提交 231678b7 编写于 作者: D Dietmar Eggemann 提交者: Ingo Molnar

sched/fair: Get rid of scaling utilization by capacity_orig

Utilization is currently scaled by capacity_orig, but since we now have
frequency and cpu invariant cfs_rq.avg.util_avg, frequency and cpu scaling
now happens as part of the utilization tracking itself.
So cfs_rq.avg.util_avg should no longer be scaled in cpu_util().
Signed-off-by: NDietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: NMorten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: NPeter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steve Muckle <steve.muckle@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org <daniel.lezcano@linaro.org>
Cc: mturquette@baylibre.com <mturquette@baylibre.com>
Cc: pang.xunlei@zte.com.cn <pang.xunlei@zte.com.cn>
Cc: rjw@rjwysocki.net <rjw@rjwysocki.net>
Cc: sgurrappadi@nvidia.com <sgurrappadi@nvidia.com>
Cc: vincent.guittot@linaro.org <vincent.guittot@linaro.org>
Cc: yuyang.du@intel.com <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/55EDAF43.30500@arm.comSigned-off-by: NIngo Molnar <mingo@kernel.org>
上级 9e91d61d
......@@ -4862,33 +4862,39 @@ static int select_idle_sibling(struct task_struct *p, int target)
done:
return target;
}
/*
* cpu_util returns the amount of capacity of a CPU that is used by CFS
* tasks. The unit of the return value must be the one of capacity so we can
* compare the utilization with the capacity of the CPU that is available for
* CFS task (ie cpu_capacity).
* cfs.avg.util_avg is the sum of running time of runnable tasks on a
* CPU. It represents the amount of utilization of a CPU in the range
* [0..SCHED_LOAD_SCALE]. The utilization of a CPU can't be higher than the
* full capacity of the CPU because it's about the running time on this CPU.
* Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
* because of unfortunate rounding in util_avg or just
* after migrating tasks until the average stabilizes with the new running
* time. So we need to check that the utilization stays into the range
* [0..cpu_capacity_orig] and cap if necessary.
* Without capping the utilization, a group could be seen as overloaded (CPU0
* utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
* available capacity.
*
* cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
* recent utilization of currently non-runnable tasks on a CPU. It represents
* the amount of utilization of a CPU in the range [0..capacity_orig] where
* capacity_orig is the cpu_capacity available at the highest frequency
* (arch_scale_freq_capacity()).
* The utilization of a CPU converges towards a sum equal to or less than the
* current capacity (capacity_curr <= capacity_orig) of the CPU because it is
* the running time on this CPU scaled by capacity_curr.
*
* Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
* higher than capacity_orig because of unfortunate rounding in
* cfs.avg.util_avg or just after migrating tasks and new task wakeups until
* the average stabilizes with the new running time. We need to check that the
* utilization stays within the range of [0..capacity_orig] and cap it if
* necessary. Without utilization capping, a group could be seen as overloaded
* (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
* available capacity. We allow utilization to overshoot capacity_curr (but not
* capacity_orig) as it useful for predicting the capacity required after task
* migrations (scheduler-driven DVFS).
*/
static int cpu_util(int cpu)
{
unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
if (util >= SCHED_LOAD_SCALE)
return capacity;
return (util * capacity) >> SCHED_LOAD_SHIFT;
return (util >= capacity) ? capacity : util;
}
/*
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册