fair.c 259.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 23
 */

24
#include <linux/sched/mm.h>
25 26
#include <linux/sched/topology.h>

27
#include <linux/latencytop.h>
28
#include <linux/cpumask.h>
29
#include <linux/cpuidle.h>
30 31 32
#include <linux/slab.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
33
#include <linux/mempolicy.h>
34
#include <linux/migrate.h>
35
#include <linux/task_work.h>
36
#include <linux/sched/isolation.h>
37 38 39 40

#include <trace/events/sched.h>

#include "sched.h"
A
Arjan van de Ven 已提交
41

42
/*
43
 * Targeted preemption latency for CPU-bound tasks:
44
 *
45
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
46 47 48
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
49
 *
I
Ingo Molnar 已提交
50 51
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
52 53
 *
 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
54
 */
55 56
unsigned int sysctl_sched_latency			= 6000000ULL;
unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
57

58 59 60 61
/*
 * The initial- and re-scaling of tunables is configurable
 *
 * Options are:
62 63 64 65 66 67
 *
 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
 *
 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68
 */
69
enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70

71
/*
72
 * Minimal preemption granularity for CPU-bound tasks:
73
 *
74
 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75
 */
76 77
unsigned int sysctl_sched_min_granularity		= 750000ULL;
unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
78 79

/*
80
 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
81
 */
82
static unsigned int sched_nr_latency = 8;
83 84

/*
85
 * After fork, child runs first. If set to 0 (default) then
86
 * parent will (try to) run first.
87
 */
88
unsigned int sysctl_sched_child_runs_first __read_mostly;
89 90 91 92 93 94 95

/*
 * SCHED_OTHER wake-up granularity.
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
96 97
 *
 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98
 */
99 100
unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
101

102
const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
103

T
Tim Chen 已提交
104 105 106 107 108 109 110 111 112 113
#ifdef CONFIG_SMP
/*
 * For asym packing, by default the lower numbered cpu has higher priority.
 */
int __weak arch_asym_cpu_priority(int cpu)
{
	return -cpu;
}
#endif

114 115 116 117 118 119 120 121 122
#ifdef CONFIG_CFS_BANDWIDTH
/*
 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 * each time a cfs_rq requests quota.
 *
 * Note: in the case that the slice exceeds the runtime remaining (either due
 * to consumption or the quota being specified to be smaller than the slice)
 * we will always only issue the remaining available time.
 *
123 124 125
 * (default: 5 msec, units: microseconds)
 */
unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
126 127
#endif

128 129
/*
 * The margin used when comparing utilization with CPU capacity:
130
 * util * margin < capacity * 1024
131 132
 *
 * (default: ~20%)
133
 */
134
unsigned int capacity_margin				= 1280;
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
{
	lw->weight += inc;
	lw->inv_weight = 0;
}

static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
{
	lw->weight -= dec;
	lw->inv_weight = 0;
}

static inline void update_load_set(struct load_weight *lw, unsigned long w)
{
	lw->weight = w;
	lw->inv_weight = 0;
}

154 155 156 157 158 159 160 161 162
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
163
static unsigned int get_update_sysctl_factor(void)
164
{
165
	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}

	return factor;
}

static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();

#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
#undef SET_SYSCTL
}

void sched_init_granularity(void)
{
	update_sysctl();
}

201
#define WMULT_CONST	(~0U)
202 203
#define WMULT_SHIFT	32

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
static void __update_inv_weight(struct load_weight *lw)
{
	unsigned long w;

	if (likely(lw->inv_weight))
		return;

	w = scale_load_down(lw->weight);

	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
		lw->inv_weight = 1;
	else if (unlikely(!w))
		lw->inv_weight = WMULT_CONST;
	else
		lw->inv_weight = WMULT_CONST / w;
}
220 221

/*
222 223 224 225
 * delta_exec * weight / lw.weight
 *   OR
 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 *
226
 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
227 228 229 230 231
 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 *
 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 * weight/lw.weight <= 1, and therefore our shift will also be positive.
232
 */
233
static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
234
{
235 236
	u64 fact = scale_load_down(weight);
	int shift = WMULT_SHIFT;
237

238
	__update_inv_weight(lw);
239

240 241 242 243 244
	if (unlikely(fact >> 32)) {
		while (fact >> 32) {
			fact >>= 1;
			shift--;
		}
245 246
	}

247 248
	/* hint to use a 32x32->64 mul */
	fact = (u64)(u32)fact * lw->inv_weight;
249

250 251 252 253
	while (fact >> 32) {
		fact >>= 1;
		shift--;
	}
254

255
	return mul_u64_u32_shr(delta_exec, fact, shift);
256 257 258 259
}


const struct sched_class fair_sched_class;
260

261 262 263 264
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

265
#ifdef CONFIG_FAIR_GROUP_SCHED
266

267
/* cpu runqueue to which this cfs_rq is attached */
268 269
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
270
	return cfs_rq->rq;
271 272
}

273 274
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
275

276 277
static inline struct task_struct *task_of(struct sched_entity *se)
{
278
	SCHED_WARN_ON(!entity_is_task(se));
279 280 281
	return container_of(se, struct task_struct, se);
}

P
Peter Zijlstra 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

303 304 305
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (!cfs_rq->on_list) {
306 307
		struct rq *rq = rq_of(cfs_rq);
		int cpu = cpu_of(rq);
308 309 310
		/*
		 * Ensure we either appear before our parent (if already
		 * enqueued) or force our parent to appear after us when it is
311 312 313 314 315
		 * enqueued. The fact that we always enqueue bottom-up
		 * reduces this to two cases and a special case for the root
		 * cfs_rq. Furthermore, it also means that we will always reset
		 * tmp_alone_branch either when the branch is connected
		 * to a tree or when we reach the beg of the tree
316 317
		 */
		if (cfs_rq->tg->parent &&
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
			/*
			 * If parent is already on the list, we add the child
			 * just before. Thanks to circular linked property of
			 * the list, this means to put the child at the tail
			 * of the list that starts by parent.
			 */
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
			/*
			 * The branch is now connected to its tree so we can
			 * reset tmp_alone_branch to the beginning of the
			 * list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else if (!cfs_rq->tg->parent) {
			/*
			 * cfs rq without parent should be put
			 * at the tail of the list.
			 */
338
			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
				&rq->leaf_cfs_rq_list);
			/*
			 * We have reach the beg of a tree so we can reset
			 * tmp_alone_branch to the beginning of the list.
			 */
			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
		} else {
			/*
			 * The parent has not already been added so we want to
			 * make sure that it will be put after us.
			 * tmp_alone_branch points to the beg of the branch
			 * where we will add parent.
			 */
			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
				rq->tmp_alone_branch);
			/*
			 * update tmp_alone_branch to points to the new beg
			 * of the branch
			 */
			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359
		}
360 361 362 363 364 365 366 367 368 369 370 371 372

		cfs_rq->on_list = 1;
	}
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->on_list) {
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
		cfs_rq->on_list = 0;
	}
}

P
Peter Zijlstra 已提交
373
/* Iterate thr' all leaf cfs_rq's on a runqueue */
374 375 376
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
				 leaf_cfs_rq_list)
P
Peter Zijlstra 已提交
377 378

/* Do the two (enqueued) entities belong to the same group ? */
P
Peter Zijlstra 已提交
379
static inline struct cfs_rq *
P
Peter Zijlstra 已提交
380 381 382
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
P
Peter Zijlstra 已提交
383
		return se->cfs_rq;
P
Peter Zijlstra 已提交
384

P
Peter Zijlstra 已提交
385
	return NULL;
P
Peter Zijlstra 已提交
386 387 388 389 390 391 392
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

393 394 395 396 397 398 399 400 401 402 403 404 405
static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
P
Peter Zijlstra 已提交
406 407
	se_depth = (*se)->depth;
	pse_depth = (*pse)->depth;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

425 426 427 428 429 430
#else	/* !CONFIG_FAIR_GROUP_SCHED */

static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}
431

432 433 434
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
435 436 437 438
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
439 440
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
441

P
Peter Zijlstra 已提交
442
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
443
{
P
Peter Zijlstra 已提交
444
	return &task_rq(p)->cfs;
445 446
}

P
Peter Zijlstra 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

461 462 463 464 465 466 467 468
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
}

469 470
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
P
Peter Zijlstra 已提交
471 472 473 474 475 476

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

477 478 479 480 481
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
482 483
#endif	/* CONFIG_FAIR_GROUP_SCHED */

484
static __always_inline
485
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
486 487 488 489 490

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

491
static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
492
{
493
	s64 delta = (s64)(vruntime - max_vruntime);
494
	if (delta > 0)
495
		max_vruntime = vruntime;
496

497
	return max_vruntime;
498 499
}

500
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
501 502 503 504 505 506 507 508
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

509 510 511 512 513 514
static inline int entity_before(struct sched_entity *a,
				struct sched_entity *b)
{
	return (s64)(a->vruntime - b->vruntime) < 0;
}

515 516
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
517
	struct sched_entity *curr = cfs_rq->curr;
518
	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
519

520 521
	u64 vruntime = cfs_rq->min_vruntime;

522 523 524 525 526 527
	if (curr) {
		if (curr->on_rq)
			vruntime = curr->vruntime;
		else
			curr = NULL;
	}
528

529 530 531
	if (leftmost) { /* non-empty tree */
		struct sched_entity *se;
		se = rb_entry(leftmost, struct sched_entity, run_node);
532

533
		if (!curr)
534 535 536 537 538
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

539
	/* ensure we never gain time by being placed backwards. */
540
	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
541 542 543 544
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
545 546
}

547 548 549
/*
 * Enqueue an entity into the rb-tree:
 */
550
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
551
{
552
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
553 554
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
555
	bool leftmost = true;
556 557 558 559 560 561 562 563 564 565 566

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
567
		if (entity_before(se, entry)) {
568 569 570
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
571
			leftmost = false;
572 573 574 575
		}
	}

	rb_link_node(&se->run_node, parent, link);
576 577
	rb_insert_color_cached(&se->run_node,
			       &cfs_rq->tasks_timeline, leftmost);
578 579
}

580
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
581
{
582
	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
583 584
}

585
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
586
{
587
	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
588 589 590 591 592

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
593 594
}

595 596 597 598 599 600 601 602 603 604 605
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
{
	struct rb_node *next = rb_next(&se->run_node);

	if (!next)
		return NULL;

	return rb_entry(next, struct sched_entity, run_node);
}

#ifdef CONFIG_SCHED_DEBUG
606
struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
607
{
608
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
609

610 611
	if (!last)
		return NULL;
612 613

	return rb_entry(last, struct sched_entity, run_node);
614 615
}

616 617 618 619
/**************************************************************
 * Scheduling class statistics methods:
 */

620
int sched_proc_update_handler(struct ctl_table *table, int write,
621
		void __user *buffer, size_t *lenp,
622 623
		loff_t *ppos)
{
624
	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
625
	unsigned int factor = get_update_sysctl_factor();
626 627 628 629 630 631 632

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

633 634 635 636 637 638 639
#define WRT_SYSCTL(name) \
	(normalized_sysctl_##name = sysctl_##name / (factor))
	WRT_SYSCTL(sched_min_granularity);
	WRT_SYSCTL(sched_latency);
	WRT_SYSCTL(sched_wakeup_granularity);
#undef WRT_SYSCTL

640 641 642
	return 0;
}
#endif
643

644
/*
645
 * delta /= w
646
 */
647
static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
648
{
649
	if (unlikely(se->load.weight != NICE_0_LOAD))
650
		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
651 652 653 654

	return delta;
}

655 656 657
/*
 * The idea is to set a period in which each task runs once.
 *
658
 * When there are too many tasks (sched_nr_latency) we have to stretch
659 660 661 662
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
663 664
static u64 __sched_period(unsigned long nr_running)
{
665 666 667 668
	if (unlikely(nr_running > sched_nr_latency))
		return nr_running * sysctl_sched_min_granularity;
	else
		return sysctl_sched_latency;
669 670
}

671 672 673 674
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
675
 * s = p*P[w/rw]
676
 */
P
Peter Zijlstra 已提交
677
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
678
{
M
Mike Galbraith 已提交
679
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
680

M
Mike Galbraith 已提交
681
	for_each_sched_entity(se) {
L
Lin Ming 已提交
682
		struct load_weight *load;
683
		struct load_weight lw;
L
Lin Ming 已提交
684 685 686

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
687

M
Mike Galbraith 已提交
688
		if (unlikely(!se->on_rq)) {
689
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
690 691 692 693

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
694
		slice = __calc_delta(slice, se->load.weight, load);
M
Mike Galbraith 已提交
695 696
	}
	return slice;
697 698
}

699
/*
A
Andrei Epure 已提交
700
 * We calculate the vruntime slice of a to-be-inserted task.
701
 *
702
 * vs = s/w
703
 */
704
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
705
{
706
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
707 708
}

709
#ifdef CONFIG_SMP
710 711 712

#include "sched-pelt.h"

713
static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
714 715
static unsigned long task_h_load(struct task_struct *p);

716 717
/* Give new sched_entity start runnable values to heavy its load in infant time */
void init_entity_runnable_average(struct sched_entity *se)
718
{
719
	struct sched_avg *sa = &se->avg;
720

721 722
	memset(sa, 0, sizeof(*sa));

723 724 725 726 727 728 729
	/*
	 * Tasks are intialized with full load to be seen as heavy tasks until
	 * they get a chance to stabilize to their real load level.
	 * Group entities are intialized with zero load to reflect the fact that
	 * nothing has been attached to the task group yet.
	 */
	if (entity_is_task(se))
730 731
		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);

732 733
	se->runnable_weight = se->load.weight;

734
	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
735
}
736

737
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
738
static void attach_entity_cfs_rq(struct sched_entity *se);
739

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
/*
 * With new tasks being created, their initial util_avgs are extrapolated
 * based on the cfs_rq's current util_avg:
 *
 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 *
 * However, in many cases, the above util_avg does not give a desired
 * value. Moreover, the sum of the util_avgs may be divergent, such
 * as when the series is a harmonic series.
 *
 * To solve this problem, we also cap the util_avg of successive tasks to
 * only 1/2 of the left utilization budget:
 *
 *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
 *
 * where n denotes the nth task.
 *
 * For example, a simplest series from the beginning would be like:
 *
 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 *
 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 * if util_avg > util_avg_cap.
 */
void post_init_entity_util_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct sched_avg *sa = &se->avg;
769
	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
770 771 772 773 774 775 776 777 778 779 780 781

	if (cap > 0) {
		if (cfs_rq->avg.util_avg != 0) {
			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
			sa->util_avg /= (cfs_rq->avg.load_avg + 1);

			if (sa->util_avg > cap)
				sa->util_avg = cap;
		} else {
			sa->util_avg = cap;
		}
	}
782 783 784 785 786 787 788

	if (entity_is_task(se)) {
		struct task_struct *p = task_of(se);
		if (p->sched_class != &fair_sched_class) {
			/*
			 * For !fair tasks do:
			 *
789
			update_cfs_rq_load_avg(now, cfs_rq);
790 791 792 793 794 795
			attach_entity_load_avg(cfs_rq, se);
			switched_from_fair(rq, p);
			 *
			 * such that the next switched_to_fair() has the
			 * expected state.
			 */
796
			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
797 798 799 800
			return;
		}
	}

801
	attach_entity_cfs_rq(se);
802 803
}

804
#else /* !CONFIG_SMP */
805
void init_entity_runnable_average(struct sched_entity *se)
806 807
{
}
808 809 810
void post_init_entity_util_avg(struct sched_entity *se)
{
}
811 812 813
static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
}
814
#endif /* CONFIG_SMP */
815

816
/*
817
 * Update the current task's runtime statistics.
818
 */
819
static void update_curr(struct cfs_rq *cfs_rq)
820
{
821
	struct sched_entity *curr = cfs_rq->curr;
822
	u64 now = rq_clock_task(rq_of(cfs_rq));
823
	u64 delta_exec;
824 825 826 827

	if (unlikely(!curr))
		return;

828 829
	delta_exec = now - curr->exec_start;
	if (unlikely((s64)delta_exec <= 0))
P
Peter Zijlstra 已提交
830
		return;
831

I
Ingo Molnar 已提交
832
	curr->exec_start = now;
833

834 835 836 837
	schedstat_set(curr->statistics.exec_max,
		      max(delta_exec, curr->statistics.exec_max));

	curr->sum_exec_runtime += delta_exec;
838
	schedstat_add(cfs_rq->exec_clock, delta_exec);
839 840 841 842

	curr->vruntime += calc_delta_fair(delta_exec, curr);
	update_min_vruntime(cfs_rq);

843 844 845
	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

846
		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
847
		cgroup_account_cputime(curtask, delta_exec);
848
		account_group_exec_runtime(curtask, delta_exec);
849
	}
850 851

	account_cfs_rq_runtime(cfs_rq, delta_exec);
852 853
}

854 855 856 857 858
static void update_curr_fair(struct rq *rq)
{
	update_curr(cfs_rq_of(&rq->curr->se));
}

859
static inline void
860
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
861
{
862 863 864 865 866 867 868
	u64 wait_start, prev_wait_start;

	if (!schedstat_enabled())
		return;

	wait_start = rq_clock(rq_of(cfs_rq));
	prev_wait_start = schedstat_val(se->statistics.wait_start);
869 870

	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
871 872
	    likely(wait_start > prev_wait_start))
		wait_start -= prev_wait_start;
873

874
	schedstat_set(se->statistics.wait_start, wait_start);
875 876
}

877
static inline void
878 879 880
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *p;
881 882
	u64 delta;

883 884 885 886
	if (!schedstat_enabled())
		return;

	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
887 888 889 890 891 892 893 894 895

	if (entity_is_task(se)) {
		p = task_of(se);
		if (task_on_rq_migrating(p)) {
			/*
			 * Preserve migrating task's wait time so wait_start
			 * time stamp can be adjusted to accumulate wait time
			 * prior to migration.
			 */
896
			schedstat_set(se->statistics.wait_start, delta);
897 898 899 900 901
			return;
		}
		trace_sched_stat_wait(p, delta);
	}

902 903 904 905 906
	schedstat_set(se->statistics.wait_max,
		      max(schedstat_val(se->statistics.wait_max), delta));
	schedstat_inc(se->statistics.wait_count);
	schedstat_add(se->statistics.wait_sum, delta);
	schedstat_set(se->statistics.wait_start, 0);
907 908
}

909
static inline void
910 911 912
update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	struct task_struct *tsk = NULL;
913 914 915 916 917 918 919
	u64 sleep_start, block_start;

	if (!schedstat_enabled())
		return;

	sleep_start = schedstat_val(se->statistics.sleep_start);
	block_start = schedstat_val(se->statistics.block_start);
920 921 922 923

	if (entity_is_task(se))
		tsk = task_of(se);

924 925
	if (sleep_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
926 927 928 929

		if ((s64)delta < 0)
			delta = 0;

930 931
		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
			schedstat_set(se->statistics.sleep_max, delta);
932

933 934
		schedstat_set(se->statistics.sleep_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
935 936 937 938 939 940

		if (tsk) {
			account_scheduler_latency(tsk, delta >> 10, 1);
			trace_sched_stat_sleep(tsk, delta);
		}
	}
941 942
	if (block_start) {
		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
943 944 945 946

		if ((s64)delta < 0)
			delta = 0;

947 948
		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
			schedstat_set(se->statistics.block_max, delta);
949

950 951
		schedstat_set(se->statistics.block_start, 0);
		schedstat_add(se->statistics.sum_sleep_runtime, delta);
952 953 954

		if (tsk) {
			if (tsk->in_iowait) {
955 956
				schedstat_add(se->statistics.iowait_sum, delta);
				schedstat_inc(se->statistics.iowait_count);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
				trace_sched_stat_iowait(tsk, delta);
			}

			trace_sched_stat_blocked(tsk, delta);

			/*
			 * Blocking time is in units of nanosecs, so shift by
			 * 20 to get a milliseconds-range estimation of the
			 * amount of time that the task spent sleeping:
			 */
			if (unlikely(prof_on == SLEEP_PROFILING)) {
				profile_hits(SLEEP_PROFILING,
						(void *)get_wchan(tsk),
						delta >> 20);
			}
			account_scheduler_latency(tsk, delta >> 10, 0);
		}
	}
975 976
}

977 978 979
/*
 * Task is being enqueued - update stats:
 */
980
static inline void
981
update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
982
{
983 984 985
	if (!schedstat_enabled())
		return;

986 987 988 989
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
990
	if (se != cfs_rq->curr)
991
		update_stats_wait_start(cfs_rq, se);
992 993 994

	if (flags & ENQUEUE_WAKEUP)
		update_stats_enqueue_sleeper(cfs_rq, se);
995 996 997
}

static inline void
998
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
999
{
1000 1001 1002 1003

	if (!schedstat_enabled())
		return;

1004 1005 1006 1007
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
1008
	if (se != cfs_rq->curr)
1009
		update_stats_wait_end(cfs_rq, se);
1010

1011 1012
	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
		struct task_struct *tsk = task_of(se);
1013

1014 1015 1016 1017 1018 1019
		if (tsk->state & TASK_INTERRUPTIBLE)
			schedstat_set(se->statistics.sleep_start,
				      rq_clock(rq_of(cfs_rq)));
		if (tsk->state & TASK_UNINTERRUPTIBLE)
			schedstat_set(se->statistics.block_start,
				      rq_clock(rq_of(cfs_rq)));
1020 1021 1022
	}
}

1023 1024 1025 1026
/*
 * We are picking a new current task - update its stats:
 */
static inline void
1027
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1028 1029 1030 1031
{
	/*
	 * We are starting a new run period:
	 */
1032
	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1033 1034 1035 1036 1037 1038
}

/**************************************************
 * Scheduling class queueing methods:
 */

1039 1040
#ifdef CONFIG_NUMA_BALANCING
/*
1041 1042 1043
 * Approximate time to scan a full NUMA task in ms. The task scan period is
 * calculated based on the tasks virtual memory size and
 * numa_balancing_scan_size.
1044
 */
1045 1046
unsigned int sysctl_numa_balancing_scan_period_min = 1000;
unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1047 1048 1049

/* Portion of address space to scan in MB */
unsigned int sysctl_numa_balancing_scan_size = 256;
1050

1051 1052 1053
/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
unsigned int sysctl_numa_balancing_scan_delay = 1000;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
struct numa_group {
	atomic_t refcount;

	spinlock_t lock; /* nr_tasks, tasks */
	int nr_tasks;
	pid_t gid;
	int active_nodes;

	struct rcu_head rcu;
	unsigned long total_faults;
	unsigned long max_faults_cpu;
	/*
	 * Faults_cpu is used to decide whether memory should move
	 * towards the CPU. As a consequence, these stats are weighted
	 * more by CPU use than by memory faults.
	 */
	unsigned long *faults_cpu;
	unsigned long faults[0];
};

static inline unsigned long group_faults_priv(struct numa_group *ng);
static inline unsigned long group_faults_shared(struct numa_group *ng);

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static unsigned int task_nr_scan_windows(struct task_struct *p)
{
	unsigned long rss = 0;
	unsigned long nr_scan_pages;

	/*
	 * Calculations based on RSS as non-present and empty pages are skipped
	 * by the PTE scanner and NUMA hinting faults should be trapped based
	 * on resident pages
	 */
	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
	rss = get_mm_rss(p->mm);
	if (!rss)
		rss = nr_scan_pages;

	rss = round_up(rss, nr_scan_pages);
	return rss / nr_scan_pages;
}

/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
#define MAX_SCAN_WINDOW 2560

static unsigned int task_scan_min(struct task_struct *p)
{
1101
	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1102 1103 1104
	unsigned int scan, floor;
	unsigned int windows = 1;

1105 1106
	if (scan_size < MAX_SCAN_WINDOW)
		windows = MAX_SCAN_WINDOW / scan_size;
1107 1108 1109 1110 1111 1112
	floor = 1000 / windows;

	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
	return max_t(unsigned int, floor, scan);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
static unsigned int task_scan_start(struct task_struct *p)
{
	unsigned long smin = task_scan_min(p);
	unsigned long period = smin;

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;
	}

	return max(smin, period);
}

1132 1133
static unsigned int task_scan_max(struct task_struct *p)
{
1134 1135
	unsigned long smin = task_scan_min(p);
	unsigned long smax;
1136 1137 1138

	/* Watch for min being lower than max due to floor calculations */
	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	/* Scale the maximum scan period with the amount of shared memory. */
	if (p->numa_group) {
		struct numa_group *ng = p->numa_group;
		unsigned long shared = group_faults_shared(ng);
		unsigned long private = group_faults_priv(ng);
		unsigned long period = smax;

		period *= atomic_read(&ng->refcount);
		period *= shared + 1;
		period /= private + shared + 1;

		smax = max(smax, period);
	}

1154 1155 1156
	return max(smin, smax);
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running += (p->numa_preferred_nid != -1);
	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
}

static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
}

1169 1170 1171 1172 1173 1174 1175 1176 1177
/* Shared or private faults. */
#define NR_NUMA_HINT_FAULT_TYPES 2

/* Memory and CPU locality */
#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)

/* Averaged statistics, and temporary buffers. */
#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)

1178 1179 1180 1181 1182
pid_t task_numa_group_id(struct task_struct *p)
{
	return p->numa_group ? p->numa_group->gid : 0;
}

1183 1184 1185 1186 1187 1188 1189
/*
 * The averaged statistics, shared & private, memory & cpu,
 * occupy the first half of the array. The second half of the
 * array is for current counters, which are averaged into the
 * first set by task_numa_placement.
 */
static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1190
{
1191
	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1192 1193 1194 1195
}

static inline unsigned long task_faults(struct task_struct *p, int nid)
{
1196
	if (!p->numa_faults)
1197 1198
		return 0;

1199 1200
	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 1202
}

1203 1204 1205 1206 1207
static inline unsigned long group_faults(struct task_struct *p, int nid)
{
	if (!p->numa_group)
		return 0;

1208 1209
	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1210 1211
}

1212 1213
static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
{
1214 1215
	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1216 1217
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static inline unsigned long group_faults_priv(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
	}

	return faults;
}

static inline unsigned long group_faults_shared(struct numa_group *ng)
{
	unsigned long faults = 0;
	int node;

	for_each_online_node(node) {
		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
	}

	return faults;
}

1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * A node triggering more than 1/3 as many NUMA faults as the maximum is
 * considered part of a numa group's pseudo-interleaving set. Migrations
 * between these nodes are slowed down, to allow things to settle down.
 */
#define ACTIVE_NODE_FRACTION 3

static bool numa_is_active_node(int nid, struct numa_group *ng)
{
	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
/* Handle placement on systems where not all nodes are directly connected. */
static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
					int maxdist, bool task)
{
	unsigned long score = 0;
	int node;

	/*
	 * All nodes are directly connected, and the same distance
	 * from each other. No need for fancy placement algorithms.
	 */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return 0;

	/*
	 * This code is called for each node, introducing N^2 complexity,
	 * which should be ok given the number of nodes rarely exceeds 8.
	 */
	for_each_online_node(node) {
		unsigned long faults;
		int dist = node_distance(nid, node);

		/*
		 * The furthest away nodes in the system are not interesting
		 * for placement; nid was already counted.
		 */
		if (dist == sched_max_numa_distance || node == nid)
			continue;

		/*
		 * On systems with a backplane NUMA topology, compare groups
		 * of nodes, and move tasks towards the group with the most
		 * memory accesses. When comparing two nodes at distance
		 * "hoplimit", only nodes closer by than "hoplimit" are part
		 * of each group. Skip other nodes.
		 */
		if (sched_numa_topology_type == NUMA_BACKPLANE &&
					dist > maxdist)
			continue;

		/* Add up the faults from nearby nodes. */
		if (task)
			faults = task_faults(p, node);
		else
			faults = group_faults(p, node);

		/*
		 * On systems with a glueless mesh NUMA topology, there are
		 * no fixed "groups of nodes". Instead, nodes that are not
		 * directly connected bounce traffic through intermediate
		 * nodes; a numa_group can occupy any set of nodes.
		 * The further away a node is, the less the faults count.
		 * This seems to result in good task placement.
		 */
		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
			faults *= (sched_max_numa_distance - dist);
			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
		}

		score += faults;
	}

	return score;
}

1319 1320 1321 1322 1323 1324
/*
 * These return the fraction of accesses done by a particular task, or
 * task group, on a particular numa node.  The group weight is given a
 * larger multiplier, in order to group tasks together that are almost
 * evenly spread out between numa nodes.
 */
1325 1326
static inline unsigned long task_weight(struct task_struct *p, int nid,
					int dist)
1327
{
1328
	unsigned long faults, total_faults;
1329

1330
	if (!p->numa_faults)
1331 1332 1333 1334 1335 1336 1337
		return 0;

	total_faults = p->total_numa_faults;

	if (!total_faults)
		return 0;

1338
	faults = task_faults(p, nid);
1339 1340
	faults += score_nearby_nodes(p, nid, dist, true);

1341
	return 1000 * faults / total_faults;
1342 1343
}

1344 1345
static inline unsigned long group_weight(struct task_struct *p, int nid,
					 int dist)
1346
{
1347 1348 1349 1350 1351 1352 1353 1354
	unsigned long faults, total_faults;

	if (!p->numa_group)
		return 0;

	total_faults = p->numa_group->total_faults;

	if (!total_faults)
1355 1356
		return 0;

1357
	faults = group_faults(p, nid);
1358 1359
	faults += score_nearby_nodes(p, nid, dist, false);

1360
	return 1000 * faults / total_faults;
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
				int src_nid, int dst_cpu)
{
	struct numa_group *ng = p->numa_group;
	int dst_nid = cpu_to_node(dst_cpu);
	int last_cpupid, this_cpupid;

	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);

	/*
	 * Multi-stage node selection is used in conjunction with a periodic
	 * migration fault to build a temporal task<->page relation. By using
	 * a two-stage filter we remove short/unlikely relations.
	 *
	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
	 * a task's usage of a particular page (n_p) per total usage of this
	 * page (n_t) (in a given time-span) to a probability.
	 *
	 * Our periodic faults will sample this probability and getting the
	 * same result twice in a row, given these samples are fully
	 * independent, is then given by P(n)^2, provided our sample period
	 * is sufficiently short compared to the usage pattern.
	 *
	 * This quadric squishes small probabilities, making it less likely we
	 * act on an unlikely task<->page relation.
	 */
	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
	if (!cpupid_pid_unset(last_cpupid) &&
				cpupid_to_nid(last_cpupid) != dst_nid)
		return false;

	/* Always allow migrate on private faults */
	if (cpupid_match_pid(p, last_cpupid))
		return true;

	/* A shared fault, but p->numa_group has not been set up yet. */
	if (!ng)
		return true;

	/*
1403 1404
	 * Destination node is much more heavily used than the source
	 * node? Allow migration.
1405
	 */
1406 1407
	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
					ACTIVE_NODE_FRACTION)
1408 1409 1410
		return true;

	/*
1411 1412 1413 1414 1415 1416
	 * Distribute memory according to CPU & memory use on each node,
	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
	 *
	 * faults_cpu(dst)   3   faults_cpu(src)
	 * --------------- * - > ---------------
	 * faults_mem(dst)   4   faults_mem(src)
1417
	 */
1418 1419
	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1420 1421
}

1422
static unsigned long weighted_cpuload(struct rq *rq);
1423 1424
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
1425
static unsigned long capacity_of(int cpu);
1426

1427
/* Cached statistics for all CPUs within a node */
1428
struct numa_stats {
1429
	unsigned long nr_running;
1430
	unsigned long load;
1431 1432

	/* Total compute capacity of CPUs on a node */
1433
	unsigned long compute_capacity;
1434 1435

	/* Approximate capacity in terms of runnable tasks on a node */
1436
	unsigned long task_capacity;
1437
	int has_free_capacity;
1438
};
1439

1440 1441 1442 1443 1444
/*
 * XXX borrowed from update_sg_lb_stats
 */
static void update_numa_stats(struct numa_stats *ns, int nid)
{
1445 1446
	int smt, cpu, cpus = 0;
	unsigned long capacity;
1447 1448 1449 1450 1451 1452

	memset(ns, 0, sizeof(*ns));
	for_each_cpu(cpu, cpumask_of_node(nid)) {
		struct rq *rq = cpu_rq(cpu);

		ns->nr_running += rq->nr_running;
1453
		ns->load += weighted_cpuload(rq);
1454
		ns->compute_capacity += capacity_of(cpu);
1455 1456

		cpus++;
1457 1458
	}

1459 1460 1461 1462 1463
	/*
	 * If we raced with hotplug and there are no CPUs left in our mask
	 * the @ns structure is NULL'ed and task_numa_compare() will
	 * not find this node attractive.
	 *
1464 1465
	 * We'll either bail at !has_free_capacity, or we'll detect a huge
	 * imbalance and bail there.
1466 1467 1468 1469
	 */
	if (!cpus)
		return;

1470 1471 1472 1473 1474 1475
	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
	capacity = cpus / smt; /* cores */

	ns->task_capacity = min_t(unsigned, capacity,
		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1476
	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1477 1478
}

1479 1480
struct task_numa_env {
	struct task_struct *p;
1481

1482 1483
	int src_cpu, src_nid;
	int dst_cpu, dst_nid;
1484

1485
	struct numa_stats src_stats, dst_stats;
1486

1487
	int imbalance_pct;
1488
	int dist;
1489 1490 1491

	struct task_struct *best_task;
	long best_imp;
1492 1493 1494
	int best_cpu;
};

1495 1496 1497 1498 1499
static void task_numa_assign(struct task_numa_env *env,
			     struct task_struct *p, long imp)
{
	if (env->best_task)
		put_task_struct(env->best_task);
1500 1501
	if (p)
		get_task_struct(p);
1502 1503 1504 1505 1506 1507

	env->best_task = p;
	env->best_imp = imp;
	env->best_cpu = env->dst_cpu;
}

1508
static bool load_too_imbalanced(long src_load, long dst_load,
1509 1510
				struct task_numa_env *env)
{
1511 1512
	long imb, old_imb;
	long orig_src_load, orig_dst_load;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
	long src_capacity, dst_capacity;

	/*
	 * The load is corrected for the CPU capacity available on each node.
	 *
	 * src_load        dst_load
	 * ------------ vs ---------
	 * src_capacity    dst_capacity
	 */
	src_capacity = env->src_stats.compute_capacity;
	dst_capacity = env->dst_stats.compute_capacity;
1524 1525

	/* We care about the slope of the imbalance, not the direction. */
1526 1527
	if (dst_load < src_load)
		swap(dst_load, src_load);
1528 1529

	/* Is the difference below the threshold? */
1530 1531
	imb = dst_load * src_capacity * 100 -
	      src_load * dst_capacity * env->imbalance_pct;
1532 1533 1534 1535 1536
	if (imb <= 0)
		return false;

	/*
	 * The imbalance is above the allowed threshold.
1537
	 * Compare it with the old imbalance.
1538
	 */
1539
	orig_src_load = env->src_stats.load;
1540
	orig_dst_load = env->dst_stats.load;
1541

1542 1543
	if (orig_dst_load < orig_src_load)
		swap(orig_dst_load, orig_src_load);
1544

1545 1546 1547 1548 1549
	old_imb = orig_dst_load * src_capacity * 100 -
		  orig_src_load * dst_capacity * env->imbalance_pct;

	/* Would this change make things worse? */
	return (imb > old_imb);
1550 1551
}

1552 1553 1554 1555 1556 1557
/*
 * This checks if the overall compute and NUMA accesses of the system would
 * be improved if the source tasks was migrated to the target dst_cpu taking
 * into account that it might be best if task running on the dst_cpu should
 * be exchanged with the source task
 */
1558 1559
static void task_numa_compare(struct task_numa_env *env,
			      long taskimp, long groupimp)
1560 1561 1562 1563
{
	struct rq *src_rq = cpu_rq(env->src_cpu);
	struct rq *dst_rq = cpu_rq(env->dst_cpu);
	struct task_struct *cur;
1564
	long src_load, dst_load;
1565
	long load;
1566
	long imp = env->p->numa_group ? groupimp : taskimp;
1567
	long moveimp = imp;
1568
	int dist = env->dist;
1569 1570

	rcu_read_lock();
1571 1572
	cur = task_rcu_dereference(&dst_rq->curr);
	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1573 1574
		cur = NULL;

1575 1576 1577 1578 1579 1580 1581
	/*
	 * Because we have preemption enabled we can get migrated around and
	 * end try selecting ourselves (current == env->p) as a swap candidate.
	 */
	if (cur == env->p)
		goto unlock;

1582 1583 1584 1585 1586 1587 1588 1589 1590
	/*
	 * "imp" is the fault differential for the source task between the
	 * source and destination node. Calculate the total differential for
	 * the source task and potential destination task. The more negative
	 * the value is, the more rmeote accesses that would be expected to
	 * be incurred if the tasks were swapped.
	 */
	if (cur) {
		/* Skip this swap candidate if cannot move to the source cpu */
1591
		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1592 1593
			goto unlock;

1594 1595
		/*
		 * If dst and source tasks are in the same NUMA group, or not
1596
		 * in any group then look only at task weights.
1597
		 */
1598
		if (cur->numa_group == env->p->numa_group) {
1599 1600
			imp = taskimp + task_weight(cur, env->src_nid, dist) -
			      task_weight(cur, env->dst_nid, dist);
1601 1602 1603 1604 1605 1606
			/*
			 * Add some hysteresis to prevent swapping the
			 * tasks within a group over tiny differences.
			 */
			if (cur->numa_group)
				imp -= imp/16;
1607
		} else {
1608 1609 1610 1611 1612 1613
			/*
			 * Compare the group weights. If a task is all by
			 * itself (not part of a group), use the task weight
			 * instead.
			 */
			if (cur->numa_group)
1614 1615
				imp += group_weight(cur, env->src_nid, dist) -
				       group_weight(cur, env->dst_nid, dist);
1616
			else
1617 1618
				imp += task_weight(cur, env->src_nid, dist) -
				       task_weight(cur, env->dst_nid, dist);
1619
		}
1620 1621
	}

1622
	if (imp <= env->best_imp && moveimp <= env->best_imp)
1623 1624 1625 1626
		goto unlock;

	if (!cur) {
		/* Is there capacity at our destination? */
1627
		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1628
		    !env->dst_stats.has_free_capacity)
1629 1630 1631 1632 1633 1634
			goto unlock;

		goto balance;
	}

	/* Balance doesn't matter much if we're running a task per cpu */
1635 1636
	if (imp > env->best_imp && src_rq->nr_running == 1 &&
			dst_rq->nr_running == 1)
1637 1638 1639 1640 1641 1642
		goto assign;

	/*
	 * In the overloaded case, try and keep the load balanced.
	 */
balance:
1643 1644 1645
	load = task_h_load(env->p);
	dst_load = env->dst_stats.load + load;
	src_load = env->src_stats.load - load;
1646

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	if (moveimp > imp && moveimp > env->best_imp) {
		/*
		 * If the improvement from just moving env->p direction is
		 * better than swapping tasks around, check if a move is
		 * possible. Store a slightly smaller score than moveimp,
		 * so an actually idle CPU will win.
		 */
		if (!load_too_imbalanced(src_load, dst_load, env)) {
			imp = moveimp - 1;
			cur = NULL;
			goto assign;
		}
	}

	if (imp <= env->best_imp)
		goto unlock;

1664
	if (cur) {
1665 1666 1667
		load = task_h_load(cur);
		dst_load -= load;
		src_load += load;
1668 1669
	}

1670
	if (load_too_imbalanced(src_load, dst_load, env))
1671 1672
		goto unlock;

1673 1674 1675 1676
	/*
	 * One idle CPU per node is evaluated for a task numa move.
	 * Call select_idle_sibling to maybe find a better one.
	 */
1677 1678 1679 1680 1681 1682
	if (!cur) {
		/*
		 * select_idle_siblings() uses an per-cpu cpumask that
		 * can be used from IRQ context.
		 */
		local_irq_disable();
1683 1684
		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
						   env->dst_cpu);
1685 1686
		local_irq_enable();
	}
1687

1688 1689 1690 1691 1692 1693
assign:
	task_numa_assign(env, cur, imp);
unlock:
	rcu_read_unlock();
}

1694 1695
static void task_numa_find_cpu(struct task_numa_env *env,
				long taskimp, long groupimp)
1696 1697 1698 1699 1700
{
	int cpu;

	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
		/* Skip this CPU if the source task cannot migrate */
1701
		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1702 1703 1704
			continue;

		env->dst_cpu = cpu;
1705
		task_numa_compare(env, taskimp, groupimp);
1706 1707 1708
	}
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
/* Only move tasks to a NUMA node less busy than the current node. */
static bool numa_has_capacity(struct task_numa_env *env)
{
	struct numa_stats *src = &env->src_stats;
	struct numa_stats *dst = &env->dst_stats;

	if (src->has_free_capacity && !dst->has_free_capacity)
		return false;

	/*
	 * Only consider a task move if the source has a higher load
	 * than the destination, corrected for CPU capacity on each node.
	 *
	 *      src->load                dst->load
	 * --------------------- vs ---------------------
	 * src->compute_capacity    dst->compute_capacity
	 */
1726 1727 1728
	if (src->load * dst->compute_capacity * env->imbalance_pct >

	    dst->load * src->compute_capacity * 100)
1729 1730 1731 1732 1733
		return true;

	return false;
}

1734 1735 1736 1737
static int task_numa_migrate(struct task_struct *p)
{
	struct task_numa_env env = {
		.p = p,
1738

1739
		.src_cpu = task_cpu(p),
I
Ingo Molnar 已提交
1740
		.src_nid = task_node(p),
1741 1742 1743 1744 1745

		.imbalance_pct = 112,

		.best_task = NULL,
		.best_imp = 0,
1746
		.best_cpu = -1,
1747 1748
	};
	struct sched_domain *sd;
1749
	unsigned long taskweight, groupweight;
1750
	int nid, ret, dist;
1751
	long taskimp, groupimp;
1752

1753
	/*
1754 1755 1756 1757 1758 1759
	 * Pick the lowest SD_NUMA domain, as that would have the smallest
	 * imbalance and would be the first to start moving tasks about.
	 *
	 * And we want to avoid any moving of tasks about, as that would create
	 * random movement of tasks -- counter the numa conditions we're trying
	 * to satisfy here.
1760 1761
	 */
	rcu_read_lock();
1762
	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1763 1764
	if (sd)
		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1765 1766
	rcu_read_unlock();

1767 1768 1769 1770 1771 1772 1773
	/*
	 * Cpusets can break the scheduler domain tree into smaller
	 * balance domains, some of which do not cross NUMA boundaries.
	 * Tasks that are "trapped" in such domains cannot be migrated
	 * elsewhere, so there is no point in (re)trying.
	 */
	if (unlikely(!sd)) {
1774
		p->numa_preferred_nid = task_node(p);
1775 1776 1777
		return -EINVAL;
	}

1778
	env.dst_nid = p->numa_preferred_nid;
1779 1780 1781 1782 1783 1784
	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
	taskweight = task_weight(p, env.src_nid, dist);
	groupweight = group_weight(p, env.src_nid, dist);
	update_numa_stats(&env.src_stats, env.src_nid);
	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1785
	update_numa_stats(&env.dst_stats, env.dst_nid);
1786

1787
	/* Try to find a spot on the preferred nid. */
1788 1789
	if (numa_has_capacity(&env))
		task_numa_find_cpu(&env, taskimp, groupimp);
1790

1791 1792 1793 1794 1795 1796 1797
	/*
	 * Look at other nodes in these cases:
	 * - there is no space available on the preferred_nid
	 * - the task is part of a numa_group that is interleaved across
	 *   multiple NUMA nodes; in order to better consolidate the group,
	 *   we need to check other locations.
	 */
1798
	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1799 1800 1801
		for_each_online_node(nid) {
			if (nid == env.src_nid || nid == p->numa_preferred_nid)
				continue;
1802

1803
			dist = node_distance(env.src_nid, env.dst_nid);
1804 1805 1806 1807 1808
			if (sched_numa_topology_type == NUMA_BACKPLANE &&
						dist != env.dist) {
				taskweight = task_weight(p, env.src_nid, dist);
				groupweight = group_weight(p, env.src_nid, dist);
			}
1809

1810
			/* Only consider nodes where both task and groups benefit */
1811 1812
			taskimp = task_weight(p, nid, dist) - taskweight;
			groupimp = group_weight(p, nid, dist) - groupweight;
1813
			if (taskimp < 0 && groupimp < 0)
1814 1815
				continue;

1816
			env.dist = dist;
1817 1818
			env.dst_nid = nid;
			update_numa_stats(&env.dst_stats, env.dst_nid);
1819 1820
			if (numa_has_capacity(&env))
				task_numa_find_cpu(&env, taskimp, groupimp);
1821 1822 1823
		}
	}

1824 1825 1826 1827 1828 1829 1830 1831
	/*
	 * If the task is part of a workload that spans multiple NUMA nodes,
	 * and is migrating into one of the workload's active nodes, remember
	 * this node as the task's preferred numa node, so the workload can
	 * settle down.
	 * A task that migrated to a second choice node will be better off
	 * trying for a better one later. Do not set the preferred node here.
	 */
1832
	if (p->numa_group) {
1833 1834
		struct numa_group *ng = p->numa_group;

1835 1836 1837 1838 1839
		if (env.best_cpu == -1)
			nid = env.src_nid;
		else
			nid = env.dst_nid;

1840
		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1841 1842 1843 1844 1845 1846
			sched_setnuma(p, env.dst_nid);
	}

	/* No better CPU than the current one was found. */
	if (env.best_cpu == -1)
		return -EAGAIN;
1847

1848 1849 1850 1851
	/*
	 * Reset the scan period if the task is being rescheduled on an
	 * alternative node to recheck if the tasks is now properly placed.
	 */
1852
	p->numa_scan_period = task_scan_start(p);
1853

1854
	if (env.best_task == NULL) {
1855 1856 1857
		ret = migrate_task_to(p, env.best_cpu);
		if (ret != 0)
			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1858 1859 1860 1861
		return ret;
	}

	ret = migrate_swap(p, env.best_task);
1862 1863
	if (ret != 0)
		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864 1865
	put_task_struct(env.best_task);
	return ret;
1866 1867
}

1868 1869 1870
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
1871 1872
	unsigned long interval = HZ;

1873
	/* This task has no NUMA fault statistics yet */
1874
	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875 1876
		return;

1877
	/* Periodically retry migrating the task to the preferred node */
1878 1879
	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
	p->numa_migrate_retry = jiffies + interval;
1880 1881

	/* Success if task is already running on preferred CPU */
1882
	if (task_node(p) == p->numa_preferred_nid)
1883 1884 1885
		return;

	/* Otherwise, try migrate to a CPU on the preferred node */
1886
	task_numa_migrate(p);
1887 1888
}

1889
/*
1890
 * Find out how many nodes on the workload is actively running on. Do this by
1891 1892 1893 1894
 * tracking the nodes from which NUMA hinting faults are triggered. This can
 * be different from the set of nodes where the workload's memory is currently
 * located.
 */
1895
static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896 1897
{
	unsigned long faults, max_faults = 0;
1898
	int nid, active_nodes = 0;
1899 1900 1901 1902 1903 1904 1905 1906 1907

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
		if (faults > max_faults)
			max_faults = faults;
	}

	for_each_online_node(nid) {
		faults = group_faults_cpu(numa_group, nid);
1908 1909
		if (faults * ACTIVE_NODE_FRACTION > max_faults)
			active_nodes++;
1910
	}
1911 1912 1913

	numa_group->max_faults_cpu = max_faults;
	numa_group->active_nodes = active_nodes;
1914 1915
}

1916 1917 1918
/*
 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
 * increments. The more local the fault statistics are, the higher the scan
1919 1920 1921
 * period will be for the next scan window. If local/(local+remote) ratio is
 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
 * the scan period will decrease. Aim for 70% local accesses.
1922 1923
 */
#define NUMA_PERIOD_SLOTS 10
1924
#define NUMA_PERIOD_THRESHOLD 7
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

/*
 * Increase the scan period (slow down scanning) if the majority of
 * our memory is already on our local node, or if the majority of
 * the page accesses are shared with other processes.
 * Otherwise, decrease the scan period.
 */
static void update_task_scan_period(struct task_struct *p,
			unsigned long shared, unsigned long private)
{
	unsigned int period_slot;
1936
	int lr_ratio, ps_ratio;
1937 1938 1939 1940 1941 1942 1943 1944
	int diff;

	unsigned long remote = p->numa_faults_locality[0];
	unsigned long local = p->numa_faults_locality[1];

	/*
	 * If there were no record hinting faults then either the task is
	 * completely idle or all activity is areas that are not of interest
1945 1946 1947
	 * to automatic numa balancing. Related to that, if there were failed
	 * migration then it implies we are migrating too quickly or the local
	 * node is overloaded. In either case, scan slower
1948
	 */
1949
	if (local + shared == 0 || p->numa_faults_locality[2]) {
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
		p->numa_scan_period = min(p->numa_scan_period_max,
			p->numa_scan_period << 1);

		p->mm->numa_next_scan = jiffies +
			msecs_to_jiffies(p->numa_scan_period);

		return;
	}

	/*
	 * Prepare to scale scan period relative to the current period.
	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
	 */
	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);

	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are local. There is no need to
		 * do fast NUMA scanning, since memory is already local.
		 */
		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
		/*
		 * Most memory accesses are shared with other tasks.
		 * There is no point in continuing fast NUMA scanning,
		 * since other tasks may just move the memory elsewhere.
		 */
		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985 1986 1987 1988 1989
		if (!slot)
			slot = 1;
		diff = slot * period_slot;
	} else {
		/*
1990 1991 1992
		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
		 * yet they are not on the local NUMA node. Speed up
		 * NUMA scanning to get the memory moved over.
1993
		 */
1994 1995
		int ratio = max(lr_ratio, ps_ratio);
		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996 1997 1998 1999 2000 2001 2002
	}

	p->numa_scan_period = clamp(p->numa_scan_period + diff,
			task_scan_min(p), task_scan_max(p));
	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
/*
 * Get the fraction of time the task has been running since the last
 * NUMA placement cycle. The scheduler keeps similar statistics, but
 * decays those on a 32ms period, which is orders of magnitude off
 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
 * stats only if the task is so new there are no NUMA statistics yet.
 */
static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
{
	u64 runtime, delta, now;
	/* Use the start of this time slice to avoid calculations. */
	now = p->se.exec_start;
	runtime = p->se.sum_exec_runtime;

	if (p->last_task_numa_placement) {
		delta = runtime - p->last_sum_exec_runtime;
		*period = now - p->last_task_numa_placement;
	} else {
2021
		delta = p->se.avg.load_sum;
2022
		*period = LOAD_AVG_MAX;
2023 2024 2025 2026 2027 2028 2029 2030
	}

	p->last_sum_exec_runtime = runtime;
	p->last_task_numa_placement = now;

	return delta;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
/*
 * Determine the preferred nid for a task in a numa_group. This needs to
 * be done in a way that produces consistent results with group_weight,
 * otherwise workloads might not converge.
 */
static int preferred_group_nid(struct task_struct *p, int nid)
{
	nodemask_t nodes;
	int dist;

	/* Direct connections between all NUMA nodes. */
	if (sched_numa_topology_type == NUMA_DIRECT)
		return nid;

	/*
	 * On a system with glueless mesh NUMA topology, group_weight
	 * scores nodes according to the number of NUMA hinting faults on
	 * both the node itself, and on nearby nodes.
	 */
	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
		unsigned long score, max_score = 0;
		int node, max_node = nid;

		dist = sched_max_numa_distance;

		for_each_online_node(node) {
			score = group_weight(p, node, dist);
			if (score > max_score) {
				max_score = score;
				max_node = node;
			}
		}
		return max_node;
	}

	/*
	 * Finding the preferred nid in a system with NUMA backplane
	 * interconnect topology is more involved. The goal is to locate
	 * tasks from numa_groups near each other in the system, and
	 * untangle workloads from different sides of the system. This requires
	 * searching down the hierarchy of node groups, recursively searching
	 * inside the highest scoring group of nodes. The nodemask tricks
	 * keep the complexity of the search down.
	 */
	nodes = node_online_map;
	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
		unsigned long max_faults = 0;
2078
		nodemask_t max_group = NODE_MASK_NONE;
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		int a, b;

		/* Are there nodes at this distance from each other? */
		if (!find_numa_distance(dist))
			continue;

		for_each_node_mask(a, nodes) {
			unsigned long faults = 0;
			nodemask_t this_group;
			nodes_clear(this_group);

			/* Sum group's NUMA faults; includes a==b case. */
			for_each_node_mask(b, nodes) {
				if (node_distance(a, b) < dist) {
					faults += group_faults(p, b);
					node_set(b, this_group);
					node_clear(b, nodes);
				}
			}

			/* Remember the top group. */
			if (faults > max_faults) {
				max_faults = faults;
				max_group = this_group;
				/*
				 * subtle: at the smallest distance there is
				 * just one node left in each "group", the
				 * winner is the preferred nid.
				 */
				nid = a;
			}
		}
		/* Next round, evaluate the nodes within max_group. */
2112 2113
		if (!max_faults)
			break;
2114 2115 2116 2117 2118
		nodes = max_group;
	}
	return nid;
}

2119 2120
static void task_numa_placement(struct task_struct *p)
{
2121 2122
	int seq, nid, max_nid = -1, max_group_nid = -1;
	unsigned long max_faults = 0, max_group_faults = 0;
2123
	unsigned long fault_types[2] = { 0, 0 };
2124 2125
	unsigned long total_faults;
	u64 runtime, period;
2126
	spinlock_t *group_lock = NULL;
2127

2128 2129 2130 2131 2132
	/*
	 * The p->mm->numa_scan_seq field gets updated without
	 * exclusive access. Use READ_ONCE() here to ensure
	 * that the field is read in a single access:
	 */
2133
	seq = READ_ONCE(p->mm->numa_scan_seq);
2134 2135 2136
	if (p->numa_scan_seq == seq)
		return;
	p->numa_scan_seq = seq;
2137
	p->numa_scan_period_max = task_scan_max(p);
2138

2139 2140 2141 2142
	total_faults = p->numa_faults_locality[0] +
		       p->numa_faults_locality[1];
	runtime = numa_get_avg_runtime(p, &period);

2143 2144 2145
	/* If the task is part of a group prevent parallel updates to group stats */
	if (p->numa_group) {
		group_lock = &p->numa_group->lock;
2146
		spin_lock_irq(group_lock);
2147 2148
	}

2149 2150
	/* Find the node with the highest number of faults */
	for_each_online_node(nid) {
2151 2152
		/* Keep track of the offsets in numa_faults array */
		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153
		unsigned long faults = 0, group_faults = 0;
2154
		int priv;
2155

2156
		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157
			long diff, f_diff, f_weight;
2158

2159 2160 2161 2162
			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163

2164
			/* Decay existing window, copy faults since last scan */
2165 2166 2167
			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
			fault_types[priv] += p->numa_faults[membuf_idx];
			p->numa_faults[membuf_idx] = 0;
2168

2169 2170 2171 2172 2173 2174 2175 2176
			/*
			 * Normalize the faults_from, so all tasks in a group
			 * count according to CPU use, instead of by the raw
			 * number of faults. Tasks with little runtime have
			 * little over-all impact on throughput, and thus their
			 * faults are less important.
			 */
			f_weight = div64_u64(runtime << 16, period + 1);
2177
			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178
				   (total_faults + 1);
2179 2180
			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
			p->numa_faults[cpubuf_idx] = 0;
2181

2182 2183 2184
			p->numa_faults[mem_idx] += diff;
			p->numa_faults[cpu_idx] += f_diff;
			faults += p->numa_faults[mem_idx];
2185
			p->total_numa_faults += diff;
2186
			if (p->numa_group) {
2187 2188 2189 2190 2191 2192 2193 2194 2195
				/*
				 * safe because we can only change our own group
				 *
				 * mem_idx represents the offset for a given
				 * nid and priv in a specific region because it
				 * is at the beginning of the numa_faults array.
				 */
				p->numa_group->faults[mem_idx] += diff;
				p->numa_group->faults_cpu[mem_idx] += f_diff;
2196
				p->numa_group->total_faults += diff;
2197
				group_faults += p->numa_group->faults[mem_idx];
2198
			}
2199 2200
		}

2201 2202 2203 2204
		if (faults > max_faults) {
			max_faults = faults;
			max_nid = nid;
		}
2205 2206 2207 2208 2209 2210 2211

		if (group_faults > max_group_faults) {
			max_group_faults = group_faults;
			max_group_nid = nid;
		}
	}

2212 2213
	update_task_scan_period(p, fault_types[0], fault_types[1]);

2214
	if (p->numa_group) {
2215
		numa_group_count_active_nodes(p->numa_group);
2216
		spin_unlock_irq(group_lock);
2217
		max_nid = preferred_group_nid(p, max_group_nid);
2218 2219
	}

2220 2221 2222 2223 2224 2225 2226
	if (max_faults) {
		/* Set the new preferred node */
		if (max_nid != p->numa_preferred_nid)
			sched_setnuma(p, max_nid);

		if (task_node(p) != p->numa_preferred_nid)
			numa_migrate_preferred(p);
2227
	}
2228 2229
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static inline int get_numa_group(struct numa_group *grp)
{
	return atomic_inc_not_zero(&grp->refcount);
}

static inline void put_numa_group(struct numa_group *grp)
{
	if (atomic_dec_and_test(&grp->refcount))
		kfree_rcu(grp, rcu);
}

2241 2242
static void task_numa_group(struct task_struct *p, int cpupid, int flags,
			int *priv)
2243 2244 2245 2246 2247 2248 2249 2250 2251
{
	struct numa_group *grp, *my_grp;
	struct task_struct *tsk;
	bool join = false;
	int cpu = cpupid_to_cpu(cpupid);
	int i;

	if (unlikely(!p->numa_group)) {
		unsigned int size = sizeof(struct numa_group) +
2252
				    4*nr_node_ids*sizeof(unsigned long);
2253 2254 2255 2256 2257 2258

		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
		if (!grp)
			return;

		atomic_set(&grp->refcount, 1);
2259 2260
		grp->active_nodes = 1;
		grp->max_faults_cpu = 0;
2261
		spin_lock_init(&grp->lock);
2262
		grp->gid = p->pid;
2263
		/* Second half of the array tracks nids where faults happen */
2264 2265
		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
						nr_node_ids;
2266

2267
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2268
			grp->faults[i] = p->numa_faults[i];
2269

2270
		grp->total_faults = p->total_numa_faults;
2271

2272 2273 2274 2275 2276
		grp->nr_tasks++;
		rcu_assign_pointer(p->numa_group, grp);
	}

	rcu_read_lock();
2277
	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2278 2279

	if (!cpupid_match_pid(tsk, cpupid))
2280
		goto no_join;
2281 2282 2283

	grp = rcu_dereference(tsk->numa_group);
	if (!grp)
2284
		goto no_join;
2285 2286 2287

	my_grp = p->numa_group;
	if (grp == my_grp)
2288
		goto no_join;
2289 2290 2291 2292 2293 2294

	/*
	 * Only join the other group if its bigger; if we're the bigger group,
	 * the other task will join us.
	 */
	if (my_grp->nr_tasks > grp->nr_tasks)
2295
		goto no_join;
2296 2297 2298 2299 2300

	/*
	 * Tie-break on the grp address.
	 */
	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2301
		goto no_join;
2302

2303 2304 2305 2306 2307 2308 2309
	/* Always join threads in the same process. */
	if (tsk->mm == current->mm)
		join = true;

	/* Simple filter to avoid false positives due to PID collisions */
	if (flags & TNF_SHARED)
		join = true;
2310

2311 2312 2313
	/* Update priv based on whether false sharing was detected */
	*priv = !join;

2314
	if (join && !get_numa_group(grp))
2315
		goto no_join;
2316 2317 2318 2319 2320 2321

	rcu_read_unlock();

	if (!join)
		return;

2322 2323
	BUG_ON(irqs_disabled());
	double_lock_irq(&my_grp->lock, &grp->lock);
2324

2325
	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2326 2327
		my_grp->faults[i] -= p->numa_faults[i];
		grp->faults[i] += p->numa_faults[i];
2328
	}
2329 2330
	my_grp->total_faults -= p->total_numa_faults;
	grp->total_faults += p->total_numa_faults;
2331 2332 2333 2334 2335

	my_grp->nr_tasks--;
	grp->nr_tasks++;

	spin_unlock(&my_grp->lock);
2336
	spin_unlock_irq(&grp->lock);
2337 2338 2339 2340

	rcu_assign_pointer(p->numa_group, grp);

	put_numa_group(my_grp);
2341 2342 2343 2344 2345
	return;

no_join:
	rcu_read_unlock();
	return;
2346 2347 2348 2349 2350
}

void task_numa_free(struct task_struct *p)
{
	struct numa_group *grp = p->numa_group;
2351
	void *numa_faults = p->numa_faults;
2352 2353
	unsigned long flags;
	int i;
2354 2355

	if (grp) {
2356
		spin_lock_irqsave(&grp->lock, flags);
2357
		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2358
			grp->faults[i] -= p->numa_faults[i];
2359
		grp->total_faults -= p->total_numa_faults;
2360

2361
		grp->nr_tasks--;
2362
		spin_unlock_irqrestore(&grp->lock, flags);
2363
		RCU_INIT_POINTER(p->numa_group, NULL);
2364 2365 2366
		put_numa_group(grp);
	}

2367
	p->numa_faults = NULL;
2368
	kfree(numa_faults);
2369 2370
}

2371 2372 2373
/*
 * Got a PROT_NONE fault for a page on @node.
 */
2374
void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2375 2376
{
	struct task_struct *p = current;
2377
	bool migrated = flags & TNF_MIGRATED;
2378
	int cpu_node = task_node(current);
2379
	int local = !!(flags & TNF_FAULT_LOCAL);
2380
	struct numa_group *ng;
2381
	int priv;
2382

2383
	if (!static_branch_likely(&sched_numa_balancing))
2384 2385
		return;

2386 2387 2388 2389
	/* for example, ksmd faulting in a user's mm */
	if (!p->mm)
		return;

2390
	/* Allocate buffer to track faults on a per-node basis */
2391 2392
	if (unlikely(!p->numa_faults)) {
		int size = sizeof(*p->numa_faults) *
2393
			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2394

2395 2396
		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
		if (!p->numa_faults)
2397
			return;
2398

2399
		p->total_numa_faults = 0;
2400
		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2401
	}
2402

2403 2404 2405 2406 2407 2408 2409 2410
	/*
	 * First accesses are treated as private, otherwise consider accesses
	 * to be private if the accessing pid has not changed
	 */
	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
		priv = 1;
	} else {
		priv = cpupid_match_pid(p, last_cpupid);
2411
		if (!priv && !(flags & TNF_NO_GROUP))
2412
			task_numa_group(p, last_cpupid, flags, &priv);
2413 2414
	}

2415 2416 2417 2418 2419 2420
	/*
	 * If a workload spans multiple NUMA nodes, a shared fault that
	 * occurs wholly within the set of nodes that the workload is
	 * actively using should be counted as local. This allows the
	 * scan rate to slow down when a workload has settled down.
	 */
2421 2422 2423 2424
	ng = p->numa_group;
	if (!priv && !local && ng && ng->active_nodes > 1 &&
				numa_is_active_node(cpu_node, ng) &&
				numa_is_active_node(mem_node, ng))
2425 2426
		local = 1;

2427
	task_numa_placement(p);
2428

2429 2430 2431 2432 2433
	/*
	 * Retry task to preferred node migration periodically, in case it
	 * case it previously failed, or the scheduler moved us.
	 */
	if (time_after(jiffies, p->numa_migrate_retry))
2434 2435
		numa_migrate_preferred(p);

I
Ingo Molnar 已提交
2436 2437
	if (migrated)
		p->numa_pages_migrated += pages;
2438 2439
	if (flags & TNF_MIGRATE_FAIL)
		p->numa_faults_locality[2] += pages;
I
Ingo Molnar 已提交
2440

2441 2442
	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2443
	p->numa_faults_locality[local] += pages;
2444 2445
}

2446 2447
static void reset_ptenuma_scan(struct task_struct *p)
{
2448 2449 2450 2451 2452 2453 2454 2455
	/*
	 * We only did a read acquisition of the mmap sem, so
	 * p->mm->numa_scan_seq is written to without exclusive access
	 * and the update is not guaranteed to be atomic. That's not
	 * much of an issue though, since this is just used for
	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
	 * expensive, to avoid any form of compiler optimizations:
	 */
2456
	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2457 2458 2459
	p->mm->numa_scan_offset = 0;
}

2460 2461 2462 2463 2464 2465 2466 2467 2468
/*
 * The expensive part of numa migration is done from task_work context.
 * Triggered from task_tick_numa().
 */
void task_numa_work(struct callback_head *work)
{
	unsigned long migrate, next_scan, now = jiffies;
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
2469
	u64 runtime = p->se.sum_exec_runtime;
2470
	struct vm_area_struct *vma;
2471
	unsigned long start, end;
2472
	unsigned long nr_pte_updates = 0;
2473
	long pages, virtpages;
2474

2475
	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	work->next = work; /* protect against double add */
	/*
	 * Who cares about NUMA placement when they're dying.
	 *
	 * NOTE: make sure not to dereference p->mm before this check,
	 * exit_task_work() happens _after_ exit_mm() so we could be called
	 * without p->mm even though we still had it when we enqueued this
	 * work.
	 */
	if (p->flags & PF_EXITING)
		return;

2489
	if (!mm->numa_next_scan) {
2490 2491
		mm->numa_next_scan = now +
			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2492 2493
	}

2494 2495 2496 2497 2498 2499 2500
	/*
	 * Enforce maximal scan/migration frequency..
	 */
	migrate = mm->numa_next_scan;
	if (time_before(now, migrate))
		return;

2501 2502
	if (p->numa_scan_period == 0) {
		p->numa_scan_period_max = task_scan_max(p);
2503
		p->numa_scan_period = task_scan_start(p);
2504
	}
2505

2506
	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2507 2508 2509
	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
		return;

2510 2511 2512 2513 2514 2515
	/*
	 * Delay this task enough that another task of this mm will likely win
	 * the next time around.
	 */
	p->node_stamp += 2 * TICK_NSEC;

2516 2517 2518
	start = mm->numa_scan_offset;
	pages = sysctl_numa_balancing_scan_size;
	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2519
	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2520 2521
	if (!pages)
		return;
2522

2523

2524 2525
	if (!down_read_trylock(&mm->mmap_sem))
		return;
2526
	vma = find_vma(mm, start);
2527 2528
	if (!vma) {
		reset_ptenuma_scan(p);
2529
		start = 0;
2530 2531
		vma = mm->mmap;
	}
2532
	for (; vma; vma = vma->vm_next) {
2533
		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2534
			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2535
			continue;
2536
		}
2537

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		/*
		 * Shared library pages mapped by multiple processes are not
		 * migrated as it is expected they are cache replicated. Avoid
		 * hinting faults in read-only file-backed mappings or the vdso
		 * as migrating the pages will be of marginal benefit.
		 */
		if (!vma->vm_mm ||
		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
			continue;

M
Mel Gorman 已提交
2548 2549 2550 2551 2552 2553
		/*
		 * Skip inaccessible VMAs to avoid any confusion between
		 * PROT_NONE and NUMA hinting ptes
		 */
		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
			continue;
2554

2555 2556 2557 2558
		do {
			start = max(start, vma->vm_start);
			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
			end = min(end, vma->vm_end);
2559
			nr_pte_updates = change_prot_numa(vma, start, end);
2560 2561

			/*
2562 2563 2564 2565 2566 2567
			 * Try to scan sysctl_numa_balancing_size worth of
			 * hpages that have at least one present PTE that
			 * is not already pte-numa. If the VMA contains
			 * areas that are unused or already full of prot_numa
			 * PTEs, scan up to virtpages, to skip through those
			 * areas faster.
2568 2569 2570
			 */
			if (nr_pte_updates)
				pages -= (end - start) >> PAGE_SHIFT;
2571
			virtpages -= (end - start) >> PAGE_SHIFT;
2572

2573
			start = end;
2574
			if (pages <= 0 || virtpages <= 0)
2575
				goto out;
2576 2577

			cond_resched();
2578
		} while (end != vma->vm_end);
2579
	}
2580

2581
out:
2582
	/*
P
Peter Zijlstra 已提交
2583 2584 2585 2586
	 * It is possible to reach the end of the VMA list but the last few
	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
	 * would find the !migratable VMA on the next scan but not reset the
	 * scanner to the start so check it now.
2587 2588
	 */
	if (vma)
2589
		mm->numa_scan_offset = start;
2590 2591 2592
	else
		reset_ptenuma_scan(p);
	up_read(&mm->mmap_sem);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

	/*
	 * Make sure tasks use at least 32x as much time to run other code
	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
	 * Usually update_task_scan_period slows down scanning enough; on an
	 * overloaded system we need to limit overhead on a per task basis.
	 */
	if (unlikely(p->se.sum_exec_runtime != runtime)) {
		u64 diff = p->se.sum_exec_runtime - runtime;
		p->node_stamp += 32 * diff;
	}
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
}

/*
 * Drive the periodic memory faults..
 */
void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
	struct callback_head *work = &curr->numa_work;
	u64 period, now;

	/*
	 * We don't care about NUMA placement if we don't have memory.
	 */
	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
		return;

	/*
	 * Using runtime rather than walltime has the dual advantage that
	 * we (mostly) drive the selection from busy threads and that the
	 * task needs to have done some actual work before we bother with
	 * NUMA placement.
	 */
	now = curr->se.sum_exec_runtime;
	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;

2629
	if (now > curr->node_stamp + period) {
2630
		if (!curr->node_stamp)
2631
			curr->numa_scan_period = task_scan_start(curr);
2632
		curr->node_stamp += period;
2633 2634 2635 2636 2637 2638 2639

		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
			task_work_add(curr, work, true);
		}
	}
}
2640

2641 2642 2643 2644
#else
static void task_tick_numa(struct rq *rq, struct task_struct *curr)
{
}
2645 2646 2647 2648 2649 2650 2651 2652

static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
{
}

static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
{
}
2653

2654 2655
#endif /* CONFIG_NUMA_BALANCING */

2656 2657 2658 2659
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
2660
	if (!parent_entity(se))
2661
		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2662
#ifdef CONFIG_SMP
2663 2664 2665 2666 2667 2668
	if (entity_is_task(se)) {
		struct rq *rq = rq_of(cfs_rq);

		account_numa_enqueue(rq, task_of(se));
		list_add(&se->group_node, &rq->cfs_tasks);
	}
2669
#endif
2670 2671 2672 2673 2674 2675 2676
	cfs_rq->nr_running++;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
2677
	if (!parent_entity(se))
2678
		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2679
#ifdef CONFIG_SMP
2680 2681
	if (entity_is_task(se)) {
		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2682
		list_del_init(&se->group_node);
2683
	}
2684
#endif
2685 2686 2687
	cfs_rq->nr_running--;
}

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
/*
 * Signed add and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define add_positive(_ptr, _val) do {                           \
	typeof(_ptr) ptr = (_ptr);                              \
	typeof(_val) val = (_val);                              \
	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
								\
	res = var + val;                                        \
								\
	if (val < 0 && res > var)                               \
		res = 0;                                        \
								\
	WRITE_ONCE(*ptr, res);                                  \
} while (0)

/*
 * Unsigned subtract and clamp on underflow.
 *
 * Explicitly do a load-store to ensure the intermediate value never hits
 * memory. This allows lockless observations without ever seeing the negative
 * values.
 */
#define sub_positive(_ptr, _val) do {				\
	typeof(_ptr) ptr = (_ptr);				\
	typeof(*ptr) val = (_val);				\
	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
	res = var - val;					\
	if (res > var)						\
		res = 0;					\
	WRITE_ONCE(*ptr, res);					\
} while (0)

#ifdef CONFIG_SMP
/*
2727
 * XXX we want to get rid of these helpers and use the full load resolution.
2728 2729 2730 2731 2732 2733
 */
static inline long se_weight(struct sched_entity *se)
{
	return scale_load_down(se->load.weight);
}

2734 2735 2736 2737 2738
static inline long se_runnable(struct sched_entity *se)
{
	return scale_load_down(se->runnable_weight);
}

2739 2740 2741
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2742 2743 2744 2745
	cfs_rq->runnable_weight += se->runnable_weight;

	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2746 2747 2748 2749 2750
}

static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
2751 2752 2753 2754 2755
	cfs_rq->runnable_weight -= se->runnable_weight;

	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
	sub_positive(&cfs_rq->avg.runnable_load_sum,
		     se_runnable(se) * se->avg.runnable_load_sum);
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
}

static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	cfs_rq->avg.load_avg += se->avg.load_avg;
	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
}

static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
}
#else
static inline void
enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
static inline void
dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
#endif

2782
static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2783
			    unsigned long weight, unsigned long runnable)
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
{
	if (se->on_rq) {
		/* commit outstanding execution time */
		if (cfs_rq->curr == se)
			update_curr(cfs_rq);
		account_entity_dequeue(cfs_rq, se);
		dequeue_runnable_load_avg(cfs_rq, se);
	}
	dequeue_load_avg(cfs_rq, se);

2794
	se->runnable_weight = runnable;
2795 2796 2797
	update_load_set(&se->load, weight);

#ifdef CONFIG_SMP
2798 2799 2800 2801 2802 2803 2804
	do {
		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;

		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
		se->avg.runnable_load_avg =
			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
	} while (0);
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
#endif

	enqueue_load_avg(cfs_rq, se);
	if (se->on_rq) {
		account_entity_enqueue(cfs_rq, se);
		enqueue_runnable_load_avg(cfs_rq, se);
	}
}

void reweight_task(struct task_struct *p, int prio)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	struct load_weight *load = &se->load;
	unsigned long weight = scale_load(sched_prio_to_weight[prio]);

2821
	reweight_entity(cfs_rq, se, weight, weight);
2822 2823 2824
	load->inv_weight = sched_prio_to_wmult[prio];
}

2825 2826
#ifdef CONFIG_FAIR_GROUP_SCHED
# ifdef CONFIG_SMP
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/*
 * All this does is approximate the hierarchical proportion which includes that
 * global sum we all love to hate.
 *
 * That is, the weight of a group entity, is the proportional share of the
 * group weight based on the group runqueue weights. That is:
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------               (1)
 *			  \Sum grq->load.weight
 *
 * Now, because computing that sum is prohibitively expensive to compute (been
 * there, done that) we approximate it with this average stuff. The average
 * moves slower and therefore the approximation is cheaper and more stable.
 *
 * So instead of the above, we substitute:
 *
 *   grq->load.weight -> grq->avg.load_avg                         (2)
 *
 * which yields the following:
 *
 *                     tg->weight * grq->avg.load_avg
 *   ge->load.weight = ------------------------------              (3)
 *				tg->load_avg
 *
 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
 *
 * That is shares_avg, and it is right (given the approximation (2)).
 *
 * The problem with it is that because the average is slow -- it was designed
 * to be exactly that of course -- this leads to transients in boundary
 * conditions. In specific, the case where the group was idle and we start the
 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
 * yielding bad latency etc..
 *
 * Now, in that special case (1) reduces to:
 *
 *                     tg->weight * grq->load.weight
2865
 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
 *			    grp->load.weight
 *
 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
 *
 * So what we do is modify our approximation (3) to approach (4) in the (near)
 * UP case, like:
 *
 *   ge->load.weight =
 *
 *              tg->weight * grq->load.weight
 *     ---------------------------------------------------         (5)
 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
 *
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
 * we need to use grq->avg.load_avg as its lower bound, which then gives:
 *
 *
 *                     tg->weight * grq->load.weight
 *   ge->load.weight = -----------------------------		   (6)
 *				tg_load_avg'
 *
 * Where:
 *
 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
 *                  max(grq->load.weight, grq->avg.load_avg)
2891 2892 2893 2894 2895 2896 2897 2898 2899
 *
 * And that is shares_weight and is icky. In the (near) UP case it approaches
 * (4) while in the normal case it approaches (3). It consistently
 * overestimates the ge->load.weight and therefore:
 *
 *   \Sum ge->load.weight >= tg->weight
 *
 * hence icky!
 */
2900
static long calc_group_shares(struct cfs_rq *cfs_rq)
2901
{
2902 2903 2904 2905
	long tg_weight, tg_shares, load, shares;
	struct task_group *tg = cfs_rq->tg;

	tg_shares = READ_ONCE(tg->shares);
2906

2907
	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2908

2909
	tg_weight = atomic_long_read(&tg->load_avg);
2910

2911 2912 2913
	/* Ensure tg_weight >= load */
	tg_weight -= cfs_rq->tg_load_avg_contrib;
	tg_weight += load;
2914

2915
	shares = (tg_shares * load);
2916 2917
	if (tg_weight)
		shares /= tg_weight;
2918

2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	/*
	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
	 * of a group with small tg->shares value. It is a floor value which is
	 * assigned as a minimum load.weight to the sched_entity representing
	 * the group on a CPU.
	 *
	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
	 * instead of 0.
	 */
2931
	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2932
}
2933 2934

/*
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
 * This calculates the effective runnable weight for a group entity based on
 * the group entity weight calculated above.
 *
 * Because of the above approximation (2), our group entity weight is
 * an load_avg based ratio (3). This means that it includes blocked load and
 * does not represent the runnable weight.
 *
 * Approximate the group entity's runnable weight per ratio from the group
 * runqueue:
 *
 *					     grq->avg.runnable_load_avg
 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
 *						 grq->avg.load_avg
 *
 * However, analogous to above, since the avg numbers are slow, this leads to
 * transients in the from-idle case. Instead we use:
 *
 *   ge->runnable_weight = ge->load.weight *
 *
 *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
 *		-----------------------------------------------------	(8)
 *		      max(grq->avg.load_avg, grq->load.weight)
 *
 * Where these max() serve both to use the 'instant' values to fix the slow
 * from-idle and avoid the /0 on to-idle, similar to (6).
2960 2961 2962
 */
static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
{
2963 2964 2965 2966 2967 2968 2969
	long runnable, load_avg;

	load_avg = max(cfs_rq->avg.load_avg,
		       scale_load_down(cfs_rq->load.weight));

	runnable = max(cfs_rq->avg.runnable_load_avg,
		       scale_load_down(cfs_rq->runnable_weight));
2970 2971 2972 2973

	runnable *= shares;
	if (load_avg)
		runnable /= load_avg;
2974

2975 2976
	return clamp_t(long, runnable, MIN_SHARES, shares);
}
2977
# endif /* CONFIG_SMP */
2978

2979 2980
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);

2981 2982 2983 2984 2985
/*
 * Recomputes the group entity based on the current state of its group
 * runqueue.
 */
static void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
2986
{
2987 2988
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
	long shares, runnable;
P
Peter Zijlstra 已提交
2989

2990
	if (!gcfs_rq)
2991 2992
		return;

2993
	if (throttled_hierarchy(gcfs_rq))
P
Peter Zijlstra 已提交
2994
		return;
2995

2996
#ifndef CONFIG_SMP
2997
	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
2998 2999

	if (likely(se->load.weight == shares))
3000
		return;
3001
#else
3002 3003
	shares   = calc_group_shares(gcfs_rq);
	runnable = calc_group_runnable(gcfs_rq, shares);
3004
#endif
P
Peter Zijlstra 已提交
3005

3006
	reweight_entity(cfs_rq_of(se), se, shares, runnable);
P
Peter Zijlstra 已提交
3007
}
3008

P
Peter Zijlstra 已提交
3009
#else /* CONFIG_FAIR_GROUP_SCHED */
3010
static inline void update_cfs_group(struct sched_entity *se)
P
Peter Zijlstra 已提交
3011 3012 3013 3014
{
}
#endif /* CONFIG_FAIR_GROUP_SCHED */

3015 3016
static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
{
3017 3018 3019
	struct rq *rq = rq_of(cfs_rq);

	if (&rq->cfs == cfs_rq) {
3020 3021 3022
		/*
		 * There are a few boundary cases this might miss but it should
		 * get called often enough that that should (hopefully) not be
3023
		 * a real problem.
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		 *
		 * It will not get called when we go idle, because the idle
		 * thread is a different class (!fair), nor will the utilization
		 * number include things like RT tasks.
		 *
		 * As is, the util number is not freq-invariant (we'd have to
		 * implement arch_scale_freq_capacity() for that).
		 *
		 * See cpu_util().
		 */
3034
		cpufreq_update_util(rq, 0);
3035 3036 3037
	}
}

3038
#ifdef CONFIG_SMP
3039 3040 3041 3042
/*
 * Approximate:
 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
 */
3043
static u64 decay_load(u64 val, u64 n)
3044
{
3045 3046
	unsigned int local_n;

3047
	if (unlikely(n > LOAD_AVG_PERIOD * 63))
3048 3049 3050 3051 3052 3053 3054
		return 0;

	/* after bounds checking we can collapse to 32-bit */
	local_n = n;

	/*
	 * As y^PERIOD = 1/2, we can combine
3055 3056
	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
	 * With a look-up table which covers y^n (n<PERIOD)
3057 3058 3059 3060 3061 3062
	 *
	 * To achieve constant time decay_load.
	 */
	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
		val >>= local_n / LOAD_AVG_PERIOD;
		local_n %= LOAD_AVG_PERIOD;
3063 3064
	}

3065 3066
	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
	return val;
3067 3068
}

3069
static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
3070
{
3071
	u32 c1, c2, c3 = d3; /* y^0 == 1 */
3072

3073
	/*
P
Peter Zijlstra 已提交
3074
	 * c1 = d1 y^p
3075
	 */
3076
	c1 = decay_load((u64)d1, periods);
3077 3078

	/*
P
Peter Zijlstra 已提交
3079
	 *            p-1
3080 3081
	 * c2 = 1024 \Sum y^n
	 *            n=1
3082
	 *
3083 3084
	 *              inf        inf
	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
P
Peter Zijlstra 已提交
3085
	 *              n=0        n=p
3086
	 */
3087
	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
3088 3089

	return c1 + c2 + c3;
3090 3091
}

3092
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
3093

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
/*
 * Accumulate the three separate parts of the sum; d1 the remainder
 * of the last (incomplete) period, d2 the span of full periods and d3
 * the remainder of the (incomplete) current period.
 *
 *           d1          d2           d3
 *           ^           ^            ^
 *           |           |            |
 *         |<->|<----------------->|<--->|
 * ... |---x---|------| ... |------|-----x (now)
 *
P
Peter Zijlstra 已提交
3105 3106 3107
 *                           p-1
 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
 *                           n=1
3108
 *
P
Peter Zijlstra 已提交
3109
 *    = u y^p +					(Step 1)
3110
 *
P
Peter Zijlstra 已提交
3111 3112 3113
 *                     p-1
 *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
 *                     n=1
3114 3115 3116
 */
static __always_inline u32
accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
3117
	       unsigned long load, unsigned long runnable, int running)
3118 3119
{
	unsigned long scale_freq, scale_cpu;
3120
	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
	u64 periods;

	scale_freq = arch_scale_freq_capacity(NULL, cpu);
	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);

	delta += sa->period_contrib;
	periods = delta / 1024; /* A period is 1024us (~1ms) */

	/*
	 * Step 1: decay old *_sum if we crossed period boundaries.
	 */
	if (periods) {
		sa->load_sum = decay_load(sa->load_sum, periods);
3134 3135
		sa->runnable_load_sum =
			decay_load(sa->runnable_load_sum, periods);
3136 3137
		sa->util_sum = decay_load((u64)(sa->util_sum), periods);

3138 3139 3140 3141 3142 3143 3144
		/*
		 * Step 2
		 */
		delta %= 1024;
		contrib = __accumulate_pelt_segments(periods,
				1024 - sa->period_contrib, delta);
	}
3145 3146 3147
	sa->period_contrib = delta;

	contrib = cap_scale(contrib, scale_freq);
3148 3149 3150 3151
	if (load)
		sa->load_sum += load * contrib;
	if (runnable)
		sa->runnable_load_sum += runnable * contrib;
3152 3153 3154 3155 3156 3157
	if (running)
		sa->util_sum += contrib * scale_cpu;

	return periods;
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
/*
 * We can represent the historical contribution to runnable average as the
 * coefficients of a geometric series.  To do this we sub-divide our runnable
 * history into segments of approximately 1ms (1024us); label the segment that
 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
 *
 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
 *      p0            p1           p2
 *     (now)       (~1ms ago)  (~2ms ago)
 *
 * Let u_i denote the fraction of p_i that the entity was runnable.
 *
 * We then designate the fractions u_i as our co-efficients, yielding the
 * following representation of historical load:
 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
 *
 * We choose y based on the with of a reasonably scheduling period, fixing:
 *   y^32 = 0.5
 *
 * This means that the contribution to load ~32ms ago (u_32) will be weighted
 * approximately half as much as the contribution to load within the last ms
 * (u_0).
 *
 * When a period "rolls over" and we have new u_0`, multiplying the previous
 * sum again by y is sufficient to update:
 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
 */
3186
static __always_inline int
3187
___update_load_sum(u64 now, int cpu, struct sched_avg *sa,
3188
		  unsigned long load, unsigned long runnable, int running)
3189
{
3190
	u64 delta;
3191

3192
	delta = now - sa->last_update_time;
3193 3194 3195 3196 3197
	/*
	 * This should only happen when time goes backwards, which it
	 * unfortunately does during sched clock init when we swap over to TSC.
	 */
	if ((s64)delta < 0) {
3198
		sa->last_update_time = now;
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		return 0;
	}

	/*
	 * Use 1024ns as the unit of measurement since it's a reasonable
	 * approximation of 1us and fast to compute.
	 */
	delta >>= 10;
	if (!delta)
		return 0;
3209 3210

	sa->last_update_time += delta << 10;
3211

3212 3213 3214 3215 3216 3217 3218 3219 3220
	/*
	 * running is a subset of runnable (weight) so running can't be set if
	 * runnable is clear. But there are some corner cases where the current
	 * se has been already dequeued but cfs_rq->curr still points to it.
	 * This means that weight will be 0 but not running for a sched_entity
	 * but also for a cfs_rq if the latter becomes idle. As an example,
	 * this happens during idle_balance() which calls
	 * update_blocked_averages()
	 */
3221 3222
	if (!load)
		runnable = running = 0;
3223

3224 3225 3226 3227 3228 3229 3230
	/*
	 * Now we know we crossed measurement unit boundaries. The *_avg
	 * accrues by two steps:
	 *
	 * Step 1: accumulate *_sum since last_update_time. If we haven't
	 * crossed period boundaries, finish.
	 */
3231
	if (!accumulate_sum(delta, cpu, sa, load, runnable, running))
3232
		return 0;
3233

3234 3235 3236 3237
	return 1;
}

static __always_inline void
3238
___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable)
3239 3240 3241
{
	u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;

3242 3243 3244
	/*
	 * Step 2: update *_avg.
	 */
3245 3246
	sa->load_avg = div_u64(load * sa->load_sum, divider);
	sa->runnable_load_avg =	div_u64(runnable * sa->runnable_load_sum, divider);
3247 3248
	sa->util_avg = sa->util_sum / divider;
}
3249

3250 3251 3252
/*
 * sched_entity:
 *
3253 3254 3255 3256 3257 3258 3259
 *   task:
 *     se_runnable() == se_weight()
 *
 *   group: [ see update_cfs_group() ]
 *     se_weight()   = tg->weight * grq->load_avg / tg->load_avg
 *     se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg
 *
3260 3261 3262
 *   load_sum := runnable_sum
 *   load_avg = se_weight(se) * runnable_avg
 *
3263 3264 3265 3266 3267
 *   runnable_load_sum := runnable_sum
 *   runnable_load_avg = se_runnable(se) * runnable_avg
 *
 * XXX collapse load_sum and runnable_load_sum
 *
3268 3269 3270 3271
 * cfq_rs:
 *
 *   load_sum = \Sum se_weight(se) * se->avg.load_sum
 *   load_avg = \Sum se->avg.load_avg
3272 3273 3274
 *
 *   runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum
 *   runnable_load_avg = \Sum se->avg.runable_load_avg
3275 3276
 */

3277 3278 3279
static int
__update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
{
3280 3281 3282 3283 3284
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, 0, 0, 0)) {
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3285 3286 3287 3288
		return 1;
	}

	return 0;
3289 3290 3291 3292 3293
}

static int
__update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3294 3295 3296 3297 3298
	if (entity_is_task(se))
		se->runnable_weight = se->load.weight;

	if (___update_load_sum(now, cpu, &se->avg, !!se->on_rq, !!se->on_rq,
				cfs_rq->curr == se)) {
3299

3300
		___update_load_avg(&se->avg, se_weight(se), se_runnable(se));
3301 3302 3303 3304
		return 1;
	}

	return 0;
3305 3306 3307 3308 3309
}

static int
__update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
{
3310 3311
	if (___update_load_sum(now, cpu, &cfs_rq->avg,
				scale_load_down(cfs_rq->load.weight),
3312 3313 3314 3315
				scale_load_down(cfs_rq->runnable_weight),
				cfs_rq->curr != NULL)) {

		___update_load_avg(&cfs_rq->avg, 1, 1);
3316 3317 3318 3319
		return 1;
	}

	return 0;
3320 3321
}

3322
#ifdef CONFIG_FAIR_GROUP_SCHED
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
/**
 * update_tg_load_avg - update the tg's load avg
 * @cfs_rq: the cfs_rq whose avg changed
 * @force: update regardless of how small the difference
 *
 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
 * However, because tg->load_avg is a global value there are performance
 * considerations.
 *
 * In order to avoid having to look at the other cfs_rq's, we use a
 * differential update where we store the last value we propagated. This in
 * turn allows skipping updates if the differential is 'small'.
 *
3336
 * Updating tg's load_avg is necessary before update_cfs_share().
3337
 */
3338
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3339
{
3340
	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3341

3342 3343 3344 3345 3346 3347
	/*
	 * No need to update load_avg for root_task_group as it is not used.
	 */
	if (cfs_rq->tg == &root_task_group)
		return;

3348 3349 3350
	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
		atomic_long_add(delta, &cfs_rq->tg->load_avg);
		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3351
	}
3352
}
3353

3354 3355 3356 3357 3358 3359 3360 3361
/*
 * Called within set_task_rq() right before setting a task's cpu. The
 * caller only guarantees p->pi_lock is held; no other assumptions,
 * including the state of rq->lock, should be made.
 */
void set_task_rq_fair(struct sched_entity *se,
		      struct cfs_rq *prev, struct cfs_rq *next)
{
3362 3363 3364
	u64 p_last_update_time;
	u64 n_last_update_time;

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	if (!sched_feat(ATTACH_AGE_LOAD))
		return;

	/*
	 * We are supposed to update the task to "current" time, then its up to
	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
	 * getting what current time is, so simply throw away the out-of-date
	 * time. This will result in the wakee task is less decayed, but giving
	 * the wakee more load sounds not bad.
	 */
3375 3376
	if (!(se->avg.last_update_time && prev))
		return;
3377 3378

#ifndef CONFIG_64BIT
3379
	{
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
		u64 p_last_update_time_copy;
		u64 n_last_update_time_copy;

		do {
			p_last_update_time_copy = prev->load_last_update_time_copy;
			n_last_update_time_copy = next->load_last_update_time_copy;

			smp_rmb();

			p_last_update_time = prev->avg.last_update_time;
			n_last_update_time = next->avg.last_update_time;

		} while (p_last_update_time != p_last_update_time_copy ||
			 n_last_update_time != n_last_update_time_copy);
3394
	}
3395
#else
3396 3397
	p_last_update_time = prev->avg.last_update_time;
	n_last_update_time = next->avg.last_update_time;
3398
#endif
3399 3400
	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
	se->avg.last_update_time = n_last_update_time;
3401
}
3402

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

/*
 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
 * propagate its contribution. The key to this propagation is the invariant
 * that for each group:
 *
 *   ge->avg == grq->avg						(1)
 *
 * _IFF_ we look at the pure running and runnable sums. Because they
 * represent the very same entity, just at different points in the hierarchy.
 *
3414 3415 3416
 * Per the above update_tg_cfs_util() is trivial and simply copies the running
 * sum over (but still wrong, because the group entity and group rq do not have
 * their PELT windows aligned).
3417 3418 3419 3420 3421 3422 3423 3424
 *
 * However, update_tg_cfs_runnable() is more complex. So we have:
 *
 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
 *
 * And since, like util, the runnable part should be directly transferable,
 * the following would _appear_ to be the straight forward approach:
 *
3425
 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3426 3427 3428
 *
 * And per (1) we have:
 *
3429
 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
 *
 * Which gives:
 *
 *                      ge->load.weight * grq->avg.load_avg
 *   ge->avg.load_avg = -----------------------------------		(4)
 *                               grq->load.weight
 *
 * Except that is wrong!
 *
 * Because while for entities historical weight is not important and we
 * really only care about our future and therefore can consider a pure
 * runnable sum, runqueues can NOT do this.
 *
 * We specifically want runqueues to have a load_avg that includes
 * historical weights. Those represent the blocked load, the load we expect
 * to (shortly) return to us. This only works by keeping the weights as
 * integral part of the sum. We therefore cannot decompose as per (3).
 *
3448 3449 3450 3451 3452 3453
 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
 * runnable section of these tasks overlap (or not). If they were to perfectly
 * align the rq as a whole would be runnable 2/3 of the time. If however we
 * always have at least 1 runnable task, the rq as a whole is always runnable.
3454
 *
3455
 * So we'll have to approximate.. :/
3456
 *
3457
 * Given the constraint:
3458
 *
3459
 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3460
 *
3461 3462
 * We can construct a rule that adds runnable to a rq by assuming minimal
 * overlap.
3463
 *
3464
 * On removal, we'll assume each task is equally runnable; which yields:
3465
 *
3466
 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3467
 *
3468
 * XXX: only do this for the part of runnable > running ?
3469 3470 3471
 *
 */

3472
static inline void
3473
update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3474 3475 3476 3477 3478 3479 3480
{
	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;

	/* Nothing to update */
	if (!delta)
		return;

3481 3482 3483 3484 3485 3486 3487 3488
	/*
	 * The relation between sum and avg is:
	 *
	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
	 *
	 * however, the PELT windows are not aligned between grq and gse.
	 */

3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	/* Set new sched_entity's utilization */
	se->avg.util_avg = gcfs_rq->avg.util_avg;
	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;

	/* Update parent cfs_rq utilization */
	add_positive(&cfs_rq->avg.util_avg, delta);
	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
}

static inline void
3499
update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3500
{
3501 3502 3503 3504
	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
	unsigned long runnable_load_avg, load_avg;
	u64 runnable_load_sum, load_sum = 0;
	s64 delta_sum;
3505

3506 3507
	if (!runnable_sum)
		return;
3508

3509
	gcfs_rq->prop_runnable_sum = 0;
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	if (runnable_sum >= 0) {
		/*
		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
		 * the CPU is saturated running == runnable.
		 */
		runnable_sum += se->avg.load_sum;
		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
	} else {
		/*
		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
		 * assuming all tasks are equally runnable.
		 */
		if (scale_load_down(gcfs_rq->load.weight)) {
			load_sum = div_s64(gcfs_rq->avg.load_sum,
				scale_load_down(gcfs_rq->load.weight));
		}

		/* But make sure to not inflate se's runnable */
		runnable_sum = min(se->avg.load_sum, load_sum);
	}

	/*
	 * runnable_sum can't be lower than running_sum
	 * As running sum is scale with cpu capacity wehreas the runnable sum
	 * is not we rescale running_sum 1st
	 */
	running_sum = se->avg.util_sum /
		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
	runnable_sum = max(runnable_sum, running_sum);

3541 3542
	load_sum = (s64)se_weight(se) * runnable_sum;
	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3543

3544 3545
	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
	delta_avg = load_avg - se->avg.load_avg;
3546

3547 3548 3549 3550
	se->avg.load_sum = runnable_sum;
	se->avg.load_avg = load_avg;
	add_positive(&cfs_rq->avg.load_avg, delta_avg);
	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3551

3552 3553
	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3554 3555
	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3556

3557 3558
	se->avg.runnable_load_sum = runnable_sum;
	se->avg.runnable_load_avg = runnable_load_avg;
3559

3560
	if (se->on_rq) {
3561 3562
		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3563 3564 3565
	}
}

3566
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3567
{
3568 3569
	cfs_rq->propagate = 1;
	cfs_rq->prop_runnable_sum += runnable_sum;
3570 3571 3572 3573 3574
}

/* Update task and its cfs_rq load average */
static inline int propagate_entity_load_avg(struct sched_entity *se)
{
3575
	struct cfs_rq *cfs_rq, *gcfs_rq;
3576 3577 3578 3579

	if (entity_is_task(se))
		return 0;

3580 3581
	gcfs_rq = group_cfs_rq(se);
	if (!gcfs_rq->propagate)
3582 3583
		return 0;

3584 3585
	gcfs_rq->propagate = 0;

3586 3587
	cfs_rq = cfs_rq_of(se);

3588
	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3589

3590 3591
	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3592 3593 3594 3595

	return 1;
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
/*
 * Check if we need to update the load and the utilization of a blocked
 * group_entity:
 */
static inline bool skip_blocked_update(struct sched_entity *se)
{
	struct cfs_rq *gcfs_rq = group_cfs_rq(se);

	/*
	 * If sched_entity still have not zero load or utilization, we have to
	 * decay it:
	 */
	if (se->avg.load_avg || se->avg.util_avg)
		return false;

	/*
	 * If there is a pending propagation, we have to update the load and
	 * the utilization of the sched_entity:
	 */
3615
	if (gcfs_rq->propagate)
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
		return false;

	/*
	 * Otherwise, the load and the utilization of the sched_entity is
	 * already zero and there is no pending propagation, so it will be a
	 * waste of time to try to decay it:
	 */
	return true;
}

3626
#else /* CONFIG_FAIR_GROUP_SCHED */
3627

3628
static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3629 3630 3631 3632 3633 3634

static inline int propagate_entity_load_avg(struct sched_entity *se)
{
	return 0;
}

3635
static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3636

3637
#endif /* CONFIG_FAIR_GROUP_SCHED */
3638

3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
/**
 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
 * @now: current time, as per cfs_rq_clock_task()
 * @cfs_rq: cfs_rq to update
 *
 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
 * avg. The immediate corollary is that all (fair) tasks must be attached, see
 * post_init_entity_util_avg().
 *
 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
 *
3650 3651 3652 3653
 * Returns true if the load decayed or we removed load.
 *
 * Since both these conditions indicate a changed cfs_rq->avg.load we should
 * call update_tg_load_avg() when this function returns true.
3654
 */
3655
static inline int
3656
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3657
{
3658
	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3659
	struct sched_avg *sa = &cfs_rq->avg;
3660
	int decayed = 0;
3661

3662 3663
	if (cfs_rq->removed.nr) {
		unsigned long r;
3664
		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3665 3666 3667 3668

		raw_spin_lock(&cfs_rq->removed.lock);
		swap(cfs_rq->removed.util_avg, removed_util);
		swap(cfs_rq->removed.load_avg, removed_load);
3669
		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3670 3671 3672 3673
		cfs_rq->removed.nr = 0;
		raw_spin_unlock(&cfs_rq->removed.lock);

		r = removed_load;
3674
		sub_positive(&sa->load_avg, r);
3675
		sub_positive(&sa->load_sum, r * divider);
3676

3677
		r = removed_util;
3678
		sub_positive(&sa->util_avg, r);
3679
		sub_positive(&sa->util_sum, r * divider);
3680

3681
		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3682 3683

		decayed = 1;
3684
	}
3685

3686
	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3687

3688 3689 3690 3691
#ifndef CONFIG_64BIT
	smp_wmb();
	cfs_rq->load_last_update_time_copy = sa->last_update_time;
#endif
3692

3693
	if (decayed)
3694
		cfs_rq_util_change(cfs_rq);
3695

3696
	return decayed;
3697 3698
}

3699 3700 3701 3702 3703 3704 3705 3706
/**
 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
 * @cfs_rq: cfs_rq to attach to
 * @se: sched_entity to attach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3707 3708
static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3709 3710 3711 3712 3713 3714 3715 3716 3717
	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;

	/*
	 * When we attach the @se to the @cfs_rq, we must align the decay
	 * window because without that, really weird and wonderful things can
	 * happen.
	 *
	 * XXX illustrate
	 */
3718
	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	se->avg.period_contrib = cfs_rq->avg.period_contrib;

	/*
	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
	 * period_contrib. This isn't strictly correct, but since we're
	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
	 * _sum a little.
	 */
	se->avg.util_sum = se->avg.util_avg * divider;

	se->avg.load_sum = divider;
	if (se_weight(se)) {
		se->avg.load_sum =
			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
	}

	se->avg.runnable_load_sum = se->avg.load_sum;

3737
	enqueue_load_avg(cfs_rq, se);
3738 3739
	cfs_rq->avg.util_avg += se->avg.util_avg;
	cfs_rq->avg.util_sum += se->avg.util_sum;
3740 3741

	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3742 3743

	cfs_rq_util_change(cfs_rq);
3744 3745
}

3746 3747 3748 3749 3750 3751 3752 3753
/**
 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
 * @cfs_rq: cfs_rq to detach from
 * @se: sched_entity to detach
 *
 * Must call update_cfs_rq_load_avg() before this, since we rely on
 * cfs_rq->avg.last_update_time being current.
 */
3754 3755
static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
3756
	dequeue_load_avg(cfs_rq, se);
3757 3758
	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3759 3760

	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3761 3762

	cfs_rq_util_change(cfs_rq);
3763 3764
}

3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
/*
 * Optional action to be done while updating the load average
 */
#define UPDATE_TG	0x1
#define SKIP_AGE_LOAD	0x2
#define DO_ATTACH	0x4

/* Update task and its cfs_rq load average */
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
	u64 now = cfs_rq_clock_task(cfs_rq);
	struct rq *rq = rq_of(cfs_rq);
	int cpu = cpu_of(rq);
	int decayed;

	/*
	 * Track task load average for carrying it to new CPU after migrated, and
	 * track group sched_entity load average for task_h_load calc in migration
	 */
	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
		__update_load_avg_se(now, cpu, cfs_rq, se);

	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
	decayed |= propagate_entity_load_avg(se);

	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {

		attach_entity_load_avg(cfs_rq, se);
		update_tg_load_avg(cfs_rq, 0);

	} else if (decayed && (flags & UPDATE_TG))
		update_tg_load_avg(cfs_rq, 0);
}

3799
#ifndef CONFIG_64BIT
3800 3801
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
3802
	u64 last_update_time_copy;
3803
	u64 last_update_time;
3804

3805 3806 3807 3808 3809
	do {
		last_update_time_copy = cfs_rq->load_last_update_time_copy;
		smp_rmb();
		last_update_time = cfs_rq->avg.last_update_time;
	} while (last_update_time != last_update_time_copy);
3810 3811 3812

	return last_update_time;
}
3813
#else
3814 3815 3816 3817
static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.last_update_time;
}
3818 3819
#endif

3820 3821 3822 3823 3824 3825 3826 3827 3828 3829
/*
 * Synchronize entity load avg of dequeued entity without locking
 * the previous rq.
 */
void sync_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
	u64 last_update_time;

	last_update_time = cfs_rq_last_update_time(cfs_rq);
3830
	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3831 3832
}

3833 3834 3835 3836 3837 3838 3839
/*
 * Task first catches up with cfs_rq, and then subtract
 * itself from the cfs_rq (task must be off the queue now).
 */
void remove_entity_load_avg(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3840
	unsigned long flags;
3841 3842

	/*
3843 3844 3845 3846 3847 3848 3849
	 * tasks cannot exit without having gone through wake_up_new_task() ->
	 * post_init_entity_util_avg() which will have added things to the
	 * cfs_rq, so we can remove unconditionally.
	 *
	 * Similarly for groups, they will have passed through
	 * post_init_entity_util_avg() before unregister_sched_fair_group()
	 * calls this.
3850 3851
	 */

3852
	sync_entity_load_avg(se);
3853 3854 3855 3856 3857

	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
	++cfs_rq->removed.nr;
	cfs_rq->removed.util_avg	+= se->avg.util_avg;
	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3858
	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3859
	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3860
}
3861

3862 3863
static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
{
3864
	return cfs_rq->avg.runnable_load_avg;
3865 3866 3867 3868 3869 3870 3871
}

static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
{
	return cfs_rq->avg.load_avg;
}

3872
static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3873

3874 3875
#else /* CONFIG_SMP */

3876
static inline int
3877
update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3878 3879 3880 3881
{
	return 0;
}

3882 3883
#define UPDATE_TG	0x0
#define SKIP_AGE_LOAD	0x0
3884
#define DO_ATTACH	0x0
3885

3886
static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3887
{
3888
	cfs_rq_util_change(cfs_rq);
3889 3890
}

3891
static inline void remove_entity_load_avg(struct sched_entity *se) {}
3892

3893 3894 3895 3896 3897
static inline void
attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}

3898
static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3899 3900 3901 3902
{
	return 0;
}

3903
#endif /* CONFIG_SMP */
3904

P
Peter Zijlstra 已提交
3905 3906 3907 3908 3909 3910 3911 3912 3913
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
3914
		schedstat_inc(cfs_rq->nr_spread_over);
P
Peter Zijlstra 已提交
3915 3916 3917
#endif
}

3918 3919 3920
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
3921
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
3922

3923 3924 3925 3926 3927 3928
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
3929
	if (initial && sched_feat(START_DEBIT))
3930
		vruntime += sched_vslice(cfs_rq, se);
3931

3932
	/* sleeps up to a single latency don't count. */
3933
	if (!initial) {
3934
		unsigned long thresh = sysctl_sched_latency;
3935

3936 3937 3938 3939 3940 3941
		/*
		 * Halve their sleep time's effect, to allow
		 * for a gentler effect of sleepers:
		 */
		if (sched_feat(GENTLE_FAIR_SLEEPERS))
			thresh >>= 1;
3942

3943
		vruntime -= thresh;
3944 3945
	}

3946
	/* ensure we never gain time by being placed backwards. */
3947
	se->vruntime = max_vruntime(se->vruntime, vruntime);
3948 3949
}

3950 3951
static void check_enqueue_throttle(struct cfs_rq *cfs_rq);

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
static inline void check_schedstat_required(void)
{
#ifdef CONFIG_SCHEDSTATS
	if (schedstat_enabled())
		return;

	/* Force schedstat enabled if a dependent tracepoint is active */
	if (trace_sched_stat_wait_enabled()    ||
			trace_sched_stat_sleep_enabled()   ||
			trace_sched_stat_iowait_enabled()  ||
			trace_sched_stat_blocked_enabled() ||
			trace_sched_stat_runtime_enabled())  {
3964
		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3965
			     "stat_blocked and stat_runtime require the "
3966
			     "kernel parameter schedstats=enable or "
3967 3968 3969 3970 3971
			     "kernel.sched_schedstats=1\n");
	}
#endif
}

3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990

/*
 * MIGRATION
 *
 *	dequeue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way the vruntime transition between RQs is done when both
 * min_vruntime are up-to-date.
 *
 * WAKEUP (remote)
 *
3991
 *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
 *	  vruntime -= min_vruntime
 *
 *	enqueue
 *	  update_curr()
 *	    update_min_vruntime()
 *	  vruntime += min_vruntime
 *
 * this way we don't have the most up-to-date min_vruntime on the originating
 * CPU and an up-to-date min_vruntime on the destination CPU.
 */

4003
static void
4004
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4005
{
4006 4007 4008
	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
	bool curr = cfs_rq->curr == se;

4009
	/*
4010 4011
	 * If we're the current task, we must renormalise before calling
	 * update_curr().
4012
	 */
4013
	if (renorm && curr)
4014 4015
		se->vruntime += cfs_rq->min_vruntime;

4016 4017
	update_curr(cfs_rq);

4018
	/*
4019 4020 4021 4022
	 * Otherwise, renormalise after, such that we're placed at the current
	 * moment in time, instead of some random moment in the past. Being
	 * placed in the past could significantly boost this task to the
	 * fairness detriment of existing tasks.
4023
	 */
4024 4025 4026
	if (renorm && !curr)
		se->vruntime += cfs_rq->min_vruntime;

4027 4028 4029 4030 4031 4032 4033 4034
	/*
	 * When enqueuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Add its load to cfs_rq->runnable_avg
	 *   - For group_entity, update its weight to reflect the new share of
	 *     its group cfs_rq
	 *   - Add its new weight to cfs_rq->load.weight
	 */
4035
	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4036
	update_cfs_group(se);
4037
	enqueue_runnable_load_avg(cfs_rq, se);
4038
	account_entity_enqueue(cfs_rq, se);
4039

4040
	if (flags & ENQUEUE_WAKEUP)
4041
		place_entity(cfs_rq, se, 0);
4042

4043
	check_schedstat_required();
4044 4045
	update_stats_enqueue(cfs_rq, se, flags);
	check_spread(cfs_rq, se);
4046
	if (!curr)
4047
		__enqueue_entity(cfs_rq, se);
P
Peter Zijlstra 已提交
4048
	se->on_rq = 1;
4049

4050
	if (cfs_rq->nr_running == 1) {
4051
		list_add_leaf_cfs_rq(cfs_rq);
4052 4053
		check_enqueue_throttle(cfs_rq);
	}
4054 4055
}

4056
static void __clear_buddies_last(struct sched_entity *se)
P
Peter Zijlstra 已提交
4057
{
4058 4059
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4060
		if (cfs_rq->last != se)
4061
			break;
4062 4063

		cfs_rq->last = NULL;
4064 4065
	}
}
P
Peter Zijlstra 已提交
4066

4067 4068 4069 4070
static void __clear_buddies_next(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4071
		if (cfs_rq->next != se)
4072
			break;
4073 4074

		cfs_rq->next = NULL;
4075
	}
P
Peter Zijlstra 已提交
4076 4077
}

4078 4079 4080 4081
static void __clear_buddies_skip(struct sched_entity *se)
{
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4082
		if (cfs_rq->skip != se)
4083
			break;
4084 4085

		cfs_rq->skip = NULL;
4086 4087 4088
	}
}

P
Peter Zijlstra 已提交
4089 4090
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
4091 4092 4093 4094 4095
	if (cfs_rq->last == se)
		__clear_buddies_last(se);

	if (cfs_rq->next == se)
		__clear_buddies_next(se);
4096 4097 4098

	if (cfs_rq->skip == se)
		__clear_buddies_skip(se);
P
Peter Zijlstra 已提交
4099 4100
}

4101
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4102

4103
static void
4104
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4105
{
4106 4107 4108 4109
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);
4110 4111 4112 4113 4114 4115 4116 4117 4118

	/*
	 * When dequeuing a sched_entity, we must:
	 *   - Update loads to have both entity and cfs_rq synced with now.
	 *   - Substract its load from the cfs_rq->runnable_avg.
	 *   - Substract its previous weight from cfs_rq->load.weight.
	 *   - For group entity, update its weight to reflect the new share
	 *     of its group cfs_rq.
	 */
4119
	update_load_avg(cfs_rq, se, UPDATE_TG);
4120
	dequeue_runnable_load_avg(cfs_rq, se);
4121

4122
	update_stats_dequeue(cfs_rq, se, flags);
P
Peter Zijlstra 已提交
4123

P
Peter Zijlstra 已提交
4124
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4125

4126
	if (se != cfs_rq->curr)
4127
		__dequeue_entity(cfs_rq, se);
4128
	se->on_rq = 0;
4129
	account_entity_dequeue(cfs_rq, se);
4130 4131

	/*
4132 4133 4134 4135
	 * Normalize after update_curr(); which will also have moved
	 * min_vruntime if @se is the one holding it back. But before doing
	 * update_min_vruntime() again, which will discount @se's position and
	 * can move min_vruntime forward still more.
4136
	 */
4137
	if (!(flags & DEQUEUE_SLEEP))
4138
		se->vruntime -= cfs_rq->min_vruntime;
4139

4140 4141 4142
	/* return excess runtime on last dequeue */
	return_cfs_rq_runtime(cfs_rq);

4143
	update_cfs_group(se);
4144 4145 4146 4147 4148 4149 4150 4151 4152

	/*
	 * Now advance min_vruntime if @se was the entity holding it back,
	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
	 * put back on, and if we advance min_vruntime, we'll be placed back
	 * further than we started -- ie. we'll be penalized.
	 */
	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
		update_min_vruntime(cfs_rq);
4153 4154 4155 4156 4157
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
4158
static void
I
Ingo Molnar 已提交
4159
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4160
{
4161
	unsigned long ideal_runtime, delta_exec;
4162 4163
	struct sched_entity *se;
	s64 delta;
4164

P
Peter Zijlstra 已提交
4165
	ideal_runtime = sched_slice(cfs_rq, curr);
4166
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4167
	if (delta_exec > ideal_runtime) {
4168
		resched_curr(rq_of(cfs_rq));
4169 4170 4171 4172 4173
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
		return;
	}

	/*
	 * Ensure that a task that missed wakeup preemption by a
	 * narrow margin doesn't have to wait for a full slice.
	 * This also mitigates buddy induced latencies under load.
	 */
	if (delta_exec < sysctl_sched_min_granularity)
		return;

4185 4186
	se = __pick_first_entity(cfs_rq);
	delta = curr->vruntime - se->vruntime;
4187

4188 4189
	if (delta < 0)
		return;
4190

4191
	if (delta > ideal_runtime)
4192
		resched_curr(rq_of(cfs_rq));
4193 4194
}

4195
static void
4196
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4197
{
4198 4199 4200 4201 4202 4203 4204
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
4205
		update_stats_wait_end(cfs_rq, se);
4206
		__dequeue_entity(cfs_rq, se);
4207
		update_load_avg(cfs_rq, se, UPDATE_TG);
4208 4209
	}

4210
	update_stats_curr_start(cfs_rq, se);
4211
	cfs_rq->curr = se;
4212

I
Ingo Molnar 已提交
4213 4214 4215 4216 4217
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
4218
	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4219 4220 4221
		schedstat_set(se->statistics.slice_max,
			max((u64)schedstat_val(se->statistics.slice_max),
			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
I
Ingo Molnar 已提交
4222
	}
4223

4224
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4225 4226
}

4227 4228 4229
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

4230 4231 4232 4233 4234 4235 4236
/*
 * Pick the next process, keeping these things in mind, in this order:
 * 1) keep things fair between processes/task groups
 * 2) pick the "next" process, since someone really wants that to run
 * 3) pick the "last" process, for cache locality
 * 4) do not run the "skip" process, if something else is available
 */
4237 4238
static struct sched_entity *
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4239
{
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	struct sched_entity *left = __pick_first_entity(cfs_rq);
	struct sched_entity *se;

	/*
	 * If curr is set we have to see if its left of the leftmost entity
	 * still in the tree, provided there was anything in the tree at all.
	 */
	if (!left || (curr && entity_before(curr, left)))
		left = curr;

	se = left; /* ideally we run the leftmost entity */
4251

4252 4253 4254 4255 4256
	/*
	 * Avoid running the skip buddy, if running something else can
	 * be done without getting too unfair.
	 */
	if (cfs_rq->skip == se) {
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
		struct sched_entity *second;

		if (se == curr) {
			second = __pick_first_entity(cfs_rq);
		} else {
			second = __pick_next_entity(se);
			if (!second || (curr && entity_before(curr, second)))
				second = curr;
		}

4267 4268 4269
		if (second && wakeup_preempt_entity(second, left) < 1)
			se = second;
	}
4270

4271 4272 4273 4274 4275 4276
	/*
	 * Prefer last buddy, try to return the CPU to a preempted task.
	 */
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
		se = cfs_rq->last;

4277 4278 4279 4280 4281 4282
	/*
	 * Someone really wants this to run. If it's not unfair, run it.
	 */
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
		se = cfs_rq->next;

4283
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
4284 4285

	return se;
4286 4287
}

4288
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4289

4290
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4291 4292 4293 4294 4295 4296
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
4297
		update_curr(cfs_rq);
4298

4299 4300 4301
	/* throttle cfs_rqs exceeding runtime */
	check_cfs_rq_runtime(cfs_rq);

4302
	check_spread(cfs_rq, prev);
4303

4304
	if (prev->on_rq) {
4305
		update_stats_wait_start(cfs_rq, prev);
4306 4307
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
4308
		/* in !on_rq case, update occurred at dequeue */
4309
		update_load_avg(cfs_rq, prev, 0);
4310
	}
4311
	cfs_rq->curr = NULL;
4312 4313
}

P
Peter Zijlstra 已提交
4314 4315
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4316 4317
{
	/*
4318
	 * Update run-time statistics of the 'current'.
4319
	 */
4320
	update_curr(cfs_rq);
4321

4322 4323 4324
	/*
	 * Ensure that runnable average is periodically updated.
	 */
4325
	update_load_avg(cfs_rq, curr, UPDATE_TG);
4326
	update_cfs_group(curr);
4327

P
Peter Zijlstra 已提交
4328 4329 4330 4331 4332
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
4333
	if (queued) {
4334
		resched_curr(rq_of(cfs_rq));
4335 4336
		return;
	}
P
Peter Zijlstra 已提交
4337 4338 4339 4340 4341 4342 4343 4344
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

Y
Yong Zhang 已提交
4345
	if (cfs_rq->nr_running > 1)
I
Ingo Molnar 已提交
4346
		check_preempt_tick(cfs_rq, curr);
4347 4348
}

4349 4350 4351 4352 4353 4354

/**************************************************
 * CFS bandwidth control machinery
 */

#ifdef CONFIG_CFS_BANDWIDTH
4355 4356

#ifdef HAVE_JUMP_LABEL
4357
static struct static_key __cfs_bandwidth_used;
4358 4359 4360

static inline bool cfs_bandwidth_used(void)
{
4361
	return static_key_false(&__cfs_bandwidth_used);
4362 4363
}

4364
void cfs_bandwidth_usage_inc(void)
4365
{
4366 4367 4368 4369 4370 4371
	static_key_slow_inc(&__cfs_bandwidth_used);
}

void cfs_bandwidth_usage_dec(void)
{
	static_key_slow_dec(&__cfs_bandwidth_used);
4372 4373 4374 4375 4376 4377 4378
}
#else /* HAVE_JUMP_LABEL */
static bool cfs_bandwidth_used(void)
{
	return true;
}

4379 4380
void cfs_bandwidth_usage_inc(void) {}
void cfs_bandwidth_usage_dec(void) {}
4381 4382
#endif /* HAVE_JUMP_LABEL */

4383 4384 4385 4386 4387 4388 4389 4390
/*
 * default period for cfs group bandwidth.
 * default: 0.1s, units: nanoseconds
 */
static inline u64 default_cfs_period(void)
{
	return 100000000ULL;
}
4391 4392 4393 4394 4395 4396

static inline u64 sched_cfs_bandwidth_slice(void)
{
	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
}

P
Paul Turner 已提交
4397 4398 4399 4400 4401 4402 4403
/*
 * Replenish runtime according to assigned quota and update expiration time.
 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
 * additional synchronization around rq->lock.
 *
 * requires cfs_b->lock
 */
4404
void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
P
Paul Turner 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
{
	u64 now;

	if (cfs_b->quota == RUNTIME_INF)
		return;

	now = sched_clock_cpu(smp_processor_id());
	cfs_b->runtime = cfs_b->quota;
	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
}

4416 4417 4418 4419 4420
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return &tg->cfs_bandwidth;
}

4421 4422 4423 4424
/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
	if (unlikely(cfs_rq->throttle_count))
4425
		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4426

4427
	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4428 4429
}

4430 4431
/* returns 0 on failure to allocate runtime */
static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4432 4433 4434
{
	struct task_group *tg = cfs_rq->tg;
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
P
Paul Turner 已提交
4435
	u64 amount = 0, min_amount, expires;
4436 4437 4438 4439 4440 4441 4442

	/* note: this is a positive sum as runtime_remaining <= 0 */
	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota == RUNTIME_INF)
		amount = min_amount;
4443
	else {
P
Peter Zijlstra 已提交
4444
		start_cfs_bandwidth(cfs_b);
4445 4446 4447 4448 4449 4450

		if (cfs_b->runtime > 0) {
			amount = min(cfs_b->runtime, min_amount);
			cfs_b->runtime -= amount;
			cfs_b->idle = 0;
		}
4451
	}
P
Paul Turner 已提交
4452
	expires = cfs_b->runtime_expires;
4453 4454 4455
	raw_spin_unlock(&cfs_b->lock);

	cfs_rq->runtime_remaining += amount;
P
Paul Turner 已提交
4456 4457 4458 4459 4460 4461 4462
	/*
	 * we may have advanced our local expiration to account for allowed
	 * spread between our sched_clock and the one on which runtime was
	 * issued.
	 */
	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
		cfs_rq->runtime_expires = expires;
4463 4464

	return cfs_rq->runtime_remaining > 0;
4465 4466
}

P
Paul Turner 已提交
4467 4468 4469 4470 4471
/*
 * Note: This depends on the synchronization provided by sched_clock and the
 * fact that rq->clock snapshots this value.
 */
static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4472
{
P
Paul Turner 已提交
4473 4474 4475
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);

	/* if the deadline is ahead of our clock, nothing to do */
4476
	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4477 4478
		return;

P
Paul Turner 已提交
4479 4480 4481 4482 4483 4484 4485 4486 4487
	if (cfs_rq->runtime_remaining < 0)
		return;

	/*
	 * If the local deadline has passed we have to consider the
	 * possibility that our sched_clock is 'fast' and the global deadline
	 * has not truly expired.
	 *
	 * Fortunately we can check determine whether this the case by checking
4488 4489 4490
	 * whether the global deadline has advanced. It is valid to compare
	 * cfs_b->runtime_expires without any locks since we only care about
	 * exact equality, so a partial write will still work.
P
Paul Turner 已提交
4491 4492
	 */

4493
	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
P
Paul Turner 已提交
4494 4495 4496 4497 4498 4499 4500 4501
		/* extend local deadline, drift is bounded above by 2 ticks */
		cfs_rq->runtime_expires += TICK_NSEC;
	} else {
		/* global deadline is ahead, expiration has passed */
		cfs_rq->runtime_remaining = 0;
	}
}

4502
static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
P
Paul Turner 已提交
4503 4504
{
	/* dock delta_exec before expiring quota (as it could span periods) */
4505
	cfs_rq->runtime_remaining -= delta_exec;
P
Paul Turner 已提交
4506 4507 4508
	expire_cfs_rq_runtime(cfs_rq);

	if (likely(cfs_rq->runtime_remaining > 0))
4509 4510
		return;

4511 4512 4513 4514 4515
	/*
	 * if we're unable to extend our runtime we resched so that the active
	 * hierarchy can be throttled
	 */
	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4516
		resched_curr(rq_of(cfs_rq));
4517 4518
}

4519
static __always_inline
4520
void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4521
{
4522
	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4523 4524 4525 4526 4527
		return;

	__account_cfs_rq_runtime(cfs_rq, delta_exec);
}

4528 4529
static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
4530
	return cfs_bandwidth_used() && cfs_rq->throttled;
4531 4532
}

4533 4534 4535
/* check whether cfs_rq, or any parent, is throttled */
static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
4536
	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
}

/*
 * Ensure that neither of the group entities corresponding to src_cpu or
 * dest_cpu are members of a throttled hierarchy when performing group
 * load-balance operations.
 */
static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;

	src_cfs_rq = tg->cfs_rq[src_cpu];
	dest_cfs_rq = tg->cfs_rq[dest_cpu];

	return throttled_hierarchy(src_cfs_rq) ||
	       throttled_hierarchy(dest_cfs_rq);
}

/* updated child weight may affect parent so we have to do this bottom up */
static int tg_unthrottle_up(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

	cfs_rq->throttle_count--;
	if (!cfs_rq->throttle_count) {
4564
		/* adjust cfs_rq_clock_task() */
4565
		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4566
					     cfs_rq->throttled_clock_task;
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	}

	return 0;
}

static int tg_throttle_down(struct task_group *tg, void *data)
{
	struct rq *rq = data;
	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];

4577 4578
	/* group is entering throttled state, stop time */
	if (!cfs_rq->throttle_count)
4579
		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4580 4581 4582 4583 4584
	cfs_rq->throttle_count++;

	return 0;
}

4585
static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4586 4587 4588 4589 4590
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	long task_delta, dequeue = 1;
P
Peter Zijlstra 已提交
4591
	bool empty;
4592 4593 4594

	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];

4595
	/* freeze hierarchy runnable averages while throttled */
4596 4597 4598
	rcu_read_lock();
	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
	rcu_read_unlock();
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
		/* throttled entity or throttle-on-deactivate */
		if (!se->on_rq)
			break;

		if (dequeue)
			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
		qcfs_rq->h_nr_running -= task_delta;

		if (qcfs_rq->load.weight)
			dequeue = 0;
	}

	if (!se)
4616
		sub_nr_running(rq, task_delta);
4617 4618

	cfs_rq->throttled = 1;
4619
	cfs_rq->throttled_clock = rq_clock(rq);
4620
	raw_spin_lock(&cfs_b->lock);
4621
	empty = list_empty(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4622

4623 4624 4625 4626 4627
	/*
	 * Add to the _head_ of the list, so that an already-started
	 * distribute_cfs_runtime will not see us
	 */
	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
4628 4629 4630 4631 4632 4633 4634 4635

	/*
	 * If we're the first throttled task, make sure the bandwidth
	 * timer is running.
	 */
	if (empty)
		start_cfs_bandwidth(cfs_b);

4636 4637 4638
	raw_spin_unlock(&cfs_b->lock);
}

4639
void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4640 4641 4642 4643 4644 4645 4646
{
	struct rq *rq = rq_of(cfs_rq);
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	struct sched_entity *se;
	int enqueue = 1;
	long task_delta;

4647
	se = cfs_rq->tg->se[cpu_of(rq)];
4648 4649

	cfs_rq->throttled = 0;
4650 4651 4652

	update_rq_clock(rq);

4653
	raw_spin_lock(&cfs_b->lock);
4654
	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4655 4656 4657
	list_del_rcu(&cfs_rq->throttled_list);
	raw_spin_unlock(&cfs_b->lock);

4658 4659 4660
	/* update hierarchical throttle state */
	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
	if (!cfs_rq->load.weight)
		return;

	task_delta = cfs_rq->h_nr_running;
	for_each_sched_entity(se) {
		if (se->on_rq)
			enqueue = 0;

		cfs_rq = cfs_rq_of(se);
		if (enqueue)
			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
		cfs_rq->h_nr_running += task_delta;

		if (cfs_rq_throttled(cfs_rq))
			break;
	}

	if (!se)
4679
		add_nr_running(rq, task_delta);
4680 4681 4682

	/* determine whether we need to wake up potentially idle cpu */
	if (rq->curr == rq->idle && rq->cfs.nr_running)
4683
		resched_curr(rq);
4684 4685 4686 4687 4688 4689
}

static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
		u64 remaining, u64 expires)
{
	struct cfs_rq *cfs_rq;
4690 4691
	u64 runtime;
	u64 starting_runtime = remaining;
4692 4693 4694 4695 4696

	rcu_read_lock();
	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
				throttled_list) {
		struct rq *rq = rq_of(cfs_rq);
4697
		struct rq_flags rf;
4698

4699
		rq_lock(rq, &rf);
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
		if (!cfs_rq_throttled(cfs_rq))
			goto next;

		runtime = -cfs_rq->runtime_remaining + 1;
		if (runtime > remaining)
			runtime = remaining;
		remaining -= runtime;

		cfs_rq->runtime_remaining += runtime;
		cfs_rq->runtime_expires = expires;

		/* we check whether we're throttled above */
		if (cfs_rq->runtime_remaining > 0)
			unthrottle_cfs_rq(cfs_rq);

next:
4716
		rq_unlock(rq, &rf);
4717 4718 4719 4720 4721 4722

		if (!remaining)
			break;
	}
	rcu_read_unlock();

4723
	return starting_runtime - remaining;
4724 4725
}

4726 4727 4728 4729 4730 4731 4732 4733
/*
 * Responsible for refilling a task_group's bandwidth and unthrottling its
 * cfs_rqs as appropriate. If there has been no activity within the last
 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
 * used to track this state.
 */
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
4734
	u64 runtime, runtime_expires;
4735
	int throttled;
4736 4737 4738

	/* no need to continue the timer with no bandwidth constraint */
	if (cfs_b->quota == RUNTIME_INF)
4739
		goto out_deactivate;
4740

4741
	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4742
	cfs_b->nr_periods += overrun;
4743

4744 4745 4746 4747 4748 4749
	/*
	 * idle depends on !throttled (for the case of a large deficit), and if
	 * we're going inactive then everything else can be deferred
	 */
	if (cfs_b->idle && !throttled)
		goto out_deactivate;
P
Paul Turner 已提交
4750 4751 4752

	__refill_cfs_bandwidth_runtime(cfs_b);

4753 4754 4755
	if (!throttled) {
		/* mark as potentially idle for the upcoming period */
		cfs_b->idle = 1;
4756
		return 0;
4757 4758
	}

4759 4760 4761
	/* account preceding periods in which throttling occurred */
	cfs_b->nr_throttled += overrun;

4762 4763 4764
	runtime_expires = cfs_b->runtime_expires;

	/*
4765 4766 4767 4768 4769
	 * This check is repeated as we are holding onto the new bandwidth while
	 * we unthrottle. This can potentially race with an unthrottled group
	 * trying to acquire new bandwidth from the global pool. This can result
	 * in us over-using our runtime if it is all used during this loop, but
	 * only by limited amounts in that extreme case.
4770
	 */
4771 4772
	while (throttled && cfs_b->runtime > 0) {
		runtime = cfs_b->runtime;
4773 4774 4775 4776 4777 4778 4779
		raw_spin_unlock(&cfs_b->lock);
		/* we can't nest cfs_b->lock while distributing bandwidth */
		runtime = distribute_cfs_runtime(cfs_b, runtime,
						 runtime_expires);
		raw_spin_lock(&cfs_b->lock);

		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4780 4781

		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4782
	}
4783

4784 4785 4786 4787 4788 4789 4790
	/*
	 * While we are ensured activity in the period following an
	 * unthrottle, this also covers the case in which the new bandwidth is
	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
	 * timer to remain active while there are any throttled entities.)
	 */
	cfs_b->idle = 0;
4791

4792 4793 4794 4795
	return 0;

out_deactivate:
	return 1;
4796
}
4797

4798 4799 4800 4801 4802 4803 4804
/* a cfs_rq won't donate quota below this amount */
static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
/* minimum remaining period time to redistribute slack quota */
static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
/* how long we wait to gather additional slack before distributing */
static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;

4805 4806 4807 4808
/*
 * Are we near the end of the current quota period?
 *
 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4809
 * hrtimer base being cleared by hrtimer_start. In the case of
4810 4811
 * migrate_hrtimers, base is never cleared, so we are fine.
 */
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
{
	struct hrtimer *refresh_timer = &cfs_b->period_timer;
	u64 remaining;

	/* if the call-back is running a quota refresh is already occurring */
	if (hrtimer_callback_running(refresh_timer))
		return 1;

	/* is a quota refresh about to occur? */
	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
	if (remaining < min_expire)
		return 1;

	return 0;
}

static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
{
	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;

	/* if there's a quota refresh soon don't bother with slack */
	if (runtime_refresh_within(cfs_b, min_left))
		return;

P
Peter Zijlstra 已提交
4837 4838 4839
	hrtimer_start(&cfs_b->slack_timer,
			ns_to_ktime(cfs_bandwidth_slack_period),
			HRTIMER_MODE_REL);
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
}

/* we know any runtime found here is valid as update_curr() precedes return */
static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;

	if (slack_runtime <= 0)
		return;

	raw_spin_lock(&cfs_b->lock);
	if (cfs_b->quota != RUNTIME_INF &&
	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
		cfs_b->runtime += slack_runtime;

		/* we are under rq->lock, defer unthrottling using a timer */
		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
		    !list_empty(&cfs_b->throttled_cfs_rq))
			start_cfs_slack_bandwidth(cfs_b);
	}
	raw_spin_unlock(&cfs_b->lock);

	/* even if it's not valid for return we don't want to try again */
	cfs_rq->runtime_remaining -= slack_runtime;
}

static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
4869 4870 4871
	if (!cfs_bandwidth_used())
		return;

4872
	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
		return;

	__return_cfs_rq_runtime(cfs_rq);
}

/*
 * This is done with a timer (instead of inline with bandwidth return) since
 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
 */
static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
{
	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
	u64 expires;

	/* confirm we're still not at a refresh boundary */
4888 4889 4890
	raw_spin_lock(&cfs_b->lock);
	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
		raw_spin_unlock(&cfs_b->lock);
4891
		return;
4892
	}
4893

4894
	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4895
		runtime = cfs_b->runtime;
4896

4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
	expires = cfs_b->runtime_expires;
	raw_spin_unlock(&cfs_b->lock);

	if (!runtime)
		return;

	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);

	raw_spin_lock(&cfs_b->lock);
	if (expires == cfs_b->runtime_expires)
4907
		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4908 4909 4910
	raw_spin_unlock(&cfs_b->lock);
}

4911 4912 4913 4914 4915 4916 4917
/*
 * When a group wakes up we want to make sure that its quota is not already
 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
 * runtime as update_curr() throttling can not not trigger until it's on-rq.
 */
static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
{
4918 4919 4920
	if (!cfs_bandwidth_used())
		return;

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	/* an active group must be handled by the update_curr()->put() path */
	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
		return;

	/* ensure the group is not already throttled */
	if (cfs_rq_throttled(cfs_rq))
		return;

	/* update runtime allocation */
	account_cfs_rq_runtime(cfs_rq, 0);
	if (cfs_rq->runtime_remaining <= 0)
		throttle_cfs_rq(cfs_rq);
}

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
static void sync_throttle(struct task_group *tg, int cpu)
{
	struct cfs_rq *pcfs_rq, *cfs_rq;

	if (!cfs_bandwidth_used())
		return;

	if (!tg->parent)
		return;

	cfs_rq = tg->cfs_rq[cpu];
	pcfs_rq = tg->parent->cfs_rq[cpu];

	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4949
	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4950 4951
}

4952
/* conditionally throttle active cfs_rq's from put_prev_entity() */
4953
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4954
{
4955
	if (!cfs_bandwidth_used())
4956
		return false;
4957

4958
	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4959
		return false;
4960 4961 4962 4963 4964 4965

	/*
	 * it's possible for a throttled entity to be forced into a running
	 * state (e.g. set_curr_task), in this case we're finished.
	 */
	if (cfs_rq_throttled(cfs_rq))
4966
		return true;
4967 4968

	throttle_cfs_rq(cfs_rq);
4969
	return true;
4970
}
4971 4972 4973 4974 4975

static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, slack_timer);
P
Peter Zijlstra 已提交
4976

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	do_sched_cfs_slack_timer(cfs_b);

	return HRTIMER_NORESTART;
}

static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
{
	struct cfs_bandwidth *cfs_b =
		container_of(timer, struct cfs_bandwidth, period_timer);
	int overrun;
	int idle = 0;

4989
	raw_spin_lock(&cfs_b->lock);
4990
	for (;;) {
P
Peter Zijlstra 已提交
4991
		overrun = hrtimer_forward_now(timer, cfs_b->period);
4992 4993 4994 4995 4996
		if (!overrun)
			break;

		idle = do_sched_cfs_period_timer(cfs_b, overrun);
	}
P
Peter Zijlstra 已提交
4997 4998
	if (idle)
		cfs_b->period_active = 0;
4999
	raw_spin_unlock(&cfs_b->lock);
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
	raw_spin_lock_init(&cfs_b->lock);
	cfs_b->runtime = 0;
	cfs_b->quota = RUNTIME_INF;
	cfs_b->period = ns_to_ktime(default_cfs_period());

	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
P
Peter Zijlstra 已提交
5012
	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023
	cfs_b->period_timer.function = sched_cfs_period_timer;
	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	cfs_b->slack_timer.function = sched_cfs_slack_timer;
}

static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
{
	cfs_rq->runtime_enabled = 0;
	INIT_LIST_HEAD(&cfs_rq->throttled_list);
}

P
Peter Zijlstra 已提交
5024
void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5025
{
P
Peter Zijlstra 已提交
5026
	lockdep_assert_held(&cfs_b->lock);
5027

P
Peter Zijlstra 已提交
5028 5029 5030 5031 5032
	if (!cfs_b->period_active) {
		cfs_b->period_active = 1;
		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
	}
5033 5034 5035 5036
}

static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
{
5037 5038 5039 5040
	/* init_cfs_bandwidth() was not called */
	if (!cfs_b->throttled_cfs_rq.next)
		return;

5041 5042 5043 5044
	hrtimer_cancel(&cfs_b->period_timer);
	hrtimer_cancel(&cfs_b->slack_timer);
}

5045 5046 5047 5048 5049 5050 5051 5052
/*
 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
 *
 * The race is harmless, since modifying bandwidth settings of unhooked group
 * bits doesn't do much.
 */

/* cpu online calback */
5053 5054
static void __maybe_unused update_runtime_enabled(struct rq *rq)
{
5055
	struct task_group *tg;
5056

5057 5058 5059 5060 5061 5062
	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5063 5064 5065 5066 5067

		raw_spin_lock(&cfs_b->lock);
		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
		raw_spin_unlock(&cfs_b->lock);
	}
5068
	rcu_read_unlock();
5069 5070
}

5071
/* cpu offline callback */
5072
static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5073
{
5074 5075 5076 5077 5078 5079 5080
	struct task_group *tg;

	lockdep_assert_held(&rq->lock);

	rcu_read_lock();
	list_for_each_entry_rcu(tg, &task_groups, list) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5081 5082 5083 5084 5085 5086 5087 5088

		if (!cfs_rq->runtime_enabled)
			continue;

		/*
		 * clock_task is not advancing so we just need to make sure
		 * there's some valid quota amount
		 */
5089
		cfs_rq->runtime_remaining = 1;
5090 5091 5092 5093 5094 5095
		/*
		 * Offline rq is schedulable till cpu is completely disabled
		 * in take_cpu_down(), so we prevent new cfs throttling here.
		 */
		cfs_rq->runtime_enabled = 0;

5096 5097 5098
		if (cfs_rq_throttled(cfs_rq))
			unthrottle_cfs_rq(cfs_rq);
	}
5099
	rcu_read_unlock();
5100 5101 5102
}

#else /* CONFIG_CFS_BANDWIDTH */
5103 5104
static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
{
5105
	return rq_clock_task(rq_of(cfs_rq));
5106 5107
}

5108
static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5109
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5110
static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5111
static inline void sync_throttle(struct task_group *tg, int cpu) {}
5112
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5113 5114 5115 5116 5117

static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
{
	return 0;
}
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128

static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
{
	return 0;
}

static inline int throttled_lb_pair(struct task_group *tg,
				    int src_cpu, int dest_cpu)
{
	return 0;
}
5129 5130 5131 5132 5133

void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}

#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5134 5135
#endif

5136 5137 5138 5139 5140
static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
{
	return NULL;
}
static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5141
static inline void update_runtime_enabled(struct rq *rq) {}
5142
static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5143 5144 5145

#endif /* CONFIG_CFS_BANDWIDTH */

5146 5147 5148 5149
/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
5150 5151 5152 5153 5154 5155
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

5156
	SCHED_WARN_ON(task_rq(p) != rq);
P
Peter Zijlstra 已提交
5157

5158
	if (rq->cfs.h_nr_running > 1) {
P
Peter Zijlstra 已提交
5159 5160 5161 5162 5163 5164
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
5165
				resched_curr(rq);
P
Peter Zijlstra 已提交
5166 5167
			return;
		}
5168
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
5169 5170
	}
}
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

5181
	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5182 5183 5184 5185 5186
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
5187
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
5188 5189 5190 5191
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
5192 5193 5194 5195

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
5196 5197
#endif

5198 5199 5200 5201 5202
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
5203
static void
5204
enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5205 5206
{
	struct cfs_rq *cfs_rq;
5207
	struct sched_entity *se = &p->se;
5208

5209 5210 5211 5212 5213 5214
	/*
	 * If in_iowait is set, the code below may not trigger any cpufreq
	 * utilization updates, so do it here explicitly with the IOWAIT flag
	 * passed.
	 */
	if (p->in_iowait)
5215
		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5216

5217
	for_each_sched_entity(se) {
5218
		if (se->on_rq)
5219 5220
			break;
		cfs_rq = cfs_rq_of(se);
5221
		enqueue_entity(cfs_rq, se, flags);
5222 5223 5224 5225 5226 5227

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running increment below.
5228
		 */
5229 5230
		if (cfs_rq_throttled(cfs_rq))
			break;
5231
		cfs_rq->h_nr_running++;
5232

5233
		flags = ENQUEUE_WAKEUP;
5234
	}
P
Peter Zijlstra 已提交
5235

P
Peter Zijlstra 已提交
5236
	for_each_sched_entity(se) {
5237
		cfs_rq = cfs_rq_of(se);
5238
		cfs_rq->h_nr_running++;
P
Peter Zijlstra 已提交
5239

5240 5241 5242
		if (cfs_rq_throttled(cfs_rq))
			break;

5243
		update_load_avg(cfs_rq, se, UPDATE_TG);
5244
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5245 5246
	}

Y
Yuyang Du 已提交
5247
	if (!se)
5248
		add_nr_running(rq, 1);
Y
Yuyang Du 已提交
5249

5250
	hrtick_update(rq);
5251 5252
}

5253 5254
static void set_next_buddy(struct sched_entity *se);

5255 5256 5257 5258 5259
/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
5260
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5261 5262
{
	struct cfs_rq *cfs_rq;
5263
	struct sched_entity *se = &p->se;
5264
	int task_sleep = flags & DEQUEUE_SLEEP;
5265 5266 5267

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
5268
		dequeue_entity(cfs_rq, se, flags);
5269 5270 5271 5272 5273 5274 5275 5276 5277

		/*
		 * end evaluation on encountering a throttled cfs_rq
		 *
		 * note: in the case of encountering a throttled cfs_rq we will
		 * post the final h_nr_running decrement below.
		*/
		if (cfs_rq_throttled(cfs_rq))
			break;
5278
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5279

5280
		/* Don't dequeue parent if it has other entities besides us */
5281
		if (cfs_rq->load.weight) {
5282 5283
			/* Avoid re-evaluating load for this entity: */
			se = parent_entity(se);
5284 5285 5286 5287
			/*
			 * Bias pick_next to pick a task from this cfs_rq, as
			 * p is sleeping when it is within its sched_slice.
			 */
5288 5289
			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
				set_next_buddy(se);
5290
			break;
5291
		}
5292
		flags |= DEQUEUE_SLEEP;
5293
	}
P
Peter Zijlstra 已提交
5294

P
Peter Zijlstra 已提交
5295
	for_each_sched_entity(se) {
5296
		cfs_rq = cfs_rq_of(se);
5297
		cfs_rq->h_nr_running--;
P
Peter Zijlstra 已提交
5298

5299 5300 5301
		if (cfs_rq_throttled(cfs_rq))
			break;

5302
		update_load_avg(cfs_rq, se, UPDATE_TG);
5303
		update_cfs_group(se);
P
Peter Zijlstra 已提交
5304 5305
	}

Y
Yuyang Du 已提交
5306
	if (!se)
5307
		sub_nr_running(rq, 1);
Y
Yuyang Du 已提交
5308

5309
	hrtick_update(rq);
5310 5311
}

5312
#ifdef CONFIG_SMP
5313 5314 5315 5316 5317

/* Working cpumask for: load_balance, load_balance_newidle. */
DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);

5318
#ifdef CONFIG_NO_HZ_COMMON
5319 5320 5321 5322 5323
/*
 * per rq 'load' arrray crap; XXX kill this.
 */

/*
5324
 * The exact cpuload calculated at every tick would be:
5325
 *
5326 5327 5328 5329 5330 5331 5332
 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
 *
 * If a cpu misses updates for n ticks (as it was idle) and update gets
 * called on the n+1-th tick when cpu may be busy, then we have:
 *
 *   load_n   = (1 - 1/2^i)^n * load_0
 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5333 5334 5335
 *
 * decay_load_missed() below does efficient calculation of
 *
5336 5337 5338 5339 5340 5341
 *   load' = (1 - 1/2^i)^n * load
 *
 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
 * This allows us to precompute the above in said factors, thereby allowing the
 * reduction of an arbitrary n in O(log_2 n) steps. (See also
 * fixed_power_int())
5342
 *
5343
 * The calculation is approximated on a 128 point scale.
5344 5345
 */
#define DEGRADE_SHIFT		7
5346 5347 5348 5349 5350 5351 5352 5353 5354

static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
	{   0,   0,  0,  0,  0,  0, 0, 0 },
	{  64,  32,  8,  0,  0,  0, 0, 0 },
	{  96,  72, 40, 12,  1,  0, 0, 0 },
	{ 112,  98, 75, 43, 15,  1, 0, 0 },
	{ 120, 112, 98, 76, 45, 16, 2, 0 }
};
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383

/*
 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
 * would be when CPU is idle and so we just decay the old load without
 * adding any new load.
 */
static unsigned long
decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
{
	int j = 0;

	if (!missed_updates)
		return load;

	if (missed_updates >= degrade_zero_ticks[idx])
		return 0;

	if (idx == 1)
		return load >> missed_updates;

	while (missed_updates) {
		if (missed_updates % 2)
			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;

		missed_updates >>= 1;
		j++;
	}
	return load;
}
5384
#endif /* CONFIG_NO_HZ_COMMON */
5385

5386
/**
5387
 * __cpu_load_update - update the rq->cpu_load[] statistics
5388 5389 5390 5391
 * @this_rq: The rq to update statistics for
 * @this_load: The current load
 * @pending_updates: The number of missed updates
 *
5392
 * Update rq->cpu_load[] statistics. This function is usually called every
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
 * scheduler tick (TICK_NSEC).
 *
 * This function computes a decaying average:
 *
 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
 *
 * Because of NOHZ it might not get called on every tick which gives need for
 * the @pending_updates argument.
 *
 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
 *             = A * (A * load[i]_n-2 + B) + B
 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
 *
 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
 * any change in load would have resulted in the tick being turned back on.
 *
 * For regular NOHZ, this reduces to:
 *
 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
 *
 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5419
 * term.
5420
 */
5421 5422
static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
			    unsigned long pending_updates)
5423
{
5424
	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

5436
		old_load = this_rq->cpu_load[i];
5437
#ifdef CONFIG_NO_HZ_COMMON
5438
		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5439 5440 5441 5442 5443 5444 5445 5446 5447
		if (tickless_load) {
			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
			/*
			 * old_load can never be a negative value because a
			 * decayed tickless_load cannot be greater than the
			 * original tickless_load.
			 */
			old_load += tickless_load;
		}
5448
#endif
5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463
		new_load = this_load;
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale - 1;

		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
	}

	sched_avg_update(this_rq);
}

5464
/* Used instead of source_load when we know the type == 0 */
5465
static unsigned long weighted_cpuload(struct rq *rq)
5466
{
5467
	return cfs_rq_runnable_load_avg(&rq->cfs);
5468 5469
}

5470
#ifdef CONFIG_NO_HZ_COMMON
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
/*
 * There is no sane way to deal with nohz on smp when using jiffies because the
 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
 *
 * Therefore we need to avoid the delta approach from the regular tick when
 * possible since that would seriously skew the load calculation. This is why we
 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
 * loop exit, nohz_idle_balance, nohz full exit...)
 *
 * This means we might still be one tick off for nohz periods.
 */

static void cpu_load_update_nohz(struct rq *this_rq,
				 unsigned long curr_jiffies,
				 unsigned long load)
5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
{
	unsigned long pending_updates;

	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
	if (pending_updates) {
		this_rq->last_load_update_tick = curr_jiffies;
		/*
		 * In the regular NOHZ case, we were idle, this means load 0.
		 * In the NOHZ_FULL case, we were non-idle, we should consider
		 * its weighted load.
		 */
5499
		cpu_load_update(this_rq, load, pending_updates);
5500 5501 5502
	}
}

5503 5504 5505 5506
/*
 * Called from nohz_idle_balance() to update the load ratings before doing the
 * idle balance.
 */
5507
static void cpu_load_update_idle(struct rq *this_rq)
5508 5509 5510 5511
{
	/*
	 * bail if there's load or we're actually up-to-date.
	 */
5512
	if (weighted_cpuload(this_rq))
5513 5514
		return;

5515
	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5516 5517 5518
}

/*
5519 5520 5521 5522
 * Record CPU load on nohz entry so we know the tickless load to account
 * on nohz exit. cpu_load[0] happens then to be updated more frequently
 * than other cpu_load[idx] but it should be fine as cpu_load readers
 * shouldn't rely into synchronized cpu_load[*] updates.
5523
 */
5524
void cpu_load_update_nohz_start(void)
5525 5526
{
	struct rq *this_rq = this_rq();
5527 5528 5529 5530 5531 5532

	/*
	 * This is all lockless but should be fine. If weighted_cpuload changes
	 * concurrently we'll exit nohz. And cpu_load write can race with
	 * cpu_load_update_idle() but both updater would be writing the same.
	 */
5533
	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5534 5535 5536 5537 5538 5539 5540
}

/*
 * Account the tickless load in the end of a nohz frame.
 */
void cpu_load_update_nohz_stop(void)
{
5541
	unsigned long curr_jiffies = READ_ONCE(jiffies);
5542 5543
	struct rq *this_rq = this_rq();
	unsigned long load;
5544
	struct rq_flags rf;
5545 5546 5547 5548

	if (curr_jiffies == this_rq->last_load_update_tick)
		return;

5549
	load = weighted_cpuload(this_rq);
5550
	rq_lock(this_rq, &rf);
5551
	update_rq_clock(this_rq);
5552
	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5553
	rq_unlock(this_rq, &rf);
5554
}
5555 5556 5557 5558 5559 5560 5561 5562
#else /* !CONFIG_NO_HZ_COMMON */
static inline void cpu_load_update_nohz(struct rq *this_rq,
					unsigned long curr_jiffies,
					unsigned long load) { }
#endif /* CONFIG_NO_HZ_COMMON */

static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
{
5563
#ifdef CONFIG_NO_HZ_COMMON
5564 5565
	/* See the mess around cpu_load_update_nohz(). */
	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5566
#endif
5567 5568
	cpu_load_update(this_rq, load, 1);
}
5569 5570 5571 5572

/*
 * Called from scheduler_tick()
 */
5573
void cpu_load_update_active(struct rq *this_rq)
5574
{
5575
	unsigned long load = weighted_cpuload(this_rq);
5576 5577 5578 5579 5580

	if (tick_nohz_tick_stopped())
		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
	else
		cpu_load_update_periodic(this_rq, load);
5581 5582
}

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592
/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5593
	unsigned long total = weighted_cpuload(rq);
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
5608
	unsigned long total = weighted_cpuload(rq);
5609 5610 5611 5612 5613 5614 5615

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

5616
static unsigned long capacity_of(int cpu)
5617
{
5618
	return cpu_rq(cpu)->cpu_capacity;
5619 5620
}

5621 5622 5623 5624 5625
static unsigned long capacity_orig_of(int cpu)
{
	return cpu_rq(cpu)->cpu_capacity_orig;
}

5626 5627 5628
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
5629
	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5630
	unsigned long load_avg = weighted_cpuload(rq);
5631 5632

	if (nr_running)
5633
		return load_avg / nr_running;
5634 5635 5636 5637

	return 0;
}

P
Peter Zijlstra 已提交
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
static void record_wakee(struct task_struct *p)
{
	/*
	 * Only decay a single time; tasks that have less then 1 wakeup per
	 * jiffy will not have built up many flips.
	 */
	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
		current->wakee_flips >>= 1;
		current->wakee_flip_decay_ts = jiffies;
	}

	if (current->last_wakee != p) {
		current->last_wakee = p;
		current->wakee_flips++;
	}
}

M
Mike Galbraith 已提交
5655 5656
/*
 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
P
Peter Zijlstra 已提交
5657
 *
M
Mike Galbraith 已提交
5658
 * A waker of many should wake a different task than the one last awakened
P
Peter Zijlstra 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
 * at a frequency roughly N times higher than one of its wakees.
 *
 * In order to determine whether we should let the load spread vs consolidating
 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
 * partner, and a factor of lls_size higher frequency in the other.
 *
 * With both conditions met, we can be relatively sure that the relationship is
 * non-monogamous, with partner count exceeding socket size.
 *
 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
 * whatever is irrelevant, spread criteria is apparent partner count exceeds
 * socket size.
M
Mike Galbraith 已提交
5671
 */
5672 5673
static int wake_wide(struct task_struct *p)
{
M
Mike Galbraith 已提交
5674 5675
	unsigned int master = current->wakee_flips;
	unsigned int slave = p->wakee_flips;
5676
	int factor = this_cpu_read(sd_llc_size);
5677

M
Mike Galbraith 已提交
5678 5679 5680 5681 5682
	if (master < slave)
		swap(master, slave);
	if (slave < factor || master < slave * factor)
		return 0;
	return 1;
5683 5684
}

5685
/*
5686 5687 5688
 * The purpose of wake_affine() is to quickly determine on which CPU we can run
 * soonest. For the purpose of speed we only consider the waking and previous
 * CPU.
5689
 *
5690 5691
 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
 *			will be) idle.
5692 5693 5694 5695
 *
 * wake_affine_weight() - considers the weight to reflect the average
 *			  scheduling latency of the CPUs. This seems to work
 *			  for the overloaded case.
5696 5697 5698
 */

static bool
5699 5700
wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
		 int this_cpu, int prev_cpu, int sync)
5701
{
5702
	if (idle_cpu(this_cpu))
5703 5704
		return true;

5705 5706
	if (sync && cpu_rq(this_cpu)->nr_running == 1)
		return true;
5707

5708
	return false;
5709 5710 5711
}

static bool
5712 5713
wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
		   int this_cpu, int prev_cpu, int sync)
5714 5715 5716 5717
{
	s64 this_eff_load, prev_eff_load;
	unsigned long task_load;

5718 5719
	this_eff_load = target_load(this_cpu, sd->wake_idx);
	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5720 5721 5722 5723

	if (sync) {
		unsigned long current_load = task_h_load(current);

5724
		if (current_load > this_eff_load)
5725 5726
			return true;

5727
		this_eff_load -= current_load;
5728 5729 5730 5731
	}

	task_load = task_h_load(p);

5732 5733 5734 5735
	this_eff_load += task_load;
	if (sched_feat(WA_BIAS))
		this_eff_load *= 100;
	this_eff_load *= capacity_of(prev_cpu);
5736

5737 5738 5739 5740
	prev_eff_load -= task_load;
	if (sched_feat(WA_BIAS))
		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
	prev_eff_load *= capacity_of(this_cpu);
5741 5742 5743 5744

	return this_eff_load <= prev_eff_load;
}

5745 5746
static int wake_affine(struct sched_domain *sd, struct task_struct *p,
		       int prev_cpu, int sync)
5747
{
5748
	int this_cpu = smp_processor_id();
5749
	bool affine = false;
5750

5751 5752
	if (sched_feat(WA_IDLE) && !affine)
		affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
5753

5754 5755
	if (sched_feat(WA_WEIGHT) && !affine)
		affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5756

5757
	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5758 5759 5760 5761
	if (affine) {
		schedstat_inc(sd->ttwu_move_affine);
		schedstat_inc(p->se.statistics.nr_wakeups_affine);
	}
5762

5763
	return affine;
5764 5765
}

5766 5767
static inline unsigned long task_util(struct task_struct *p);
static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5768 5769 5770

static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
{
5771
	return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5772 5773
}

5774 5775 5776
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
5777 5778
 *
 * Assumes p is allowed on at least one CPU in sd.
5779 5780
 */
static struct sched_group *
P
Peter Zijlstra 已提交
5781
find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5782
		  int this_cpu, int sd_flag)
5783
{
5784
	struct sched_group *idlest = NULL, *group = sd->groups;
5785
	struct sched_group *most_spare_sg = NULL;
5786 5787 5788
	unsigned long min_runnable_load = ULONG_MAX;
	unsigned long this_runnable_load = ULONG_MAX;
	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5789
	unsigned long most_spare = 0, this_spare = 0;
5790
	int load_idx = sd->forkexec_idx;
5791 5792 5793
	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
				(sd->imbalance_pct-100) / 100;
5794

5795 5796 5797
	if (sd_flag & SD_BALANCE_WAKE)
		load_idx = sd->wake_idx;

5798
	do {
5799 5800
		unsigned long load, avg_load, runnable_load;
		unsigned long spare_cap, max_spare_cap;
5801 5802
		int local_group;
		int i;
5803

5804
		/* Skip over this group if it has no CPUs allowed */
5805
		if (!cpumask_intersects(sched_group_span(group),
5806
					&p->cpus_allowed))
5807 5808 5809
			continue;

		local_group = cpumask_test_cpu(this_cpu,
5810
					       sched_group_span(group));
5811

5812 5813 5814 5815
		/*
		 * Tally up the load of all CPUs in the group and find
		 * the group containing the CPU with most spare capacity.
		 */
5816
		avg_load = 0;
5817
		runnable_load = 0;
5818
		max_spare_cap = 0;
5819

5820
		for_each_cpu(i, sched_group_span(group)) {
5821 5822 5823 5824 5825 5826
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

5827 5828 5829
			runnable_load += load;

			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5830 5831 5832 5833 5834

			spare_cap = capacity_spare_wake(i, p);

			if (spare_cap > max_spare_cap)
				max_spare_cap = spare_cap;
5835 5836
		}

5837
		/* Adjust by relative CPU capacity of the group */
5838 5839 5840 5841
		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
					group->sgc->capacity;
5842 5843

		if (local_group) {
5844 5845
			this_runnable_load = runnable_load;
			this_avg_load = avg_load;
5846 5847
			this_spare = max_spare_cap;
		} else {
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
			if (min_runnable_load > (runnable_load + imbalance)) {
				/*
				 * The runnable load is significantly smaller
				 * so we can pick this new cpu
				 */
				min_runnable_load = runnable_load;
				min_avg_load = avg_load;
				idlest = group;
			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
				   (100*min_avg_load > imbalance_scale*avg_load)) {
				/*
				 * The runnable loads are close so take the
				 * blocked load into account through avg_load.
				 */
				min_avg_load = avg_load;
5863 5864 5865 5866 5867 5868 5869
				idlest = group;
			}

			if (most_spare < max_spare_cap) {
				most_spare = max_spare_cap;
				most_spare_sg = group;
			}
5870 5871 5872
		}
	} while (group = group->next, group != sd->groups);

5873 5874 5875 5876 5877 5878
	/*
	 * The cross-over point between using spare capacity or least load
	 * is too conservative for high utilization tasks on partially
	 * utilized systems if we require spare_capacity > task_util(p),
	 * so we allow for some task stuffing by using
	 * spare_capacity > task_util(p)/2.
5879 5880 5881 5882
	 *
	 * Spare capacity can't be used for fork because the utilization has
	 * not been set yet, we must first select a rq to compute the initial
	 * utilization.
5883
	 */
5884 5885 5886
	if (sd_flag & SD_BALANCE_FORK)
		goto skip_spare;

5887
	if (this_spare > task_util(p) / 2 &&
5888
	    imbalance_scale*this_spare > 100*most_spare)
5889
		return NULL;
5890 5891

	if (most_spare > task_util(p) / 2)
5892 5893
		return most_spare_sg;

5894
skip_spare:
5895 5896 5897 5898
	if (!idlest)
		return NULL;

	if (min_runnable_load > (this_runnable_load + imbalance))
5899
		return NULL;
5900 5901 5902 5903 5904

	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
	     (100*this_avg_load < imbalance_scale*min_avg_load))
		return NULL;

5905 5906 5907 5908
	return idlest;
}

/*
5909
 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
5910 5911
 */
static int
5912
find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5913 5914
{
	unsigned long load, min_load = ULONG_MAX;
5915 5916 5917 5918
	unsigned int min_exit_latency = UINT_MAX;
	u64 latest_idle_timestamp = 0;
	int least_loaded_cpu = this_cpu;
	int shallowest_idle_cpu = -1;
5919 5920
	int i;

5921 5922
	/* Check if we have any choice: */
	if (group->group_weight == 1)
5923
		return cpumask_first(sched_group_span(group));
5924

5925
	/* Traverse only the allowed CPUs */
5926
	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
		if (idle_cpu(i)) {
			struct rq *rq = cpu_rq(i);
			struct cpuidle_state *idle = idle_get_state(rq);
			if (idle && idle->exit_latency < min_exit_latency) {
				/*
				 * We give priority to a CPU whose idle state
				 * has the smallest exit latency irrespective
				 * of any idle timestamp.
				 */
				min_exit_latency = idle->exit_latency;
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
				   rq->idle_stamp > latest_idle_timestamp) {
				/*
				 * If equal or no active idle state, then
				 * the most recently idled CPU might have
				 * a warmer cache.
				 */
				latest_idle_timestamp = rq->idle_stamp;
				shallowest_idle_cpu = i;
			}
5949
		} else if (shallowest_idle_cpu == -1) {
5950
			load = weighted_cpuload(cpu_rq(i));
5951
			if (load < min_load) {
5952 5953 5954
				min_load = load;
				least_loaded_cpu = i;
			}
5955 5956 5957
		}
	}

5958
	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5959
}
5960

5961 5962 5963
static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
				  int cpu, int prev_cpu, int sd_flag)
{
5964
	int new_cpu = cpu;
5965

5966 5967 5968
	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
		return prev_cpu;

5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
	while (sd) {
		struct sched_group *group;
		struct sched_domain *tmp;
		int weight;

		if (!(sd->flags & sd_flag)) {
			sd = sd->child;
			continue;
		}

		group = find_idlest_group(sd, p, cpu, sd_flag);
		if (!group) {
			sd = sd->child;
			continue;
		}

		new_cpu = find_idlest_group_cpu(group, p, cpu);
5986
		if (new_cpu == cpu) {
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}

		/* Now try balancing at a lower domain level of new_cpu */
		cpu = new_cpu;
		weight = sd->span_weight;
		sd = NULL;
		for_each_domain(cpu, tmp) {
			if (weight <= tmp->span_weight)
				break;
			if (tmp->flags & sd_flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return new_cpu;
}

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036
#ifdef CONFIG_SCHED_SMT

static inline void set_idle_cores(int cpu, int val)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		WRITE_ONCE(sds->has_idle_cores, val);
}

static inline bool test_idle_cores(int cpu, bool def)
{
	struct sched_domain_shared *sds;

	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds)
		return READ_ONCE(sds->has_idle_cores);

	return def;
}

/*
 * Scans the local SMT mask to see if the entire core is idle, and records this
 * information in sd_llc_shared->has_idle_cores.
 *
 * Since SMT siblings share all cache levels, inspecting this limited remote
 * state should be fairly cheap.
 */
P
Peter Zijlstra 已提交
6037
void __update_idle_core(struct rq *rq)
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
{
	int core = cpu_of(rq);
	int cpu;

	rcu_read_lock();
	if (test_idle_cores(core, true))
		goto unlock;

	for_each_cpu(cpu, cpu_smt_mask(core)) {
		if (cpu == core)
			continue;

		if (!idle_cpu(cpu))
			goto unlock;
	}

	set_idle_cores(core, 1);
unlock:
	rcu_read_unlock();
}

/*
 * Scan the entire LLC domain for idle cores; this dynamically switches off if
 * there are no idle cores left in the system; tracked through
 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
 */
static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6067
	int core, cpu;
6068

P
Peter Zijlstra 已提交
6069 6070 6071
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6072 6073 6074
	if (!test_idle_cores(target, false))
		return -1;

6075
	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6076

6077
	for_each_cpu_wrap(core, cpus, target) {
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104
		bool idle = true;

		for_each_cpu(cpu, cpu_smt_mask(core)) {
			cpumask_clear_cpu(cpu, cpus);
			if (!idle_cpu(cpu))
				idle = false;
		}

		if (idle)
			return core;
	}

	/*
	 * Failed to find an idle core; stop looking for one.
	 */
	set_idle_cores(target, 0);

	return -1;
}

/*
 * Scan the local SMT mask for idle CPUs.
 */
static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	int cpu;

P
Peter Zijlstra 已提交
6105 6106 6107
	if (!static_branch_likely(&sched_smt_present))
		return -1;

6108
	for_each_cpu(cpu, cpu_smt_mask(target)) {
6109
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
			continue;
		if (idle_cpu(cpu))
			return cpu;
	}

	return -1;
}

#else /* CONFIG_SCHED_SMT */

static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
	return -1;
}

#endif /* CONFIG_SCHED_SMT */

/*
 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
 * average idle time for this rq (as found in rq->avg_idle).
6136
 */
6137 6138
static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
{
6139
	struct sched_domain *this_sd;
6140
	u64 avg_cost, avg_idle;
6141 6142
	u64 time, cost;
	s64 delta;
6143
	int cpu, nr = INT_MAX;
6144

6145 6146 6147 6148
	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
	if (!this_sd)
		return -1;

6149 6150 6151 6152
	/*
	 * Due to large variance we need a large fuzz factor; hackbench in
	 * particularly is sensitive here.
	 */
6153 6154 6155 6156
	avg_idle = this_rq()->avg_idle / 512;
	avg_cost = this_sd->avg_scan_cost + 1;

	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6157 6158
		return -1;

6159 6160 6161 6162 6163 6164 6165 6166
	if (sched_feat(SIS_PROP)) {
		u64 span_avg = sd->span_weight * avg_idle;
		if (span_avg > 4*avg_cost)
			nr = div_u64(span_avg, avg_cost);
		else
			nr = 4;
	}

6167 6168
	time = local_clock();

6169
	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6170 6171
		if (!--nr)
			return -1;
6172
		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
			continue;
		if (idle_cpu(cpu))
			break;
	}

	time = local_clock() - time;
	cost = this_sd->avg_scan_cost;
	delta = (s64)(time - cost) / 8;
	this_sd->avg_scan_cost += delta;

	return cpu;
}

/*
 * Try and locate an idle core/thread in the LLC cache domain.
6188
 */
6189
static int select_idle_sibling(struct task_struct *p, int prev, int target)
6190
{
6191
	struct sched_domain *sd;
6192
	int i;
6193

6194 6195
	if (idle_cpu(target))
		return target;
6196 6197

	/*
6198
	 * If the previous cpu is cache affine and idle, don't be stupid.
6199
	 */
6200 6201
	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
		return prev;
6202

6203
	sd = rcu_dereference(per_cpu(sd_llc, target));
6204 6205
	if (!sd)
		return target;
6206

6207 6208 6209
	i = select_idle_core(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6210

6211 6212 6213 6214 6215 6216 6217
	i = select_idle_cpu(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;

	i = select_idle_smt(p, sd, target);
	if ((unsigned)i < nr_cpumask_bits)
		return i;
6218

6219 6220
	return target;
}
6221

6222
/*
6223
 * cpu_util returns the amount of capacity of a CPU that is used by CFS
6224
 * tasks. The unit of the return value must be the one of capacity so we can
6225 6226
 * compare the utilization with the capacity of the CPU that is available for
 * CFS task (ie cpu_capacity).
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
 *
 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
 * recent utilization of currently non-runnable tasks on a CPU. It represents
 * the amount of utilization of a CPU in the range [0..capacity_orig] where
 * capacity_orig is the cpu_capacity available at the highest frequency
 * (arch_scale_freq_capacity()).
 * The utilization of a CPU converges towards a sum equal to or less than the
 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
 * the running time on this CPU scaled by capacity_curr.
 *
 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
 * higher than capacity_orig because of unfortunate rounding in
 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
 * the average stabilizes with the new running time. We need to check that the
 * utilization stays within the range of [0..capacity_orig] and cap it if
 * necessary. Without utilization capping, a group could be seen as overloaded
 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
 * available capacity. We allow utilization to overshoot capacity_curr (but not
 * capacity_orig) as it useful for predicting the capacity required after task
 * migrations (scheduler-driven DVFS).
6247
 */
6248
static unsigned long cpu_util(int cpu)
6249
{
6250
	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
6251 6252
	unsigned long capacity = capacity_orig_of(cpu);

6253
	return (util >= capacity) ? capacity : util;
6254
}
6255

6256
static inline unsigned long task_util(struct task_struct *p)
6257 6258 6259 6260
{
	return p->se.avg.util_avg;
}

6261 6262 6263 6264
/*
 * cpu_util_wake: Compute cpu utilization with any contributions from
 * the waking task p removed.
 */
6265
static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
{
	unsigned long util, capacity;

	/* Task has no contribution or is new */
	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
		return cpu_util(cpu);

	capacity = capacity_orig_of(cpu);
	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);

	return (util >= capacity) ? capacity : util;
}

6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
/*
 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
 *
 * In that case WAKE_AFFINE doesn't make sense and we'll let
 * BALANCE_WAKE sort things out.
 */
static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
{
	long min_cap, max_cap;

	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;

	/* Minimum capacity is close to max, no need to abort wake_affine */
	if (max_cap - min_cap < max_cap >> 3)
		return 0;

6297 6298 6299
	/* Bring task utilization in sync with prev_cpu */
	sync_entity_load_avg(&p->se);

6300 6301 6302
	return min_cap * 1024 < task_util(p) * capacity_margin;
}

6303
/*
6304 6305 6306
 * select_task_rq_fair: Select target runqueue for the waking task in domains
 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6307
 *
6308 6309
 * Balances load by selecting the idlest cpu in the idlest group, or under
 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
6310
 *
6311
 * Returns the target cpu number.
6312 6313 6314
 *
 * preempt must be disabled.
 */
6315
static int
6316
select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6317
{
6318
	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
6319
	int cpu = smp_processor_id();
M
Mike Galbraith 已提交
6320
	int new_cpu = prev_cpu;
6321
	int want_affine = 0;
6322
	int sync = wake_flags & WF_SYNC;
6323

P
Peter Zijlstra 已提交
6324 6325
	if (sd_flag & SD_BALANCE_WAKE) {
		record_wakee(p);
6326
		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6327
			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
P
Peter Zijlstra 已提交
6328
	}
6329

6330
	rcu_read_lock();
6331
	for_each_domain(cpu, tmp) {
6332
		if (!(tmp->flags & SD_LOAD_BALANCE))
M
Mike Galbraith 已提交
6333
			break;
6334

6335
		/*
6336 6337
		 * If both cpu and prev_cpu are part of this domain,
		 * cpu is a valid SD_WAKE_AFFINE target.
6338
		 */
6339 6340 6341
		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
			affine_sd = tmp;
6342
			break;
6343
		}
6344

6345
		if (tmp->flags & sd_flag)
6346
			sd = tmp;
M
Mike Galbraith 已提交
6347 6348
		else if (!want_affine)
			break;
6349 6350
	}

M
Mike Galbraith 已提交
6351 6352
	if (affine_sd) {
		sd = NULL; /* Prefer wake_affine over balance flags */
6353 6354 6355 6356
		if (cpu == prev_cpu)
			goto pick_cpu;

		if (wake_affine(affine_sd, p, prev_cpu, sync))
M
Mike Galbraith 已提交
6357
			new_cpu = cpu;
6358
	}
6359

6360 6361 6362 6363 6364 6365 6366 6367 6368
	if (sd && !(sd_flag & SD_BALANCE_FORK)) {
		/*
		 * We're going to need the task's util for capacity_spare_wake
		 * in find_idlest_group. Sync it up to prev_cpu's
		 * last_update_time.
		 */
		sync_entity_load_avg(&p->se);
	}

M
Mike Galbraith 已提交
6369
	if (!sd) {
6370
pick_cpu:
M
Mike Galbraith 已提交
6371
		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6372
			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
M
Mike Galbraith 已提交
6373

6374 6375
	} else {
		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6376
	}
6377
	rcu_read_unlock();
6378

6379
	return new_cpu;
6380
}
6381

6382 6383
static void detach_entity_cfs_rq(struct sched_entity *se);

6384 6385 6386
/*
 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
 * cfs_rq_of(p) references at time of call are still valid and identify the
6387
 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6388
 */
6389
static void migrate_task_rq_fair(struct task_struct *p)
6390
{
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
	/*
	 * As blocked tasks retain absolute vruntime the migration needs to
	 * deal with this by subtracting the old and adding the new
	 * min_vruntime -- the latter is done by enqueue_entity() when placing
	 * the task on the new runqueue.
	 */
	if (p->state == TASK_WAKING) {
		struct sched_entity *se = &p->se;
		struct cfs_rq *cfs_rq = cfs_rq_of(se);
		u64 min_vruntime;

#ifndef CONFIG_64BIT
		u64 min_vruntime_copy;

		do {
			min_vruntime_copy = cfs_rq->min_vruntime_copy;
			smp_rmb();
			min_vruntime = cfs_rq->min_vruntime;
		} while (min_vruntime != min_vruntime_copy);
#else
		min_vruntime = cfs_rq->min_vruntime;
#endif

		se->vruntime -= min_vruntime;
	}

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435
	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
		/*
		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
		 * rq->lock and can modify state directly.
		 */
		lockdep_assert_held(&task_rq(p)->lock);
		detach_entity_cfs_rq(&p->se);

	} else {
		/*
		 * We are supposed to update the task to "current" time, then
		 * its up to date and ready to go to new CPU/cfs_rq. But we
		 * have difficulty in getting what current time is, so simply
		 * throw away the out-of-date time. This will result in the
		 * wakee task is less decayed, but giving the wakee more load
		 * sounds not bad.
		 */
		remove_entity_load_avg(&p->se);
	}
6436 6437 6438

	/* Tell new CPU we are migrated */
	p->se.avg.last_update_time = 0;
6439 6440

	/* We have migrated, no longer consider this task hot */
6441
	p->se.exec_start = 0;
6442
}
6443 6444 6445 6446 6447

static void task_dead_fair(struct task_struct *p)
{
	remove_entity_load_avg(&p->se);
}
6448 6449
#endif /* CONFIG_SMP */

6450
static unsigned long wakeup_gran(struct sched_entity *se)
6451 6452 6453 6454
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

	/*
P
Peter Zijlstra 已提交
6455 6456
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
M
Mike Galbraith 已提交
6457 6458 6459 6460 6461 6462 6463 6464 6465
	 *
	 * By using 'se' instead of 'curr' we penalize light tasks, so
	 * they get preempted easier. That is, if 'se' < 'curr' then
	 * the resulting gran will be larger, therefore penalizing the
	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
	 * be smaller, again penalizing the lighter task.
	 *
	 * This is especially important for buddies when the leftmost
	 * task is higher priority than the buddy.
6466
	 */
6467
	return calc_delta_fair(gran, se);
6468 6469
}

6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

6492
	gran = wakeup_gran(se);
6493 6494 6495 6496 6497 6498
	if (vdiff > gran)
		return 1;

	return 0;
}

6499 6500
static void set_last_buddy(struct sched_entity *se)
{
6501 6502 6503
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6504 6505 6506
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6507
		cfs_rq_of(se)->last = se;
6508
	}
6509 6510 6511 6512
}

static void set_next_buddy(struct sched_entity *se)
{
6513 6514 6515
	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
		return;

6516 6517 6518
	for_each_sched_entity(se) {
		if (SCHED_WARN_ON(!se->on_rq))
			return;
6519
		cfs_rq_of(se)->next = se;
6520
	}
6521 6522
}

6523 6524
static void set_skip_buddy(struct sched_entity *se)
{
6525 6526
	for_each_sched_entity(se)
		cfs_rq_of(se)->skip = se;
6527 6528
}

6529 6530 6531
/*
 * Preempt the current task with a newly woken task if needed:
 */
6532
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6533 6534
{
	struct task_struct *curr = rq->curr;
6535
	struct sched_entity *se = &curr->se, *pse = &p->se;
6536
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6537
	int scale = cfs_rq->nr_running >= sched_nr_latency;
6538
	int next_buddy_marked = 0;
6539

I
Ingo Molnar 已提交
6540 6541 6542
	if (unlikely(se == pse))
		return;

6543
	/*
6544
	 * This is possible from callers such as attach_tasks(), in which we
6545 6546 6547 6548 6549 6550 6551
	 * unconditionally check_prempt_curr() after an enqueue (which may have
	 * lead to a throttle).  This both saves work and prevents false
	 * next-buddy nomination below.
	 */
	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
		return;

6552
	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
M
Mike Galbraith 已提交
6553
		set_next_buddy(pse);
6554 6555
		next_buddy_marked = 1;
	}
P
Peter Zijlstra 已提交
6556

6557 6558 6559
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
6560 6561 6562 6563 6564 6565
	 *
	 * Note: this also catches the edge-case of curr being in a throttled
	 * group (e.g. via set_curr_task), since update_curr() (in the
	 * enqueue of curr) will have resulted in resched being set.  This
	 * prevents us from potentially nominating it as a false LAST_BUDDY
	 * below.
6566 6567 6568 6569
	 */
	if (test_tsk_need_resched(curr))
		return;

6570 6571 6572 6573 6574
	/* Idle tasks are by definition preempted by non-idle tasks. */
	if (unlikely(curr->policy == SCHED_IDLE) &&
	    likely(p->policy != SCHED_IDLE))
		goto preempt;

6575
	/*
6576 6577
	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
	 * is driven by the tick):
6578
	 */
6579
	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6580
		return;
6581

6582
	find_matching_se(&se, &pse);
6583
	update_curr(cfs_rq_of(se));
6584
	BUG_ON(!pse);
6585 6586 6587 6588 6589 6590 6591
	if (wakeup_preempt_entity(se, pse) == 1) {
		/*
		 * Bias pick_next to pick the sched entity that is
		 * triggering this preemption.
		 */
		if (!next_buddy_marked)
			set_next_buddy(pse);
6592
		goto preempt;
6593
	}
6594

6595
	return;
6596

6597
preempt:
6598
	resched_curr(rq);
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612
	/*
	 * Only set the backward buddy when the current task is still
	 * on the rq. This can happen when a wakeup gets interleaved
	 * with schedule on the ->pre_schedule() or idle_balance()
	 * point, either of which can * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class,
	 * for obvious reasons its a bad idea to schedule back to it.
	 */
	if (unlikely(!se->on_rq || curr == rq->idle))
		return;

	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
		set_last_buddy(se);
6613 6614
}

6615
static struct task_struct *
6616
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6617 6618 6619
{
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;
6620
	struct task_struct *p;
6621
	int new_tasks;
6622

6623
again:
6624
	if (!cfs_rq->nr_running)
6625
		goto idle;
6626

6627
#ifdef CONFIG_FAIR_GROUP_SCHED
6628
	if (prev->sched_class != &fair_sched_class)
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647
		goto simple;

	/*
	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
	 * likely that a next task is from the same cgroup as the current.
	 *
	 * Therefore attempt to avoid putting and setting the entire cgroup
	 * hierarchy, only change the part that actually changes.
	 */

	do {
		struct sched_entity *curr = cfs_rq->curr;

		/*
		 * Since we got here without doing put_prev_entity() we also
		 * have to consider cfs_rq->curr. If it is still a runnable
		 * entity, update_curr() will update its vruntime, otherwise
		 * forget we've ever seen it.
		 */
6648 6649 6650 6651 6652
		if (curr) {
			if (curr->on_rq)
				update_curr(cfs_rq);
			else
				curr = NULL;
6653

6654 6655 6656
			/*
			 * This call to check_cfs_rq_runtime() will do the
			 * throttle and dequeue its entity in the parent(s).
6657
			 * Therefore the nr_running test will indeed
6658 6659
			 * be correct.
			 */
6660 6661 6662 6663 6664 6665
			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
				cfs_rq = &rq->cfs;

				if (!cfs_rq->nr_running)
					goto idle;

6666
				goto simple;
6667
			}
6668
		}
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701

		se = pick_next_entity(cfs_rq, curr);
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

	p = task_of(se);

	/*
	 * Since we haven't yet done put_prev_entity and if the selected task
	 * is a different task than we started out with, try and touch the
	 * least amount of cfs_rqs.
	 */
	if (prev != p) {
		struct sched_entity *pse = &prev->se;

		while (!(cfs_rq = is_same_group(se, pse))) {
			int se_depth = se->depth;
			int pse_depth = pse->depth;

			if (se_depth <= pse_depth) {
				put_prev_entity(cfs_rq_of(pse), pse);
				pse = parent_entity(pse);
			}
			if (se_depth >= pse_depth) {
				set_next_entity(cfs_rq_of(se), se);
				se = parent_entity(se);
			}
		}

		put_prev_entity(cfs_rq, pse);
		set_next_entity(cfs_rq, se);
	}

6702
	goto done;
6703 6704
simple:
#endif
6705

6706
	put_prev_task(rq, prev);
6707

6708
	do {
6709
		se = pick_next_entity(cfs_rq, NULL);
6710
		set_next_entity(cfs_rq, se);
6711 6712 6713
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
6714
	p = task_of(se);
6715

6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
done: __maybe_unused
#ifdef CONFIG_SMP
	/*
	 * Move the next running task to the front of
	 * the list, so our cfs_tasks list becomes MRU
	 * one.
	 */
	list_move(&p->se.group_node, &rq->cfs_tasks);
#endif

6726 6727
	if (hrtick_enabled(rq))
		hrtick_start_fair(rq, p);
P
Peter Zijlstra 已提交
6728 6729

	return p;
6730 6731

idle:
6732 6733
	new_tasks = idle_balance(rq, rf);

6734 6735 6736 6737 6738
	/*
	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
	 * possible for any higher priority task to appear. In that case we
	 * must re-start the pick_next_entity() loop.
	 */
6739
	if (new_tasks < 0)
6740 6741
		return RETRY_TASK;

6742
	if (new_tasks > 0)
6743 6744 6745
		goto again;

	return NULL;
6746 6747 6748 6749 6750
}

/*
 * Account for a descheduled task:
 */
6751
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6752 6753 6754 6755 6756 6757
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
6758
		put_prev_entity(cfs_rq, se);
6759 6760 6761
	}
}

6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786
/*
 * sched_yield() is very simple
 *
 * The magic of dealing with the ->skip buddy is in pick_next_entity.
 */
static void yield_task_fair(struct rq *rq)
{
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *se = &curr->se;

	/*
	 * Are we the only task in the tree?
	 */
	if (unlikely(rq->nr_running == 1))
		return;

	clear_buddies(cfs_rq, se);

	if (curr->policy != SCHED_BATCH) {
		update_rq_clock(rq);
		/*
		 * Update run-time statistics of the 'current'.
		 */
		update_curr(cfs_rq);
6787 6788 6789 6790 6791
		/*
		 * Tell update_rq_clock() that we've just updated,
		 * so we don't do microscopic update in schedule()
		 * and double the fastpath cost.
		 */
6792
		rq_clock_skip_update(rq, true);
6793 6794 6795 6796 6797
	}

	set_skip_buddy(se);
}

6798 6799 6800 6801
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
{
	struct sched_entity *se = &p->se;

6802 6803
	/* throttled hierarchies are not runnable */
	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
		return false;

	/* Tell the scheduler that we'd really like pse to run next. */
	set_next_buddy(se);

	yield_task_fair(rq);

	return true;
}

6814
#ifdef CONFIG_SMP
6815
/**************************************************
P
Peter Zijlstra 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
 * Fair scheduling class load-balancing methods.
 *
 * BASICS
 *
 * The purpose of load-balancing is to achieve the same basic fairness the
 * per-cpu scheduler provides, namely provide a proportional amount of compute
 * time to each task. This is expressed in the following equation:
 *
 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
 *
 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
 * W_i,0 is defined as:
 *
 *   W_i,0 = \Sum_j w_i,j                                             (2)
 *
 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6832
 * is derived from the nice value as per sched_prio_to_weight[].
P
Peter Zijlstra 已提交
6833 6834 6835 6836 6837 6838
 *
 * The weight average is an exponential decay average of the instantaneous
 * weight:
 *
 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
 *
6839
 * C_i is the compute capacity of cpu i, typically it is the
P
Peter Zijlstra 已提交
6840 6841 6842 6843 6844 6845
 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
 * can also include other factors [XXX].
 *
 * To achieve this balance we define a measure of imbalance which follows
 * directly from (1):
 *
6846
 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
P
Peter Zijlstra 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
 *
 * We them move tasks around to minimize the imbalance. In the continuous
 * function space it is obvious this converges, in the discrete case we get
 * a few fun cases generally called infeasible weight scenarios.
 *
 * [XXX expand on:
 *     - infeasible weights;
 *     - local vs global optima in the discrete case. ]
 *
 *
 * SCHED DOMAINS
 *
 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
 * for all i,j solution, we create a tree of cpus that follows the hardware
 * topology where each level pairs two lower groups (or better). This results
 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
 * tree to only the first of the previous level and we decrease the frequency
 * of load-balance at each level inv. proportional to the number of cpus in
 * the groups.
 *
 * This yields:
 *
 *     log_2 n     1     n
 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
 *     i = 0      2^i   2^i
 *                               `- size of each group
 *         |         |     `- number of cpus doing load-balance
 *         |         `- freq
 *         `- sum over all levels
 *
 * Coupled with a limit on how many tasks we can migrate every balance pass,
 * this makes (5) the runtime complexity of the balancer.
 *
 * An important property here is that each CPU is still (indirectly) connected
 * to every other cpu in at most O(log n) steps:
 *
 * The adjacency matrix of the resulting graph is given by:
 *
6885
 *             log_2 n
P
Peter Zijlstra 已提交
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
 *             k = 0
 *
 * And you'll find that:
 *
 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
 *
 * Showing there's indeed a path between every cpu in at most O(log n) steps.
 * The task movement gives a factor of O(m), giving a convergence complexity
 * of:
 *
 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
 *
 *
 * WORK CONSERVING
 *
 * In order to avoid CPUs going idle while there's still work to do, new idle
 * balancing is more aggressive and has the newly idle cpu iterate up the domain
 * tree itself instead of relying on other CPUs to bring it work.
 *
 * This adds some complexity to both (5) and (8) but it reduces the total idle
 * time.
 *
 * [XXX more?]
 *
 *
 * CGROUPS
 *
 * Cgroups make a horror show out of (2), instead of a simple sum we get:
 *
 *                                s_k,i
 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
 *                                 S_k
 *
 * Where
 *
 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
 *
 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
 *
 * The big problem is S_k, its a global sum needed to compute a local (W_i)
 * property.
 *
 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
 *      rewrite all of this once again.]
6931
 */
6932

6933 6934
static unsigned long __read_mostly max_load_balance_interval = HZ/10;

6935 6936
enum fbq_type { regular, remote, all };

6937
#define LBF_ALL_PINNED	0x01
6938
#define LBF_NEED_BREAK	0x02
6939 6940
#define LBF_DST_PINNED  0x04
#define LBF_SOME_PINNED	0x08
6941 6942 6943 6944 6945

struct lb_env {
	struct sched_domain	*sd;

	struct rq		*src_rq;
6946
	int			src_cpu;
6947 6948 6949 6950

	int			dst_cpu;
	struct rq		*dst_rq;

6951 6952
	struct cpumask		*dst_grpmask;
	int			new_dst_cpu;
6953
	enum cpu_idle_type	idle;
6954
	long			imbalance;
6955 6956 6957
	/* The set of CPUs under consideration for load-balancing */
	struct cpumask		*cpus;

6958
	unsigned int		flags;
6959 6960 6961 6962

	unsigned int		loop;
	unsigned int		loop_break;
	unsigned int		loop_max;
6963 6964

	enum fbq_type		fbq_type;
6965
	struct list_head	tasks;
6966 6967
};

6968 6969 6970
/*
 * Is this task likely cache-hot:
 */
6971
static int task_hot(struct task_struct *p, struct lb_env *env)
6972 6973 6974
{
	s64 delta;

6975 6976
	lockdep_assert_held(&env->src_rq->lock);

6977 6978 6979 6980 6981 6982 6983 6984 6985
	if (p->sched_class != &fair_sched_class)
		return 0;

	if (unlikely(p->policy == SCHED_IDLE))
		return 0;

	/*
	 * Buddy candidates are cache hot:
	 */
6986
	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6987 6988 6989 6990 6991 6992 6993 6994 6995
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
		return 1;

	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

6996
	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6997 6998 6999 7000

	return delta < (s64)sysctl_sched_migration_cost;
}

7001
#ifdef CONFIG_NUMA_BALANCING
7002
/*
7003 7004 7005
 * Returns 1, if task migration degrades locality
 * Returns 0, if task migration improves locality i.e migration preferred.
 * Returns -1, if task migration is not affected by locality.
7006
 */
7007
static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7008
{
7009
	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7010
	unsigned long src_faults, dst_faults;
7011 7012
	int src_nid, dst_nid;

7013
	if (!static_branch_likely(&sched_numa_balancing))
7014 7015
		return -1;

7016
	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7017
		return -1;
7018 7019 7020 7021

	src_nid = cpu_to_node(env->src_cpu);
	dst_nid = cpu_to_node(env->dst_cpu);

7022
	if (src_nid == dst_nid)
7023
		return -1;
7024

7025 7026 7027 7028 7029 7030 7031
	/* Migrating away from the preferred node is always bad. */
	if (src_nid == p->numa_preferred_nid) {
		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
			return 1;
		else
			return -1;
	}
7032

7033 7034
	/* Encourage migration to the preferred node. */
	if (dst_nid == p->numa_preferred_nid)
7035
		return 0;
7036

7037 7038 7039 7040
	/* Leaving a core idle is often worse than degrading locality. */
	if (env->idle != CPU_NOT_IDLE)
		return -1;

7041 7042 7043 7044 7045 7046
	if (numa_group) {
		src_faults = group_faults(p, src_nid);
		dst_faults = group_faults(p, dst_nid);
	} else {
		src_faults = task_faults(p, src_nid);
		dst_faults = task_faults(p, dst_nid);
7047 7048
	}

7049
	return dst_faults < src_faults;
7050 7051
}

7052
#else
7053
static inline int migrate_degrades_locality(struct task_struct *p,
7054 7055
					     struct lb_env *env)
{
7056
	return -1;
7057
}
7058 7059
#endif

7060 7061 7062 7063
/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
static
7064
int can_migrate_task(struct task_struct *p, struct lb_env *env)
7065
{
7066
	int tsk_cache_hot;
7067 7068 7069

	lockdep_assert_held(&env->src_rq->lock);

7070 7071
	/*
	 * We do not migrate tasks that are:
7072
	 * 1) throttled_lb_pair, or
7073
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7074 7075
	 * 3) running (obviously), or
	 * 4) are cache-hot on their current CPU.
7076
	 */
7077 7078 7079
	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
		return 0;

7080
	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7081
		int cpu;
7082

7083
		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7084

7085 7086
		env->flags |= LBF_SOME_PINNED;

7087 7088 7089 7090 7091
		/*
		 * Remember if this task can be migrated to any other cpu in
		 * our sched_group. We may want to revisit it if we couldn't
		 * meet load balance goals by pulling other tasks on src_cpu.
		 *
7092 7093
		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
		 * already computed one in current iteration.
7094
		 */
7095
		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7096 7097
			return 0;

7098 7099
		/* Prevent to re-select dst_cpu via env's cpus */
		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7100
			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7101
				env->flags |= LBF_DST_PINNED;
7102 7103 7104
				env->new_dst_cpu = cpu;
				break;
			}
7105
		}
7106

7107 7108
		return 0;
	}
7109 7110

	/* Record that we found atleast one task that could run on dst_cpu */
7111
	env->flags &= ~LBF_ALL_PINNED;
7112

7113
	if (task_running(env->src_rq, p)) {
7114
		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7115 7116 7117 7118 7119
		return 0;
	}

	/*
	 * Aggressive migration if:
7120 7121 7122
	 * 1) destination numa is preferred
	 * 2) task is cache cold, or
	 * 3) too many balance attempts have failed.
7123
	 */
7124 7125 7126
	tsk_cache_hot = migrate_degrades_locality(p, env);
	if (tsk_cache_hot == -1)
		tsk_cache_hot = task_hot(p, env);
7127

7128
	if (tsk_cache_hot <= 0 ||
7129
	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7130
		if (tsk_cache_hot == 1) {
7131 7132
			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
			schedstat_inc(p->se.statistics.nr_forced_migrations);
7133
		}
7134 7135 7136
		return 1;
	}

7137
	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
Z
Zhang Hang 已提交
7138
	return 0;
7139 7140
}

7141
/*
7142 7143 7144 7145 7146 7147 7148
 * detach_task() -- detach the task for the migration specified in env
 */
static void detach_task(struct task_struct *p, struct lb_env *env)
{
	lockdep_assert_held(&env->src_rq->lock);

	p->on_rq = TASK_ON_RQ_MIGRATING;
7149
	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7150 7151 7152
	set_task_cpu(p, env->dst_cpu);
}

7153
/*
7154
 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7155 7156
 * part of active balancing operations within "domain".
 *
7157
 * Returns a task if successful and NULL otherwise.
7158
 */
7159
static struct task_struct *detach_one_task(struct lb_env *env)
7160
{
7161
	struct task_struct *p;
7162

7163 7164
	lockdep_assert_held(&env->src_rq->lock);

7165 7166
	list_for_each_entry_reverse(p,
			&env->src_rq->cfs_tasks, se.group_node) {
7167 7168
		if (!can_migrate_task(p, env))
			continue;
7169

7170
		detach_task(p, env);
7171

7172
		/*
7173
		 * Right now, this is only the second place where
7174
		 * lb_gained[env->idle] is updated (other is detach_tasks)
7175
		 * so we can safely collect stats here rather than
7176
		 * inside detach_tasks().
7177
		 */
7178
		schedstat_inc(env->sd->lb_gained[env->idle]);
7179
		return p;
7180
	}
7181
	return NULL;
7182 7183
}

7184 7185
static const unsigned int sched_nr_migrate_break = 32;

7186
/*
7187 7188
 * detach_tasks() -- tries to detach up to imbalance weighted load from
 * busiest_rq, as part of a balancing operation within domain "sd".
7189
 *
7190
 * Returns number of detached tasks if successful and 0 otherwise.
7191
 */
7192
static int detach_tasks(struct lb_env *env)
7193
{
7194 7195
	struct list_head *tasks = &env->src_rq->cfs_tasks;
	struct task_struct *p;
7196
	unsigned long load;
7197 7198 7199
	int detached = 0;

	lockdep_assert_held(&env->src_rq->lock);
7200

7201
	if (env->imbalance <= 0)
7202
		return 0;
7203

7204
	while (!list_empty(tasks)) {
7205 7206 7207 7208 7209 7210 7211
		/*
		 * We don't want to steal all, otherwise we may be treated likewise,
		 * which could at worst lead to a livelock crash.
		 */
		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
			break;

7212
		p = list_last_entry(tasks, struct task_struct, se.group_node);
7213

7214 7215
		env->loop++;
		/* We've more or less seen every task there is, call it quits */
7216
		if (env->loop > env->loop_max)
7217
			break;
7218 7219

		/* take a breather every nr_migrate tasks */
7220
		if (env->loop > env->loop_break) {
7221
			env->loop_break += sched_nr_migrate_break;
7222
			env->flags |= LBF_NEED_BREAK;
7223
			break;
7224
		}
7225

7226
		if (!can_migrate_task(p, env))
7227 7228 7229
			goto next;

		load = task_h_load(p);
7230

7231
		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7232 7233
			goto next;

7234
		if ((load / 2) > env->imbalance)
7235
			goto next;
7236

7237 7238 7239 7240
		detach_task(p, env);
		list_add(&p->se.group_node, &env->tasks);

		detached++;
7241
		env->imbalance -= load;
7242 7243

#ifdef CONFIG_PREEMPT
7244 7245
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
7246
		 * kernels will stop after the first task is detached to minimize
7247 7248
		 * the critical section.
		 */
7249
		if (env->idle == CPU_NEWLY_IDLE)
7250
			break;
7251 7252
#endif

7253 7254 7255 7256
		/*
		 * We only want to steal up to the prescribed amount of
		 * weighted load.
		 */
7257
		if (env->imbalance <= 0)
7258
			break;
7259 7260 7261

		continue;
next:
7262
		list_move(&p->se.group_node, tasks);
7263
	}
7264

7265
	/*
7266 7267 7268
	 * Right now, this is one of only two places we collect this stat
	 * so we can safely collect detach_one_task() stats here rather
	 * than inside detach_one_task().
7269
	 */
7270
	schedstat_add(env->sd->lb_gained[env->idle], detached);
7271

7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282
	return detached;
}

/*
 * attach_task() -- attach the task detached by detach_task() to its new rq.
 */
static void attach_task(struct rq *rq, struct task_struct *p)
{
	lockdep_assert_held(&rq->lock);

	BUG_ON(task_rq(p) != rq);
7283
	activate_task(rq, p, ENQUEUE_NOCLOCK);
7284
	p->on_rq = TASK_ON_RQ_QUEUED;
7285 7286 7287 7288 7289 7290 7291 7292 7293
	check_preempt_curr(rq, p, 0);
}

/*
 * attach_one_task() -- attaches the task returned from detach_one_task() to
 * its new rq.
 */
static void attach_one_task(struct rq *rq, struct task_struct *p)
{
7294 7295 7296
	struct rq_flags rf;

	rq_lock(rq, &rf);
7297
	update_rq_clock(rq);
7298
	attach_task(rq, p);
7299
	rq_unlock(rq, &rf);
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
}

/*
 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
 * new rq.
 */
static void attach_tasks(struct lb_env *env)
{
	struct list_head *tasks = &env->tasks;
	struct task_struct *p;
7310
	struct rq_flags rf;
7311

7312
	rq_lock(env->dst_rq, &rf);
7313
	update_rq_clock(env->dst_rq);
7314 7315 7316 7317

	while (!list_empty(tasks)) {
		p = list_first_entry(tasks, struct task_struct, se.group_node);
		list_del_init(&p->se.group_node);
7318

7319 7320 7321
		attach_task(env->dst_rq, p);
	}

7322
	rq_unlock(env->dst_rq, &rf);
7323 7324
}

P
Peter Zijlstra 已提交
7325
#ifdef CONFIG_FAIR_GROUP_SCHED
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337

static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
{
	if (cfs_rq->load.weight)
		return false;

	if (cfs_rq->avg.load_sum)
		return false;

	if (cfs_rq->avg.util_sum)
		return false;

7338
	if (cfs_rq->avg.runnable_load_sum)
7339 7340 7341 7342 7343
		return false;

	return true;
}

7344
static void update_blocked_averages(int cpu)
7345 7346
{
	struct rq *rq = cpu_rq(cpu);
7347
	struct cfs_rq *cfs_rq, *pos;
7348
	struct rq_flags rf;
7349

7350
	rq_lock_irqsave(rq, &rf);
7351
	update_rq_clock(rq);
7352

7353 7354 7355 7356
	/*
	 * Iterates the task_group tree in a bottom up fashion, see
	 * list_add_leaf_cfs_rq() for details.
	 */
7357
	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7358 7359
		struct sched_entity *se;

7360 7361 7362
		/* throttled entities do not contribute to load */
		if (throttled_hierarchy(cfs_rq))
			continue;
7363

7364
		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7365
			update_tg_load_avg(cfs_rq, 0);
7366

7367 7368 7369
		/* Propagate pending load changes to the parent, if any: */
		se = cfs_rq->tg->se[cpu];
		if (se && !skip_blocked_update(se))
7370
			update_load_avg(cfs_rq_of(se), se, 0);
7371 7372 7373 7374 7375 7376 7377

		/*
		 * There can be a lot of idle CPU cgroups.  Don't let fully
		 * decayed cfs_rqs linger on the list.
		 */
		if (cfs_rq_is_decayed(cfs_rq))
			list_del_leaf_cfs_rq(cfs_rq);
7378
	}
7379
	rq_unlock_irqrestore(rq, &rf);
7380 7381
}

7382
/*
7383
 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7384 7385 7386
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
 */
7387
static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7388
{
7389 7390
	struct rq *rq = rq_of(cfs_rq);
	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7391
	unsigned long now = jiffies;
7392
	unsigned long load;
7393

7394
	if (cfs_rq->last_h_load_update == now)
7395 7396
		return;

7397 7398 7399 7400 7401 7402 7403
	cfs_rq->h_load_next = NULL;
	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
		cfs_rq->h_load_next = se;
		if (cfs_rq->last_h_load_update == now)
			break;
	}
7404

7405
	if (!se) {
7406
		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7407 7408 7409 7410 7411
		cfs_rq->last_h_load_update = now;
	}

	while ((se = cfs_rq->h_load_next) != NULL) {
		load = cfs_rq->h_load;
7412 7413
		load = div64_ul(load * se->avg.load_avg,
			cfs_rq_load_avg(cfs_rq) + 1);
7414 7415 7416 7417
		cfs_rq = group_cfs_rq(se);
		cfs_rq->h_load = load;
		cfs_rq->last_h_load_update = now;
	}
7418 7419
}

7420
static unsigned long task_h_load(struct task_struct *p)
P
Peter Zijlstra 已提交
7421
{
7422
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
P
Peter Zijlstra 已提交
7423

7424
	update_cfs_rq_h_load(cfs_rq);
7425
	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7426
			cfs_rq_load_avg(cfs_rq) + 1);
P
Peter Zijlstra 已提交
7427 7428
}
#else
7429
static inline void update_blocked_averages(int cpu)
7430
{
7431 7432
	struct rq *rq = cpu_rq(cpu);
	struct cfs_rq *cfs_rq = &rq->cfs;
7433
	struct rq_flags rf;
7434

7435
	rq_lock_irqsave(rq, &rf);
7436
	update_rq_clock(rq);
7437
	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7438
	rq_unlock_irqrestore(rq, &rf);
7439 7440
}

7441
static unsigned long task_h_load(struct task_struct *p)
7442
{
7443
	return p->se.avg.load_avg;
7444
}
P
Peter Zijlstra 已提交
7445
#endif
7446 7447

/********** Helpers for find_busiest_group ************************/
7448 7449 7450 7451 7452 7453 7454

enum group_type {
	group_other = 0,
	group_imbalanced,
	group_overloaded,
};

7455 7456 7457 7458 7459 7460 7461
/*
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
J
Joonsoo Kim 已提交
7462
	unsigned long load_per_task;
7463
	unsigned long group_capacity;
7464
	unsigned long group_util; /* Total utilization of the group */
7465 7466 7467
	unsigned int sum_nr_running; /* Nr tasks running in the group */
	unsigned int idle_cpus;
	unsigned int group_weight;
7468
	enum group_type group_type;
7469
	int group_no_capacity;
7470 7471 7472 7473
#ifdef CONFIG_NUMA_BALANCING
	unsigned int nr_numa_running;
	unsigned int nr_preferred_running;
#endif
7474 7475
};

J
Joonsoo Kim 已提交
7476 7477 7478 7479 7480 7481 7482
/*
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 *		 during load balancing.
 */
struct sd_lb_stats {
	struct sched_group *busiest;	/* Busiest group in this sd */
	struct sched_group *local;	/* Local group in this sd */
7483
	unsigned long total_running;
J
Joonsoo Kim 已提交
7484
	unsigned long total_load;	/* Total load of all groups in sd */
7485
	unsigned long total_capacity;	/* Total capacity of all groups in sd */
J
Joonsoo Kim 已提交
7486 7487 7488
	unsigned long avg_load;	/* Average load across all groups in sd */

	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7489
	struct sg_lb_stats local_stat;	/* Statistics of the local group */
J
Joonsoo Kim 已提交
7490 7491
};

7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
{
	/*
	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
	 * We must however clear busiest_stat::avg_load because
	 * update_sd_pick_busiest() reads this before assignment.
	 */
	*sds = (struct sd_lb_stats){
		.busiest = NULL,
		.local = NULL,
7503
		.total_running = 0UL,
7504
		.total_load = 0UL,
7505
		.total_capacity = 0UL,
7506 7507
		.busiest_stat = {
			.avg_load = 0UL,
7508 7509
			.sum_nr_running = 0,
			.group_type = group_other,
7510 7511 7512 7513
		},
	};
}

7514 7515 7516
/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
7517
 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7518 7519
 *
 * Return: The load index.
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
		load_idx = sd->busy_idx;
		break;

	case CPU_NEWLY_IDLE:
		load_idx = sd->newidle_idx;
		break;
	default:
		load_idx = sd->idle_idx;
		break;
	}

	return load_idx;
}

7542
static unsigned long scale_rt_capacity(int cpu)
7543 7544
{
	struct rq *rq = cpu_rq(cpu);
7545
	u64 total, used, age_stamp, avg;
7546
	s64 delta;
7547

7548 7549 7550 7551
	/*
	 * Since we're reading these variables without serialization make sure
	 * we read them once before doing sanity checks on them.
	 */
7552 7553
	age_stamp = READ_ONCE(rq->age_stamp);
	avg = READ_ONCE(rq->rt_avg);
7554
	delta = __rq_clock_broken(rq) - age_stamp;
7555

7556 7557 7558 7559
	if (unlikely(delta < 0))
		delta = 0;

	total = sched_avg_period() + delta;
7560

7561
	used = div_u64(avg, total);
7562

7563 7564
	if (likely(used < SCHED_CAPACITY_SCALE))
		return SCHED_CAPACITY_SCALE - used;
7565

7566
	return 1;
7567 7568
}

7569
static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7570
{
7571
	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7572 7573
	struct sched_group *sdg = sd->groups;

7574
	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7575

7576
	capacity *= scale_rt_capacity(cpu);
7577
	capacity >>= SCHED_CAPACITY_SHIFT;
7578

7579 7580
	if (!capacity)
		capacity = 1;
7581

7582 7583
	cpu_rq(cpu)->cpu_capacity = capacity;
	sdg->sgc->capacity = capacity;
7584
	sdg->sgc->min_capacity = capacity;
7585 7586
}

7587
void update_group_capacity(struct sched_domain *sd, int cpu)
7588 7589 7590
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
7591
	unsigned long capacity, min_capacity;
7592 7593 7594 7595
	unsigned long interval;

	interval = msecs_to_jiffies(sd->balance_interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);
7596
	sdg->sgc->next_update = jiffies + interval;
7597 7598

	if (!child) {
7599
		update_cpu_capacity(sd, cpu);
7600 7601 7602
		return;
	}

7603
	capacity = 0;
7604
	min_capacity = ULONG_MAX;
7605

P
Peter Zijlstra 已提交
7606 7607 7608 7609 7610 7611
	if (child->flags & SD_OVERLAP) {
		/*
		 * SD_OVERLAP domains cannot assume that child groups
		 * span the current group.
		 */

7612
		for_each_cpu(cpu, sched_group_span(sdg)) {
7613
			struct sched_group_capacity *sgc;
7614
			struct rq *rq = cpu_rq(cpu);
7615

7616
			/*
7617
			 * build_sched_domains() -> init_sched_groups_capacity()
7618 7619 7620
			 * gets here before we've attached the domains to the
			 * runqueues.
			 *
7621 7622
			 * Use capacity_of(), which is set irrespective of domains
			 * in update_cpu_capacity().
7623
			 *
7624
			 * This avoids capacity from being 0 and
7625 7626 7627
			 * causing divide-by-zero issues on boot.
			 */
			if (unlikely(!rq->sd)) {
7628
				capacity += capacity_of(cpu);
7629 7630 7631
			} else {
				sgc = rq->sd->groups->sgc;
				capacity += sgc->capacity;
7632
			}
7633

7634
			min_capacity = min(capacity, min_capacity);
7635
		}
P
Peter Zijlstra 已提交
7636 7637 7638 7639
	} else  {
		/*
		 * !SD_OVERLAP domains can assume that child groups
		 * span the current group.
7640
		 */
P
Peter Zijlstra 已提交
7641 7642 7643

		group = child->groups;
		do {
7644 7645 7646 7647
			struct sched_group_capacity *sgc = group->sgc;

			capacity += sgc->capacity;
			min_capacity = min(sgc->min_capacity, min_capacity);
P
Peter Zijlstra 已提交
7648 7649 7650
			group = group->next;
		} while (group != child->groups);
	}
7651

7652
	sdg->sgc->capacity = capacity;
7653
	sdg->sgc->min_capacity = min_capacity;
7654 7655
}

7656
/*
7657 7658 7659
 * Check whether the capacity of the rq has been noticeably reduced by side
 * activity. The imbalance_pct is used for the threshold.
 * Return true is the capacity is reduced
7660 7661
 */
static inline int
7662
check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7663
{
7664 7665
	return ((rq->cpu_capacity * sd->imbalance_pct) <
				(rq->cpu_capacity_orig * 100));
7666 7667
}

7668 7669
/*
 * Group imbalance indicates (and tries to solve) the problem where balancing
7670
 * groups is inadequate due to ->cpus_allowed constraints.
7671 7672 7673 7674 7675
 *
 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
 * Something like:
 *
7676 7677
 *	{ 0 1 2 3 } { 4 5 6 7 }
 *	        *     * * *
7678 7679 7680 7681 7682 7683
 *
 * If we were to balance group-wise we'd place two tasks in the first group and
 * two tasks in the second group. Clearly this is undesired as it will overload
 * cpu 3 and leave one of the cpus in the second group unused.
 *
 * The current solution to this issue is detecting the skew in the first group
7684 7685
 * by noticing the lower domain failed to reach balance and had difficulty
 * moving tasks due to affinity constraints.
7686 7687
 *
 * When this is so detected; this group becomes a candidate for busiest; see
7688
 * update_sd_pick_busiest(). And calculate_imbalance() and
7689
 * find_busiest_group() avoid some of the usual balance conditions to allow it
7690 7691 7692 7693 7694 7695 7696
 * to create an effective group imbalance.
 *
 * This is a somewhat tricky proposition since the next run might not find the
 * group imbalance and decide the groups need to be balanced again. A most
 * subtle and fragile situation.
 */

7697
static inline int sg_imbalanced(struct sched_group *group)
7698
{
7699
	return group->sgc->imbalance;
7700 7701
}

7702
/*
7703 7704 7705
 * group_has_capacity returns true if the group has spare capacity that could
 * be used by some tasks.
 * We consider that a group has spare capacity if the  * number of task is
7706 7707
 * smaller than the number of CPUs or if the utilization is lower than the
 * available capacity for CFS tasks.
7708 7709 7710 7711 7712
 * For the latter, we use a threshold to stabilize the state, to take into
 * account the variance of the tasks' load and to return true if the available
 * capacity in meaningful for the load balancer.
 * As an example, an available capacity of 1% can appear but it doesn't make
 * any benefit for the load balance.
7713
 */
7714 7715
static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7716
{
7717 7718
	if (sgs->sum_nr_running < sgs->group_weight)
		return true;
7719

7720
	if ((sgs->group_capacity * 100) >
7721
			(sgs->group_util * env->sd->imbalance_pct))
7722
		return true;
7723

7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
	return false;
}

/*
 *  group_is_overloaded returns true if the group has more tasks than it can
 *  handle.
 *  group_is_overloaded is not equals to !group_has_capacity because a group
 *  with the exact right number of tasks, has no more spare capacity but is not
 *  overloaded so both group_has_capacity and group_is_overloaded return
 *  false.
 */
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running <= sgs->group_weight)
		return false;
7740

7741
	if ((sgs->group_capacity * 100) <
7742
			(sgs->group_util * env->sd->imbalance_pct))
7743
		return true;
7744

7745
	return false;
7746 7747
}

7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
/*
 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
 * per-CPU capacity than sched_group ref.
 */
static inline bool
group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
{
	return sg->sgc->min_capacity * capacity_margin <
						ref->sgc->min_capacity * 1024;
}

7759 7760 7761
static inline enum
group_type group_classify(struct sched_group *group,
			  struct sg_lb_stats *sgs)
7762
{
7763
	if (sgs->group_no_capacity)
7764 7765 7766 7767 7768 7769 7770 7771
		return group_overloaded;

	if (sg_imbalanced(group))
		return group_imbalanced;

	return group_other;
}

7772 7773
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7774
 * @env: The load balancing environment.
7775 7776 7777 7778
 * @group: sched_group whose statistics are to be updated.
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @local_group: Does group contain this_cpu.
 * @sgs: variable to hold the statistics for this group.
7779
 * @overload: Indicate more than one runnable task for any CPU.
7780
 */
7781 7782
static inline void update_sg_lb_stats(struct lb_env *env,
			struct sched_group *group, int load_idx,
7783 7784
			int local_group, struct sg_lb_stats *sgs,
			bool *overload)
7785
{
7786
	unsigned long load;
7787
	int i, nr_running;
7788

7789 7790
	memset(sgs, 0, sizeof(*sgs));

7791
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7792 7793 7794
		struct rq *rq = cpu_rq(i);

		/* Bias balancing toward cpus of our domain */
7795
		if (local_group)
7796
			load = target_load(i, load_idx);
7797
		else
7798 7799 7800
			load = source_load(i, load_idx);

		sgs->group_load += load;
7801
		sgs->group_util += cpu_util(i);
7802
		sgs->sum_nr_running += rq->cfs.h_nr_running;
7803

7804 7805
		nr_running = rq->nr_running;
		if (nr_running > 1)
7806 7807
			*overload = true;

7808 7809 7810 7811
#ifdef CONFIG_NUMA_BALANCING
		sgs->nr_numa_running += rq->nr_numa_running;
		sgs->nr_preferred_running += rq->nr_preferred_running;
#endif
7812
		sgs->sum_weighted_load += weighted_cpuload(rq);
7813 7814 7815 7816
		/*
		 * No need to call idle_cpu() if nr_running is not 0
		 */
		if (!nr_running && idle_cpu(i))
7817
			sgs->idle_cpus++;
7818 7819
	}

7820 7821
	/* Adjust by relative CPU capacity of the group */
	sgs->group_capacity = group->sgc->capacity;
7822
	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7823

7824
	if (sgs->sum_nr_running)
7825
		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7826

7827
	sgs->group_weight = group->group_weight;
7828

7829
	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7830
	sgs->group_type = group_classify(group, sgs);
7831 7832
}

7833 7834
/**
 * update_sd_pick_busiest - return 1 on busiest group
7835
 * @env: The load balancing environment.
7836 7837
 * @sds: sched_domain statistics
 * @sg: sched_group candidate to be checked for being the busiest
7838
 * @sgs: sched_group statistics
7839 7840 7841
 *
 * Determine if @sg is a busier group than the previously selected
 * busiest group.
7842 7843 7844
 *
 * Return: %true if @sg is a busier group than the previously selected
 * busiest group. %false otherwise.
7845
 */
7846
static bool update_sd_pick_busiest(struct lb_env *env,
7847 7848
				   struct sd_lb_stats *sds,
				   struct sched_group *sg,
7849
				   struct sg_lb_stats *sgs)
7850
{
7851
	struct sg_lb_stats *busiest = &sds->busiest_stat;
7852

7853
	if (sgs->group_type > busiest->group_type)
7854 7855
		return true;

7856 7857 7858 7859 7860 7861
	if (sgs->group_type < busiest->group_type)
		return false;

	if (sgs->avg_load <= busiest->avg_load)
		return false;

7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
		goto asym_packing;

	/*
	 * Candidate sg has no more than one task per CPU and
	 * has higher per-CPU capacity. Migrating tasks to less
	 * capable CPUs may harm throughput. Maximize throughput,
	 * power/energy consequences are not considered.
	 */
	if (sgs->sum_nr_running <= sgs->group_weight &&
	    group_smaller_cpu_capacity(sds->local, sg))
		return false;

asym_packing:
7876 7877
	/* This is the busiest node in its class. */
	if (!(env->sd->flags & SD_ASYM_PACKING))
7878 7879
		return true;

7880 7881 7882
	/* No ASYM_PACKING if target cpu is already busy */
	if (env->idle == CPU_NOT_IDLE)
		return true;
7883
	/*
T
Tim Chen 已提交
7884 7885 7886
	 * ASYM_PACKING needs to move all the work to the highest
	 * prority CPUs in the group, therefore mark all groups
	 * of lower priority than ourself as busy.
7887
	 */
T
Tim Chen 已提交
7888 7889
	if (sgs->sum_nr_running &&
	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7890 7891 7892
		if (!sds->busiest)
			return true;

T
Tim Chen 已提交
7893 7894 7895
		/* Prefer to move from lowest priority cpu's work */
		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
				      sg->asym_prefer_cpu))
7896 7897 7898 7899 7900 7901
			return true;
	}

	return false;
}

7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
#ifdef CONFIG_NUMA_BALANCING
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	if (sgs->sum_nr_running > sgs->nr_numa_running)
		return regular;
	if (sgs->sum_nr_running > sgs->nr_preferred_running)
		return remote;
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	if (rq->nr_running > rq->nr_numa_running)
		return regular;
	if (rq->nr_running > rq->nr_preferred_running)
		return remote;
	return all;
}
#else
static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
{
	return all;
}

static inline enum fbq_type fbq_classify_rq(struct rq *rq)
{
	return regular;
}
#endif /* CONFIG_NUMA_BALANCING */

7932
/**
7933
 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7934
 * @env: The load balancing environment.
7935 7936
 * @sds: variable to hold the statistics for this sched_domain.
 */
7937
static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7938
{
7939 7940
	struct sched_domain *child = env->sd->child;
	struct sched_group *sg = env->sd->groups;
7941
	struct sg_lb_stats *local = &sds->local_stat;
J
Joonsoo Kim 已提交
7942
	struct sg_lb_stats tmp_sgs;
7943
	int load_idx, prefer_sibling = 0;
7944
	bool overload = false;
7945 7946 7947 7948

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;

7949
	load_idx = get_sd_load_idx(env->sd, env->idle);
7950 7951

	do {
J
Joonsoo Kim 已提交
7952
		struct sg_lb_stats *sgs = &tmp_sgs;
7953 7954
		int local_group;

7955
		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
J
Joonsoo Kim 已提交
7956 7957
		if (local_group) {
			sds->local = sg;
7958
			sgs = local;
7959 7960

			if (env->idle != CPU_NEWLY_IDLE ||
7961 7962
			    time_after_eq(jiffies, sg->sgc->next_update))
				update_group_capacity(env->sd, env->dst_cpu);
J
Joonsoo Kim 已提交
7963
		}
7964

7965 7966
		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
						&overload);
7967

7968 7969 7970
		if (local_group)
			goto next_group;

7971 7972
		/*
		 * In case the child domain prefers tasks go to siblings
7973
		 * first, lower the sg capacity so that we'll try
7974 7975
		 * and move all the excess tasks away. We lower the capacity
		 * of a group only if the local group has the capacity to fit
7976 7977 7978 7979
		 * these excess tasks. The extra check prevents the case where
		 * you always pull from the heaviest group when it is already
		 * under-utilized (possible with a large weight task outweighs
		 * the tasks on the system).
7980
		 */
7981
		if (prefer_sibling && sds->local &&
7982 7983
		    group_has_capacity(env, local) &&
		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7984
			sgs->group_no_capacity = 1;
7985
			sgs->group_type = group_classify(sg, sgs);
7986
		}
7987

7988
		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7989
			sds->busiest = sg;
J
Joonsoo Kim 已提交
7990
			sds->busiest_stat = *sgs;
7991 7992
		}

7993 7994
next_group:
		/* Now, start updating sd_lb_stats */
7995
		sds->total_running += sgs->sum_nr_running;
7996
		sds->total_load += sgs->group_load;
7997
		sds->total_capacity += sgs->group_capacity;
7998

7999
		sg = sg->next;
8000
	} while (sg != env->sd->groups);
8001 8002 8003

	if (env->sd->flags & SD_NUMA)
		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8004 8005 8006 8007 8008 8009

	if (!env->sd->parent) {
		/* update overload indicator if we are at root domain */
		if (env->dst_rq->rd->overload != overload)
			env->dst_rq->rd->overload = overload;
	}
8010 8011 8012 8013
}

/**
 * check_asym_packing - Check to see if the group is packed into the
8014
 *			sched domain.
8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
 *
 * This is primarily intended to used at the sibling level.  Some
 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
 * case of POWER7, it can move to lower SMT modes only when higher
 * threads are idle.  When in lower SMT modes, the threads will
 * perform better since they share less core resources.  Hence when we
 * have idle threads, we want them to be the higher ones.
 *
 * This packing function is run on idle threads.  It checks to see if
 * the busiest CPU in this domain (core in the P7 case) has a higher
 * CPU number than the packing function is being run on.  Here we are
 * assuming lower CPU number will be equivalent to lower a SMT thread
 * number.
 *
8029
 * Return: 1 when packing is required and a task should be moved to
8030
 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8031
 *
8032
 * @env: The load balancing environment.
8033 8034
 * @sds: Statistics of the sched_domain which is to be packed
 */
8035
static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8036 8037 8038
{
	int busiest_cpu;

8039
	if (!(env->sd->flags & SD_ASYM_PACKING))
8040 8041
		return 0;

8042 8043 8044
	if (env->idle == CPU_NOT_IDLE)
		return 0;

8045 8046 8047
	if (!sds->busiest)
		return 0;

T
Tim Chen 已提交
8048 8049
	busiest_cpu = sds->busiest->asym_prefer_cpu;
	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8050 8051
		return 0;

8052
	env->imbalance = DIV_ROUND_CLOSEST(
8053
		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8054
		SCHED_CAPACITY_SCALE);
8055

8056
	return 1;
8057 8058 8059 8060 8061 8062
}

/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
 *			amongst the groups of a sched_domain, during
 *			load balancing.
8063
 * @env: The load balancing environment.
8064 8065
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 */
8066 8067
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8068
{
8069
	unsigned long tmp, capa_now = 0, capa_move = 0;
8070
	unsigned int imbn = 2;
8071
	unsigned long scaled_busy_load_per_task;
J
Joonsoo Kim 已提交
8072
	struct sg_lb_stats *local, *busiest;
8073

J
Joonsoo Kim 已提交
8074 8075
	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8076

J
Joonsoo Kim 已提交
8077 8078 8079 8080
	if (!local->sum_nr_running)
		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
	else if (busiest->load_per_task > local->load_per_task)
		imbn = 1;
8081

J
Joonsoo Kim 已提交
8082
	scaled_busy_load_per_task =
8083
		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8084
		busiest->group_capacity;
J
Joonsoo Kim 已提交
8085

8086 8087
	if (busiest->avg_load + scaled_busy_load_per_task >=
	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
J
Joonsoo Kim 已提交
8088
		env->imbalance = busiest->load_per_task;
8089 8090 8091 8092 8093
		return;
	}

	/*
	 * OK, we don't have enough imbalance to justify moving tasks,
8094
	 * however we may be able to increase total CPU capacity used by
8095 8096 8097
	 * moving them.
	 */

8098
	capa_now += busiest->group_capacity *
J
Joonsoo Kim 已提交
8099
			min(busiest->load_per_task, busiest->avg_load);
8100
	capa_now += local->group_capacity *
J
Joonsoo Kim 已提交
8101
			min(local->load_per_task, local->avg_load);
8102
	capa_now /= SCHED_CAPACITY_SCALE;
8103 8104

	/* Amount of load we'd subtract */
8105
	if (busiest->avg_load > scaled_busy_load_per_task) {
8106
		capa_move += busiest->group_capacity *
J
Joonsoo Kim 已提交
8107
			    min(busiest->load_per_task,
8108
				busiest->avg_load - scaled_busy_load_per_task);
J
Joonsoo Kim 已提交
8109
	}
8110 8111

	/* Amount of load we'd add */
8112
	if (busiest->avg_load * busiest->group_capacity <
8113
	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8114 8115
		tmp = (busiest->avg_load * busiest->group_capacity) /
		      local->group_capacity;
J
Joonsoo Kim 已提交
8116
	} else {
8117
		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8118
		      local->group_capacity;
J
Joonsoo Kim 已提交
8119
	}
8120
	capa_move += local->group_capacity *
8121
		    min(local->load_per_task, local->avg_load + tmp);
8122
	capa_move /= SCHED_CAPACITY_SCALE;
8123 8124

	/* Move if we gain throughput */
8125
	if (capa_move > capa_now)
J
Joonsoo Kim 已提交
8126
		env->imbalance = busiest->load_per_task;
8127 8128 8129 8130 8131
}

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
8132
 * @env: load balance environment
8133 8134
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 */
8135
static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8136
{
8137
	unsigned long max_pull, load_above_capacity = ~0UL;
J
Joonsoo Kim 已提交
8138 8139 8140 8141
	struct sg_lb_stats *local, *busiest;

	local = &sds->local_stat;
	busiest = &sds->busiest_stat;
8142

8143
	if (busiest->group_type == group_imbalanced) {
8144 8145 8146 8147
		/*
		 * In the group_imb case we cannot rely on group-wide averages
		 * to ensure cpu-load equilibrium, look at wider averages. XXX
		 */
J
Joonsoo Kim 已提交
8148 8149
		busiest->load_per_task =
			min(busiest->load_per_task, sds->avg_load);
8150 8151
	}

8152
	/*
8153 8154 8155 8156
	 * Avg load of busiest sg can be less and avg load of local sg can
	 * be greater than avg load across all sgs of sd because avg load
	 * factors in sg capacity and sgs with smaller group_type are
	 * skipped when updating the busiest sg:
8157
	 */
8158 8159
	if (busiest->avg_load <= sds->avg_load ||
	    local->avg_load >= sds->avg_load) {
8160 8161
		env->imbalance = 0;
		return fix_small_imbalance(env, sds);
8162 8163
	}

8164 8165 8166 8167 8168
	/*
	 * If there aren't any idle cpus, avoid creating some.
	 */
	if (busiest->group_type == group_overloaded &&
	    local->group_type   == group_overloaded) {
8169
		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8170
		if (load_above_capacity > busiest->group_capacity) {
8171
			load_above_capacity -= busiest->group_capacity;
8172
			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8173 8174
			load_above_capacity /= busiest->group_capacity;
		} else
8175
			load_above_capacity = ~0UL;
8176 8177 8178 8179 8180 8181
	}

	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load. At the same time,
8182 8183
	 * we also don't want to reduce the group load below the group
	 * capacity. Thus we look for the minimum possible imbalance.
8184
	 */
8185
	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8186 8187

	/* How much load to actually move to equalise the imbalance */
J
Joonsoo Kim 已提交
8188
	env->imbalance = min(
8189 8190
		max_pull * busiest->group_capacity,
		(sds->avg_load - local->avg_load) * local->group_capacity
8191
	) / SCHED_CAPACITY_SCALE;
8192 8193 8194

	/*
	 * if *imbalance is less than the average load per runnable task
L
Lucas De Marchi 已提交
8195
	 * there is no guarantee that any tasks will be moved so we'll have
8196 8197 8198
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
J
Joonsoo Kim 已提交
8199
	if (env->imbalance < busiest->load_per_task)
8200
		return fix_small_imbalance(env, sds);
8201
}
8202

8203 8204 8205 8206
/******* find_busiest_group() helpers end here *********************/

/**
 * find_busiest_group - Returns the busiest group within the sched_domain
8207
 * if there is an imbalance.
8208 8209 8210 8211
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
8212
 * @env: The load balancing environment.
8213
 *
8214
 * Return:	- The busiest group if imbalance exists.
8215
 */
J
Joonsoo Kim 已提交
8216
static struct sched_group *find_busiest_group(struct lb_env *env)
8217
{
J
Joonsoo Kim 已提交
8218
	struct sg_lb_stats *local, *busiest;
8219 8220
	struct sd_lb_stats sds;

8221
	init_sd_lb_stats(&sds);
8222 8223 8224 8225 8226

	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
8227
	update_sd_lb_stats(env, &sds);
J
Joonsoo Kim 已提交
8228 8229
	local = &sds.local_stat;
	busiest = &sds.busiest_stat;
8230

8231
	/* ASYM feature bypasses nice load balance check */
8232
	if (check_asym_packing(env, &sds))
8233 8234
		return sds.busiest;

8235
	/* There is no busy sibling group to pull tasks from */
J
Joonsoo Kim 已提交
8236
	if (!sds.busiest || busiest->sum_nr_running == 0)
8237 8238
		goto out_balanced;

8239
	/* XXX broken for overlapping NUMA groups */
8240 8241
	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
						/ sds.total_capacity;
8242

P
Peter Zijlstra 已提交
8243 8244
	/*
	 * If the busiest group is imbalanced the below checks don't
8245
	 * work because they assume all things are equal, which typically
P
Peter Zijlstra 已提交
8246 8247
	 * isn't true due to cpus_allowed constraints and the like.
	 */
8248
	if (busiest->group_type == group_imbalanced)
P
Peter Zijlstra 已提交
8249 8250
		goto force_balance;

8251 8252 8253 8254 8255
	/*
	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
	 * capacities from resulting in underutilization due to avg_load.
	 */
	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8256
	    busiest->group_no_capacity)
8257 8258
		goto force_balance;

8259
	/*
8260
	 * If the local group is busier than the selected busiest group
8261 8262
	 * don't try and pull any tasks.
	 */
J
Joonsoo Kim 已提交
8263
	if (local->avg_load >= busiest->avg_load)
8264 8265
		goto out_balanced;

8266 8267 8268 8269
	/*
	 * Don't pull any tasks if this group is already above the domain
	 * average load.
	 */
J
Joonsoo Kim 已提交
8270
	if (local->avg_load >= sds.avg_load)
8271 8272
		goto out_balanced;

8273
	if (env->idle == CPU_IDLE) {
8274
		/*
8275 8276 8277 8278 8279
		 * This cpu is idle. If the busiest group is not overloaded
		 * and there is no imbalance between this and busiest group
		 * wrt idle cpus, it is balanced. The imbalance becomes
		 * significant if the diff is greater than 1 otherwise we
		 * might end up to just move the imbalance on another group
8280
		 */
8281 8282
		if ((busiest->group_type != group_overloaded) &&
				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8283
			goto out_balanced;
8284 8285 8286 8287 8288
	} else {
		/*
		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
		 * imbalance_pct to be conservative.
		 */
J
Joonsoo Kim 已提交
8289 8290
		if (100 * busiest->avg_load <=
				env->sd->imbalance_pct * local->avg_load)
8291
			goto out_balanced;
8292
	}
8293

8294
force_balance:
8295
	/* Looks like there is an imbalance. Compute it */
8296
	calculate_imbalance(env, &sds);
8297 8298 8299
	return sds.busiest;

out_balanced:
8300
	env->imbalance = 0;
8301 8302 8303 8304 8305 8306
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
8307
static struct rq *find_busiest_queue(struct lb_env *env,
8308
				     struct sched_group *group)
8309 8310
{
	struct rq *busiest = NULL, *rq;
8311
	unsigned long busiest_load = 0, busiest_capacity = 1;
8312 8313
	int i;

8314
	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8315
		unsigned long capacity, wl;
8316 8317 8318 8319
		enum fbq_type rt;

		rq = cpu_rq(i);
		rt = fbq_classify_rq(rq);
8320

8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342
		/*
		 * We classify groups/runqueues into three groups:
		 *  - regular: there are !numa tasks
		 *  - remote:  there are numa tasks that run on the 'wrong' node
		 *  - all:     there is no distinction
		 *
		 * In order to avoid migrating ideally placed numa tasks,
		 * ignore those when there's better options.
		 *
		 * If we ignore the actual busiest queue to migrate another
		 * task, the next balance pass can still reduce the busiest
		 * queue by moving tasks around inside the node.
		 *
		 * If we cannot move enough load due to this classification
		 * the next pass will adjust the group classification and
		 * allow migration of more tasks.
		 *
		 * Both cases only affect the total convergence complexity.
		 */
		if (rt > env->fbq_type)
			continue;

8343
		capacity = capacity_of(i);
8344

8345
		wl = weighted_cpuload(rq);
8346

8347 8348
		/*
		 * When comparing with imbalance, use weighted_cpuload()
8349
		 * which is not scaled with the cpu capacity.
8350
		 */
8351 8352 8353

		if (rq->nr_running == 1 && wl > env->imbalance &&
		    !check_cpu_capacity(rq, env->sd))
8354 8355
			continue;

8356 8357
		/*
		 * For the load comparisons with the other cpu's, consider
8358 8359 8360
		 * the weighted_cpuload() scaled with the cpu capacity, so
		 * that the load can be moved away from the cpu that is
		 * potentially running at a lower capacity.
8361
		 *
8362
		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8363
		 * multiplication to rid ourselves of the division works out
8364 8365
		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
		 * our previous maximum.
8366
		 */
8367
		if (wl * busiest_capacity > busiest_load * capacity) {
8368
			busiest_load = wl;
8369
			busiest_capacity = capacity;
8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382
			busiest = rq;
		}
	}

	return busiest;
}

/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

8383
static int need_active_balance(struct lb_env *env)
8384
{
8385 8386 8387
	struct sched_domain *sd = env->sd;

	if (env->idle == CPU_NEWLY_IDLE) {
8388 8389 8390

		/*
		 * ASYM_PACKING needs to force migrate tasks from busy but
T
Tim Chen 已提交
8391 8392
		 * lower priority CPUs in order to pack all tasks in the
		 * highest priority CPUs.
8393
		 */
T
Tim Chen 已提交
8394 8395
		if ((sd->flags & SD_ASYM_PACKING) &&
		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8396
			return 1;
8397 8398
	}

8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411
	/*
	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
	 * It's worth migrating the task if the src_cpu's capacity is reduced
	 * because of other sched_class or IRQs if more capacity stays
	 * available on dst_cpu.
	 */
	if ((env->idle != CPU_NOT_IDLE) &&
	    (env->src_rq->cfs.h_nr_running == 1)) {
		if ((check_cpu_capacity(env->src_rq, sd)) &&
		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
			return 1;
	}

8412 8413 8414
	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
}

8415 8416
static int active_load_balance_cpu_stop(void *data);

8417 8418 8419 8420 8421
static int should_we_balance(struct lb_env *env)
{
	struct sched_group *sg = env->sd->groups;
	int cpu, balance_cpu = -1;

8422 8423 8424 8425 8426 8427 8428
	/*
	 * Ensure the balancing environment is consistent; can happen
	 * when the softirq triggers 'during' hotplug.
	 */
	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
		return 0;

8429 8430 8431 8432 8433 8434 8435 8436
	/*
	 * In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (env->idle == CPU_NEWLY_IDLE)
		return 1;

	/* Try to find first idle cpu */
8437
	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8438
		if (!idle_cpu(cpu))
8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451
			continue;

		balance_cpu = cpu;
		break;
	}

	if (balance_cpu == -1)
		balance_cpu = group_balance_cpu(sg);

	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above domains.
	 */
8452
	return balance_cpu == env->dst_cpu;
8453 8454
}

8455 8456 8457 8458 8459 8460
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
static int load_balance(int this_cpu, struct rq *this_rq,
			struct sched_domain *sd, enum cpu_idle_type idle,
8461
			int *continue_balancing)
8462
{
8463
	int ld_moved, cur_ld_moved, active_balance = 0;
8464
	struct sched_domain *sd_parent = sd->parent;
8465 8466
	struct sched_group *group;
	struct rq *busiest;
8467
	struct rq_flags rf;
8468
	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8469

8470 8471
	struct lb_env env = {
		.sd		= sd,
8472 8473
		.dst_cpu	= this_cpu,
		.dst_rq		= this_rq,
8474
		.dst_grpmask    = sched_group_span(sd->groups),
8475
		.idle		= idle,
8476
		.loop_break	= sched_nr_migrate_break,
8477
		.cpus		= cpus,
8478
		.fbq_type	= all,
8479
		.tasks		= LIST_HEAD_INIT(env.tasks),
8480 8481
	};

8482
	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8483

8484
	schedstat_inc(sd->lb_count[idle]);
8485 8486

redo:
8487 8488
	if (!should_we_balance(&env)) {
		*continue_balancing = 0;
8489
		goto out_balanced;
8490
	}
8491

8492
	group = find_busiest_group(&env);
8493
	if (!group) {
8494
		schedstat_inc(sd->lb_nobusyg[idle]);
8495 8496 8497
		goto out_balanced;
	}

8498
	busiest = find_busiest_queue(&env, group);
8499
	if (!busiest) {
8500
		schedstat_inc(sd->lb_nobusyq[idle]);
8501 8502 8503
		goto out_balanced;
	}

8504
	BUG_ON(busiest == env.dst_rq);
8505

8506
	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8507

8508 8509 8510
	env.src_cpu = busiest->cpu;
	env.src_rq = busiest;

8511 8512 8513 8514 8515 8516 8517 8518
	ld_moved = 0;
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
		 * still unbalanced. ld_moved simply stays zero, so it is
		 * correctly treated as an imbalance.
		 */
8519
		env.flags |= LBF_ALL_PINNED;
8520
		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8521

8522
more_balance:
8523
		rq_lock_irqsave(busiest, &rf);
8524
		update_rq_clock(busiest);
8525 8526 8527 8528 8529

		/*
		 * cur_ld_moved - load moved in current iteration
		 * ld_moved     - cumulative load moved across iterations
		 */
8530
		cur_ld_moved = detach_tasks(&env);
8531 8532

		/*
8533 8534 8535 8536 8537
		 * We've detached some tasks from busiest_rq. Every
		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
		 * unlock busiest->lock, and we are able to be sure
		 * that nobody can manipulate the tasks in parallel.
		 * See task_rq_lock() family for the details.
8538
		 */
8539

8540
		rq_unlock(busiest, &rf);
8541 8542 8543 8544 8545 8546

		if (cur_ld_moved) {
			attach_tasks(&env);
			ld_moved += cur_ld_moved;
		}

8547
		local_irq_restore(rf.flags);
8548

8549 8550 8551 8552 8553
		if (env.flags & LBF_NEED_BREAK) {
			env.flags &= ~LBF_NEED_BREAK;
			goto more_balance;
		}

8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
		/*
		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
		 * us and move them to an alternate dst_cpu in our sched_group
		 * where they can run. The upper limit on how many times we
		 * iterate on same src_cpu is dependent on number of cpus in our
		 * sched_group.
		 *
		 * This changes load balance semantics a bit on who can move
		 * load to a given_cpu. In addition to the given_cpu itself
		 * (or a ilb_cpu acting on its behalf where given_cpu is
		 * nohz-idle), we now have balance_cpu in a position to move
		 * load to given_cpu. In rare situations, this may cause
		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
		 * _independently_ and at _same_ time to move some load to
		 * given_cpu) causing exceess load to be moved to given_cpu.
		 * This however should not happen so much in practice and
		 * moreover subsequent load balance cycles should correct the
		 * excess load moved.
		 */
8573
		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8574

8575 8576 8577
			/* Prevent to re-select dst_cpu via env's cpus */
			cpumask_clear_cpu(env.dst_cpu, env.cpus);

8578
			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8579
			env.dst_cpu	 = env.new_dst_cpu;
8580
			env.flags	&= ~LBF_DST_PINNED;
8581 8582
			env.loop	 = 0;
			env.loop_break	 = sched_nr_migrate_break;
8583

8584 8585 8586 8587 8588 8589
			/*
			 * Go back to "more_balance" rather than "redo" since we
			 * need to continue with same src_cpu.
			 */
			goto more_balance;
		}
8590

8591 8592 8593 8594
		/*
		 * We failed to reach balance because of affinity.
		 */
		if (sd_parent) {
8595
			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8596

8597
			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8598 8599 8600
				*group_imbalance = 1;
		}

8601
		/* All tasks on this runqueue were pinned by CPU affinity */
8602
		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8603
			cpumask_clear_cpu(cpu_of(busiest), cpus);
8604 8605 8606 8607 8608 8609 8610 8611 8612
			/*
			 * Attempting to continue load balancing at the current
			 * sched_domain level only makes sense if there are
			 * active CPUs remaining as possible busiest CPUs to
			 * pull load from which are not contained within the
			 * destination group that is receiving any migrated
			 * load.
			 */
			if (!cpumask_subset(cpus, env.dst_grpmask)) {
8613 8614
				env.loop = 0;
				env.loop_break = sched_nr_migrate_break;
8615
				goto redo;
8616
			}
8617
			goto out_all_pinned;
8618 8619 8620 8621
		}
	}

	if (!ld_moved) {
8622
		schedstat_inc(sd->lb_failed[idle]);
8623 8624 8625 8626 8627 8628 8629 8630
		/*
		 * Increment the failure counter only on periodic balance.
		 * We do not want newidle balance, which can be very
		 * frequent, pollute the failure counter causing
		 * excessive cache_hot migrations and active balances.
		 */
		if (idle != CPU_NEWLY_IDLE)
			sd->nr_balance_failed++;
8631

8632
		if (need_active_balance(&env)) {
8633 8634
			unsigned long flags;

8635 8636
			raw_spin_lock_irqsave(&busiest->lock, flags);

8637 8638 8639
			/* don't kick the active_load_balance_cpu_stop,
			 * if the curr task on busiest cpu can't be
			 * moved to this_cpu
8640
			 */
8641
			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8642 8643
				raw_spin_unlock_irqrestore(&busiest->lock,
							    flags);
8644
				env.flags |= LBF_ALL_PINNED;
8645 8646 8647
				goto out_one_pinned;
			}

8648 8649 8650 8651 8652
			/*
			 * ->active_balance synchronizes accesses to
			 * ->active_balance_work.  Once set, it's cleared
			 * only after active load balance is finished.
			 */
8653 8654 8655 8656 8657 8658
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
				active_balance = 1;
			}
			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8659

8660
			if (active_balance) {
8661 8662 8663
				stop_one_cpu_nowait(cpu_of(busiest),
					active_load_balance_cpu_stop, busiest,
					&busiest->active_balance_work);
8664
			}
8665

8666
			/* We've kicked active balancing, force task migration. */
8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
			sd->nr_balance_failed = sd->cache_nice_tries+1;
		}
	} else
		sd->nr_balance_failed = 0;

	if (likely(!active_balance)) {
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
8680
		 * detach_tasks).
8681 8682 8683 8684 8685 8686 8687 8688
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
	}

	goto out;

out_balanced:
8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
	/*
	 * We reach balance although we may have faced some affinity
	 * constraints. Clear the imbalance flag if it was set.
	 */
	if (sd_parent) {
		int *group_imbalance = &sd_parent->groups->sgc->imbalance;

		if (*group_imbalance)
			*group_imbalance = 0;
	}

out_all_pinned:
	/*
	 * We reach balance because all tasks are pinned at this level so
	 * we can't migrate them. Let the imbalance flag set so parent level
	 * can try to migrate them.
	 */
8706
	schedstat_inc(sd->lb_balanced[idle]);
8707 8708 8709 8710 8711

	sd->nr_balance_failed = 0;

out_one_pinned:
	/* tune up the balancing interval */
8712
	if (((env.flags & LBF_ALL_PINNED) &&
8713
			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8714 8715 8716
			(sd->balance_interval < sd->max_interval))
		sd->balance_interval *= 2;

8717
	ld_moved = 0;
8718 8719 8720 8721
out:
	return ld_moved;
}

8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737
static inline unsigned long
get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
{
	unsigned long interval = sd->balance_interval;

	if (cpu_busy)
		interval *= sd->busy_factor;

	/* scale ms to jiffies */
	interval = msecs_to_jiffies(interval);
	interval = clamp(interval, 1UL, max_load_balance_interval);

	return interval;
}

static inline void
8738
update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8739 8740 8741
{
	unsigned long interval, next;

8742 8743
	/* used by idle balance, so cpu_busy = 0 */
	interval = get_sd_balance_interval(sd, 0);
8744 8745 8746 8747 8748 8749
	next = sd->last_balance + interval;

	if (time_after(*next_balance, next))
		*next_balance = next;
}

8750 8751 8752 8753
/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
8754
static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8755
{
8756 8757
	unsigned long next_balance = jiffies + HZ;
	int this_cpu = this_rq->cpu;
8758 8759
	struct sched_domain *sd;
	int pulled_task = 0;
8760
	u64 curr_cost = 0;
8761

8762 8763 8764 8765 8766 8767
	/*
	 * We must set idle_stamp _before_ calling idle_balance(), such that we
	 * measure the duration of idle_balance() as idle time.
	 */
	this_rq->idle_stamp = rq_clock(this_rq);

8768 8769 8770 8771 8772 8773
	/*
	 * Do not pull tasks towards !active CPUs...
	 */
	if (!cpu_active(this_cpu))
		return 0;

8774 8775 8776 8777 8778 8779 8780 8781
	/*
	 * This is OK, because current is on_cpu, which avoids it being picked
	 * for load-balance and preemption/IRQs are still disabled avoiding
	 * further scheduler activity on it and we're being very careful to
	 * re-start the picking loop.
	 */
	rq_unpin_lock(this_rq, rf);

8782 8783
	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
	    !this_rq->rd->overload) {
8784 8785 8786
		rcu_read_lock();
		sd = rcu_dereference_check_sched_domain(this_rq->sd);
		if (sd)
8787
			update_next_balance(sd, &next_balance);
8788 8789
		rcu_read_unlock();

8790
		goto out;
8791
	}
8792

8793 8794
	raw_spin_unlock(&this_rq->lock);

8795
	update_blocked_averages(this_cpu);
8796
	rcu_read_lock();
8797
	for_each_domain(this_cpu, sd) {
8798
		int continue_balancing = 1;
8799
		u64 t0, domain_cost;
8800 8801 8802 8803

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

8804
		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8805
			update_next_balance(sd, &next_balance);
8806
			break;
8807
		}
8808

8809
		if (sd->flags & SD_BALANCE_NEWIDLE) {
8810 8811
			t0 = sched_clock_cpu(this_cpu);

8812
			pulled_task = load_balance(this_cpu, this_rq,
8813 8814
						   sd, CPU_NEWLY_IDLE,
						   &continue_balancing);
8815 8816 8817 8818 8819 8820

			domain_cost = sched_clock_cpu(this_cpu) - t0;
			if (domain_cost > sd->max_newidle_lb_cost)
				sd->max_newidle_lb_cost = domain_cost;

			curr_cost += domain_cost;
8821
		}
8822

8823
		update_next_balance(sd, &next_balance);
8824 8825 8826 8827 8828 8829

		/*
		 * Stop searching for tasks to pull if there are
		 * now runnable tasks on this rq.
		 */
		if (pulled_task || this_rq->nr_running > 0)
8830 8831
			break;
	}
8832
	rcu_read_unlock();
8833 8834 8835

	raw_spin_lock(&this_rq->lock);

8836 8837 8838
	if (curr_cost > this_rq->max_idle_balance_cost)
		this_rq->max_idle_balance_cost = curr_cost;

8839
	/*
8840 8841 8842
	 * While browsing the domains, we released the rq lock, a task could
	 * have been enqueued in the meantime. Since we're not going idle,
	 * pretend we pulled a task.
8843
	 */
8844
	if (this_rq->cfs.h_nr_running && !pulled_task)
8845
		pulled_task = 1;
8846

8847 8848 8849
out:
	/* Move the next balance forward */
	if (time_after(this_rq->next_balance, next_balance))
8850
		this_rq->next_balance = next_balance;
8851

8852
	/* Is there a task of a high priority class? */
8853
	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8854 8855
		pulled_task = -1;

8856
	if (pulled_task)
8857 8858
		this_rq->idle_stamp = 0;

8859 8860
	rq_repin_lock(this_rq, rf);

8861
	return pulled_task;
8862 8863 8864
}

/*
8865 8866 8867 8868
 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
 * running tasks off the busiest CPU onto idle CPUs. It requires at
 * least 1 task to be running on each physical CPU where possible, and
 * avoids physical / logical imbalances.
8869
 */
8870
static int active_load_balance_cpu_stop(void *data)
8871
{
8872 8873
	struct rq *busiest_rq = data;
	int busiest_cpu = cpu_of(busiest_rq);
8874
	int target_cpu = busiest_rq->push_cpu;
8875
	struct rq *target_rq = cpu_rq(target_cpu);
8876
	struct sched_domain *sd;
8877
	struct task_struct *p = NULL;
8878
	struct rq_flags rf;
8879

8880
	rq_lock_irq(busiest_rq, &rf);
8881 8882 8883 8884 8885 8886 8887
	/*
	 * Between queueing the stop-work and running it is a hole in which
	 * CPUs can become inactive. We should not move tasks from or to
	 * inactive CPUs.
	 */
	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
		goto out_unlock;
8888 8889 8890 8891 8892

	/* make sure the requested cpu hasn't gone down in the meantime */
	if (unlikely(busiest_cpu != smp_processor_id() ||
		     !busiest_rq->active_balance))
		goto out_unlock;
8893 8894 8895

	/* Is there any task to move? */
	if (busiest_rq->nr_running <= 1)
8896
		goto out_unlock;
8897 8898 8899 8900 8901 8902 8903 8904 8905

	/*
	 * This condition is "impossible", if it occurs
	 * we need to fix it. Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
	 */
	BUG_ON(busiest_rq == target_rq);

	/* Search for an sd spanning us and the target CPU. */
8906
	rcu_read_lock();
8907 8908 8909 8910 8911 8912 8913
	for_each_domain(target_cpu, sd) {
		if ((sd->flags & SD_LOAD_BALANCE) &&
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
				break;
	}

	if (likely(sd)) {
8914 8915
		struct lb_env env = {
			.sd		= sd,
8916 8917 8918 8919
			.dst_cpu	= target_cpu,
			.dst_rq		= target_rq,
			.src_cpu	= busiest_rq->cpu,
			.src_rq		= busiest_rq,
8920
			.idle		= CPU_IDLE,
8921 8922 8923 8924 8925 8926 8927
			/*
			 * can_migrate_task() doesn't need to compute new_dst_cpu
			 * for active balancing. Since we have CPU_IDLE, but no
			 * @dst_grpmask we need to make that test go away with lying
			 * about DST_PINNED.
			 */
			.flags		= LBF_DST_PINNED,
8928 8929
		};

8930
		schedstat_inc(sd->alb_count);
8931
		update_rq_clock(busiest_rq);
8932

8933
		p = detach_one_task(&env);
8934
		if (p) {
8935
			schedstat_inc(sd->alb_pushed);
8936 8937 8938
			/* Active balancing done, reset the failure counter. */
			sd->nr_balance_failed = 0;
		} else {
8939
			schedstat_inc(sd->alb_failed);
8940
		}
8941
	}
8942
	rcu_read_unlock();
8943 8944
out_unlock:
	busiest_rq->active_balance = 0;
8945
	rq_unlock(busiest_rq, &rf);
8946 8947 8948 8949 8950 8951

	if (p)
		attach_one_task(target_rq, p);

	local_irq_enable();

8952
	return 0;
8953 8954
}

8955 8956 8957 8958 8959
static inline int on_null_domain(struct rq *rq)
{
	return unlikely(!rcu_dereference_sched(rq->sd));
}

8960
#ifdef CONFIG_NO_HZ_COMMON
8961 8962 8963 8964 8965 8966
/*
 * idle load balancing details
 * - When one of the busy CPUs notice that there may be an idle rebalancing
 *   needed, they will kick the idle load balancer, which then does idle
 *   load balancing for all the idle CPUs.
 */
8967
static struct {
8968
	cpumask_var_t idle_cpus_mask;
8969
	atomic_t nr_cpus;
8970 8971
	unsigned long next_balance;     /* in jiffy units */
} nohz ____cacheline_aligned;
8972

8973
static inline int find_new_ilb(void)
8974
{
8975
	int ilb = cpumask_first(nohz.idle_cpus_mask);
8976

8977 8978 8979 8980
	if (ilb < nr_cpu_ids && idle_cpu(ilb))
		return ilb;

	return nr_cpu_ids;
8981 8982
}

8983 8984 8985 8986 8987
/*
 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
 * CPU (if there is one).
 */
8988
static void nohz_balancer_kick(void)
8989 8990 8991 8992 8993
{
	int ilb_cpu;

	nohz.next_balance++;

8994
	ilb_cpu = find_new_ilb();
8995

8996 8997
	if (ilb_cpu >= nr_cpu_ids)
		return;
8998

8999
	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9000 9001 9002 9003 9004 9005 9006 9007
		return;
	/*
	 * Use smp_send_reschedule() instead of resched_cpu().
	 * This way we generate a sched IPI on the target cpu which
	 * is idle. And the softirq performing nohz idle load balance
	 * will be run before returning from the IPI.
	 */
	smp_send_reschedule(ilb_cpu);
9008 9009 9010
	return;
}

9011
void nohz_balance_exit_idle(unsigned int cpu)
9012 9013
{
	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9014 9015 9016 9017 9018 9019 9020
		/*
		 * Completely isolated CPUs don't ever set, so we must test.
		 */
		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
			atomic_dec(&nohz.nr_cpus);
		}
9021 9022 9023 9024
		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
	}
}

9025 9026 9027
static inline void set_cpu_sd_state_busy(void)
{
	struct sched_domain *sd;
9028
	int cpu = smp_processor_id();
9029 9030

	rcu_read_lock();
9031
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9032 9033 9034 9035 9036

	if (!sd || !sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 0;

9037
	atomic_inc(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9038
unlock:
9039 9040 9041 9042 9043 9044
	rcu_read_unlock();
}

void set_cpu_sd_state_idle(void)
{
	struct sched_domain *sd;
9045
	int cpu = smp_processor_id();
9046 9047

	rcu_read_lock();
9048
	sd = rcu_dereference(per_cpu(sd_llc, cpu));
V
Vincent Guittot 已提交
9049 9050 9051 9052 9053

	if (!sd || sd->nohz_idle)
		goto unlock;
	sd->nohz_idle = 1;

9054
	atomic_dec(&sd->shared->nr_busy_cpus);
V
Vincent Guittot 已提交
9055
unlock:
9056 9057 9058
	rcu_read_unlock();
}

9059
/*
9060
 * This routine will record that the cpu is going idle with tick stopped.
9061
 * This info will be used in performing idle load balancing in the future.
9062
 */
9063
void nohz_balance_enter_idle(int cpu)
9064
{
9065 9066 9067 9068 9069 9070
	/*
	 * If this cpu is going down, then nothing needs to be done.
	 */
	if (!cpu_active(cpu))
		return;

9071
	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9072
	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9073 9074
		return;

9075 9076
	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
		return;
9077

9078 9079 9080 9081 9082 9083
	/*
	 * If we're a completely isolated CPU, we don't play.
	 */
	if (on_null_domain(cpu_rq(cpu)))
		return;

9084 9085 9086
	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
	atomic_inc(&nohz.nr_cpus);
	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9087 9088 9089 9090 9091
}
#endif

static DEFINE_SPINLOCK(balancing);

9092 9093 9094 9095
/*
 * Scale the max load_balance interval with the number of CPUs in the system.
 * This trades load-balance latency on larger machines for less cross talk.
 */
9096
void update_max_interval(void)
9097 9098 9099 9100
{
	max_load_balance_interval = HZ*num_online_cpus()/10;
}

9101 9102 9103 9104
/*
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
9105
 * Balancing parameters are set up in init_sched_domains.
9106
 */
9107
static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9108
{
9109
	int continue_balancing = 1;
9110
	int cpu = rq->cpu;
9111
	unsigned long interval;
9112
	struct sched_domain *sd;
9113 9114 9115
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9116 9117
	int need_serialize, need_decay = 0;
	u64 max_cost = 0;
9118

9119
	update_blocked_averages(cpu);
P
Peter Zijlstra 已提交
9120

9121
	rcu_read_lock();
9122
	for_each_domain(cpu, sd) {
9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134
		/*
		 * Decay the newidle max times here because this is a regular
		 * visit to all the domains. Decay ~1% per second.
		 */
		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
			sd->max_newidle_lb_cost =
				(sd->max_newidle_lb_cost * 253) / 256;
			sd->next_decay_max_lb_cost = jiffies + HZ;
			need_decay = 1;
		}
		max_cost += sd->max_newidle_lb_cost;

9135 9136 9137
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148
		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!continue_balancing) {
			if (need_decay)
				continue;
			break;
		}

9149
		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9150 9151 9152 9153 9154 9155 9156 9157

		need_serialize = sd->flags & SD_SERIALIZE;
		if (need_serialize) {
			if (!spin_trylock(&balancing))
				goto out;
		}

		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9158
			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9159
				/*
9160
				 * The LBF_DST_PINNED logic could have changed
9161 9162
				 * env->dst_cpu, so we can't know our idle
				 * state even if we migrated tasks. Update it.
9163
				 */
9164
				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9165 9166
			}
			sd->last_balance = jiffies;
9167
			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9168 9169 9170 9171 9172 9173 9174 9175
		}
		if (need_serialize)
			spin_unlock(&balancing);
out:
		if (time_after(next_balance, sd->last_balance + interval)) {
			next_balance = sd->last_balance + interval;
			update_next_balance = 1;
		}
9176 9177
	}
	if (need_decay) {
9178
		/*
9179 9180
		 * Ensure the rq-wide value also decays but keep it at a
		 * reasonable floor to avoid funnies with rq->avg_idle.
9181
		 */
9182 9183
		rq->max_idle_balance_cost =
			max((u64)sysctl_sched_migration_cost, max_cost);
9184
	}
9185
	rcu_read_unlock();
9186 9187 9188 9189 9190 9191

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
9192
	if (likely(update_next_balance)) {
9193
		rq->next_balance = next_balance;
9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207

#ifdef CONFIG_NO_HZ_COMMON
		/*
		 * If this CPU has been elected to perform the nohz idle
		 * balance. Other idle CPUs have already rebalanced with
		 * nohz_idle_balance() and nohz.next_balance has been
		 * updated accordingly. This CPU is now running the idle load
		 * balance for itself and we need to update the
		 * nohz.next_balance accordingly.
		 */
		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
			nohz.next_balance = rq->next_balance;
#endif
	}
9208 9209
}

9210
#ifdef CONFIG_NO_HZ_COMMON
9211
/*
9212
 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9213 9214
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
9215
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9216
{
9217
	int this_cpu = this_rq->cpu;
9218 9219
	struct rq *rq;
	int balance_cpu;
9220 9221 9222
	/* Earliest time when we have to do rebalance again */
	unsigned long next_balance = jiffies + 60*HZ;
	int update_next_balance = 0;
9223

9224 9225 9226
	if (idle != CPU_IDLE ||
	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
		goto end;
9227 9228

	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9229
		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9230 9231 9232 9233 9234 9235 9236
			continue;

		/*
		 * If this cpu gets work to do, stop the load balancing
		 * work being done for other cpus. Next load
		 * balancing owner will pick it up.
		 */
9237
		if (need_resched())
9238 9239
			break;

V
Vincent Guittot 已提交
9240 9241
		rq = cpu_rq(balance_cpu);

9242 9243 9244 9245 9246
		/*
		 * If time for next balance is due,
		 * do the balance.
		 */
		if (time_after_eq(jiffies, rq->next_balance)) {
9247 9248 9249
			struct rq_flags rf;

			rq_lock_irq(rq, &rf);
9250
			update_rq_clock(rq);
9251
			cpu_load_update_idle(rq);
9252 9253
			rq_unlock_irq(rq, &rf);

9254 9255
			rebalance_domains(rq, CPU_IDLE);
		}
9256

9257 9258 9259 9260
		if (time_after(next_balance, rq->next_balance)) {
			next_balance = rq->next_balance;
			update_next_balance = 1;
		}
9261
	}
9262 9263 9264 9265 9266 9267 9268 9269

	/*
	 * next_balance will be updated only when there is a need.
	 * When the CPU is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		nohz.next_balance = next_balance;
9270 9271
end:
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
9272 9273 9274
}

/*
9275
 * Current heuristic for kicking the idle load balancer in the presence
9276
 * of an idle cpu in the system.
9277
 *   - This rq has more than one task.
9278 9279 9280 9281
 *   - This rq has at least one CFS task and the capacity of the CPU is
 *     significantly reduced because of RT tasks or IRQs.
 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
 *     multiple busy cpu.
9282 9283
 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
 *     domain span are idle.
9284
 */
9285
static inline bool nohz_kick_needed(struct rq *rq)
9286 9287
{
	unsigned long now = jiffies;
9288
	struct sched_domain_shared *sds;
9289
	struct sched_domain *sd;
T
Tim Chen 已提交
9290
	int nr_busy, i, cpu = rq->cpu;
9291
	bool kick = false;
9292

9293
	if (unlikely(rq->idle_balance))
9294
		return false;
9295

9296 9297 9298 9299
       /*
	* We may be recently in ticked or tickless idle mode. At the first
	* busy tick after returning from idle, we will update the busy stats.
	*/
9300
	set_cpu_sd_state_busy();
9301
	nohz_balance_exit_idle(cpu);
9302 9303 9304 9305 9306 9307

	/*
	 * None are in tickless mode and hence no need for NOHZ idle load
	 * balancing.
	 */
	if (likely(!atomic_read(&nohz.nr_cpus)))
9308
		return false;
9309 9310

	if (time_before(now, nohz.next_balance))
9311
		return false;
9312

9313
	if (rq->nr_running >= 2)
9314
		return true;
9315

9316
	rcu_read_lock();
9317 9318 9319 9320 9321 9322 9323
	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
	if (sds) {
		/*
		 * XXX: write a coherent comment on why we do this.
		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
		 */
		nr_busy = atomic_read(&sds->nr_busy_cpus);
9324 9325 9326 9327 9328
		if (nr_busy > 1) {
			kick = true;
			goto unlock;
		}

9329
	}
9330

9331 9332 9333 9334 9335 9336 9337 9338
	sd = rcu_dereference(rq->sd);
	if (sd) {
		if ((rq->cfs.h_nr_running >= 1) &&
				check_cpu_capacity(rq, sd)) {
			kick = true;
			goto unlock;
		}
	}
9339

9340
	sd = rcu_dereference(per_cpu(sd_asym, cpu));
T
Tim Chen 已提交
9341 9342 9343 9344 9345
	if (sd) {
		for_each_cpu(i, sched_domain_span(sd)) {
			if (i == cpu ||
			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
				continue;
9346

T
Tim Chen 已提交
9347 9348 9349 9350 9351 9352
			if (sched_asym_prefer(i, cpu)) {
				kick = true;
				goto unlock;
			}
		}
	}
9353
unlock:
9354
	rcu_read_unlock();
9355
	return kick;
9356 9357
}
#else
9358
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
9359 9360 9361 9362 9363 9364
#endif

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
 */
9365
static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9366
{
9367
	struct rq *this_rq = this_rq();
9368
	enum cpu_idle_type idle = this_rq->idle_balance ?
9369 9370 9371
						CPU_IDLE : CPU_NOT_IDLE;

	/*
9372
	 * If this cpu has a pending nohz_balance_kick, then do the
9373
	 * balancing on behalf of the other idle cpus whose ticks are
9374 9375 9376 9377
	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
	 * give the idle cpus a chance to load balance. Else we may
	 * load balance only within the local sched_domain hierarchy
	 * and abort nohz_idle_balance altogether if we pull some load.
9378
	 */
9379
	nohz_idle_balance(this_rq, idle);
9380
	rebalance_domains(this_rq, idle);
9381 9382 9383 9384 9385
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 */
9386
void trigger_load_balance(struct rq *rq)
9387 9388
{
	/* Don't need to rebalance while attached to NULL domain */
9389 9390 9391 9392
	if (unlikely(on_null_domain(rq)))
		return;

	if (time_after_eq(jiffies, rq->next_balance))
9393
		raise_softirq(SCHED_SOFTIRQ);
9394
#ifdef CONFIG_NO_HZ_COMMON
9395
	if (nohz_kick_needed(rq))
9396
		nohz_balancer_kick();
9397
#endif
9398 9399
}

9400 9401 9402
static void rq_online_fair(struct rq *rq)
{
	update_sysctl();
9403 9404

	update_runtime_enabled(rq);
9405 9406 9407 9408 9409
}

static void rq_offline_fair(struct rq *rq)
{
	update_sysctl();
9410 9411 9412

	/* Ensure any throttled groups are reachable by pick_next_task */
	unthrottle_offline_cfs_rqs(rq);
9413 9414
}

9415
#endif /* CONFIG_SMP */
9416

9417 9418 9419
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
9420
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9421 9422 9423 9424 9425 9426
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
9427
		entity_tick(cfs_rq, se, queued);
9428
	}
9429

9430
	if (static_branch_unlikely(&sched_numa_balancing))
9431
		task_tick_numa(rq, curr);
9432 9433 9434
}

/*
P
Peter Zijlstra 已提交
9435 9436 9437
 * called on fork with the child task as argument from the parent's context
 *  - child not yet on the tasklist
 *  - preemption disabled
9438
 */
P
Peter Zijlstra 已提交
9439
static void task_fork_fair(struct task_struct *p)
9440
{
9441 9442
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &p->se, *curr;
P
Peter Zijlstra 已提交
9443
	struct rq *rq = this_rq();
9444
	struct rq_flags rf;
9445

9446
	rq_lock(rq, &rf);
9447 9448
	update_rq_clock(rq);

9449 9450
	cfs_rq = task_cfs_rq(current);
	curr = cfs_rq->curr;
9451 9452
	if (curr) {
		update_curr(cfs_rq);
9453
		se->vruntime = curr->vruntime;
9454
	}
9455
	place_entity(cfs_rq, se, 1);
9456

P
Peter Zijlstra 已提交
9457
	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
D
Dmitry Adamushko 已提交
9458
		/*
9459 9460 9461
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
9462
		swap(curr->vruntime, se->vruntime);
9463
		resched_curr(rq);
9464
	}
9465

9466
	se->vruntime -= cfs_rq->min_vruntime;
9467
	rq_unlock(rq, &rf);
9468 9469
}

9470 9471 9472 9473
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
P
Peter Zijlstra 已提交
9474 9475
static void
prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9476
{
9477
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
9478 9479
		return;

9480 9481 9482 9483 9484
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
P
Peter Zijlstra 已提交
9485
	if (rq->curr == p) {
9486
		if (p->prio > oldprio)
9487
			resched_curr(rq);
9488
	} else
9489
		check_preempt_curr(rq, p, 0);
9490 9491
}

9492
static inline bool vruntime_normalized(struct task_struct *p)
P
Peter Zijlstra 已提交
9493 9494 9495 9496
{
	struct sched_entity *se = &p->se;

	/*
9497 9498 9499 9500 9501 9502 9503 9504 9505 9506
	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
	 * the dequeue_entity(.flags=0) will already have normalized the
	 * vruntime.
	 */
	if (p->on_rq)
		return true;

	/*
	 * When !on_rq, vruntime of the task has usually NOT been normalized.
	 * But there are some cases where it has already been normalized:
P
Peter Zijlstra 已提交
9507
	 *
9508 9509 9510 9511
	 * - A forked child which is waiting for being woken up by
	 *   wake_up_new_task().
	 * - A task which has been woken up by try_to_wake_up() and
	 *   waiting for actually being woken up by sched_ttwu_pending().
P
Peter Zijlstra 已提交
9512
	 */
9513 9514 9515 9516 9517 9518
	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
		return true;

	return false;
}

9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536
#ifdef CONFIG_FAIR_GROUP_SCHED
/*
 * Propagate the changes of the sched_entity across the tg tree to make it
 * visible to the root
 */
static void propagate_entity_cfs_rq(struct sched_entity *se)
{
	struct cfs_rq *cfs_rq;

	/* Start to propagate at parent */
	se = se->parent;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);

		if (cfs_rq_throttled(cfs_rq))
			break;

9537
		update_load_avg(cfs_rq, se, UPDATE_TG);
9538 9539 9540 9541 9542 9543
	}
}
#else
static void propagate_entity_cfs_rq(struct sched_entity *se) { }
#endif

9544
static void detach_entity_cfs_rq(struct sched_entity *se)
9545 9546 9547
{
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

9548
	/* Catch up with the cfs_rq and remove our load when we leave */
9549
	update_load_avg(cfs_rq, se, 0);
9550
	detach_entity_load_avg(cfs_rq, se);
9551
	update_tg_load_avg(cfs_rq, false);
9552
	propagate_entity_cfs_rq(se);
P
Peter Zijlstra 已提交
9553 9554
}

9555
static void attach_entity_cfs_rq(struct sched_entity *se)
9556
{
9557
	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9558 9559

#ifdef CONFIG_FAIR_GROUP_SCHED
9560 9561 9562 9563 9564 9565
	/*
	 * Since the real-depth could have been changed (only FAIR
	 * class maintain depth value), reset depth properly.
	 */
	se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
9566

9567
	/* Synchronize entity with its cfs_rq */
9568
	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9569
	attach_entity_load_avg(cfs_rq, se);
9570
	update_tg_load_avg(cfs_rq, false);
9571
	propagate_entity_cfs_rq(se);
9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596
}

static void detach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	if (!vruntime_normalized(p)) {
		/*
		 * Fix up our vruntime so that the current sleep doesn't
		 * cause 'unlimited' sleep bonus.
		 */
		place_entity(cfs_rq, se, 0);
		se->vruntime -= cfs_rq->min_vruntime;
	}

	detach_entity_cfs_rq(se);
}

static void attach_task_cfs_rq(struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	attach_entity_cfs_rq(se);
9597 9598 9599 9600

	if (!vruntime_normalized(p))
		se->vruntime += cfs_rq->min_vruntime;
}
9601

9602 9603 9604 9605 9606 9607 9608 9609
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
	detach_task_cfs_rq(p);
}

static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
	attach_task_cfs_rq(p);
9610

9611
	if (task_on_rq_queued(p)) {
9612
		/*
9613 9614 9615
		 * We were most likely switched from sched_rt, so
		 * kick off the schedule if running, otherwise just see
		 * if we can still preempt the current task.
9616
		 */
9617 9618 9619 9620
		if (rq->curr == p)
			resched_curr(rq);
		else
			check_preempt_curr(rq, p, 0);
9621
	}
9622 9623
}

9624 9625 9626 9627 9628 9629 9630 9631 9632
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

9633 9634 9635 9636 9637 9638 9639
	for_each_sched_entity(se) {
		struct cfs_rq *cfs_rq = cfs_rq_of(se);

		set_next_entity(cfs_rq, se);
		/* ensure bandwidth has been allocated on our new cfs_rq */
		account_cfs_rq_runtime(cfs_rq, 0);
	}
9640 9641
}

9642 9643
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
9644
	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9645 9646 9647 9648
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifndef CONFIG_64BIT
	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
9649
#ifdef CONFIG_SMP
9650
	raw_spin_lock_init(&cfs_rq->removed.lock);
9651
#endif
9652 9653
}

P
Peter Zijlstra 已提交
9654
#ifdef CONFIG_FAIR_GROUP_SCHED
9655 9656 9657 9658 9659 9660 9661 9662
static void task_set_group_fair(struct task_struct *p)
{
	struct sched_entity *se = &p->se;

	set_task_rq(p, task_cpu(p));
	se->depth = se->parent ? se->parent->depth + 1 : 0;
}

9663
static void task_move_group_fair(struct task_struct *p)
P
Peter Zijlstra 已提交
9664
{
9665
	detach_task_cfs_rq(p);
9666
	set_task_rq(p, task_cpu(p));
9667 9668 9669 9670 9671

#ifdef CONFIG_SMP
	/* Tell se's cfs_rq has been changed -- migrated */
	p->se.avg.last_update_time = 0;
#endif
9672
	attach_task_cfs_rq(p);
P
Peter Zijlstra 已提交
9673
}
9674

9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687
static void task_change_group_fair(struct task_struct *p, int type)
{
	switch (type) {
	case TASK_SET_GROUP:
		task_set_group_fair(p);
		break;

	case TASK_MOVE_GROUP:
		task_move_group_fair(p);
		break;
	}
}

9688 9689 9690 9691 9692 9693 9694 9695 9696
void free_fair_sched_group(struct task_group *tg)
{
	int i;

	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
9697
		if (tg->se)
9698 9699 9700 9701 9702 9703 9704 9705 9706 9707
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	struct sched_entity *se;
9708
	struct cfs_rq *cfs_rq;
9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734
	int i;

	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->cfs_rq)
		goto err;
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
	if (!tg->se)
		goto err;

	tg->shares = NICE_0_LOAD;

	init_cfs_bandwidth(tg_cfs_bandwidth(tg));

	for_each_possible_cpu(i) {
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
		if (!se)
			goto err_free_rq;

		init_cfs_rq(cfs_rq);
		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9735
		init_entity_runnable_average(se);
9736 9737 9738 9739 9740 9741 9742 9743 9744 9745
	}

	return 1;

err_free_rq:
	kfree(cfs_rq);
err:
	return 0;
}

9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756
void online_fair_sched_group(struct task_group *tg)
{
	struct sched_entity *se;
	struct rq *rq;
	int i;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		se = tg->se[i];

		raw_spin_lock_irq(&rq->lock);
9757
		update_rq_clock(rq);
9758
		attach_entity_cfs_rq(se);
9759
		sync_throttle(tg, i);
9760 9761 9762 9763
		raw_spin_unlock_irq(&rq->lock);
	}
}

9764
void unregister_fair_sched_group(struct task_group *tg)
9765 9766
{
	unsigned long flags;
9767 9768
	struct rq *rq;
	int cpu;
9769

9770 9771 9772
	for_each_possible_cpu(cpu) {
		if (tg->se[cpu])
			remove_entity_load_avg(tg->se[cpu]);
9773

9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786
		/*
		 * Only empty task groups can be destroyed; so we can speculatively
		 * check on_list without danger of it being re-added.
		 */
		if (!tg->cfs_rq[cpu]->on_list)
			continue;

		rq = cpu_rq(cpu);

		raw_spin_lock_irqsave(&rq->lock, flags);
		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805
}

void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
			struct sched_entity *se, int cpu,
			struct sched_entity *parent)
{
	struct rq *rq = cpu_rq(cpu);

	cfs_rq->tg = tg;
	cfs_rq->rq = rq;
	init_cfs_rq_runtime(cfs_rq);

	tg->cfs_rq[cpu] = cfs_rq;
	tg->se[cpu] = se;

	/* se could be NULL for root_task_group */
	if (!se)
		return;

P
Peter Zijlstra 已提交
9806
	if (!parent) {
9807
		se->cfs_rq = &rq->cfs;
P
Peter Zijlstra 已提交
9808 9809
		se->depth = 0;
	} else {
9810
		se->cfs_rq = parent->my_q;
P
Peter Zijlstra 已提交
9811 9812
		se->depth = parent->depth + 1;
	}
9813 9814

	se->my_q = cfs_rq;
9815 9816
	/* guarantee group entities always have weight */
	update_load_set(&se->load, NICE_0_LOAD);
9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840
	se->parent = parent;
}

static DEFINE_MUTEX(shares_mutex);

int sched_group_set_shares(struct task_group *tg, unsigned long shares)
{
	int i;

	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));

	mutex_lock(&shares_mutex);
	if (tg->shares == shares)
		goto done;

	tg->shares = shares;
	for_each_possible_cpu(i) {
		struct rq *rq = cpu_rq(i);
9841 9842
		struct sched_entity *se = tg->se[i];
		struct rq_flags rf;
9843 9844

		/* Propagate contribution to hierarchy */
9845
		rq_lock_irqsave(rq, &rf);
9846
		update_rq_clock(rq);
9847
		for_each_sched_entity(se) {
9848
			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9849
			update_cfs_group(se);
9850
		}
9851
		rq_unlock_irqrestore(rq, &rf);
9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866
	}

done:
	mutex_unlock(&shares_mutex);
	return 0;
}
#else /* CONFIG_FAIR_GROUP_SCHED */

void free_fair_sched_group(struct task_group *tg) { }

int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
{
	return 1;
}

9867 9868
void online_fair_sched_group(struct task_group *tg) { }

9869
void unregister_fair_sched_group(struct task_group *tg) { }
9870 9871 9872

#endif /* CONFIG_FAIR_GROUP_SCHED */

P
Peter Zijlstra 已提交
9873

9874
static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9875 9876 9877 9878 9879 9880 9881 9882 9883
{
	struct sched_entity *se = &task->se;
	unsigned int rr_interval = 0;

	/*
	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
	 * idle runqueue:
	 */
	if (rq->cfs.load.weight)
9884
		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9885 9886 9887 9888

	return rr_interval;
}

9889 9890 9891
/*
 * All the scheduling class methods:
 */
9892
const struct sched_class fair_sched_class = {
9893
	.next			= &idle_sched_class,
9894 9895 9896
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,
9897
	.yield_to_task		= yield_to_task_fair,
9898

I
Ingo Molnar 已提交
9899
	.check_preempt_curr	= check_preempt_wakeup,
9900 9901 9902 9903

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

9904
#ifdef CONFIG_SMP
L
Li Zefan 已提交
9905
	.select_task_rq		= select_task_rq_fair,
9906
	.migrate_task_rq	= migrate_task_rq_fair,
9907

9908 9909
	.rq_online		= rq_online_fair,
	.rq_offline		= rq_offline_fair,
9910

9911
	.task_dead		= task_dead_fair,
9912
	.set_cpus_allowed	= set_cpus_allowed_common,
9913
#endif
9914

9915
	.set_curr_task          = set_curr_task_fair,
9916
	.task_tick		= task_tick_fair,
P
Peter Zijlstra 已提交
9917
	.task_fork		= task_fork_fair,
9918 9919

	.prio_changed		= prio_changed_fair,
P
Peter Zijlstra 已提交
9920
	.switched_from		= switched_from_fair,
9921
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
9922

9923 9924
	.get_rr_interval	= get_rr_interval_fair,

9925 9926
	.update_curr		= update_curr_fair,

P
Peter Zijlstra 已提交
9927
#ifdef CONFIG_FAIR_GROUP_SCHED
9928
	.task_change_group	= task_change_group_fair,
P
Peter Zijlstra 已提交
9929
#endif
9930 9931 9932
};

#ifdef CONFIG_SCHED_DEBUG
9933
void print_cfs_stats(struct seq_file *m, int cpu)
9934
{
9935
	struct cfs_rq *cfs_rq, *pos;
9936

9937
	rcu_read_lock();
9938
	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9939
		print_cfs_rq(m, cpu, cfs_rq);
9940
	rcu_read_unlock();
9941
}
9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962

#ifdef CONFIG_NUMA_BALANCING
void show_numa_stats(struct task_struct *p, struct seq_file *m)
{
	int node;
	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;

	for_each_online_node(node) {
		if (p->numa_faults) {
			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		if (p->numa_group) {
			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
		}
		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
	}
}
#endif /* CONFIG_NUMA_BALANCING */
#endif /* CONFIG_SCHED_DEBUG */
9963 9964 9965 9966 9967 9968

__init void init_sched_fair_class(void)
{
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);

9969
#ifdef CONFIG_NO_HZ_COMMON
9970
	nohz.next_balance = jiffies;
9971 9972 9973 9974 9975
	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
#endif
#endif /* SMP */

}