64 runtime = p->se.sum_exec_runtime;
2424
	struct vm_area_struct *vma;
2425
	unsigned long start, end;
2426
	unsigned long nr_pte_updates = 0;
2427
	long pages, virtpages;
2428

2429
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2443
	if (!mm->numa_next_scan) {
2444 2445
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2446 2447
	}

2448 2449 2450 2451 2452 2453 2454
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2455 2456 2457 2458
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
		p->numa_scan_period = task_scan_min(p);
	}
2459

2460
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2461 2462 2463
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2464 2465 2466 2467 2468 2469
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2470 2471 2472
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2473
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2474 2475
	if (!pages)
		return;
2476

2477

2478
	down_read(&mm->mmap_sem);
2479
	vma = find_vma(mm, start);
2480 2481
	if (!vma) {
		reset_ptenuma_scan(p);
2482
		start = 0;
2483 2484
		vma = mm->mmap;
	}
2485
	for (; vma; vma = vma->vm_next) {
2486
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2487
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2488
			continue;
2489
		}
2490

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2501 2502 2503 2504 2505 2506
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2507

2508 2509 2510 2511
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2512
			nr_pte_updates = change_prot_numa(vma, start, end);
2513 2514

			/*
2515 2516 2517 2518 2519 2520
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2521 2522 2523
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2524
			virtpages -= (end - start) >> PAGE_SHIFT;
2525

2526
			start = end;
2527
			if (pages <= 0 || virtpages <= 0)
2528
				goto out;
2529 2530

			cond_resched();
2531
		} while (end != vma->vm_end);
2532
	}
2533

2534
out:
2535
	/*
P
Peter Zijlstra 已提交
2536 2537 2538 2539
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2540 2541
	 */
	if (vma)
2542
		mm->numa_scan_offset = start;
2543 2544 2545
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2582
	if (now > curr->node_stamp + period) {
2583
		if (!curr->node_stamp)
2584
			curr->numa_scan_period = task_scan_min(curr);
2585
		curr->node_stamp += period;
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2597 2598 2599 2600 2601 2602 2603 2604

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2605 2606
#endif /* CONFIG_NUMA_BALANCING */

2607 2608 2609 2610
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2611
	if (!parent_entity(se))
2612
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2613
#ifdef CONFIG_SMP
2614 2615 2616 2617 2618 2619
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2620
#endif
2621 2622 2623 2624 2625 2626 2627
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2628
	if (!parent_entity(se))
2629
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2630
#ifdef CONFIG_SMP
2631 2632
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2633
		list_del_init(&se->group_node);
2634
	}
2635
#endif
2636 2637 2638
	cfs_rq->nr_running--;
}

2639 2640
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2641
static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2642
{
2643
	long tg_weight, load, shares;
2644 2645

	/*
2646 2647 2648
	 * This really should be: cfs_rq->avg.load_avg, but instead we use
	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
	 * the shares for small weight interactive tasks.
2649
	 */
2650
	load = scale_load_down(cfs_rq->load.weight);
2651

2652
	tg_weight = atomic_long_read(&tg->load_avg);
2653

2654 2655 2656
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2657 2658

	shares = (tg->shares * load);
2659 2660
	if (tg_weight)
		shares /= tg_weight;
2661

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2674 2675 2676 2677 2678 2679 2680 2681
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	if (shares > tg->shares)
		shares = tg->shares;

	return shares;
}
# else /* CONFIG_SMP */
2682
static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2683 2684 2685 2686
{
	return tg->shares;
}
# endif /* CONFIG_SMP */
2687

P
Peter Zijlstra 已提交
2688 2689 2690
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
			    unsigned long weight)
{
2691 2692 2693 2694
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
P
Peter Zijlstra 已提交
2695
		account_entity_dequeue(cfs_rq, se);
2696
	}
P
Peter Zijlstra 已提交
2697 2698 2699 2700 2701 2702 2703

	update_load_set(&se->load, weight);

	if (se->on_rq)
		account_entity_enqueue(cfs_rq, se);
}

2704 2705
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2706
static void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2707
{
2708
	struct cfs_rq *cfs_rq = group_cfs_rq(se);
P
Peter Zijlstra 已提交
2709
	struct task_group *tg;
2710
	long shares;
P
Peter Zijlstra 已提交
2711

2712 2713 2714 2715
	if (!cfs_rq)
		return;

	if (throttled_hierarchy(cfs_rq))
P
Peter Zijlstra 已提交
2716
		return;
2717 2718 2719

	tg = cfs_rq->tg;

2720 2721 2722 2723
#ifndef CONFIG_SMP
	if (likely(se->load.weight == tg->shares))
		return;
#endif
2724
	shares = calc_cfs_shares(cfs_rq, tg);
P
Peter Zijlstra 已提交
2725 2726 2727

	reweight_entity(cfs_rq_of(se), se, shares);
}
2728

P
Peter Zijlstra 已提交
2729
#else /* CONFIG_FAIR_GROUP_SCHED */
2730
static inline void update_cfs_shares(struct sched_entity *se)
P
Peter Zijlstra 已提交
2731 2732 2733 2734
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

2735
#ifdef CONFIG_SMP
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
	0x85aac367, 0x82cd8698,
};

/*
 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
 * over-estimates when re-combining.
 */
static const u32 runnable_avg_yN_sum[] = {
	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
};

2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
 * lower integers. See Documentation/scheduler/sched-avg.txt how these
 * were generated:
 */
static const u32 __accumulated_sum_N32[] = {
	    0, 23371, 35056, 40899, 43820, 45281,
	46011, 46376, 46559, 46650, 46696, 46719,
};

2766 2767 2768 2769 2770 2771
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
static __always_inline u64 decay_load(u64 val, u64 n)
{
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	unsigned int local_n;

	if (!n)
		return val;
	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
2784 2785
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
2786 2787 2788 2789 2790 2791
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
2792 2793
	}

2794 2795
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
}

/*
 * For updates fully spanning n periods, the contribution to runnable
 * average will be: \Sum 1024*y^n
 *
 * We can compute this reasonably efficiently by combining:
 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
 */
static u32 __compute_runnable_contrib(u64 n)
{
	u32 contrib = 0;

	if (likely(n <= LOAD_AVG_PERIOD))
		return runnable_avg_yN_sum[n];
	else if (unlikely(n >= LOAD_AVG_MAX_N))
		return LOAD_AVG_MAX;

2814 2815 2816
	/* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
	contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
	n %= LOAD_AVG_PERIOD;
2817 2818
	contrib = decay_load(contrib, n);
	return contrib + runnable_avg_yN_sum[n];
2819 2820
}

2821
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2822

2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
2851 2852
static __always_inline int
__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2853
		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2854
{
2855
	u64 delta, scaled_delta, periods;
2856
	u32 contrib;
2857
	unsigned int delta_w, scaled_delta_w, decayed = 0;
2858
	unsigned long scale_freq, scale_cpu;
2859

2860
	delta = now - sa->last_update_time;
2861 2862 2863 2864 2865
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
2866
		sa->last_update_time = now;
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
2877
	sa->last_update_time = now;
2878

2879 2880 2881
	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

2882
	/* delta_w is the amount already accumulated against our next period */
2883
	delta_w = sa->period_contrib;
2884 2885 2886
	if (delta + delta_w >= 1024) {
		decayed = 1;

2887 2888 2889
		/* how much left for next period will start over, we don't know yet */
		sa->period_contrib = 0;

2890 2891 2892 2893 2894 2895
		/*
		 * Now that we know we're crossing a period boundary, figure
		 * out how much from delta we need to complete the current
		 * period and accrue it.
		 */
		delta_w = 1024 - delta_w;
2896
		scaled_delta_w = cap_scale(delta_w, scale_freq);
2897
		if (weight) {
2898 2899 2900 2901 2902
			sa->load_sum += weight * scaled_delta_w;
			if (cfs_rq) {
				cfs_rq->runnable_load_sum +=
						weight * scaled_delta_w;
			}
2903
		}
2904
		if (running)
2905
			sa->util_sum += scaled_delta_w * scale_cpu;
2906 2907 2908 2909 2910 2911 2912

		delta -= delta_w;

		/* Figure out how many additional periods this update spans */
		periods = delta / 1024;
		delta %= 1024;

2913
		sa->load_sum = decay_load(sa->load_sum, periods + 1);
2914 2915 2916 2917
		if (cfs_rq) {
			cfs_rq->runnable_load_sum =
				decay_load(cfs_rq->runnable_load_sum, periods + 1);
		}
2918
		sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2919 2920

		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2921
		contrib = __compute_runnable_contrib(periods);
2922
		contrib = cap_scale(contrib, scale_freq);
2923
		if (weight) {
2924
			sa->load_sum += weight * contrib;
2925 2926 2927
			if (cfs_rq)
				cfs_rq->runnable_load_sum += weight * contrib;
		}
2928
		if (running)
2929
			sa->util_sum += contrib * scale_cpu;
2930 2931 2932
	}

	/* Remainder of delta accrued against u_0` */
2933
	scaled_delta = cap_scale(delta, scale_freq);
2934
	if (weight) {
2935
		sa->load_sum += weight * scaled_delta;
2936
		if (cfs_rq)
2937
			cfs_rq->runnable_load_sum += weight * scaled_delta;
2938
	}
2939
	if (running)
2940
		sa->util_sum += scaled_delta * scale_cpu;
2941

2942
	sa->period_contrib += delta;
2943

2944 2945
	if (decayed) {
		sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2946 2947 2948 2949
		if (cfs_rq) {
			cfs_rq->runnable_load_avg =
				div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
		}
2950
		sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2951
	}
2952

2953
	return decayed;
2954 2955
}

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

2976
#ifdef CONFIG_FAIR_GROUP_SCHED
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
 * Updating tg's load_avg is necessary before update_cfs_share() (which is
 * done) and effective_load() (which is not done because it is too costly).
2992
 */
2993
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2994
{
2995
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2996

2997 2998 2999 3000 3001 3002
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3003 3004 3005
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3006
	}
3007
}
3008

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
	if (se->avg.last_update_time && prev) {
		u64 p_last_update_time;
		u64 n_last_update_time;

#ifndef CONFIG_64BIT
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
#else
		p_last_update_time = prev->avg.last_update_time;
		n_last_update_time = next->avg.last_update_time;
#endif
		__update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
				  &se->avg, 0, 0, NULL);
		se->avg.last_update_time = n_last_update_time;
	}
}
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

/* Take into account change of utilization of a child task group */
static inline void
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

/* Take into account change of load of a child task group */
static inline void
update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long delta, load = gcfs_rq->avg.load_avg;

	/*
	 * If the load of group cfs_rq is null, the load of the
	 * sched_entity will also be null so we can skip the formula
	 */
	if (load) {
		long tg_load;

		/* Get tg's load and ensure tg_load > 0 */
		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;

		/* Ensure tg_load >= load and updated with current load*/
		tg_load -= gcfs_rq->tg_load_avg_contrib;
		tg_load += load;

		/*
		 * We need to compute a correction term in the case that the
		 * task group is consuming more CPU than a task of equal
		 * weight. A task with a weight equals to tg->shares will have
		 * a load less or equal to scale_load_down(tg->shares).
		 * Similarly, the sched_entities that represent the task group
		 * at parent level, can't have a load higher than
		 * scale_load_down(tg->shares). And the Sum of sched_entities'
		 * load must be <= scale_load_down(tg->shares).
		 */
		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
			/* scale gcfs_rq's load into tg's shares*/
			load *= scale_load_down(gcfs_rq->tg->shares);
			load /= tg_load;
		}
	}

	delta = load - se->avg.load_avg;

	/* Nothing to update */
	if (!delta)
		return;

	/* Set new sched_entity's load */
	se->avg.load_avg = load;
	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq load */
	add_positive(&cfs_rq->avg.load_avg, delta);
	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;

	/*
	 * If the sched_entity is already enqueued, we also have to update the
	 * runnable load avg.
	 */
	if (se->on_rq) {
		/* Update parent cfs_rq runnable_load_avg */
		add_positive(&cfs_rq->runnable_load_avg, delta);
		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
	}
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
{
	cfs_rq->propagate_avg = 1;
}

static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = group_cfs_rq(se);

	if (!cfs_rq->propagate_avg)
		return 0;

	cfs_rq->propagate_avg = 0;
	return 1;
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	if (entity_is_task(se))
		return 0;

	if (!test_and_clear_tg_cfs_propagate(se))
		return 0;

	cfs_rq = cfs_rq_of(se);

	set_tg_cfs_propagate(cfs_rq);

	update_tg_cfs_util(cfs_rq, se);
	update_tg_cfs_load(cfs_rq, se);

	return 1;
}

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
	if (gcfs_rq->propagate_avg)
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3206
#else /* CONFIG_FAIR_GROUP_SCHED */
3207

3208
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3209 3210 3211 3212 3213 3214 3215 3216

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}

3217
#endif /* CONFIG_FAIR_GROUP_SCHED */
3218

3219 3220
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3221
	if (&this_rq()->cfs == cfs_rq) {
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
		 * a real problem -- added to that it only calls on the local
		 * CPU, so if we enqueue remotely we'll miss an update, but
		 * the next tick/schedule should update.
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3238
		cpufreq_update_util(rq_of(cfs_rq), 0);
3239 3240 3241
	}
}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 * @update_freq: should we call cfs_rq_util_change() or will the call do so
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3271 3272 3273 3274
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3275
 */
3276 3277
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3278
{
3279
	struct sched_avg *sa = &cfs_rq->avg;
3280
	int decayed, removed_load = 0, removed_util = 0;
3281

3282
	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3283
		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3284 3285
		sub_positive(&sa->load_avg, r);
		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3286
		removed_load = 1;
3287
		set_tg_cfs_propagate(cfs_rq);
3288
	}
3289

3290 3291
	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3292 3293
		sub_positive(&sa->util_avg, r);
		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3294
		removed_util = 1;
3295
		set_tg_cfs_propagate(cfs_rq);
3296
	}
3297

3298
	decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3299
		scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3300

3301 3302 3303 3304
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3305

3306 3307
	if (update_freq && (decayed || removed_util))
		cfs_rq_util_change(cfs_rq);
3308

3309
	return decayed || removed_load;
3310 3311
}

3312 3313 3314 3315 3316 3317
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2

3318
/* Update task and its cfs_rq load average */
3319
static inline void update_load_avg(struct sched_entity *se, int flags)
3320 3321 3322 3323 3324
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
3325
	int decayed;
3326 3327 3328 3329 3330

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
3331 3332
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
		__update_load_avg(now, cpu, &se->avg,
3333 3334
			  se->on_rq * scale_load_down(se->load.weight),
			  cfs_rq->curr == se, NULL);
3335
	}
3336

3337 3338 3339 3340
	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
	decayed |= propagate_entity_load_avg(se);

	if (decayed && (flags & UPDATE_TG))
3341
		update_tg_load_avg(cfs_rq, 0);
3342 3343
}

3344 3345 3346 3347 3348 3349 3350 3351
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3352 3353 3354 3355 3356 3357 3358
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se->avg.load_sum;
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3359
	set_tg_cfs_propagate(cfs_rq);
3360 3361

	cfs_rq_util_change(cfs_rq);
3362 3363
}

3364 3365 3366 3367 3368 3369 3370 3371
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3372 3373 3374
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{

3375 3376 3377 3378
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3379
	set_tg_cfs_propagate(cfs_rq);
3380 3381

	cfs_rq_util_change(cfs_rq);
3382 3383
}

3384 3385 3386
/* Add the load generated by se into cfs_rq's load average */
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3387
{
3388
	struct sched_avg *sa = &se->avg;
3389

3390 3391 3392
	cfs_rq->runnable_load_avg += sa->load_avg;
	cfs_rq->runnable_load_sum += sa->load_sum;

3393
	if (!sa->last_update_time) {
3394
		attach_entity_load_avg(cfs_rq, se);
3395
		update_tg_load_avg(cfs_rq, 0);
3396
	}
3397 3398
}

3399 3400 3401 3402 3403 3404 3405
/* Remove the runnable load generated by se from cfs_rq's runnable load average */
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->runnable_load_avg =
		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
	cfs_rq->runnable_load_sum =
3406
		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3407 3408
}

3409
#ifndef CONFIG_64BIT
3410 3411
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3412
	u64 last_update_time_copy;
3413
	u64 last_update_time;
3414

3415 3416 3417 3418 3419
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3420 3421 3422

	return last_update_time;
}
3423
#else
3424 3425 3426 3427
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3428 3429
#endif

3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
	__update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
}

3443 3444 3445 3446 3447 3448 3449 3450 3451
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	/*
3452 3453 3454 3455 3456 3457 3458
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3459 3460
	 */

3461
	sync_entity_load_avg(se);
3462 3463
	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3464
}
3465

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->runnable_load_avg;
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3476
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3477

3478 3479
#else /* CONFIG_SMP */

3480 3481 3482 3483 3484 3485
static inline int
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
{
	return 0;
}

3486 3487 3488 3489
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0

static inline void update_load_avg(struct sched_entity *se, int not_used1)
3490
{
3491
	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3492 3493
}

3494 3495
static inline void
enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3496 3497
static inline void
dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3498
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3499

3500 3501 3502 3503 3504
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3505
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3506 3507 3508 3509
{
	return 0;
}

3510
#endif /* CONFIG_SMP */
3511

P
Peter Zijlstra 已提交
3512 3513 3514 3515 3516 3517 3518 3519 3520
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3521
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3522 3523 3524
#endif
}

3525 3526 3527
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3528
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3529

3530 3531 3532 3533 3534 3535
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3536
	if (initial && sched_feat(START_DEBIT))
3537
		vruntime += sched_vslice(cfs_rq, se);
3538

3539
	/* sleeps up to a single latency don't count. */
3540
	if (!initial) {
3541
		unsigned long thresh = sysctl_sched_latency;
3542

3543 3544 3545 3546 3547 3548
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3549

3550
		vruntime -= thresh;
3551 3552
	}

3553
	/* ensure we never gain time by being placed backwards. */
3554
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3555 3556
}

3557 3558
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3571
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3572 3573 3574 3575 3576 3577 3578
			     "stat_blocked and stat_runtime require the "
			     "kernel parameter schedstats=enabled or "
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3598
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

3610
static void
3611
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3612
{
3613 3614 3615
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

3616
	/*
3617 3618
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
3619
	 */
3620
	if (renorm && curr)
3621 3622
		se->vruntime += cfs_rq->min_vruntime;

3623 3624
	update_curr(cfs_rq);

3625
	/*
3626 3627 3628 3629
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
3630
	 */
3631 3632 3633
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

3634 3635 3636 3637 3638 3639 3640 3641
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
3642
	update_load_avg(se, UPDATE_TG);
3643
	enqueue_entity_load_avg(cfs_rq, se);
3644
	update_cfs_shares(se);
3645
	account_entity_enqueue(cfs_rq, se);
3646

3647
	if (flags & ENQUEUE_WAKEUP)
3648
		place_entity(cfs_rq, se, 0);
3649

3650
	check_schedstat_required();
3651 3652
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
3653
	if (!curr)
3654
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
3655
	se->on_rq = 1;
3656

3657
	if (cfs_rq->nr_running == 1) {
3658
		list_add_leaf_cfs_rq(cfs_rq);
3659 3660
		check_enqueue_throttle(cfs_rq);
	}
3661 3662
}

3663
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
3664
{
3665 3666
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3667
		if (cfs_rq->last != se)
3668
			break;
3669 3670

		cfs_rq->last = NULL;
3671 3672
	}
}
P
Peter Zijlstra 已提交
3673

3674 3675 3676 3677
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3678
		if (cfs_rq->next != se)
3679
			break;
3680 3681

		cfs_rq->next = NULL;
3682
	}
P
Peter Zijlstra 已提交
3683 3684
}

3685 3686 3687 3688
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3689
		if (cfs_rq->skip != se)
3690
			break;
3691 3692

		cfs_rq->skip = NULL;
3693 3694 3695
	}
}

P
Peter Zijlstra 已提交
3696 3697
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3698 3699 3700 3701 3702
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
3703 3704 3705

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
3706 3707
}

3708
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3709

3710
static void
3711
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3712
{
3713 3714 3715 3716
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
3717 3718 3719 3720 3721 3722 3723 3724 3725

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
3726
	update_load_avg(se, UPDATE_TG);
3727
	dequeue_entity_load_avg(cfs_rq, se);
3728

3729
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
3730

P
Peter Zijlstra 已提交
3731
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3732

3733
	if (se != cfs_rq->curr)
3734
		__dequeue_entity(cfs_rq, se);
3735
	se->on_rq = 0;
3736
	account_entity_dequeue(cfs_rq, se);
3737 3738

	/*
3739 3740 3741 3742
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
3743
	 */
3744
	if (!(flags & DEQUEUE_SLEEP))
3745
		se->vruntime -= cfs_rq->min_vruntime;
3746

3747 3748 3749
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

3750
	update_cfs_shares(se);
3751 3752 3753 3754 3755 3756 3757 3758 3759

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
3760 3761 3762 3763 3764
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
3765
static void
I
Ingo Molnar 已提交
3766
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3767
{
3768
	unsigned long ideal_runtime, delta_exec;
3769 3770
	struct sched_entity *se;
	s64 delta;
3771

P
Peter Zijlstra 已提交
3772
	ideal_runtime = sched_slice(cfs_rq, curr);
3773
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3774
	if (delta_exec > ideal_runtime) {
3775
		resched_curr(rq_of(cfs_rq));
3776 3777 3778 3779 3780
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

3792 3793
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
3794

3795 3796
	if (delta < 0)
		return;
3797

3798
	if (delta > ideal_runtime)
3799
		resched_curr(rq_of(cfs_rq));
3800 3801
}

3802
static void
3803
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3804
{
3805 3806 3807 3808 3809 3810 3811
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
3812
		update_stats_wait_end(cfs_rq, se);
3813
		__dequeue_entity(cfs_rq, se);
3814
		update_load_avg(se, UPDATE_TG);
3815 3816
	}

3817
	update_stats_curr_start(cfs_rq, se);
3818
	cfs_rq->curr = se;
3819

I
Ingo Molnar 已提交
3820 3821 3822 3823 3824
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
3825
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3826 3827 3828
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
3829
	}
3830

3831
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3832 3833
}

3834 3835 3836
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

3837 3838 3839 3840 3841 3842 3843
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
3844 3845
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3846
{
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
3858

3859 3860 3861 3862 3863
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

3874 3875 3876
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
3877

3878 3879 3880 3881 3882 3883
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

3884 3885 3886 3887 3888 3889
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

3890
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
3891 3892

	return se;
3893 3894
}

3895
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3896

3897
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3898 3899 3900 3901 3902 3903
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
3904
		update_curr(cfs_rq);
3905

3906 3907 3908
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

3909
	check_spread(cfs_rq, prev);
3910

3911
	if (prev->on_rq) {
3912
		update_stats_wait_start(cfs_rq, prev);
3913 3914
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
3915
		/* in !on_rq case, update occurred at dequeue */
3916
		update_load_avg(prev, 0);
3917
	}
3918
	cfs_rq->curr = NULL;
3919 3920
}

P
Peter Zijlstra 已提交
3921 3922
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3923 3924
{
	/*
3925
	 * Update run-time statistics of the 'current'.
3926
	 */
3927
	update_curr(cfs_rq);
3928

3929 3930 3931
	/*
	 * Ensure that runnable average is periodically updated.
	 */
3932
	update_load_avg(curr, UPDATE_TG);
3933
	update_cfs_shares(curr);
3934

P
Peter Zijlstra 已提交
3935 3936 3937 3938 3939
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
3940
	if (queued) {
3941
		resched_curr(rq_of(cfs_rq));
3942 3943
		return;
	}
P
Peter Zijlstra 已提交
3944 3945 3946 3947 3948 3949 3950 3951
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
3952
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
3953
		check_preempt_tick(cfs_rq, curr);
3954 3955
}

3956 3957 3958 3959 3960 3961

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
3962 3963

#ifdef HAVE_JUMP_LABEL
3964
static struct static_key __cfs_bandwidth_used;
3965 3966 3967

static inline bool cfs_bandwidth_used(void)
{
3968
	return static_key_false(&__cfs_bandwidth_used);
3969 3970
}

3971
void cfs_bandwidth_usage_inc(void)
3972
{
3973 3974 3975 3976 3977 3978
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
3979 3980 3981 3982 3983 3984 3985
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

3986 3987
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
3988 3989
#endif /* HAVE_JUMP_LABEL */

3990 3991 3992 3993 3994 3995 3996 3997
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
3998 3999 4000 4001 4002 4003

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4004 4005 4006 4007 4008 4009 4010
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4011
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4023 4024 4025 4026 4027
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4028 4029 4030 4031
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4032
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4033

4034
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4035 4036
}

4037 4038
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4039 4040 4041
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4042
	u64 amount = 0, min_amount, expires;
4043 4044 4045 4046 4047 4048 4049

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4050
	else {
P
Peter Zijlstra 已提交
4051
		start_cfs_bandwidth(cfs_b);
4052 4053 4054 4055 4056 4057

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4058
	}
P
Paul Turner 已提交
4059
	expires = cfs_b->runtime_expires;
4060 4061 4062
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4063 4064 4065 4066 4067 4068 4069
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4070 4071

	return cfs_rq->runtime_remaining > 0;
4072 4073
}

P
Paul Turner 已提交
4074 4075 4076 4077 4078
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4079
{
P
Paul Turner 已提交
4080 4081 4082
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4083
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4084 4085
		return;

P
Paul Turner 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4095 4096 4097
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4098 4099
	 */

4100
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4101 4102 4103 4104 4105 4106 4107 4108
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4109
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4110 4111
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4112
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4113 4114 4115
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4116 4117
		return;

4118 4119 4120 4121 4122
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4123
		resched_curr(rq_of(cfs_rq));
4124 4125
}

4126
static __always_inline
4127
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4128
{
4129
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4130 4131 4132 4133 4134
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4135 4136
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4137
	return cfs_bandwidth_used() && cfs_rq->throttled;
4138 4139
}

4140 4141 4142
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4143
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4171
		/* adjust cfs_rq_clock_task() */
4172
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4173
					     cfs_rq->throttled_clock_task;
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4184 4185
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4186
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4187 4188 4189 4190 4191
	cfs_rq->throttle_count++;

	return 0;
}

4192
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4193 4194 4195 4196 4197
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4198
	bool empty;
4199 4200 4201

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4202
	/* freeze hierarchy runnable averages while throttled */
4203 4204 4205
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4223
		sub_nr_running(rq, task_delta);
4224 4225

	cfs_rq->throttled = 1;
4226
	cfs_rq->throttled_clock = rq_clock(rq);
4227
	raw_spin_lock(&cfs_b->lock);
4228
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4229

4230 4231 4232 4233 4234
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4235 4236 4237 4238 4239 4240 4241 4242

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4243 4244 4245
	raw_spin_unlock(&cfs_b->lock);
}

4246
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4247 4248 4249 4250 4251 4252 4253
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4254
	se = cfs_rq->tg->se[cpu_of(rq)];
4255 4256

	cfs_rq->throttled = 0;
4257 4258 4259

	update_rq_clock(rq);

4260
	raw_spin_lock(&cfs_b->lock);
4261
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4262 4263 4264
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4265 4266 4267
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4286
		add_nr_running(rq, task_delta);
4287 4288 4289

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4290
		resched_curr(rq);
4291 4292 4293 4294 4295 4296
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4297 4298
	u64 runtime;
	u64 starting_runtime = remaining;
4299 4300 4301 4302 4303

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4304
		struct rq_flags rf;
4305

4306
		rq_lock(rq, &rf);
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4323
		rq_unlock(rq, &rf);
4324 4325 4326 4327 4328 4329

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4330
	return starting_runtime - remaining;
4331 4332
}

4333 4334 4335 4336 4337 4338 4339 4340
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4341
	u64 runtime, runtime_expires;
4342
	int throttled;
4343 4344 4345

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4346
		goto out_deactivate;
4347

4348
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4349
	cfs_b->nr_periods += overrun;
4350

4351 4352 4353 4354 4355 4356
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4357 4358 4359

	__refill_cfs_bandwidth_runtime(cfs_b);

4360 4361 4362
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4363
		return 0;
4364 4365
	}

4366 4367 4368
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4369 4370 4371
	runtime_expires = cfs_b->runtime_expires;

	/*
4372 4373 4374 4375 4376
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4377
	 */
4378 4379
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4380 4381 4382 4383 4384 4385 4386
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4387 4388

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4389
	}
4390

4391 4392 4393 4394 4395 4396 4397
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4398

4399 4400 4401 4402
	return 0;

out_deactivate:
	return 1;
4403
}
4404

4405 4406 4407 4408 4409 4410 4411
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4412 4413 4414 4415
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4416
 * hrtimer base being cleared by hrtimer_start. In the case of
4417 4418
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4444 4445 4446
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4476 4477 4478
	if (!cfs_bandwidth_used())
		return;

4479
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4495 4496 4497
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4498
		return;
4499
	}
4500

4501
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4502
		runtime = cfs_b->runtime;
4503

4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4514
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4515 4516 4517
	raw_spin_unlock(&cfs_b->lock);
}

4518 4519 4520 4521 4522 4523 4524
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4525 4526 4527
	if (!cfs_bandwidth_used())
		return;

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4556
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4557 4558
}

4559
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4560
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4561
{
4562
	if (!cfs_bandwidth_used())
4563
		return false;
4564

4565
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4566
		return false;
4567 4568 4569 4570 4571 4572

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4573
		return true;
4574 4575

	throttle_cfs_rq(cfs_rq);
4576
	return true;
4577
}
4578 4579 4580 4581 4582

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4583

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4596
	raw_spin_lock(&cfs_b->lock);
4597
	for (;;) {
P
Peter Zijlstra 已提交
4598
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4599 4600 4601 4602 4603
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4604 4605
	if (idle)
		cfs_b->period_active = 0;
4606
	raw_spin_unlock(&cfs_b->lock);
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4619
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
4631
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4632
{
P
Peter Zijlstra 已提交
4633
	lockdep_assert_held(&cfs_b->lock);
4634

P
Peter Zijlstra 已提交
4635 4636 4637 4638 4639
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
4640 4641 4642 4643
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
4644 4645 4646 4647
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

4648 4649 4650 4651
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
}

4665
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
{
	struct cfs_rq *cfs_rq;

	for_each_leaf_cfs_rq(rq, cfs_rq) {
		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
4677
		cfs_rq->runtime_remaining = 1;
4678 4679 4680 4681 4682 4683
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

4684 4685 4686 4687 4688 4689
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
}

#else /* CONFIG_CFS_BANDWIDTH */
4690 4691
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
4692
	return rq_clock_task(rq_of(cfs_rq));
4693 4694
}

4695
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4696
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4697
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4698
static inline void sync_throttle(struct task_group *tg, int cpu) {}
4699
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4700 4701 4702 4703 4704

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
4716 4717 4718 4719 4720

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4721 4722
#endif

4723 4724 4725 4726 4727
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4728
static inline void update_runtime_enabled(struct rq *rq) {}
4729
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4730 4731 4732

#endif /* CONFIG_CFS_BANDWIDTH */

4733 4734 4735 4736
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
4737 4738 4739 4740 4741 4742
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

4743
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
4744

4745
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
4746 4747 4748 4749 4750 4751
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
4752
				resched_curr(rq);
P
Peter Zijlstra 已提交
4753 4754
			return;
		}
4755
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
4756 4757
	}
}
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

4768
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4769 4770 4771 4772 4773
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
4774
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
4775 4776 4777 4778
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
4779 4780 4781 4782

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
4783 4784
#endif

4785 4786 4787 4788 4789
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
4790
static void
4791
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4792 4793
{
	struct cfs_rq *cfs_rq;
4794
	struct sched_entity *se = &p->se;
4795

4796 4797 4798 4799 4800 4801 4802 4803
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);

4804
	for_each_sched_entity(se) {
4805
		if (se->on_rq)
4806 4807
			break;
		cfs_rq = cfs_rq_of(se);
4808
		enqueue_entity(cfs_rq, se, flags);
4809 4810 4811 4812 4813 4814

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
4815
		 */
4816 4817
		if (cfs_rq_throttled(cfs_rq))
			break;
4818
		cfs_rq->h_nr_running++;
4819

4820
		flags = ENQUEUE_WAKEUP;
4821
	}
P
Peter Zijlstra 已提交
4822

P
Peter Zijlstra 已提交
4823
	for_each_sched_entity(se) {
4824
		cfs_rq = cfs_rq_of(se);
4825
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
4826

4827 4828 4829
		if (cfs_rq_throttled(cfs_rq))
			break;

4830
		update_load_avg(se, UPDATE_TG);
4831
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4832 4833
	}

Y
Yuyang Du 已提交
4834
	if (!se)
4835
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
4836

4837
	hrtick_update(rq);
4838 4839
}

4840 4841
static void set_next_buddy(struct sched_entity *se);

4842 4843 4844 4845 4846
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
4847
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4848 4849
{
	struct cfs_rq *cfs_rq;
4850
	struct sched_entity *se = &p->se;
4851
	int task_sleep = flags & DEQUEUE_SLEEP;
4852 4853 4854

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
4855
		dequeue_entity(cfs_rq, se, flags);
4856 4857 4858 4859 4860 4861 4862 4863 4864

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
4865
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4866

4867
		/* Don't dequeue parent if it has other entities besides us */
4868
		if (cfs_rq->load.weight) {
4869 4870
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
4871 4872 4873 4874
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
4875 4876
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
4877
			break;
4878
		}
4879
		flags |= DEQUEUE_SLEEP;
4880
	}
P
Peter Zijlstra 已提交
4881

P
Peter Zijlstra 已提交
4882
	for_each_sched_entity(se) {
4883
		cfs_rq = cfs_rq_of(se);
4884
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
4885

4886 4887 4888
		if (cfs_rq_throttled(cfs_rq))
			break;

4889
		update_load_avg(se, UPDATE_TG);
4890
		update_cfs_shares(se);
P
Peter Zijlstra 已提交
4891 4892
	}

Y
Yuyang Du 已提交
4893
	if (!se)
4894
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
4895

4896
	hrtick_update(rq);
4897 4898
}

4899
#ifdef CONFIG_SMP
4900 4901 4902 4903 4904

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

4905
#ifdef CONFIG_NO_HZ_COMMON
4906 4907 4908 4909 4910
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
4911
 * The exact cpuload calculated at every tick would be:
4912
 *
4913 4914 4915 4916 4917 4918 4919
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4920 4921 4922
 *
 * decay_load_missed() below does efficient calculation of
 *
4923 4924 4925 4926 4927 4928
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
4929
 *
4930
 * The calculation is approximated on a 128 point scale.
4931 4932
 */
#define DEGRADE_SHIFT		7
4933 4934 4935 4936 4937 4938 4939 4940 4941

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
4971
#endif /* CONFIG_NO_HZ_COMMON */
4972

4973
/**
4974
 * __cpu_load_update - update the rq->cpu_load[] statistics
4975 4976 4977 4978
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
4979
 * Update rq->cpu_load[] statistics. This function is usually called every
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5006
 * term.
5007
 */
5008 5009
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5010
{
5011
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5023
		old_load = this_rq->cpu_load[i];
5024
#ifdef CONFIG_NO_HZ_COMMON
5025
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5026 5027 5028 5029 5030 5031 5032 5033 5034
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5035
#endif
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5051 5052 5053 5054 5055 5056
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
}

5057
#ifdef CONFIG_NO_HZ_COMMON
5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5086
		cpu_load_update(this_rq, load, pending_updates);
5087 5088 5089
	}
}

5090 5091 5092 5093
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5094
static void cpu_load_update_idle(struct rq *this_rq)
5095 5096 5097 5098
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5099
	if (weighted_cpuload(cpu_of(this_rq)))
5100 5101
		return;

5102
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5103 5104 5105
}

/*
5106 5107 5108 5109
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5110
 */
5111
void cpu_load_update_nohz_start(void)
5112 5113
{
	struct rq *this_rq = this_rq();
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5128
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5129 5130
	struct rq *this_rq = this_rq();
	unsigned long load;
5131
	struct rq_flags rf;
5132 5133 5134 5135

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5136
	load = weighted_cpuload(cpu_of(this_rq));
5137
	rq_lock(this_rq, &rf);
5138
	update_rq_clock(this_rq);
5139
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5140
	rq_unlock(this_rq, &rf);
5141
}
5142 5143 5144 5145 5146 5147 5148 5149
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5150
#ifdef CONFIG_NO_HZ_COMMON
5151 5152
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5153
#endif
5154 5155
	cpu_load_update(this_rq, load, 1);
}
5156 5157 5158 5159

/*
 * Called from scheduler_tick()
 */
5160
void cpu_load_update_active(struct rq *this_rq)
5161
{
5162
	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5163 5164 5165 5166 5167

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5168 5169
}

5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5203
static unsigned long capacity_of(int cpu)
5204
{
5205
	return cpu_rq(cpu)->cpu_capacity;
5206 5207
}

5208 5209 5210 5211 5212
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5213 5214 5215
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5216
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5217
	unsigned long load_avg = weighted_cpuload(cpu);
5218 5219

	if (nr_running)
5220
		return load_avg / nr_running;
5221 5222 5223 5224

	return 0;
}

5225
#ifdef CONFIG_FAIR_GROUP_SCHED
5226 5227 5228 5229 5230 5231
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
 *
 * Calculate the effective load difference if @wl is added (subtracted) to @tg
 * on this @cpu and results in a total addition (subtraction) of @wg to the
 * total group weight.
 *
 * Given a runqueue weight distribution (rw_i) we can compute a shares
 * distribution (s_i) using:
 *
 *   s_i = rw_i / \Sum rw_j						(1)
 *
 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
 * shares distribution (s_i):
 *
 *   rw_i = {   2,   4,   1,   0 }
 *   s_i  = { 2/7, 4/7, 1/7,   0 }
 *
 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
 * task used to run on and the CPU the waker is running on), we need to
 * compute the effect of waking a task on either CPU and, in case of a sync
 * wakeup, compute the effect of the current task going to sleep.
 *
 * So for a change of @wl to the local @cpu with an overall group weight change
 * of @wl we can compute the new shares distribution (s'_i) using:
 *
 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
 *
 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
 * differences in waking a task to CPU 0. The additional task changes the
 * weight and shares distributions like:
 *
 *   rw'_i = {   3,   4,   1,   0 }
 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
 *
 * We can then compute the difference in effective weight by using:
 *
 *   dw_i = S * (s'_i - s_i)						(3)
 *
 * Where 'S' is the group weight as seen by its parent.
 *
 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
 * 4/7) times the weight of the group.
5275
 */
P
Peter Zijlstra 已提交
5276
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5277
{
P
Peter Zijlstra 已提交
5278
	struct sched_entity *se = tg->se[cpu];
5279

5280
	if (!tg->parent)	/* the trivial, non-cgroup case */
5281 5282
		return wl;

P
Peter Zijlstra 已提交
5283
	for_each_sched_entity(se) {
5284 5285
		struct cfs_rq *cfs_rq = se->my_q;
		long W, w = cfs_rq_load_avg(cfs_rq);
P
Peter Zijlstra 已提交
5286

5287
		tg = cfs_rq->tg;
5288

5289 5290 5291
		/*
		 * W = @wg + \Sum rw_j
		 */
5292 5293 5294 5295 5296
		W = wg + atomic_long_read(&tg->load_avg);

		/* Ensure \Sum rw_j >= rw_i */
		W -= cfs_rq->tg_load_avg_contrib;
		W += w;
P
Peter Zijlstra 已提交
5297

5298 5299 5300
		/*
		 * w = rw_i + @wl
		 */
5301
		w += wl;
5302

5303 5304 5305 5306
		/*
		 * wl = S * s'_i; see (2)
		 */
		if (W > 0 && w < W)
5307
			wl = (w * (long)scale_load_down(tg->shares)) / W;
5308
		else
5309
			wl = scale_load_down(tg->shares);
5310

5311 5312 5313 5314 5315
		/*
		 * Per the above, wl is the new se->load.weight value; since
		 * those are clipped to [MIN_SHARES, ...) do so now. See
		 * calc_cfs_shares().
		 */
5316 5317
		if (wl < MIN_SHARES)
			wl = MIN_SHARES;
5318 5319 5320 5321

		/*
		 * wl = dw_i = S * (s'_i - s_i); see (3)
		 */
5322
		wl -= se->avg.load_avg;
5323 5324 5325 5326 5327 5328 5329 5330

		/*
		 * Recursively apply this logic to all parent groups to compute
		 * the final effective load change on the root group. Since
		 * only the @tg group gets extra weight, all parent groups can
		 * only redistribute existing shares. @wl is the shift in shares
		 * resulting from this level per the above.
		 */
P
Peter Zijlstra 已提交
5331 5332
		wg = 0;
	}
5333

P
Peter Zijlstra 已提交
5334
	return wl;
5335 5336
}
#else
P
Peter Zijlstra 已提交
5337

5338
static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
P
Peter Zijlstra 已提交
5339
{
5340
	return wl;
5341
}
P
Peter Zijlstra 已提交
5342

5343 5344
#endif

P
Peter Zijlstra 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5362 5363
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5364
 *
M
Mike Galbraith 已提交
5365
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5378
 */
5379 5380
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5381 5382
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5383
	int factor = this_cpu_read(sd_llc_size);
5384

M
Mike Galbraith 已提交
5385 5386 5387 5388 5389
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5390 5391
}

5392 5393
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5394
{
5395
	s64 this_load, load;
5396
	s64 this_eff_load, prev_eff_load;
5397
	int idx, this_cpu;
5398
	struct task_group *tg;
5399
	unsigned long weight;
5400
	int balanced;
5401

5402 5403 5404 5405
	idx	  = sd->wake_idx;
	this_cpu  = smp_processor_id();
	load	  = source_load(prev_cpu, idx);
	this_load = target_load(this_cpu, idx);
5406

5407 5408 5409 5410 5411
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
5412 5413
	if (sync) {
		tg = task_group(current);
5414
		weight = current->se.avg.load_avg;
5415

5416
		this_load += effective_load(tg, this_cpu, -weight, -weight);
5417 5418
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
5419

5420
	tg = task_group(p);
5421
	weight = p->se.avg.load_avg;
5422

5423 5424
	/*
	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5425 5426 5427
	 * due to the sync cause above having dropped this_load to 0, we'll
	 * always have an imbalance, but there's really nothing you can do
	 * about that, so that's good too.
5428 5429 5430 5431
	 *
	 * Otherwise check if either cpus are near enough in load to allow this
	 * task to be woken on this_cpu.
	 */
5432 5433
	this_eff_load = 100;
	this_eff_load *= capacity_of(prev_cpu);
5434

5435 5436
	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5437

5438
	if (this_load > 0) {
5439 5440 5441 5442
		this_eff_load *= this_load +
			effective_load(tg, this_cpu, weight, weight);

		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5443
	}
5444

5445
	balanced = this_eff_load <= prev_eff_load;
5446

5447
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5448

5449 5450
	if (!balanced)
		return 0;
5451

5452 5453
	schedstat_inc(sd->ttwu_move_affine);
	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5454 5455

	return 1;
5456 5457
}

5458 5459 5460 5461 5462 5463 5464 5465
static inline int task_util(struct task_struct *p);
static int cpu_util_wake(int cpu, struct task_struct *p);

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
}

5466 5467 5468 5469 5470
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5471
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5472
		  int this_cpu, int sd_flag)
5473
{
5474
	struct sched_group *idlest = NULL, *group = sd->groups;
5475
	struct sched_group *most_spare_sg = NULL;
5476 5477
	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5478
	unsigned long most_spare = 0, this_spare = 0;
5479
	int load_idx = sd->forkexec_idx;
5480 5481 5482
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5483

5484 5485 5486
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5487
	do {
5488 5489
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5490 5491
		int local_group;
		int i;
5492

5493 5494
		/* Skip over this group if it has no CPUs allowed */
		if (!cpumask_intersects(sched_group_cpus(group),
5495
					&p->cpus_allowed))
5496 5497 5498 5499 5500
			continue;

		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));

5501 5502 5503 5504
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5505
		avg_load = 0;
5506
		runnable_load = 0;
5507
		max_spare_cap = 0;
5508 5509 5510 5511 5512 5513 5514 5515

		for_each_cpu(i, sched_group_cpus(group)) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5516 5517 5518
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5519 5520 5521 5522 5523

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5524 5525
		}

5526
		/* Adjust by relative CPU capacity of the group */
5527 5528 5529 5530
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5531 5532

		if (local_group) {
5533 5534
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5535 5536
			this_spare = max_spare_cap;
		} else {
5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5552 5553 5554 5555 5556 5557 5558
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5559 5560 5561
		}
	} while (group = group->next, group != sd->groups);

5562 5563 5564 5565 5566 5567
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5568 5569 5570 5571
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5572
	 */
5573 5574 5575
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5576
	if (this_spare > task_util(p) / 2 &&
5577
	    imbalance_scale*this_spare > 100*most_spare)
5578
		return NULL;
5579 5580

	if (most_spare > task_util(p) / 2)
5581 5582
		return most_spare_sg;

5583
skip_spare:
5584 5585 5586 5587
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5588
		return NULL;
5589 5590 5591 5592 5593

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
	return idlest;
}

/*
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
 */
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
	unsigned long load, min_load = ULONG_MAX;
5604 5605 5606 5607
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5608 5609
	int i;

5610 5611 5612 5613
	/* Check if we have any choice: */
	if (group->group_weight == 1)
		return cpumask_first(sched_group_cpus(group));

5614
	/* Traverse only the allowed CPUs */
5615
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5638
		} else if (shallowest_idle_cpu == -1) {
5639 5640 5641 5642 5643
			load = weighted_cpuload(i);
			if (load < min_load || (load == min_load && i == this_cpu)) {
				min_load = load;
				least_loaded_cpu = i;
			}
5644 5645 5646
		}
	}

5647
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5648
}
5649

5650
/*
5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
 * Implement a for_each_cpu() variant that starts the scan at a given cpu
 * (@start), and wraps around.
 *
 * This is used to scan for idle CPUs; such that not all CPUs looking for an
 * idle CPU find the same CPU. The down-side is that tasks tend to cycle
 * through the LLC domain.
 *
 * Especially tbench is found sensitive to this.
 */

static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
{
	int next;

again:
	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);

	if (*wrapped) {
		if (next >= start)
			return nr_cpumask_bits;
	} else {
		if (next >= nr_cpumask_bits) {
			*wrapped = 1;
			n = -1;
			goto again;
		}
	}

	return next;
}

#define for_each_cpu_wrap(cpu, mask, start, wrap)				\
	for ((wrap) = 0, (cpu) = (start)-1;					\
		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
		(cpu) < nr_cpumask_bits; )

#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
5716
void __update_idle_core(struct rq *rq)
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
	int core, cpu, wrap;

P
Peter Zijlstra 已提交
5748 5749 5750
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5751 5752 5753
	if (!test_idle_cores(target, false))
		return -1;

5754
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783

	for_each_cpu_wrap(core, cpus, target, wrap) {
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
5784 5785 5786
	if (!static_branch_likely(&sched_smt_present))
		return -1;

5787
	for_each_cpu(cpu, cpu_smt_mask(target)) {
5788
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
5815
 */
5816 5817
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
5818 5819
	struct sched_domain *this_sd;
	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5820 5821 5822 5823
	u64 time, cost;
	s64 delta;
	int cpu, wrap;

5824 5825 5826 5827 5828 5829
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

	avg_cost = this_sd->avg_scan_cost;

5830 5831 5832 5833
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
5834
	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5835 5836 5837 5838 5839
		return -1;

	time = local_clock();

	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5840
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
5856
 */
5857
static int select_idle_sibling(struct task_struct *p, int prev, int target)
5858
{
5859
	struct sched_domain *sd;
5860
	int i;
5861

5862 5863
	if (idle_cpu(target))
		return target;
5864 5865

	/*
5866
	 * If the previous cpu is cache affine and idle, don't be stupid.
5867
	 */
5868 5869
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
5870

5871
	sd = rcu_dereference(per_cpu(sd_llc, target));
5872 5873
	if (!sd)
		return target;
5874

5875 5876 5877
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5878

5879 5880 5881 5882 5883 5884 5885
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
5886

5887 5888
	return target;
}
5889

5890
/*
5891
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5892
 * tasks. The unit of the return value must be the one of capacity so we can
5893 5894
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
5915
 */
5916
static int cpu_util(int cpu)
5917
{
5918
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5919 5920
	unsigned long capacity = capacity_orig_of(cpu);

5921
	return (util >= capacity) ? capacity : util;
5922
}
5923

5924 5925 5926 5927 5928
static inline int task_util(struct task_struct *p)
{
	return p->se.avg.util_avg;
}

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
static int cpu_util_wake(int cpu, struct task_struct *p)
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

5965 5966 5967
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

5968 5969 5970
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

5971
/*
5972 5973 5974
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5975
 *
5976 5977
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5978
 *
5979
 * Returns the target cpu number.
5980 5981 5982
 *
 * preempt must be disabled.
 */
5983
static int
5984
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5985
{
5986
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5987
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
5988
	int new_cpu = prev_cpu;
5989
	int want_affine = 0;
5990
	int sync = wake_flags & WF_SYNC;
5991

P
Peter Zijlstra 已提交
5992 5993
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
5994
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5995
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
5996
	}
5997

5998
	rcu_read_lock();
5999
	for_each_domain(cpu, tmp) {
6000
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6001
			break;
6002

6003
		/*
6004 6005
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6006
		 */
6007 6008 6009
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6010
			break;
6011
		}
6012

6013
		if (tmp->flags & sd_flag)
6014
			sd = tmp;
M
Mike Galbraith 已提交
6015 6016
		else if (!want_affine)
			break;
6017 6018
	}

M
Mike Galbraith 已提交
6019 6020
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6021
		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6022
			new_cpu = cpu;
6023
	}
6024

M
Mike Galbraith 已提交
6025 6026
	if (!sd) {
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6027
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6028 6029

	} else while (sd) {
6030
		struct sched_group *group;
6031
		int weight;
6032

6033
		if (!(sd->flags & sd_flag)) {
6034 6035 6036
			sd = sd->child;
			continue;
		}
6037

6038
		group = find_idlest_group(sd, p, cpu, sd_flag);
6039 6040 6041 6042
		if (!group) {
			sd = sd->child;
			continue;
		}
I
Ingo Molnar 已提交
6043

6044
		new_cpu = find_idlest_cpu(group, p, cpu);
6045 6046 6047 6048
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
6049
		}
6050 6051 6052

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
6053
		weight = sd->span_weight;
6054 6055
		sd = NULL;
		for_each_domain(cpu, tmp) {
6056
			if (weight <= tmp->span_weight)
6057
				break;
6058
			if (tmp->flags & sd_flag)
6059 6060 6061
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
6062
	}
6063
	rcu_read_unlock();
6064

6065
	return new_cpu;
6066
}
6067 6068 6069 6070

/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6071
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6072
 */
6073
static void migrate_task_rq_fair(struct task_struct *p)
6074
{
6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6101
	/*
6102 6103 6104 6105 6106
	 * We are supposed to update the task to "current" time, then its up to date
	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
	 * what current time is, so simply throw away the out-of-date time. This
	 * will result in the wakee task is less decayed, but giving the wakee more
	 * load sounds not bad.
6107
	 */
6108 6109 6110 6111
	remove_entity_load_avg(&p->se);

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6112 6113

	/* We have migrated, no longer consider this task hot */
6114
	p->se.exec_start = 0;
6115
}
6116 6117 6118 6119 6120

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6121 6122
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
6123 6124
static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6125 6126 6127 6128
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6129 6130
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6131 6132 6133 6134 6135 6136 6137 6138 6139
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6140
	 */
6141
	return calc_delta_fair(gran, se);
6142 6143
}

6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
6166
	gran = wakeup_gran(curr, se);
6167 6168 6169 6170 6171 6172
	if (vdiff > gran)
		return 1;

	return 0;
}

6173 6174
static void set_last_buddy(struct sched_entity *se)
{
6175 6176 6177 6178 6179
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->last = se;
6180 6181 6182 6183
}

static void set_next_buddy(struct sched_entity *se)
{
6184 6185 6186 6187 6188
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

	for_each_sched_entity(se)
		cfs_rq_of(se)->next = se;
6189 6190
}

6191 6192
static void set_skip_buddy(struct sched_entity *se)
{
6193 6194
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6195 6196
}

6197 6198 6199
/*
 * Preempt the current task with a newly woken task if needed:
 */
6200
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6201 6202
{
	struct task_struct *curr = rq->curr;
6203
	struct sched_entity *se = &curr->se, *pse = &p->se;
6204
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6205
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6206
	int next_buddy_marked = 0;
6207

I
Ingo Molnar 已提交
6208 6209 6210
	if (unlikely(se == pse))
		return;

6211
	/*
6212
	 * This is possible from callers such as attach_tasks(), in which we
6213 6214 6215 6216 6217 6218 6219
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6220
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6221
		set_next_buddy(pse);
6222 6223
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6224

6225 6226 6227
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6228 6229 6230 6231 6232 6233
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6234 6235 6236 6237
	 */
	if (test_tsk_need_resched(curr))
		return;

6238 6239 6240 6241 6242
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6243
	/*
6244 6245
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6246
	 */
6247
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6248
		return;
6249

6250
	find_matching_se(&se, &pse);
6251
	update_curr(cfs_rq_of(se));
6252
	BUG_ON(!pse);
6253 6254 6255 6256 6257 6258 6259
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6260
		goto preempt;
6261
	}
6262

6263
	return;
6264

6265
preempt:
6266
	resched_curr(rq);
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6281 6282
}

6283
static struct task_struct *
6284
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6285 6286 6287
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6288
	struct task_struct *p;
6289
	int new_tasks;
6290

6291
again:
6292 6293
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (!cfs_rq->nr_running)
6294
		goto idle;
6295

6296
	if (prev->sched_class != &fair_sched_class)
6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6316 6317 6318 6319 6320
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6321

6322 6323 6324 6325 6326 6327 6328 6329 6330
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
			 * Therefore the 'simple' nr_running test will indeed
			 * be correct.
			 */
			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
				goto simple;
		}
6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);

	return p;
simple:
	cfs_rq = &rq->cfs;
#endif
6371

6372
	if (!cfs_rq->nr_running)
6373
		goto idle;
6374

6375
	put_prev_task(rq, prev);
6376

6377
	do {
6378
		se = pick_next_entity(cfs_rq, NULL);
6379
		set_next_entity(cfs_rq, se);
6380 6381 6382
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6383
	p = task_of(se);
6384

6385 6386
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6387 6388

	return p;
6389 6390

idle:
6391 6392
	new_tasks = idle_balance(rq, rf);

6393 6394 6395 6396 6397
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6398
	if (new_tasks < 0)
6399 6400
		return RETRY_TASK;

6401
	if (new_tasks > 0)
6402 6403 6404
		goto again;

	return NULL;
6405 6406 6407 6408 6409
}

/*
 * Account for a descheduled task:
 */
6410
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6411 6412 6413 6414 6415 6416
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6417
		put_prev_entity(cfs_rq, se);
6418 6419 6420
	}
}

6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6446 6447 6448 6449 6450
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6451
		rq_clock_skip_update(rq, true);
6452 6453 6454 6455 6456
	}

	set_skip_buddy(se);
}

6457 6458 6459 6460
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6461 6462
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6473
#ifdef CONFIG_SMP
6474
/**************************************************
P
Peter Zijlstra 已提交
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6491
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6492 6493 6494 6495 6496 6497
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6498
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6499 6500 6501 6502 6503 6504
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6505
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6544
 *             log_2 n
P
Peter Zijlstra 已提交
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6590
 */
6591

6592 6593
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6594 6595
enum fbq_type { regular, remote, all };

6596
#define LBF_ALL_PINNED	0x01
6597
#define LBF_NEED_BREAK	0x02
6598 6599
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6600 6601 6602 6603 6604

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6605
	int			src_cpu;
6606 6607 6608 6609

	int			dst_cpu;
	struct rq		*dst_rq;

6610 6611
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6612
	enum cpu_idle_type	idle;
6613
	long			imbalance;
6614 6615 6616
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6617
	unsigned int		flags;
6618 6619 6620 6621

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6622 6623

	enum fbq_type		fbq_type;
6624
	struct list_head	tasks;
6625 6626
};

6627 6628 6629
/*
 * Is this task likely cache-hot:
 */
6630
static int task_hot(struct task_struct *p, struct lb_env *env)
6631 6632 6633
{
	s64 delta;

6634 6635
	lockdep_assert_held(&env->src_rq->lock);

6636 6637 6638 6639 6640 6641 6642 6643 6644
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6645
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6646 6647 6648 6649 6650 6651 6652 6653 6654
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6655
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6656 6657 6658 6659

	return delta < (s64)sysctl_sched_migration_cost;
}

6660
#ifdef CONFIG_NUMA_BALANCING
6661
/*
6662 6663 6664
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
6665
 */
6666
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6667
{
6668
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6669
	unsigned long src_faults, dst_faults;
6670 6671
	int src_nid, dst_nid;

6672
	if (!static_branch_likely(&sched_numa_balancing))
6673 6674
		return -1;

6675
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6676
		return -1;
6677 6678 6679 6680

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

6681
	if (src_nid == dst_nid)
6682
		return -1;
6683

6684 6685 6686 6687 6688 6689 6690
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
6691

6692 6693
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
6694
		return 0;
6695

6696 6697 6698 6699 6700 6701
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
6702 6703
	}

6704
	return dst_faults < src_faults;
6705 6706
}

6707
#else
6708
static inline int migrate_degrades_locality(struct task_struct *p,
6709 6710
					     struct lb_env *env)
{
6711
	return -1;
6712
}
6713 6714
#endif

6715 6716 6717 6718
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
6719
int can_migrate_task(struct task_struct *p, struct lb_env *env)
6720
{
6721
	int tsk_cache_hot;
6722 6723 6724

	lockdep_assert_held(&env->src_rq->lock);

6725 6726
	/*
	 * We do not migrate tasks that are:
6727
	 * 1) throttled_lb_pair, or
6728
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6729 6730
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
6731
	 */
6732 6733 6734
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

6735
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6736
		int cpu;
6737

6738
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6739

6740 6741
		env->flags |= LBF_SOME_PINNED;

6742 6743 6744 6745 6746 6747 6748 6749
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
		 * Also avoid computing new_dst_cpu if we have already computed
		 * one in current iteration.
		 */
6750
		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6751 6752
			return 0;

6753 6754
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6755
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6756
				env->flags |= LBF_DST_PINNED;
6757 6758 6759
				env->new_dst_cpu = cpu;
				break;
			}
6760
		}
6761

6762 6763
		return 0;
	}
6764 6765

	/* Record that we found atleast one task that could run on dst_cpu */
6766
	env->flags &= ~LBF_ALL_PINNED;
6767

6768
	if (task_running(env->src_rq, p)) {
6769
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6770 6771 6772 6773 6774
		return 0;
	}

	/*
	 * Aggressive migration if:
6775 6776 6777
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
6778
	 */
6779 6780 6781
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
6782

6783
	if (tsk_cache_hot <= 0 ||
6784
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6785
		if (tsk_cache_hot == 1) {
6786 6787
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
6788
		}
6789 6790 6791
		return 1;
	}

6792
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
6793
	return 0;
6794 6795
}

6796
/*
6797 6798 6799 6800 6801 6802 6803
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
6804
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6805 6806 6807
	set_task_cpu(p, env->dst_cpu);
}

6808
/*
6809
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6810 6811
 * part of active balancing operations within "domain".
 *
6812
 * Returns a task if successful and NULL otherwise.
6813
 */
6814
static struct task_struct *detach_one_task(struct lb_env *env)
6815 6816 6817
{
	struct task_struct *p, *n;

6818 6819
	lockdep_assert_held(&env->src_rq->lock);

6820 6821 6822
	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
		if (!can_migrate_task(p, env))
			continue;
6823

6824
		detach_task(p, env);
6825

6826
		/*
6827
		 * Right now, this is only the second place where
6828
		 * lb_gained[env->idle] is updated (other is detach_tasks)
6829
		 * so we can safely collect stats here rather than
6830
		 * inside detach_tasks().
6831
		 */
6832
		schedstat_inc(env->sd->lb_gained[env->idle]);
6833
		return p;
6834
	}
6835
	return NULL;
6836 6837
}

6838 6839
static const unsigned int sched_nr_migrate_break = 32;

6840
/*
6841 6842
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
6843
 *
6844
 * Returns number of detached tasks if successful and 0 otherwise.
6845
 */
6846
static int detach_tasks(struct lb_env *env)
6847
{
6848 6849
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
6850
	unsigned long load;
6851 6852 6853
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
6854

6855
	if (env->imbalance <= 0)
6856
		return 0;
6857

6858
	while (!list_empty(tasks)) {
6859 6860 6861 6862 6863 6864 6865
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

6866
		p = list_first_entry(tasks, struct task_struct, se.group_node);
6867

6868 6869
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
6870
		if (env->loop > env->loop_max)
6871
			break;
6872 6873

		/* take a breather every nr_migrate tasks */
6874
		if (env->loop > env->loop_break) {
6875
			env->loop_break += sched_nr_migrate_break;
6876
			env->flags |= LBF_NEED_BREAK;
6877
			break;
6878
		}
6879

6880
		if (!can_migrate_task(p, env))
6881 6882 6883
			goto next;

		load = task_h_load(p);
6884

6885
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6886 6887
			goto next;

6888
		if ((load / 2) > env->imbalance)
6889
			goto next;
6890

6891 6892 6893 6894
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
6895
		env->imbalance -= load;
6896 6897

#ifdef CONFIG_PREEMPT
6898 6899
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
6900
		 * kernels will stop after the first task is detached to minimize
6901 6902
		 * the critical section.
		 */
6903
		if (env->idle == CPU_NEWLY_IDLE)
6904
			break;
6905 6906
#endif

6907 6908 6909 6910
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
6911
		if (env->imbalance <= 0)
6912
			break;
6913 6914 6915

		continue;
next:
6916
		list_move_tail(&p->se.group_node, tasks);
6917
	}
6918

6919
	/*
6920 6921 6922
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
6923
	 */
6924
	schedstat_add(env->sd->lb_gained[env->idle], detached);
6925

6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
6937
	activate_task(rq, p, ENQUEUE_NOCLOCK);
6938
	p->on_rq = TASK_ON_RQ_QUEUED;
6939 6940 6941 6942 6943 6944 6945 6946 6947
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
6948 6949 6950
	struct rq_flags rf;

	rq_lock(rq, &rf);
6951
	update_rq_clock(rq);
6952
	attach_task(rq, p);
6953
	rq_unlock(rq, &rf);
6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
6964
	struct rq_flags rf;
6965

6966
	rq_lock(env->dst_rq, &rf);
6967
	update_rq_clock(env->dst_rq);
6968 6969 6970 6971

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
6972

6973 6974 6975
		attach_task(env->dst_rq, p);
	}

6976
	rq_unlock(env->dst_rq, &rf);
6977 6978
}

P
Peter Zijlstra 已提交
6979
#ifdef CONFIG_FAIR_GROUP_SCHED
6980
static void update_blocked_averages(int cpu)
6981 6982
{
	struct rq *rq = cpu_rq(cpu);
6983
	struct cfs_rq *cfs_rq;
6984
	struct rq_flags rf;
6985

6986
	rq_lock_irqsave(rq, &rf);
6987
	update_rq_clock(rq);
6988

6989 6990 6991 6992
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
6993
	for_each_leaf_cfs_rq(rq, cfs_rq) {
6994 6995
		struct sched_entity *se;

6996 6997 6998
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
6999

7000
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
7001
			update_tg_load_avg(cfs_rq, 0);
7002

7003 7004 7005 7006
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
			update_load_avg(se, 0);
7007
	}
7008
	rq_unlock_irqrestore(rq, &rf);
7009 7010
}

7011
/*
7012
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7013 7014 7015
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7016
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7017
{
7018 7019
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7020
	unsigned long now = jiffies;
7021
	unsigned long load;
7022

7023
	if (cfs_rq->last_h_load_update == now)
7024 7025
		return;

7026 7027 7028 7029 7030 7031 7032
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7033

7034
	if (!se) {
7035
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7036 7037 7038 7039 7040
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7041 7042
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7043 7044 7045 7046
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7047 7048
}

7049
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7050
{
7051
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7052

7053
	update_cfs_rq_h_load(cfs_rq);
7054
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7055
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7056 7057
}
#else
7058
static inline void update_blocked_averages(int cpu)
7059
{
7060 7061
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7062
	struct rq_flags rf;
7063

7064
	rq_lock_irqsave(rq, &rf);
7065
	update_rq_clock(rq);
7066
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7067
	rq_unlock_irqrestore(rq, &rf);
7068 7069
}

7070
static unsigned long task_h_load(struct task_struct *p)
7071
{
7072
	return p->se.avg.load_avg;
7073
}
P
Peter Zijlstra 已提交
7074
#endif
7075 7076

/********** Helpers for find_busiest_group ************************/
7077 7078 7079 7080 7081 7082 7083

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7084 7085 7086 7087 7088 7089 7090
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7091
	unsigned long load_per_task;
7092
	unsigned long group_capacity;
7093
	unsigned long group_util; /* Total utilization of the group */
7094 7095 7096
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7097
	enum group_type group_type;
7098
	int group_no_capacity;
7099 7100 7101 7102
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7103 7104
};

J
Joonsoo Kim 已提交
7105 7106 7107 7108 7109 7110 7111 7112
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
	unsigned long total_load;	/* Total load of all groups in sd */
7113
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7114 7115 7116
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7117
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7118 7119
};

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
		.total_load = 0UL,
7132
		.total_capacity = 0UL,
7133 7134
		.busiest_stat = {
			.avg_load = 0UL,
7135 7136
			.sum_nr_running = 0,
			.group_type = group_other,
7137 7138 7139 7140
		},
	};
}

7141 7142 7143
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7144
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7145 7146
 *
 * Return: The load index.
7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7169
static unsigned long scale_rt_capacity(int cpu)
7170 7171
{
	struct rq *rq = cpu_rq(cpu);
7172
	u64 total, used, age_stamp, avg;
7173
	s64 delta;
7174

7175 7176 7177 7178
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7179 7180
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7181
	delta = __rq_clock_broken(rq) - age_stamp;
7182

7183 7184 7185 7186
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7187

7188
	used = div_u64(avg, total);
7189

7190 7191
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7192

7193
	return 1;
7194 7195
}

7196
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7197
{
7198
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7199 7200
	struct sched_group *sdg = sd->groups;

7201
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7202

7203
	capacity *= scale_rt_capacity(cpu);
7204
	capacity >>= SCHED_CAPACITY_SHIFT;
7205

7206 7207
	if (!capacity)
		capacity = 1;
7208

7209 7210
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7211
	sdg->sgc->min_capacity = capacity;
7212 7213
}

7214
void update_group_capacity(struct sched_domain *sd, int cpu)
7215 7216 7217
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7218
	unsigned long capacity, min_capacity;
7219 7220 7221 7222
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7223
	sdg->sgc->next_update = jiffies + interval;
7224 7225

	if (!child) {
7226
		update_cpu_capacity(sd, cpu);
7227 7228 7229
		return;
	}

7230
	capacity = 0;
7231
	min_capacity = ULONG_MAX;
7232

P
Peter Zijlstra 已提交
7233 7234 7235 7236 7237 7238
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7239
		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7240
			struct sched_group_capacity *sgc;
7241
			struct rq *rq = cpu_rq(cpu);
7242

7243
			/*
7244
			 * build_sched_domains() -> init_sched_groups_capacity()
7245 7246 7247
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7248 7249
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7250
			 *
7251
			 * This avoids capacity from being 0 and
7252 7253 7254
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7255
				capacity += capacity_of(cpu);
7256 7257 7258
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7259
			}
7260

7261
			min_capacity = min(capacity, min_capacity);
7262
		}
P
Peter Zijlstra 已提交
7263 7264 7265 7266
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7267
		 */
P
Peter Zijlstra 已提交
7268 7269 7270

		group = child->groups;
		do {
7271 7272 7273 7274
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7275 7276 7277
			group = group->next;
		} while (group != child->groups);
	}
7278

7279
	sdg->sgc->capacity = capacity;
7280
	sdg->sgc->min_capacity = min_capacity;
7281 7282
}

7283
/*
7284 7285 7286
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7287 7288
 */
static inline int
7289
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7290
{
7291 7292
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7293 7294
}

7295 7296
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7297
 * groups is inadequate due to ->cpus_allowed constraints.
7298 7299 7300 7301 7302
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7303 7304
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7305 7306 7307 7308 7309 7310
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7311 7312
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7313 7314
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7315
 * update_sd_pick_busiest(). And calculate_imbalance() and
7316
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7317 7318 7319 7320 7321 7322 7323
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7324
static inline int sg_imbalanced(struct sched_group *group)
7325
{
7326
	return group->sgc->imbalance;
7327 7328
}

7329
/*
7330 7331 7332
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7333 7334
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7335 7336 7337 7338 7339
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7340
 */
7341 7342
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7343
{
7344 7345
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7346

7347
	if ((sgs->group_capacity * 100) >
7348
			(sgs->group_util * env->sd->imbalance_pct))
7349
		return true;
7350

7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7367

7368
	if ((sgs->group_capacity * 100) <
7369
			(sgs->group_util * env->sd->imbalance_pct))
7370
		return true;
7371

7372
	return false;
7373 7374
}

7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7386 7387 7388
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7389
{
7390
	if (sgs->group_no_capacity)
7391 7392 7393 7394 7395 7396 7397 7398
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7399 7400
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7401
 * @env: The load balancing environment.
7402 7403 7404 7405
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7406
 * @overload: Indicate more than one runnable task for any CPU.
7407
 */
7408 7409
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7410 7411
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7412
{
7413
	unsigned long load;
7414
	int i, nr_running;
7415

7416 7417
	memset(sgs, 0, sizeof(*sgs));

7418
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7419 7420 7421
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7422
		if (local_group)
7423
			load = target_load(i, load_idx);
7424
		else
7425 7426 7427
			load = source_load(i, load_idx);

		sgs->group_load += load;
7428
		sgs->group_util += cpu_util(i);
7429
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7430

7431 7432
		nr_running = rq->nr_running;
		if (nr_running > 1)
7433 7434
			*overload = true;

7435 7436 7437 7438
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7439
		sgs->sum_weighted_load += weighted_cpuload(i);
7440 7441 7442 7443
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7444
			sgs->idle_cpus++;
7445 7446
	}

7447 7448
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7449
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7450

7451
	if (sgs->sum_nr_running)
7452
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7453

7454
	sgs->group_weight = group->group_weight;
7455

7456
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7457
	sgs->group_type = group_classify(group, sgs);
7458 7459
}

7460 7461
/**
 * update_sd_pick_busiest - return 1 on busiest group
7462
 * @env: The load balancing environment.
7463 7464
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7465
 * @sgs: sched_group statistics
7466 7467 7468
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7469 7470 7471
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7472
 */
7473
static bool update_sd_pick_busiest(struct lb_env *env,
7474 7475
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7476
				   struct sg_lb_stats *sgs)
7477
{
7478
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7479

7480
	if (sgs->group_type > busiest->group_type)
7481 7482
		return true;

7483 7484 7485 7486 7487 7488
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7503 7504
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7505 7506
		return true;

7507 7508 7509
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7510
	/*
T
Tim Chen 已提交
7511 7512 7513
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7514
	 */
T
Tim Chen 已提交
7515 7516
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7517 7518 7519
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7520 7521 7522
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7523 7524 7525 7526 7527 7528
			return true;
	}

	return false;
}

7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7559
/**
7560
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7561
 * @env: The load balancing environment.
7562 7563
 * @sds: variable to hold the statistics for this sched_domain.
 */
7564
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7565
{
7566 7567
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
J
Joonsoo Kim 已提交
7568
	struct sg_lb_stats tmp_sgs;
7569
	int load_idx, prefer_sibling = 0;
7570
	bool overload = false;
7571 7572 7573 7574

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7575
	load_idx = get_sd_load_idx(env->sd, env->idle);
7576 7577

	do {
J
Joonsoo Kim 已提交
7578
		struct sg_lb_stats *sgs = &tmp_sgs;
7579 7580
		int local_group;

7581
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
J
Joonsoo Kim 已提交
7582 7583 7584
		if (local_group) {
			sds->local = sg;
			sgs = &sds->local_stat;
7585 7586

			if (env->idle != CPU_NEWLY_IDLE ||
7587 7588
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7589
		}
7590

7591 7592
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7593

7594 7595 7596
		if (local_group)
			goto next_group;

7597 7598
		/*
		 * In case the child domain prefers tasks go to siblings
7599
		 * first, lower the sg capacity so that we'll try
7600 7601
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7602 7603 7604 7605
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7606
		 */
7607
		if (prefer_sibling && sds->local &&
7608 7609 7610
		    group_has_capacity(env, &sds->local_stat) &&
		    (sgs->sum_nr_running > 1)) {
			sgs->group_no_capacity = 1;
7611
			sgs->group_type = group_classify(sg, sgs);
7612
		}
7613

7614
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7615
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7616
			sds->busiest_stat = *sgs;
7617 7618
		}

7619 7620 7621
next_group:
		/* Now, start updating sd_lb_stats */
		sds->total_load += sgs->group_load;
7622
		sds->total_capacity += sgs->group_capacity;
7623

7624
		sg = sg->next;
7625
	} while (sg != env->sd->groups);
7626 7627 7628

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7629 7630 7631 7632 7633 7634 7635

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}

7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654
}

/**
 * check_asym_packing - Check to see if the group is packed into the
 *			sched doman.
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
7655
 * Return: 1 when packing is required and a task should be moved to
7656 7657
 * this CPU.  The amount of the imbalance is returned in *imbalance.
 *
7658
 * @env: The load balancing environment.
7659 7660
 * @sds: Statistics of the sched_domain which is to be packed
 */
7661
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7662 7663 7664
{
	int busiest_cpu;

7665
	if (!(env->sd->flags & SD_ASYM_PACKING))
7666 7667
		return 0;

7668 7669 7670
	if (env->idle == CPU_NOT_IDLE)
		return 0;

7671 7672 7673
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
7674 7675
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7676 7677
		return 0;

7678
	env->imbalance = DIV_ROUND_CLOSEST(
7679
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7680
		SCHED_CAPACITY_SCALE);
7681

7682
	return 1;
7683 7684 7685 7686 7687 7688
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
7689
 * @env: The load balancing environment.
7690 7691
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
7692 7693
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7694
{
7695
	unsigned long tmp, capa_now = 0, capa_move = 0;
7696
	unsigned int imbn = 2;
7697
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
7698
	struct sg_lb_stats *local, *busiest;
7699

J
Joonsoo Kim 已提交
7700 7701
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7702

J
Joonsoo Kim 已提交
7703 7704 7705 7706
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
7707

J
Joonsoo Kim 已提交
7708
	scaled_busy_load_per_task =
7709
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7710
		busiest->group_capacity;
J
Joonsoo Kim 已提交
7711

7712 7713
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
7714
		env->imbalance = busiest->load_per_task;
7715 7716 7717 7718 7719
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
7720
	 * however we may be able to increase total CPU capacity used by
7721 7722 7723
	 * moving them.
	 */

7724
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
7725
			min(busiest->load_per_task, busiest->avg_load);
7726
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
7727
			min(local->load_per_task, local->avg_load);
7728
	capa_now /= SCHED_CAPACITY_SCALE;
7729 7730

	/* Amount of load we'd subtract */
7731
	if (busiest->avg_load > scaled_busy_load_per_task) {
7732
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
7733
			    min(busiest->load_per_task,
7734
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
7735
	}
7736 7737

	/* Amount of load we'd add */
7738
	if (busiest->avg_load * busiest->group_capacity <
7739
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7740 7741
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
7742
	} else {
7743
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7744
		      local->group_capacity;
J
Joonsoo Kim 已提交
7745
	}
7746
	capa_move += local->group_capacity *
7747
		    min(local->load_per_task, local->avg_load + tmp);
7748
	capa_move /= SCHED_CAPACITY_SCALE;
7749 7750

	/* Move if we gain throughput */
7751
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
7752
		env->imbalance = busiest->load_per_task;
7753 7754 7755 7756 7757
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
7758
 * @env: load balance environment
7759 7760
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
7761
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7762
{
7763
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
7764 7765 7766 7767
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
7768

7769
	if (busiest->group_type == group_imbalanced) {
7770 7771 7772 7773
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
7774 7775
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
7776 7777
	}

7778
	/*
7779 7780 7781 7782
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
7783
	 */
7784 7785
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
7786 7787
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
7788 7789
	}

7790 7791 7792 7793 7794
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
7795
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7796
		if (load_above_capacity > busiest->group_capacity) {
7797
			load_above_capacity -= busiest->group_capacity;
7798
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7799 7800
			load_above_capacity /= busiest->group_capacity;
		} else
7801
			load_above_capacity = ~0UL;
7802 7803 7804 7805 7806 7807
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
7808 7809
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
7810
	 */
7811
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7812 7813

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
7814
	env->imbalance = min(
7815 7816
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
7817
	) / SCHED_CAPACITY_SCALE;
7818 7819 7820

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
7821
	 * there is no guarantee that any tasks will be moved so we'll have
7822 7823 7824
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
7825
	if (env->imbalance < busiest->load_per_task)
7826
		return fix_small_imbalance(env, sds);
7827
}
7828

7829 7830 7831 7832
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
7833
 * if there is an imbalance.
7834 7835 7836 7837
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
7838
 * @env: The load balancing environment.
7839
 *
7840
 * Return:	- The busiest group if imbalance exists.
7841
 */
J
Joonsoo Kim 已提交
7842
static struct sched_group *find_busiest_group(struct lb_env *env)
7843
{
J
Joonsoo Kim 已提交
7844
	struct sg_lb_stats *local, *busiest;
7845 7846
	struct sd_lb_stats sds;

7847
	init_sd_lb_stats(&sds);
7848 7849 7850 7851 7852

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
7853
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
7854 7855
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
7856

7857
	/* ASYM feature bypasses nice load balance check */
7858
	if (check_asym_packing(env, &sds))
7859 7860
		return sds.busiest;

7861
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
7862
	if (!sds.busiest || busiest->sum_nr_running == 0)
7863 7864
		goto out_balanced;

7865 7866
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
7867

P
Peter Zijlstra 已提交
7868 7869
	/*
	 * If the busiest group is imbalanced the below checks don't
7870
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
7871 7872
	 * isn't true due to cpus_allowed constraints and the like.
	 */
7873
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
7874 7875
		goto force_balance;

7876
	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7877 7878
	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
	    busiest->group_no_capacity)
7879 7880
		goto force_balance;

7881
	/*
7882
	 * If the local group is busier than the selected busiest group
7883 7884
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
7885
	if (local->avg_load >= busiest->avg_load)
7886 7887
		goto out_balanced;

7888 7889 7890 7891
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
7892
	if (local->avg_load >= sds.avg_load)
7893 7894
		goto out_balanced;

7895
	if (env->idle == CPU_IDLE) {
7896
		/*
7897 7898 7899 7900 7901
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
7902
		 */
7903 7904
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7905
			goto out_balanced;
7906 7907 7908 7909 7910
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
7911 7912
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
7913
			goto out_balanced;
7914
	}
7915

7916
force_balance:
7917
	/* Looks like there is an imbalance. Compute it */
7918
	calculate_imbalance(env, &sds);
7919 7920 7921
	return sds.busiest;

out_balanced:
7922
	env->imbalance = 0;
7923 7924 7925 7926 7927 7928
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
7929
static struct rq *find_busiest_queue(struct lb_env *env,
7930
				     struct sched_group *group)
7931 7932
{
	struct rq *busiest = NULL, *rq;
7933
	unsigned long busiest_load = 0, busiest_capacity = 1;
7934 7935
	int i;

7936
	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7937
		unsigned long capacity, wl;
7938 7939 7940 7941
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
7942

7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

7965
		capacity = capacity_of(i);
7966

7967
		wl = weighted_cpuload(i);
7968

7969 7970
		/*
		 * When comparing with imbalance, use weighted_cpuload()
7971
		 * which is not scaled with the cpu capacity.
7972
		 */
7973 7974 7975

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
7976 7977
			continue;

7978 7979
		/*
		 * For the load comparisons with the other cpu's, consider
7980 7981 7982
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
7983
		 *
7984
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7985
		 * multiplication to rid ourselves of the division works out
7986 7987
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
7988
		 */
7989
		if (wl * busiest_capacity > busiest_load * capacity) {
7990
			busiest_load = wl;
7991
			busiest_capacity = capacity;
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8005
static int need_active_balance(struct lb_env *env)
8006
{
8007 8008 8009
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8010 8011 8012

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8013 8014
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8015
		 */
T
Tim Chen 已提交
8016 8017
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8018
			return 1;
8019 8020
	}

8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8034 8035 8036
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8037 8038
static int active_load_balance_cpu_stop(void *data);

8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	struct cpumask *sg_cpus, *sg_mask;
	int cpu, balance_cpu = -1;

	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	sg_cpus = sched_group_cpus(sg);
	sg_mask = sched_group_mask(sg);
	/* Try to find first idle cpu */
	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8070
	return balance_cpu == env->dst_cpu;
8071 8072
}

8073 8074 8075 8076 8077 8078
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8079
			int *continue_balancing)
8080
{
8081
	int ld_moved, cur_ld_moved, active_balance = 0;
8082
	struct sched_domain *sd_parent = sd->parent;
8083 8084
	struct sched_group *group;
	struct rq *busiest;
8085
	struct rq_flags rf;
8086
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8087

8088 8089
	struct lb_env env = {
		.sd		= sd,
8090 8091
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8092
		.dst_grpmask    = sched_group_cpus(sd->groups),
8093
		.idle		= idle,
8094
		.loop_break	= sched_nr_migrate_break,
8095
		.cpus		= cpus,
8096
		.fbq_type	= all,
8097
		.tasks		= LIST_HEAD_INIT(env.tasks),
8098 8099
	};

8100 8101 8102 8103
	/*
	 * For NEWLY_IDLE load_balancing, we don't need to consider
	 * other cpus in our group
	 */
8104
	if (idle == CPU_NEWLY_IDLE)
8105 8106
		env.dst_grpmask = NULL;

8107 8108
	cpumask_copy(cpus, cpu_active_mask);

8109
	schedstat_inc(sd->lb_count[idle]);
8110 8111

redo:
8112 8113
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8114
		goto out_balanced;
8115
	}
8116

8117
	group = find_busiest_group(&env);
8118
	if (!group) {
8119
		schedstat_inc(sd->lb_nobusyg[idle]);
8120 8121 8122
		goto out_balanced;
	}

8123
	busiest = find_busiest_queue(&env, group);
8124
	if (!busiest) {
8125
		schedstat_inc(sd->lb_nobusyq[idle]);
8126 8127 8128
		goto out_balanced;
	}

8129
	BUG_ON(busiest == env.dst_rq);
8130

8131
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8132

8133 8134 8135
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8136 8137 8138 8139 8140 8141 8142 8143
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8144
		env.flags |= LBF_ALL_PINNED;
8145
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8146

8147
more_balance:
8148
		rq_lock_irqsave(busiest, &rf);
8149
		update_rq_clock(busiest);
8150 8151 8152 8153 8154

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8155
		cur_ld_moved = detach_tasks(&env);
8156 8157

		/*
8158 8159 8160 8161 8162
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8163
		 */
8164

8165
		rq_unlock(busiest, &rf);
8166 8167 8168 8169 8170 8171

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8172
		local_irq_restore(rf.flags);
8173

8174 8175 8176 8177 8178
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8198
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8199

8200 8201 8202
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8203
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8204
			env.dst_cpu	 = env.new_dst_cpu;
8205
			env.flags	&= ~LBF_DST_PINNED;
8206 8207
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8208

8209 8210 8211 8212 8213 8214
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8215

8216 8217 8218 8219
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8220
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8221

8222
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8223 8224 8225
				*group_imbalance = 1;
		}

8226
		/* All tasks on this runqueue were pinned by CPU affinity */
8227
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8228
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8229 8230 8231
			if (!cpumask_empty(cpus)) {
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8232
				goto redo;
8233
			}
8234
			goto out_all_pinned;
8235 8236 8237 8238
		}
	}

	if (!ld_moved) {
8239
		schedstat_inc(sd->lb_failed[idle]);
8240 8241 8242 8243 8244 8245 8246 8247
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8248

8249
		if (need_active_balance(&env)) {
8250 8251
			unsigned long flags;

8252 8253
			raw_spin_lock_irqsave(&busiest->lock, flags);

8254 8255 8256
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8257
			 */
8258
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8259 8260
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8261
				env.flags |= LBF_ALL_PINNED;
8262 8263 8264
				goto out_one_pinned;
			}

8265 8266 8267 8268 8269
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8270 8271 8272 8273 8274 8275
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8276

8277
			if (active_balance) {
8278 8279 8280
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8281
			}
8282

8283
			/* We've kicked active balancing, force task migration. */
8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8297
		 * detach_tasks).
8298 8299 8300 8301 8302 8303 8304 8305
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8323
	schedstat_inc(sd->lb_balanced[idle]);
8324 8325 8326 8327 8328

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8329
	if (((env.flags & LBF_ALL_PINNED) &&
8330
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8331 8332 8333
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8334
	ld_moved = 0;
8335 8336 8337 8338
out:
	return ld_moved;
}

8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8355
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8356 8357 8358
{
	unsigned long interval, next;

8359 8360
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8361 8362 8363 8364 8365 8366
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8367 8368 8369 8370
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8371
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8372
{
8373 8374
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8375 8376
	struct sched_domain *sd;
	int pulled_task = 0;
8377
	u64 curr_cost = 0;
8378

8379 8380 8381 8382 8383 8384
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8385 8386 8387 8388 8389 8390 8391 8392
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8393 8394
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8395 8396 8397
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8398
			update_next_balance(sd, &next_balance);
8399 8400
		rcu_read_unlock();

8401
		goto out;
8402
	}
8403

8404 8405
	raw_spin_unlock(&this_rq->lock);

8406
	update_blocked_averages(this_cpu);
8407
	rcu_read_lock();
8408
	for_each_domain(this_cpu, sd) {
8409
		int continue_balancing = 1;
8410
		u64 t0, domain_cost;
8411 8412 8413 8414

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8415
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8416
			update_next_balance(sd, &next_balance);
8417
			break;
8418
		}
8419

8420
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8421 8422
			t0 = sched_clock_cpu(this_cpu);

8423
			pulled_task = load_balance(this_cpu, this_rq,
8424 8425
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8426 8427 8428 8429 8430 8431

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8432
		}
8433

8434
		update_next_balance(sd, &next_balance);
8435 8436 8437 8438 8439 8440

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8441 8442
			break;
	}
8443
	rcu_read_unlock();
8444 8445 8446

	raw_spin_lock(&this_rq->lock);

8447 8448 8449
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8450
	/*
8451 8452 8453
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8454
	 */
8455
	if (this_rq->cfs.h_nr_running && !pulled_task)
8456
		pulled_task = 1;
8457

8458 8459 8460
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8461
		this_rq->next_balance = next_balance;
8462

8463
	/* Is there a task of a high priority class? */
8464
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8465 8466
		pulled_task = -1;

8467
	if (pulled_task)
8468 8469
		this_rq->idle_stamp = 0;

8470 8471
	rq_repin_lock(this_rq, rf);

8472
	return pulled_task;
8473 8474 8475
}

/*
8476 8477 8478 8479
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8480
 */
8481
static int active_load_balance_cpu_stop(void *data)
8482
{
8483 8484
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8485
	int target_cpu = busiest_rq->push_cpu;
8486
	struct rq *target_rq = cpu_rq(target_cpu);
8487
	struct sched_domain *sd;
8488
	struct task_struct *p = NULL;
8489
	struct rq_flags rf;
8490

8491
	rq_lock_irq(busiest_rq, &rf);
8492 8493 8494 8495 8496

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8497 8498 8499

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8500
		goto out_unlock;
8501 8502 8503 8504 8505 8506 8507 8508 8509

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8510
	rcu_read_lock();
8511 8512 8513 8514 8515 8516 8517
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8518 8519
		struct lb_env env = {
			.sd		= sd,
8520 8521 8522 8523
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8524 8525 8526
			.idle		= CPU_IDLE,
		};

8527
		schedstat_inc(sd->alb_count);
8528
		update_rq_clock(busiest_rq);
8529

8530
		p = detach_one_task(&env);
8531
		if (p) {
8532
			schedstat_inc(sd->alb_pushed);
8533 8534 8535
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8536
			schedstat_inc(sd->alb_failed);
8537
		}
8538
	}
8539
	rcu_read_unlock();
8540 8541
out_unlock:
	busiest_rq->active_balance = 0;
8542
	rq_unlock(busiest_rq, &rf);
8543 8544 8545 8546 8547 8548

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8549
	return 0;
8550 8551
}

8552 8553 8554 8555 8556
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8557
#ifdef CONFIG_NO_HZ_COMMON
8558 8559 8560 8561 8562 8563
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8564
static struct {
8565
	cpumask_var_t idle_cpus_mask;
8566
	atomic_t nr_cpus;
8567 8568
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8569

8570
static inline int find_new_ilb(void)
8571
{
8572
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8573

8574 8575 8576 8577
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8578 8579
}

8580 8581 8582 8583 8584
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8585
static void nohz_balancer_kick(void)
8586 8587 8588 8589 8590
{
	int ilb_cpu;

	nohz.next_balance++;

8591
	ilb_cpu = find_new_ilb();
8592

8593 8594
	if (ilb_cpu >= nr_cpu_ids)
		return;
8595

8596
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8597 8598 8599 8600 8601 8602 8603 8604
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
8605 8606 8607
	return;
}

8608
void nohz_balance_exit_idle(unsigned int cpu)
8609 8610
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8611 8612 8613 8614 8615 8616 8617
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
8618 8619 8620 8621
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

8622 8623 8624
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
8625
	int cpu = smp_processor_id();
8626 8627

	rcu_read_lock();
8628
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8629 8630 8631 8632 8633

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

8634
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8635
unlock:
8636 8637 8638 8639 8640 8641
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
8642
	int cpu = smp_processor_id();
8643 8644

	rcu_read_lock();
8645
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
8646 8647 8648 8649 8650

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

8651
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
8652
unlock:
8653 8654 8655
	rcu_read_unlock();
}

8656
/*
8657
 * This routine will record that the cpu is going idle with tick stopped.
8658
 * This info will be used in performing idle load balancing in the future.
8659
 */
8660
void nohz_balance_enter_idle(int cpu)
8661
{
8662 8663 8664 8665 8666 8667
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

8668 8669
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
8670

8671 8672 8673 8674 8675 8676
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

8677 8678 8679
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8680 8681 8682 8683 8684
}
#endif

static DEFINE_SPINLOCK(balancing);

8685 8686 8687 8688
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
8689
void update_max_interval(void)
8690 8691 8692 8693
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

8694 8695 8696 8697
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
8698
 * Balancing parameters are set up in init_sched_domains.
8699
 */
8700
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8701
{
8702
	int continue_balancing = 1;
8703
	int cpu = rq->cpu;
8704
	unsigned long interval;
8705
	struct sched_domain *sd;
8706 8707 8708
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8709 8710
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
8711

8712
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
8713

8714
	rcu_read_lock();
8715
	for_each_domain(cpu, sd) {
8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

8728 8729 8730
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

8742
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8743 8744 8745 8746 8747 8748 8749 8750

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8751
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8752
				/*
8753
				 * The LBF_DST_PINNED logic could have changed
8754 8755
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
8756
				 */
8757
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8758 8759
			}
			sd->last_balance = jiffies;
8760
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8761 8762 8763 8764 8765 8766 8767 8768
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
8769 8770
	}
	if (need_decay) {
8771
		/*
8772 8773
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
8774
		 */
8775 8776
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
8777
	}
8778
	rcu_read_unlock();
8779 8780 8781 8782 8783 8784

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
8785
	if (likely(update_next_balance)) {
8786
		rq->next_balance = next_balance;
8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
8801 8802
}

8803
#ifdef CONFIG_NO_HZ_COMMON
8804
/*
8805
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8806 8807
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
8808
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8809
{
8810
	int this_cpu = this_rq->cpu;
8811 8812
	struct rq *rq;
	int balance_cpu;
8813 8814 8815
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
8816

8817 8818 8819
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
8820 8821

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8822
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8823 8824 8825 8826 8827 8828 8829
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
8830
		if (need_resched())
8831 8832
			break;

V
Vincent Guittot 已提交
8833 8834
		rq = cpu_rq(balance_cpu);

8835 8836 8837 8838 8839
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
8840 8841 8842
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
8843
			update_rq_clock(rq);
8844
			cpu_load_update_idle(rq);
8845 8846
			rq_unlock_irq(rq, &rf);

8847 8848
			rebalance_domains(rq, CPU_IDLE);
		}
8849

8850 8851 8852 8853
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
8854
	}
8855 8856 8857 8858 8859 8860 8861 8862

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
8863 8864
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8865 8866 8867
}

/*
8868
 * Current heuristic for kicking the idle load balancer in the presence
8869
 * of an idle cpu in the system.
8870
 *   - This rq has more than one task.
8871 8872 8873 8874
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
8875 8876
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
8877
 */
8878
static inline bool nohz_kick_needed(struct rq *rq)
8879 8880
{
	unsigned long now = jiffies;
8881
	struct sched_domain_shared *sds;
8882
	struct sched_domain *sd;
T
Tim Chen 已提交
8883
	int nr_busy, i, cpu = rq->cpu;
8884
	bool kick = false;
8885

8886
	if (unlikely(rq->idle_balance))
8887
		return false;
8888

8889 8890 8891 8892
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
8893
	set_cpu_sd_state_busy();
8894
	nohz_balance_exit_idle(cpu);
8895 8896 8897 8898 8899 8900

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
8901
		return false;
8902 8903

	if (time_before(now, nohz.next_balance))
8904
		return false;
8905

8906
	if (rq->nr_running >= 2)
8907
		return true;
8908

8909
	rcu_read_lock();
8910 8911 8912 8913 8914 8915 8916
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
8917 8918 8919 8920 8921
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

8922
	}
8923

8924 8925 8926 8927 8928 8929 8930 8931
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
8932

8933
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
8934 8935 8936 8937 8938
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
8939

T
Tim Chen 已提交
8940 8941 8942 8943 8944 8945
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
8946
unlock:
8947
	rcu_read_unlock();
8948
	return kick;
8949 8950
}
#else
8951
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8952 8953 8954 8955 8956 8957
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
8958
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8959
{
8960
	struct rq *this_rq = this_rq();
8961
	enum cpu_idle_type idle = this_rq->idle_balance ?
8962 8963 8964
						CPU_IDLE : CPU_NOT_IDLE;

	/*
8965
	 * If this cpu has a pending nohz_balance_kick, then do the
8966
	 * balancing on behalf of the other idle cpus whose ticks are
8967 8968 8969 8970
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
8971
	 */
8972
	nohz_idle_balance(this_rq, idle);
8973
	rebalance_domains(this_rq, idle);
8974 8975 8976 8977 8978
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
8979
void trigger_load_balance(struct rq *rq)
8980 8981
{
	/* Don't need to rebalance while attached to NULL domain */
8982 8983 8984 8985
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
8986
		raise_softirq(SCHED_SOFTIRQ);
8987
#ifdef CONFIG_NO_HZ_COMMON
8988
	if (nohz_kick_needed(rq))
8989
		nohz_balancer_kick();
8990
#endif
8991 8992
}

8993 8994 8995
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
8996 8997

	update_runtime_enabled(rq);
8998 8999 9000 9001 9002
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9003 9004 9005

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9006 9007
}

9008
#endif /* CONFIG_SMP */
9009

9010 9011 9012
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9013
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9014 9015 9016 9017 9018 9019
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9020
		entity_tick(cfs_rq, se, queued);
9021
	}
9022

9023
	if (static_branch_unlikely(&sched_numa_balancing))
9024
		task_tick_numa(rq, curr);
9025 9026 9027
}

/*
P
Peter Zijlstra 已提交
9028 9029 9030
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9031
 */
P
Peter Zijlstra 已提交
9032
static void task_fork_fair(struct task_struct *p)
9033
{
9034 9035
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9036
	struct rq *rq = this_rq();
9037
	struct rq_flags rf;
9038

9039
	rq_lock(rq, &rf);
9040 9041
	update_rq_clock(rq);

9042 9043
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9044 9045
	if (curr) {
		update_curr(cfs_rq);
9046
		se->vruntime = curr->vruntime;
9047
	}
9048
	place_entity(cfs_rq, se, 1);
9049

P
Peter Zijlstra 已提交
9050
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9051
		/*
9052 9053 9054
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9055
		swap(curr->vruntime, se->vruntime);
9056
		resched_curr(rq);
9057
	}
9058

9059
	se->vruntime -= cfs_rq->min_vruntime;
9060
	rq_unlock(rq, &rf);
9061 9062
}

9063 9064 9065 9066
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9067 9068
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9069
{
9070
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9071 9072
		return;

9073 9074 9075 9076 9077
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9078
	if (rq->curr == p) {
9079
		if (p->prio > oldprio)
9080
			resched_curr(rq);
9081
	} else
9082
		check_preempt_curr(rq, p, 0);
9083 9084
}

9085
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9086 9087 9088 9089
{
	struct sched_entity *se = &p->se;

	/*
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9100
	 *
9101 9102 9103 9104
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9105
	 */
9106 9107 9108 9109 9110 9111
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

		update_load_avg(se, UPDATE_TG);
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9137
static void detach_entity_cfs_rq(struct sched_entity *se)
9138 9139 9140
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9141
	/* Catch up with the cfs_rq and remove our load when we leave */
9142
	update_load_avg(se, 0);
9143
	detach_entity_load_avg(cfs_rq, se);
9144
	update_tg_load_avg(cfs_rq, false);
9145
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9146 9147
}

9148
static void attach_entity_cfs_rq(struct sched_entity *se)
9149
{
9150
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9151 9152

#ifdef CONFIG_FAIR_GROUP_SCHED
9153 9154 9155 9156 9157 9158
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9159

9160
	/* Synchronize entity with its cfs_rq */
9161
	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9162
	attach_entity_load_avg(cfs_rq, se);
9163
	update_tg_load_avg(cfs_rq, false);
9164
	propagate_entity_cfs_rq(se);
9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9190 9191 9192 9193

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9194

9195 9196 9197 9198 9199 9200 9201 9202
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9203

9204
	if (task_on_rq_queued(p)) {
9205
		/*
9206 9207 9208
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9209
		 */
9210 9211 9212 9213
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9214
	}
9215 9216
}

9217 9218 9219 9220 9221 9222 9223 9224 9225
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9226 9227 9228 9229 9230 9231 9232
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9233 9234
}

9235 9236 9237 9238 9239 9240 9241
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9242
#ifdef CONFIG_SMP
9243 9244 9245
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->propagate_avg = 0;
#endif
9246 9247
	atomic_long_set(&cfs_rq->removed_load_avg, 0);
	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9248
#endif
9249 9250
}

P
Peter Zijlstra 已提交
9251
#ifdef CONFIG_FAIR_GROUP_SCHED
9252 9253 9254 9255 9256 9257 9258 9259
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9260
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9261
{
9262
	detach_task_cfs_rq(p);
9263
	set_task_rq(p, task_cpu(p));
9264 9265 9266 9267 9268

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9269
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9270
}
9271

9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9285 9286 9287 9288 9289 9290 9291 9292 9293
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9294
		if (tg->se)
9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9305
	struct cfs_rq *cfs_rq;
9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9332
		init_entity_runnable_average(se);
9333 9334 9335 9336 9337 9338 9339 9340 9341 9342
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9354
		update_rq_clock(rq);
9355
		attach_entity_cfs_rq(se);
9356
		sync_throttle(tg, i);
9357 9358 9359 9360
		raw_spin_unlock_irq(&rq->lock);
	}
}

9361
void unregister_fair_sched_group(struct task_group *tg)
9362 9363
{
	unsigned long flags;
9364 9365
	struct rq *rq;
	int cpu;
9366

9367 9368 9369
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9370

9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9403
	if (!parent) {
9404
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9405 9406
		se->depth = 0;
	} else {
9407
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9408 9409
		se->depth = parent->depth + 1;
	}
9410 9411

	se->my_q = cfs_rq;
9412 9413
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9438 9439
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9440 9441

		/* Propagate contribution to hierarchy */
9442
		rq_lock_irqsave(rq, &rf);
9443
		update_rq_clock(rq);
9444 9445 9446 9447
		for_each_sched_entity(se) {
			update_load_avg(se, UPDATE_TG);
			update_cfs_shares(se);
		}
9448
		rq_unlock_irqrestore(rq, &rf);
9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9464 9465
void online_fair_sched_group(struct task_group *tg) { }

9466
void unregister_fair_sched_group(struct task_group *tg) { }
9467 9468 9469

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9470

9471
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9472 9473 9474 9475 9476 9477 9478 9479 9480
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9481
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9482 9483 9484 9485

	return rr_interval;
}

9486 9487 9488
/*
 * All the scheduling class methods:
 */
9489
const struct sched_class fair_sched_class = {
9490
	.next			= &idle_sched_class,
9491 9492 9493
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9494
	.yield_to_task		= yield_to_task_fair,
9495

I
Ingo Molnar 已提交
9496
	.check_preempt_curr	= check_preempt_wakeup,
9497 9498 9499 9500

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9501
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9502
	.select_task_rq		= select_task_rq_fair,
9503
	.migrate_task_rq	= migrate_task_rq_fair,
9504

9505 9506
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9507

9508
	.task_dead		= task_dead_fair,
9509
	.set_cpus_allowed	= set_cpus_allowed_common,
9510
#endif
9511

9512
	.set_curr_task          = set_curr_task_fair,
9513
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9514
	.task_fork		= task_fork_fair,
9515 9516

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9517
	.switched_from		= switched_from_fair,
9518
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9519

9520 9521
	.get_rr_interval	= get_rr_interval_fair,

9522 9523
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9524
#ifdef CONFIG_FAIR_GROUP_SCHED
9525
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9526
#endif
9527 9528 9529
};

#ifdef CONFIG_SCHED_DEBUG
9530
void print_cfs_stats(struct seq_file *m, int cpu)
9531 9532 9533
{
	struct cfs_rq *cfs_rq;

9534
	rcu_read_lock();
9535
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9536
		print_cfs_rq(m, cpu, cfs_rq);
9537
	rcu_read_unlock();
9538
}
9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9560 9561 9562 9563 9564 9565

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9566
#ifdef CONFIG_NO_HZ_COMMON
9567
	nohz.next_balance = jiffies;
9568 9569 9570 9571 9572
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}