sched.c 213.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326 327 328 329 330 331 332 333 334
	/*
	 * Strictly speaking this rcu_read_lock() is not needed since the
	 * task_group is tied to the cgroup, which in turn can never go away
	 * as long as there are tasks attached to it.
	 *
	 * However since task_group() uses task_subsys_state() which is an
	 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
	 */
	rcu_read_lock();
335
#ifdef CONFIG_FAIR_GROUP_SCHED
336 337
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
338
#endif
P
Peter Zijlstra 已提交
339

340
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
341 342
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
343
#endif
344
	rcu_read_unlock();
S
Srivatsa Vaddagiri 已提交
345 346 347 348
}

#else

P
Peter Zijlstra 已提交
349
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 351 352 353
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
354

D
Dhaval Giani 已提交
355
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
356

I
Ingo Molnar 已提交
357 358 359 360 361 362
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
363
	u64 min_vruntime;
I
Ingo Molnar 已提交
364 365 366

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
367 368 369 370 371 372

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
373 374
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
375
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
376

P
Peter Zijlstra 已提交
377
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
378

379
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
380 381
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
382 383
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
384 385 386 387 388 389
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
390 391
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
392 393 394

#ifdef CONFIG_SMP
	/*
395
	 * the part of load.weight contributed by tasks
396
	 */
397
	unsigned long task_weight;
398

399 400 401 402 403 404 405
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
406

407 408 409 410
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
411 412 413 414 415

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
416
#endif
I
Ingo Molnar 已提交
417 418
#endif
};
L
Linus Torvalds 已提交
419

I
Ingo Molnar 已提交
420 421 422
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
423
	unsigned long rt_nr_running;
424
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 426
	struct {
		int curr; /* highest queued rt task prio */
427
#ifdef CONFIG_SMP
428
		int next; /* next highest */
429
#endif
430
	} highest_prio;
P
Peter Zijlstra 已提交
431
#endif
P
Peter Zijlstra 已提交
432
#ifdef CONFIG_SMP
433
	unsigned long rt_nr_migratory;
434
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
435
	int overloaded;
436
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
437
#endif
P
Peter Zijlstra 已提交
438
	int rt_throttled;
P
Peter Zijlstra 已提交
439
	u64 rt_time;
P
Peter Zijlstra 已提交
440
	u64 rt_runtime;
I
Ingo Molnar 已提交
441
	/* Nests inside the rq lock: */
442
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
443

444
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
447 448 449 450
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
451 452
};

G
Gregory Haskins 已提交
453 454 455 456
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
457 458
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
459 460 461 462 463 464
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
465 466
	cpumask_var_t span;
	cpumask_var_t online;
467

I
Ingo Molnar 已提交
468
	/*
469 470 471
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
472
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
473
	atomic_t rto_count;
474 475 476
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
477 478
};

479 480 481 482
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
483 484 485 486
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
487 488 489 490 491 492 493
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
494
struct rq {
495
	/* runqueue lock: */
496
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
497 498 499 500 501 502

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
503 504
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
506
	u64 nohz_stamp;
507 508
	unsigned char in_nohz_recently;
#endif
509 510
	unsigned int skip_clock_update;

511 512
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
513 514 515 516
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
517 518
	struct rt_rq rt;

I
Ingo Molnar 已提交
519
#ifdef CONFIG_FAIR_GROUP_SCHED
520 521
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
522 523
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
524
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
525 526 527 528 529 530 531 532 533 534
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

535
	struct task_struct *curr, *idle;
536
	unsigned long next_balance;
L
Linus Torvalds 已提交
537
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
538

539
	u64 clock;
I
Ingo Molnar 已提交
540

L
Linus Torvalds 已提交
541 542 543
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
544
	struct root_domain *rd;
L
Linus Torvalds 已提交
545 546
	struct sched_domain *sd;

547
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
548
	/* For active balancing */
549
	int post_schedule;
L
Linus Torvalds 已提交
550 551
	int active_balance;
	int push_cpu;
552
	struct cpu_stop_work active_balance_work;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
558

559 560
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
561 562
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
563 564
#endif

565 566 567 568
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
569
#ifdef CONFIG_SCHED_HRTICK
570 571 572 573
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
574 575 576
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
577 578 579
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
580 581
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
582 583

	/* sys_sched_yield() stats */
584
	unsigned int yld_count;
L
Linus Torvalds 已提交
585 586

	/* schedule() stats */
587 588 589
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
590 591

	/* try_to_wake_up() stats */
592 593
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
594 595

	/* BKL stats */
596
	unsigned int bkl_count;
L
Linus Torvalds 已提交
597 598 599
#endif
};

600
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
601

P
Peter Zijlstra 已提交
602 603
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
604
{
P
Peter Zijlstra 已提交
605
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
606 607 608 609 610 611 612

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
613 614
}

615 616 617 618 619 620 621 622 623
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

624
#define rcu_dereference_check_sched_domain(p) \
625 626 627 628
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
629 630
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
632 633 634 635
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
636
#define for_each_domain(cpu, __sd) \
637
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
638 639 640 641 642

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
643
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
644

I
Ingo Molnar 已提交
645
inline void update_rq_clock(struct rq *rq)
646
{
647 648
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
649 650
}

I
Ingo Molnar 已提交
651 652 653 654 655 656 657 658 659
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
660 661
/**
 * runqueue_is_locked
662
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
663 664 665 666 667
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
668
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
669
{
670
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
671 672
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
706
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
707 708 709 710
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
711 712 713
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
714
	}
L
Li Zefan 已提交
715
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
716

L
Li Zefan 已提交
717
	return 0;
P
Peter Zijlstra 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
737
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

757
	*ppos += cnt;
P
Peter Zijlstra 已提交
758 759 760 761

	return cnt;
}

L
Li Zefan 已提交
762 763 764 765 766
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

767
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
768 769 770 771 772
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
787

788 789 790 791 792 793
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
794 795
/*
 * ratelimit for updating the group shares.
796
 * default: 0.25ms
P
Peter Zijlstra 已提交
797
 */
798
unsigned int sysctl_sched_shares_ratelimit = 250000;
799
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
800

801 802 803 804 805 806 807
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

808 809 810 811 812 813 814 815
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
816
/*
P
Peter Zijlstra 已提交
817
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
818 819
 * default: 1s
 */
P
Peter Zijlstra 已提交
820
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
821

822 823
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
824 825 826 827 828
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
829

830 831 832 833 834 835 836
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
837
	if (sysctl_sched_rt_runtime < 0)
838 839 840 841
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
842

L
Linus Torvalds 已提交
843
#ifndef prepare_arch_switch
844 845 846 847 848 849
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

850 851 852 853 854
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

855
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
856
static inline int task_running(struct rq *rq, struct task_struct *p)
857
{
858
	return task_current(rq, p);
859 860
}

861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 863 864
{
}

865
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866
{
867 868 869 870
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
871 872 873 874 875 876 877
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

878
	raw_spin_unlock_irq(&rq->lock);
879 880 881
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
882
static inline int task_running(struct rq *rq, struct task_struct *p)
883 884 885 886
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
887
	return task_current(rq, p);
888 889 890
#endif
}

891
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 893 894 895 896 897 898 899 900 901
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902
	raw_spin_unlock_irq(&rq->lock);
903
#else
904
	raw_spin_unlock(&rq->lock);
905 906 907
#endif
}

908
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 910 911 912 913 914 915 916 917 918 919 920
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
921
#endif
922 923
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
924

925
/*
P
Peter Zijlstra 已提交
926 927
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
928 929 930
 */
static inline int task_is_waking(struct task_struct *p)
{
931
	return unlikely(p->state == TASK_WAKING);
932 933
}

934 935 936 937
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
938
static inline struct rq *__task_rq_lock(struct task_struct *p)
939 940
	__acquires(rq->lock)
{
941 942
	struct rq *rq;

943
	for (;;) {
944
		rq = task_rq(p);
945
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
946
		if (likely(rq == task_rq(p)))
947
			return rq;
948
		raw_spin_unlock(&rq->lock);
949 950 951
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
965
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
966
		if (likely(rq == task_rq(p)))
967
			return rq;
968
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
969 970 971
	}
}

A
Alexey Dobriyan 已提交
972
static void __task_rq_unlock(struct rq *rq)
973 974
	__releases(rq->lock)
{
975
	raw_spin_unlock(&rq->lock);
976 977
}

978
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
979 980
	__releases(rq->lock)
{
981
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
982 983 984
}

/*
985
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
986
 */
A
Alexey Dobriyan 已提交
987
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
988 989
	__acquires(rq->lock)
{
990
	struct rq *rq;
L
Linus Torvalds 已提交
991 992 993

	local_irq_disable();
	rq = this_rq();
994
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
995 996 997 998

	return rq;
}

P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1020
	if (!cpu_active(cpu_of(rq)))
1021
		return 0;
P
Peter Zijlstra 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1041
	raw_spin_lock(&rq->lock);
1042
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1043
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1044
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1045 1046 1047 1048

	return HRTIMER_NORESTART;
}

1049
#ifdef CONFIG_SMP
1050 1051 1052 1053
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1054
{
1055
	struct rq *rq = arg;
1056

1057
	raw_spin_lock(&rq->lock);
1058 1059
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1060
	raw_spin_unlock(&rq->lock);
1061 1062
}

1063 1064 1065 1066 1067 1068
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1069
{
1070 1071
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072

1073
	hrtimer_set_expires(timer, time);
1074 1075 1076 1077

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1078
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1079 1080
		rq->hrtick_csd_pending = 1;
	}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1095
		hrtick_clear(cpu_rq(cpu));
1096 1097 1098 1099 1100 1101
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1102
static __init void init_hrtick(void)
1103 1104 1105
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1106 1107 1108 1109 1110 1111 1112 1113
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1114
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1115
			HRTIMER_MODE_REL_PINNED, 0);
1116
}
1117

A
Andrew Morton 已提交
1118
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1119 1120
{
}
1121
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1122

1123
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1124
{
1125 1126
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1127

1128 1129 1130 1131
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1132

1133 1134
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1135
}
A
Andrew Morton 已提交
1136
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1137 1138 1139 1140 1141 1142 1143 1144
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1145 1146 1147
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1148
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1149

I
Ingo Molnar 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1163
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1164 1165 1166
{
	int cpu;

1167
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1168

1169
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1170 1171
		return;

1172
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1189
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1190 1191
		return;
	resched_task(cpu_curr(cpu));
1192
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1193
}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1228
	set_tsk_need_resched(rq->idle);
1229 1230 1231 1232 1233 1234

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1246
#endif /* CONFIG_NO_HZ */
1247

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1269
#else /* !CONFIG_SMP */
1270
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1271
{
1272
	assert_raw_spin_locked(&task_rq(p)->lock);
1273
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1274
}
1275 1276 1277 1278

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1279
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1280

1281 1282 1283 1284 1285 1286 1287 1288
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1289 1290 1291
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1292
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1293

1294 1295 1296
/*
 * delta *= weight / lw
 */
1297
static unsigned long
1298 1299 1300 1301 1302
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1303 1304 1305 1306 1307 1308 1309
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1310 1311 1312 1313 1314

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1315
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1316
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1317 1318
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1319
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1320

1321
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1322 1323
}

1324
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1325 1326
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1327
	lw->inv_weight = 0;
1328 1329
}

1330
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1331 1332
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336 1337 1338 1339
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1340
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1341 1342 1343 1344
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1345 1346
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1356 1357 1358
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1359 1360
 */
static const int prio_to_weight[40] = {
1361 1362 1363 1364 1365 1366 1367 1368
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1369 1370
};

1371 1372 1373 1374 1375 1376 1377
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1378
static const u32 prio_to_wmult[40] = {
1379 1380 1381 1382 1383 1384 1385 1386
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1387
};
1388

1389 1390 1391 1392 1393 1394 1395 1396
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1397 1398
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1399 1400
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1401 1402
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1403 1404
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1405 1406
#endif

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1417
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1418
typedef int (*tg_visitor)(struct task_group *, void *);
1419 1420 1421 1422 1423

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1424
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1425 1426
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1427
	int ret;
1428 1429 1430 1431

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1432 1433 1434
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1435 1436 1437 1438 1439 1440 1441
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1442 1443 1444
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1445 1446 1447 1448 1449

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1450
out_unlock:
1451
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1452 1453

	return ret;
1454 1455
}

P
Peter Zijlstra 已提交
1456 1457 1458
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1459
}
P
Peter Zijlstra 已提交
1460 1461 1462
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1502 1503
static struct sched_group *group_of(int cpu)
{
1504
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1522 1523 1524 1525 1526
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1527
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1528

1529 1530
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1531 1532
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1533 1534 1535 1536 1537

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1538

1539
static __read_mostly unsigned long __percpu *update_shares_data;
1540

1541 1542 1543 1544 1545
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1546 1547 1548
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1549
				    unsigned long *usd_rq_weight)
1550
{
1551
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1552
	int boost = 0;
1553

1554
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1555 1556 1557 1558
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1559

1560
	/*
P
Peter Zijlstra 已提交
1561 1562 1563
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1564
	 */
1565
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1566
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1567

1568 1569 1570 1571
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1572

1573
		raw_spin_lock_irqsave(&rq->lock, flags);
1574
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1575
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1576
		__set_se_shares(tg->se[cpu], shares);
1577
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1578
	}
1579
}
1580 1581

/*
1582 1583 1584
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1585
 */
P
Peter Zijlstra 已提交
1586
static int tg_shares_up(struct task_group *tg, void *data)
1587
{
1588
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1589
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1590
	struct sched_domain *sd = data;
1591
	unsigned long flags;
1592
	int i;
1593

1594 1595 1596 1597
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1598
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1599

1600
	for_each_cpu(i, sched_domain_span(sd)) {
1601
		weight = tg->cfs_rq[i]->load.weight;
1602
		usd_rq_weight[i] = weight;
1603

1604
		rq_weight += weight;
1605 1606 1607 1608 1609 1610 1611 1612
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1613
		sum_weight += weight;
1614
		shares += tg->cfs_rq[i]->shares;
1615 1616
	}

1617 1618 1619
	if (!rq_weight)
		rq_weight = sum_weight;

1620 1621 1622 1623 1624
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1625

1626
	for_each_cpu(i, sched_domain_span(sd))
1627
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1628 1629

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1630 1631

	return 0;
1632 1633 1634
}

/*
1635 1636 1637
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1638
 */
P
Peter Zijlstra 已提交
1639
static int tg_load_down(struct task_group *tg, void *data)
1640
{
1641
	unsigned long load;
P
Peter Zijlstra 已提交
1642
	long cpu = (long)data;
1643

1644 1645 1646 1647 1648 1649 1650
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1651

1652
	tg->cfs_rq[cpu]->h_load = load;
1653

P
Peter Zijlstra 已提交
1654
	return 0;
1655 1656
}

1657
static void update_shares(struct sched_domain *sd)
1658
{
1659 1660 1661 1662 1663 1664 1665 1666
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1667 1668 1669

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1670
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1671
	}
1672 1673
}

P
Peter Zijlstra 已提交
1674
static void update_h_load(long cpu)
1675
{
1676 1677 1678
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1679
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1680 1681 1682 1683
}

#else

1684
static inline void update_shares(struct sched_domain *sd)
1685 1686 1687
{
}

1688 1689
#endif

1690 1691
#ifdef CONFIG_PREEMPT

1692 1693
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1694
/*
1695 1696 1697 1698 1699 1700
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1701
 */
1702 1703 1704 1705 1706
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1707
	raw_spin_unlock(&this_rq->lock);
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1722 1723 1724 1725 1726 1727
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1728
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1729
		if (busiest < this_rq) {
1730 1731 1732 1733
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1734 1735
			ret = 1;
		} else
1736 1737
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1738 1739 1740 1741
	}
	return ret;
}

1742 1743 1744 1745 1746 1747 1748 1749 1750
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1751
		raw_spin_unlock(&this_rq->lock);
1752 1753 1754 1755 1756 1757
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1758 1759 1760
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1761
	raw_spin_unlock(&busiest->lock);
1762 1763
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1807 1808
#endif

V
Vegard Nossum 已提交
1809
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1810 1811
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1812
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1813 1814 1815
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1816
#endif
1817

1818
static void calc_load_account_idle(struct rq *this_rq);
1819
static void update_sysctl(void);
1820
static int get_update_sysctl_factor(void);
1821

P
Peter Zijlstra 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1835

1836
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1837 1838

#define sched_class_highest (&rt_sched_class)
1839 1840
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1841

1842 1843
#include "sched_stats.h"

1844
static void inc_nr_running(struct rq *rq)
1845 1846 1847 1848
{
	rq->nr_running++;
}

1849
static void dec_nr_running(struct rq *rq)
1850 1851 1852 1853
{
	rq->nr_running--;
}

1854 1855 1856
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1857 1858 1859 1860
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1861

I
Ingo Molnar 已提交
1862 1863 1864 1865 1866 1867 1868 1869
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1870

I
Ingo Molnar 已提交
1871 1872
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1873 1874
}

1875
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1876
{
1877
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1878
	sched_info_queued(p);
1879
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1880
	p->se.on_rq = 1;
1881 1882
}

1883
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1884
{
1885
	update_rq_clock(rq);
1886
	sched_info_dequeued(p);
1887
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1888
	p->se.on_rq = 0;
1889 1890
}

1891 1892 1893
/*
 * activate_task - move a task to the runqueue.
 */
1894
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1895 1896 1897 1898
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1899
	enqueue_task(rq, p, flags);
1900 1901 1902 1903 1904 1905
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1906
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1907 1908 1909 1910
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1911
	dequeue_task(rq, p, flags);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1922
/*
I
Ingo Molnar 已提交
1923
 * __normal_prio - return the priority that is based on the static prio
1924 1925 1926
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1927
	return p->static_prio;
1928 1929
}

1930 1931 1932 1933 1934 1935 1936
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1937
static inline int normal_prio(struct task_struct *p)
1938 1939 1940
{
	int prio;

1941
	if (task_has_rt_policy(p))
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1955
static int effective_prio(struct task_struct *p)
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1968 1969 1970 1971
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1972
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1973 1974 1975 1976
{
	return cpu_curr(task_cpu(p)) == p;
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1989
#ifdef CONFIG_SMP
1990 1991 1992
/*
 * Is this task likely cache-hot:
 */
1993
static int
1994 1995 1996 1997
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
1998 1999 2000
	if (p->sched_class != &fair_sched_class)
		return 0;

2001 2002 2003
	/*
	 * Buddy candidates are cache hot:
	 */
2004
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2005 2006
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2007 2008
		return 1;

2009 2010 2011 2012 2013
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2014 2015 2016 2017 2018
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2019
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2020
{
2021 2022 2023 2024 2025
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2026 2027
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2028 2029
#endif

2030
	trace_sched_migrate_task(p, new_cpu);
2031

2032 2033 2034 2035
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2036 2037

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2038 2039
}

2040
struct migration_arg {
2041
	struct task_struct *task;
L
Linus Torvalds 已提交
2042
	int dest_cpu;
2043
};
L
Linus Torvalds 已提交
2044

2045 2046
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2047 2048 2049 2050
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2051
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2052
{
2053
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2054 2055 2056

	/*
	 * If the task is not on a runqueue (and not running), then
2057
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2058
	 */
2059
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2060 2061 2062 2063 2064
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2065 2066 2067 2068 2069 2070 2071
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2078
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2079 2080
{
	unsigned long flags;
I
Ingo Molnar 已提交
2081
	int running, on_rq;
R
Roland McGrath 已提交
2082
	unsigned long ncsw;
2083
	struct rq *rq;
L
Linus Torvalds 已提交
2084

2085 2086 2087 2088 2089 2090 2091 2092
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2105 2106 2107
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2108
			cpu_relax();
R
Roland McGrath 已提交
2109
		}
2110

2111 2112 2113 2114 2115 2116
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2117
		trace_sched_wait_task(p);
2118 2119
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2120
		ncsw = 0;
2121
		if (!match_state || p->state == match_state)
2122
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2123
		task_rq_unlock(rq, &flags);
2124

R
Roland McGrath 已提交
2125 2126 2127 2128 2129 2130
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2141

2142 2143 2144 2145 2146
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2147
		 * So if it was still runnable (but just not actively
2148 2149 2150 2151 2152 2153 2154
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2155

2156 2157 2158 2159 2160 2161 2162
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2163 2164

	return ncsw;
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2180
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2190
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2191
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2192

T
Thomas Gleixner 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2214
#ifdef CONFIG_SMP
2215 2216 2217
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2234
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2235
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2251
/*
2252
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2253
 */
2254
static inline
2255
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2256
{
2257
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2270
		     !cpu_online(cpu)))
2271
		cpu = select_fallback_rq(task_cpu(p), p);
2272 2273

	return cpu;
2274
}
2275 2276 2277 2278 2279 2280

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2281 2282
#endif

L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2297 2298
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2299
{
2300
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2301
	unsigned long flags;
2302
	unsigned long en_flags = ENQUEUE_WAKEUP;
2303
	struct rq *rq;
L
Linus Torvalds 已提交
2304

P
Peter Zijlstra 已提交
2305
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2306

2307
	smp_wmb();
2308
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2309
	if (!(p->state & state))
L
Linus Torvalds 已提交
2310 2311
		goto out;

I
Ingo Molnar 已提交
2312
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2313 2314 2315
		goto out_running;

	cpu = task_cpu(p);
2316
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2322 2323 2324
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2325 2326
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2327
	 */
2328 2329 2330 2331 2332 2333
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2334
	p->state = TASK_WAKING;
2335

2336
	if (p->sched_class->task_waking) {
2337
		p->sched_class->task_waking(rq, p);
2338 2339
		en_flags |= ENQUEUE_WAKING;
	}
2340

2341 2342
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2343
		set_task_cpu(p, cpu);
2344
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2345

2346 2347
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2348

2349 2350 2351 2352 2353 2354 2355
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2356
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2357

2358 2359 2360 2361 2362 2363 2364
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2365
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2366 2367 2368 2369 2370
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2371
#endif /* CONFIG_SCHEDSTATS */
2372

L
Linus Torvalds 已提交
2373 2374
out_activate:
#endif /* CONFIG_SMP */
2375
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2376
	if (wake_flags & WF_SYNC)
2377
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2378
	if (orig_cpu != cpu)
2379
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2380
	if (cpu == this_cpu)
2381
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2382
	else
2383
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2384
	activate_task(rq, p, en_flags);
L
Linus Torvalds 已提交
2385 2386 2387
	success = 1;

out_running:
2388
	trace_sched_wakeup(p, success);
P
Peter Zijlstra 已提交
2389
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2390

L
Linus Torvalds 已提交
2391
	p->state = TASK_RUNNING;
2392
#ifdef CONFIG_SMP
2393 2394
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2406
#endif
L
Linus Torvalds 已提交
2407 2408
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2409
	put_cpu();
L
Linus Torvalds 已提交
2410 2411 2412 2413

	return success;
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2425
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2426
{
2427
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2428 2429 2430
}
EXPORT_SYMBOL(wake_up_process);

2431
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2439 2440 2441 2442 2443 2444 2445
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2446
	p->se.prev_sum_exec_runtime	= 0;
2447
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2448 2449

#ifdef CONFIG_SCHEDSTATS
2450
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2451
#endif
N
Nick Piggin 已提交
2452

P
Peter Zijlstra 已提交
2453
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2454
	p->se.on_rq = 0;
2455
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2456

2457 2458 2459
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2470
	/*
2471
	 * We mark the process as running here. This guarantees that
2472 2473 2474
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2475
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2476

2477 2478 2479 2480
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2481
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2482
			p->policy = SCHED_NORMAL;
2483 2484
			p->normal_prio = p->static_prio;
		}
2485

2486 2487
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2488
			p->normal_prio = p->static_prio;
2489 2490 2491
			set_load_weight(p);
		}

2492 2493 2494 2495 2496 2497
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2498

2499 2500 2501 2502 2503
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2504 2505
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2506

P
Peter Zijlstra 已提交
2507 2508 2509
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2510 2511
	set_task_cpu(p, cpu);

2512
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2513
	if (likely(sched_info_on()))
2514
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2515
#endif
2516
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2517 2518
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2519
#ifdef CONFIG_PREEMPT
2520
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2521
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2522
#endif
2523 2524
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2525
	put_cpu();
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2535
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2536 2537
{
	unsigned long flags;
I
Ingo Molnar 已提交
2538
	struct rq *rq;
2539
	int cpu __maybe_unused = get_cpu();
2540 2541

#ifdef CONFIG_SMP
2542 2543 2544
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2545 2546 2547 2548 2549
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2550 2551
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2552
	 */
2553
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2554
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2555

2556
	p->state = TASK_RUNNING;
2557 2558 2559 2560
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2561
	activate_task(rq, p, 0);
2562
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2563
	check_preempt_curr(rq, p, WF_FORK);
2564
#ifdef CONFIG_SMP
2565 2566
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2567
#endif
I
Ingo Molnar 已提交
2568
	task_rq_unlock(rq, &flags);
2569
	put_cpu();
L
Linus Torvalds 已提交
2570 2571
}

2572 2573 2574
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2575
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2576
 * @notifier: notifier struct to register
2577 2578 2579 2580 2581 2582 2583 2584 2585
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2586
 * @notifier: notifier struct to unregister
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2616
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2628
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2629

2630 2631 2632
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2633
 * @prev: the current task that is being switched out
2634 2635 2636 2637 2638 2639 2640 2641 2642
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2643 2644 2645
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2646
{
2647
	fire_sched_out_preempt_notifiers(prev, next);
2648 2649 2650 2651
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2652 2653
/**
 * finish_task_switch - clean up after a task-switch
2654
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2655 2656
 * @prev: the thread we just switched away from.
 *
2657 2658 2659 2660
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2661 2662
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2663
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2664 2665 2666
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2667
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2668 2669 2670
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2671
	long prev_state;
L
Linus Torvalds 已提交
2672 2673 2674 2675 2676

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2677
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2678 2679
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2680
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2681 2682 2683 2684 2685
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2686
	prev_state = prev->state;
2687
	finish_arch_switch(prev);
2688 2689 2690
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691
	perf_event_task_sched_in(current);
2692 2693 2694
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2695
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2696

2697
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2698 2699
	if (mm)
		mmdrop(mm);
2700
	if (unlikely(prev_state == TASK_DEAD)) {
2701 2702 2703
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2704
		 */
2705
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2706
		put_task_struct(prev);
2707
	}
L
Linus Torvalds 已提交
2708 2709
}

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2725
		raw_spin_lock_irqsave(&rq->lock, flags);
2726 2727
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2728
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2729 2730 2731 2732 2733 2734

		rq->post_schedule = 0;
	}
}

#else
2735

2736 2737 2738 2739 2740 2741
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2742 2743
}

2744 2745
#endif

L
Linus Torvalds 已提交
2746 2747 2748 2749
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2750
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2751 2752
	__releases(rq->lock)
{
2753 2754
	struct rq *rq = this_rq();

2755
	finish_task_switch(rq, prev);
2756

2757 2758 2759 2760 2761
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2762

2763 2764 2765 2766
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2767
	if (current->set_child_tid)
2768
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2775
static inline void
2776
context_switch(struct rq *rq, struct task_struct *prev,
2777
	       struct task_struct *next)
L
Linus Torvalds 已提交
2778
{
I
Ingo Molnar 已提交
2779
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2780

2781
	prepare_task_switch(rq, prev, next);
2782
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2783 2784
	mm = next->mm;
	oldmm = prev->active_mm;
2785 2786 2787 2788 2789
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2790
	arch_start_context_switch(prev);
2791

2792
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2793 2794 2795 2796 2797 2798
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2799
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2800 2801 2802
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2803 2804 2805 2806 2807 2808 2809
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2810
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2811
#endif
L
Linus Torvalds 已提交
2812 2813 2814 2815

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2816 2817 2818 2819 2820 2821 2822
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2840
}
L
Linus Torvalds 已提交
2841 2842

unsigned long nr_uninterruptible(void)
2843
{
L
Linus Torvalds 已提交
2844
	unsigned long i, sum = 0;
2845

2846
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2847
		sum += cpu_rq(i)->nr_uninterruptible;
2848 2849

	/*
L
Linus Torvalds 已提交
2850 2851
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2852
	 */
L
Linus Torvalds 已提交
2853 2854
	if (unlikely((long)sum < 0))
		sum = 0;
2855

L
Linus Torvalds 已提交
2856
	return sum;
2857 2858
}

L
Linus Torvalds 已提交
2859
unsigned long long nr_context_switches(void)
2860
{
2861 2862
	int i;
	unsigned long long sum = 0;
2863

2864
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2865
		sum += cpu_rq(i)->nr_switches;
2866

L
Linus Torvalds 已提交
2867 2868
	return sum;
}
2869

L
Linus Torvalds 已提交
2870 2871 2872
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2873

2874
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2875
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2876

L
Linus Torvalds 已提交
2877 2878
	return sum;
}
2879

2880 2881 2882 2883 2884
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2885

2886 2887 2888 2889 2890
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2891

2892

2893 2894 2895 2896 2897
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2967 2968
}

2969 2970
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2971
{
2972 2973 2974 2975
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2976 2977

/*
2978 2979
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2980
 */
2981
void calc_global_load(void)
2982
{
2983 2984
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2985

2986 2987
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2988

2989 2990
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2991

2992 2993 2994
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
2995

2996 2997
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
2998

2999
/*
3000 3001
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3002 3003 3004
 */
static void calc_load_account_active(struct rq *this_rq)
{
3005
	long delta;
3006

3007 3008
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3009

3010 3011 3012
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3013
		atomic_long_add(delta, &calc_load_tasks);
3014 3015

	this_rq->calc_load_update += LOAD_FREQ;
3016 3017 3018
}

/*
I
Ingo Molnar 已提交
3019 3020
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3021
 */
I
Ingo Molnar 已提交
3022
static void update_cpu_load(struct rq *this_rq)
3023
{
3024
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3025
	int i, scale;
3026

I
Ingo Molnar 已提交
3027
	this_rq->nr_load_updates++;
3028

I
Ingo Molnar 已提交
3029 3030 3031
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3032

I
Ingo Molnar 已提交
3033
		/* scale is effectively 1 << i now, and >> i divides by scale */
3034

I
Ingo Molnar 已提交
3035 3036
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3037 3038 3039 3040 3041 3042 3043
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3044 3045
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3046

3047
	calc_load_account_active(this_rq);
3048 3049
}

I
Ingo Molnar 已提交
3050
#ifdef CONFIG_SMP
3051

3052
/*
P
Peter Zijlstra 已提交
3053 3054
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3055
 */
P
Peter Zijlstra 已提交
3056
void sched_exec(void)
3057
{
P
Peter Zijlstra 已提交
3058
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3059
	unsigned long flags;
3060
	struct rq *rq;
3061
	int dest_cpu;
3062

L
Linus Torvalds 已提交
3063
	rq = task_rq_lock(p, &flags);
3064 3065 3066
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3067

3068
	/*
P
Peter Zijlstra 已提交
3069
	 * select_task_rq() can race against ->cpus_allowed
3070
	 */
3071
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3072 3073
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3074

L
Linus Torvalds 已提交
3075
		task_rq_unlock(rq, &flags);
3076
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3077 3078
		return;
	}
3079
unlock:
L
Linus Torvalds 已提交
3080 3081
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3082

L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3090
 * Return any ns on the sched_clock that have not yet been accounted in
3091
 * @p in case that task is currently running.
3092 3093
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3094
 */
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3109
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3110 3111
{
	unsigned long flags;
3112
	struct rq *rq;
3113
	u64 ns = 0;
3114

3115
	rq = task_rq_lock(p, &flags);
3116 3117
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3118

3119 3120
	return ns;
}
3121

3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3139

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3159
	task_rq_unlock(rq, &flags);
3160

L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166 3167
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3168
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3169
 */
3170 3171
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3172 3173 3174 3175
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3176
	/* Add user time to process. */
L
Linus Torvalds 已提交
3177
	p->utime = cputime_add(p->utime, cputime);
3178
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3179
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3180 3181 3182 3183 3184 3185 3186

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3187 3188

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3189 3190
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3191 3192
}

3193 3194 3195 3196
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3197
 * @cputime_scaled: cputime scaled by cpu frequency
3198
 */
3199 3200
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3201 3202 3203 3204 3205 3206
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3207
	/* Add guest time to process. */
3208
	p->utime = cputime_add(p->utime, cputime);
3209
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3210
	account_group_user_time(p, cputime);
3211 3212
	p->gtime = cputime_add(p->gtime, cputime);

3213
	/* Add guest time to cpustat. */
3214 3215 3216 3217 3218 3219 3220
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3221 3222
}

L
Linus Torvalds 已提交
3223 3224 3225 3226 3227
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3228
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3229 3230
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3231
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3232 3233 3234 3235
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3236
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3237
		account_guest_time(p, cputime, cputime_scaled);
3238 3239
		return;
	}
3240

3241
	/* Add system time to process. */
L
Linus Torvalds 已提交
3242
	p->stime = cputime_add(p->stime, cputime);
3243
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3244
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3245 3246 3247 3248 3249 3250 3251 3252

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3253 3254
		cpustat->system = cputime64_add(cpustat->system, tmp);

3255 3256
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3257 3258 3259 3260
	/* Account for system time used */
	acct_update_integrals(p);
}

3261
/*
L
Linus Torvalds 已提交
3262 3263
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3264
 */
3265
void account_steal_time(cputime_t cputime)
3266
{
3267 3268 3269 3270
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3271 3272
}

L
Linus Torvalds 已提交
3273
/*
3274 3275
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3276
 */
3277
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3278 3279
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3280
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3281
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3282

3283 3284 3285 3286
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3287 3288
}

3289 3290 3291 3292 3293 3294 3295 3296 3297
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3298
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3299 3300 3301
	struct rq *rq = this_rq();

	if (user_tick)
3302
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3303
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3304
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3305 3306
				    one_jiffy_scaled);
	else
3307
		account_idle_time(cputime_one_jiffy);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3327 3328
}

3329 3330
#endif

3331 3332 3333 3334
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3335
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3336
{
3337 3338
	*ut = p->utime;
	*st = p->stime;
3339 3340
}

3341
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3342
{
3343 3344 3345 3346 3347 3348
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3349 3350
}
#else
3351 3352

#ifndef nsecs_to_cputime
3353
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3354 3355
#endif

3356
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3357
{
3358
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3359 3360 3361 3362

	/*
	 * Use CFS's precise accounting:
	 */
3363
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3364 3365

	if (total) {
3366 3367 3368
		u64 temp;

		temp = (u64)(rtime * utime);
3369
		do_div(temp, total);
3370 3371 3372
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3373

3374 3375 3376
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3377
	p->prev_utime = max(p->prev_utime, utime);
3378
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3379

3380 3381
	*ut = p->prev_utime;
	*st = p->prev_stime;
3382 3383
}

3384 3385 3386 3387
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3388
{
3389 3390 3391
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3392

3393
	thread_group_cputime(p, &cputime);
3394

3395 3396
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3397

3398 3399
	if (total) {
		u64 temp;
3400

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3413 3414 3415
}
#endif

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3427
	struct task_struct *curr = rq->curr;
3428 3429

	sched_clock_tick();
I
Ingo Molnar 已提交
3430

3431
	raw_spin_lock(&rq->lock);
3432
	update_rq_clock(rq);
3433
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3434
	curr->sched_class->task_tick(rq, curr, 0);
3435
	raw_spin_unlock(&rq->lock);
3436

3437
	perf_event_task_tick(curr);
3438

3439
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3440 3441
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3442
#endif
L
Linus Torvalds 已提交
3443 3444
}

3445
notrace unsigned long get_parent_ip(unsigned long addr)
3446 3447 3448 3449 3450 3451 3452 3453
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3454

3455 3456 3457
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3458
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3459
{
3460
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3461 3462 3463
	/*
	 * Underflow?
	 */
3464 3465
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3466
#endif
L
Linus Torvalds 已提交
3467
	preempt_count() += val;
3468
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3469 3470 3471
	/*
	 * Spinlock count overflowing soon?
	 */
3472 3473
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3474 3475 3476
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3477 3478 3479
}
EXPORT_SYMBOL(add_preempt_count);

3480
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3481
{
3482
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3483 3484 3485
	/*
	 * Underflow?
	 */
3486
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3487
		return;
L
Linus Torvalds 已提交
3488 3489 3490
	/*
	 * Is the spinlock portion underflowing?
	 */
3491 3492 3493
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3494
#endif
3495

3496 3497
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502 3503 3504
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3505
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3506
 */
I
Ingo Molnar 已提交
3507
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3508
{
3509 3510
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3511 3512
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3513

I
Ingo Molnar 已提交
3514
	debug_show_held_locks(prev);
3515
	print_modules();
I
Ingo Molnar 已提交
3516 3517
	if (irqs_disabled())
		print_irqtrace_events(prev);
3518 3519 3520 3521 3522

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3523
}
L
Linus Torvalds 已提交
3524

I
Ingo Molnar 已提交
3525 3526 3527 3528 3529
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3530
	/*
I
Ingo Molnar 已提交
3531
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3532 3533 3534
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3535
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3536 3537
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3538 3539
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3540
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3541 3542
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3543 3544
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3545 3546
	}
#endif
I
Ingo Molnar 已提交
3547 3548
}

P
Peter Zijlstra 已提交
3549
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3550
{
3551 3552 3553
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3554
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3555 3556
}

I
Ingo Molnar 已提交
3557 3558 3559 3560
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3561
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3562
{
3563
	const struct sched_class *class;
I
Ingo Molnar 已提交
3564
	struct task_struct *p;
L
Linus Torvalds 已提交
3565 3566

	/*
I
Ingo Molnar 已提交
3567 3568
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3569
	 */
I
Ingo Molnar 已提交
3570
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3571
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3572 3573
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3574 3575
	}

I
Ingo Molnar 已提交
3576 3577
	class = sched_class_highest;
	for ( ; ; ) {
3578
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3588

I
Ingo Molnar 已提交
3589 3590 3591
/*
 * schedule() is the main scheduler function.
 */
3592
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3593 3594
{
	struct task_struct *prev, *next;
3595
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3596
	struct rq *rq;
3597
	int cpu;
I
Ingo Molnar 已提交
3598

3599 3600
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3601 3602
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3603
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3604 3605 3606 3607 3608 3609 3610
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3611

3612
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3613
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3614

3615
	raw_spin_lock_irq(&rq->lock);
3616
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3617 3618

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3619
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3620
			prev->state = TASK_RUNNING;
3621
		else
3622
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
I
Ingo Molnar 已提交
3623
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3624 3625
	}

3626
	pre_schedule(rq, prev);
3627

I
Ingo Molnar 已提交
3628
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3629 3630
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3631
	put_prev_task(rq, prev);
3632
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3633 3634

	if (likely(prev != next)) {
3635
		sched_info_switch(prev, next);
3636
		perf_event_task_sched_out(prev, next);
3637

L
Linus Torvalds 已提交
3638 3639 3640 3641
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3642
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3643 3644 3645 3646 3647 3648
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3649
	} else
3650
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3651

3652
	post_schedule(rq);
L
Linus Torvalds 已提交
3653

3654 3655 3656
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3657
		goto need_resched_nonpreemptible;
3658
	}
P
Peter Zijlstra 已提交
3659

L
Linus Torvalds 已提交
3660
	preempt_enable_no_resched();
3661
	if (need_resched())
L
Linus Torvalds 已提交
3662 3663 3664 3665
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3666
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3686
		return 0;
3687 3688 3689 3690 3691 3692 3693 3694 3695
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3696
		return 0;
3697 3698 3699 3700 3701 3702

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3703
		return 0;
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3722

3723 3724 3725 3726
	return 1;
}
#endif

L
Linus Torvalds 已提交
3727 3728
#ifdef CONFIG_PREEMPT
/*
3729
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3730
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3731 3732
 * occur there and call schedule directly.
 */
3733
asmlinkage void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
3734 3735
{
	struct thread_info *ti = current_thread_info();
3736

L
Linus Torvalds 已提交
3737 3738
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3739
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3740
	 */
N
Nick Piggin 已提交
3741
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3742 3743
		return;

3744
	do {
3745
		add_preempt_count_notrace(PREEMPT_ACTIVE);
3746
		schedule();
3747
		sub_preempt_count_notrace(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3748

3749 3750 3751 3752 3753
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3754
	} while (need_resched());
L
Linus Torvalds 已提交
3755 3756 3757 3758
}
EXPORT_SYMBOL(preempt_schedule);

/*
3759
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765 3766
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3767

3768
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3769 3770
	BUG_ON(ti->preempt_count || !irqs_disabled());

3771 3772 3773 3774 3775 3776
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3777

3778 3779 3780 3781 3782
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3783
	} while (need_resched());
L
Linus Torvalds 已提交
3784 3785 3786 3787
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3788
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3789
			  void *key)
L
Linus Torvalds 已提交
3790
{
P
Peter Zijlstra 已提交
3791
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3792 3793 3794 3795
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3796 3797
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3798 3799 3800
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3801
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3802 3803
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3804
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3805
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3806
{
3807
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3808

3809
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3810 3811
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3812
		if (curr->func(curr, mode, wake_flags, key) &&
3813
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3823
 * @key: is directly passed to the wakeup function
3824 3825 3826
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3827
 */
3828
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3829
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3842
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3843 3844 3845
{
	__wake_up_common(q, mode, 1, 0, NULL);
}
3846
EXPORT_SYMBOL_GPL(__wake_up_locked);
L
Linus Torvalds 已提交
3847

3848 3849 3850 3851 3852
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3853
/**
3854
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3855 3856 3857
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3858
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3859 3860 3861 3862 3863 3864 3865
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3866 3867 3868
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3869
 */
3870 3871
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3872 3873
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3874
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3875 3876 3877 3878 3879

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3880
		wake_flags = 0;
L
Linus Torvalds 已提交
3881 3882

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3883
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3884 3885
	spin_unlock_irqrestore(&q->lock, flags);
}
3886 3887 3888 3889 3890 3891 3892 3893 3894
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3895 3896
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3897 3898 3899 3900 3901 3902 3903 3904
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3905 3906 3907
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3908
 */
3909
void complete(struct completion *x)
L
Linus Torvalds 已提交
3910 3911 3912 3913 3914
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3915
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3916 3917 3918 3919
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3920 3921 3922 3923 3924
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3925 3926 3927
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3928
 */
3929
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3930 3931 3932 3933 3934
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3935
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3936 3937 3938 3939
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3940 3941
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3942 3943 3944 3945
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3946
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3947
		do {
3948
			if (signal_pending_state(state, current)) {
3949 3950
				timeout = -ERESTARTSYS;
				break;
3951 3952
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3953 3954 3955
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3956
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3957
		__remove_wait_queue(&x->wait, &wait);
3958 3959
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3960 3961
	}
	x->done--;
3962
	return timeout ?: 1;
L
Linus Torvalds 已提交
3963 3964
}

3965 3966
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3967 3968 3969 3970
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3971
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3972
	spin_unlock_irq(&x->wait.lock);
3973 3974
	return timeout;
}
L
Linus Torvalds 已提交
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3986
void __sched wait_for_completion(struct completion *x)
3987 3988
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3989
}
3990
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3991

3992 3993 3994 3995 3996 3997 3998 3999 4000
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4001
unsigned long __sched
4002
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4003
{
4004
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4005
}
4006
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4007

4008 4009 4010 4011 4012 4013 4014
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4015
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4016
{
4017 4018 4019 4020
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4021
}
4022
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4023

4024 4025 4026 4027 4028 4029 4030 4031
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4032
unsigned long __sched
4033 4034
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4035
{
4036
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4037
}
4038
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4039

4040 4041 4042 4043 4044 4045 4046
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4070
	unsigned long flags;
4071 4072
	int ret = 1;

4073
	spin_lock_irqsave(&x->wait.lock, flags);
4074 4075 4076 4077
	if (!x->done)
		ret = 0;
	else
		x->done--;
4078
	spin_unlock_irqrestore(&x->wait.lock, flags);
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4093
	unsigned long flags;
4094 4095
	int ret = 1;

4096
	spin_lock_irqsave(&x->wait.lock, flags);
4097 4098
	if (!x->done)
		ret = 0;
4099
	spin_unlock_irqrestore(&x->wait.lock, flags);
4100 4101 4102 4103
	return ret;
}
EXPORT_SYMBOL(completion_done);

4104 4105
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4106
{
I
Ingo Molnar 已提交
4107 4108 4109 4110
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4111

4112
	__set_current_state(state);
L
Linus Torvalds 已提交
4113

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4128 4129 4130
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4131
long __sched
I
Ingo Molnar 已提交
4132
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4133
{
4134
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4135 4136 4137
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4138
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4139
{
4140
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4141 4142 4143
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4144
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4145
{
4146
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4147 4148 4149
}
EXPORT_SYMBOL(sleep_on_timeout);

4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4162
void rt_mutex_setprio(struct task_struct *p, int prio)
4163 4164
{
	unsigned long flags;
4165
	int oldprio, on_rq, running;
4166
	struct rq *rq;
4167
	const struct sched_class *prev_class;
4168 4169 4170 4171 4172

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4173
	oldprio = p->prio;
4174
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4175
	on_rq = p->se.on_rq;
4176
	running = task_current(rq, p);
4177
	if (on_rq)
4178
		dequeue_task(rq, p, 0);
4179 4180
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4181 4182 4183 4184 4185 4186

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4187 4188
	p->prio = prio;

4189 4190
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4191
	if (on_rq) {
4192
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4193 4194

		check_class_changed(rq, p, prev_class, oldprio, running);
4195 4196 4197 4198 4199 4200
	}
	task_rq_unlock(rq, &flags);
}

#endif

4201
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4202
{
I
Ingo Molnar 已提交
4203
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4204
	unsigned long flags;
4205
	struct rq *rq;
L
Linus Torvalds 已提交
4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4218
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4219
	 */
4220
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4221 4222 4223
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4224
	on_rq = p->se.on_rq;
4225
	if (on_rq)
4226
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4227 4228

	p->static_prio = NICE_TO_PRIO(nice);
4229
	set_load_weight(p);
4230 4231 4232
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4233

I
Ingo Molnar 已提交
4234
	if (on_rq) {
4235
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4236
		/*
4237 4238
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4239
		 */
4240
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4248 4249 4250 4251 4252
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4253
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4254
{
4255 4256
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4257

4258
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4259 4260 4261
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4262 4263 4264 4265 4266 4267 4268 4269 4270
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4271
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4272
{
4273
	long nice, retval;
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278 4279

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4280 4281
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4282 4283 4284
	if (increment > 40)
		increment = 40;

4285
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4286 4287 4288 4289 4290
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4291 4292 4293
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4312
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319 4320
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4321
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4322 4323 4324
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4325
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4340
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4349
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4350
{
4351
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4352 4353 4354
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4355 4356
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4357
{
I
Ingo Molnar 已提交
4358
	BUG_ON(p->se.on_rq);
4359

L
Linus Torvalds 已提交
4360 4361
	p->policy = policy;
	p->rt_priority = prio;
4362 4363 4364
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4365 4366 4367 4368
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4369
	set_load_weight(p);
L
Linus Torvalds 已提交
4370 4371
}

4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4388 4389
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4390
{
4391
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4392
	unsigned long flags;
4393
	const struct sched_class *prev_class;
4394
	struct rq *rq;
4395
	int reset_on_fork;
L
Linus Torvalds 已提交
4396

4397 4398
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4399 4400
recheck:
	/* double check policy once rq lock held */
4401 4402
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4403
		policy = oldpolicy = p->policy;
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4414 4415
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4416 4417
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4418 4419
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4420
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4421
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4422
		return -EINVAL;
4423
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4424 4425
		return -EINVAL;

4426 4427 4428
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4429
	if (user && !capable(CAP_SYS_NICE)) {
4430
		if (rt_policy(policy)) {
4431 4432 4433 4434
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4435
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4447 4448 4449 4450 4451 4452
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4453

4454
		/* can't change other user's priorities */
4455
		if (!check_same_owner(p))
4456
			return -EPERM;
4457 4458 4459 4460

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4461
	}
L
Linus Torvalds 已提交
4462

4463
	if (user) {
4464
#ifdef CONFIG_RT_GROUP_SCHED
4465 4466 4467 4468
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4469 4470
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4471
			return -EPERM;
4472 4473
#endif

4474 4475 4476 4477 4478
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4479 4480 4481 4482
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4483
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4484 4485 4486 4487
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4488
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4489 4490 4491
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4492
		__task_rq_unlock(rq);
4493
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4494 4495
		goto recheck;
	}
I
Ingo Molnar 已提交
4496
	on_rq = p->se.on_rq;
4497
	running = task_current(rq, p);
4498
	if (on_rq)
4499
		deactivate_task(rq, p, 0);
4500 4501
	if (running)
		p->sched_class->put_prev_task(rq, p);
4502

4503 4504
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4505
	oldprio = p->prio;
4506
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4507
	__setscheduler(rq, p, policy, param->sched_priority);
4508

4509 4510
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4511 4512
	if (on_rq) {
		activate_task(rq, p, 0);
4513 4514

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4515
	}
4516
	__task_rq_unlock(rq);
4517
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4518

4519 4520
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4521 4522
	return 0;
}
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4537 4538
EXPORT_SYMBOL_GPL(sched_setscheduler);

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4556 4557
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4558 4559 4560
{
	struct sched_param lparam;
	struct task_struct *p;
4561
	int retval;
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4567 4568 4569

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4570
	p = find_process_by_pid(pid);
4571 4572 4573
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4574

L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4584 4585
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4586
{
4587 4588 4589 4590
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4591 4592 4593 4594 4595 4596 4597 4598
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4599
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4608
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4609
{
4610
	struct task_struct *p;
4611
	int retval;
L
Linus Torvalds 已提交
4612 4613

	if (pid < 0)
4614
		return -EINVAL;
L
Linus Torvalds 已提交
4615 4616

	retval = -ESRCH;
4617
	rcu_read_lock();
L
Linus Torvalds 已提交
4618 4619 4620 4621
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4622 4623
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4624
	}
4625
	rcu_read_unlock();
L
Linus Torvalds 已提交
4626 4627 4628 4629
	return retval;
}

/**
4630
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4631 4632 4633
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4634
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4635 4636
{
	struct sched_param lp;
4637
	struct task_struct *p;
4638
	int retval;
L
Linus Torvalds 已提交
4639 4640

	if (!param || pid < 0)
4641
		return -EINVAL;
L
Linus Torvalds 已提交
4642

4643
	rcu_read_lock();
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4654
	rcu_read_unlock();
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4664
	rcu_read_unlock();
L
Linus Torvalds 已提交
4665 4666 4667
	return retval;
}

4668
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4669
{
4670
	cpumask_var_t cpus_allowed, new_mask;
4671 4672
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4673

4674
	get_online_cpus();
4675
	rcu_read_lock();
L
Linus Torvalds 已提交
4676 4677 4678

	p = find_process_by_pid(pid);
	if (!p) {
4679
		rcu_read_unlock();
4680
		put_online_cpus();
L
Linus Torvalds 已提交
4681 4682 4683
		return -ESRCH;
	}

4684
	/* Prevent p going away */
L
Linus Torvalds 已提交
4685
	get_task_struct(p);
4686
	rcu_read_unlock();
L
Linus Torvalds 已提交
4687

4688 4689 4690 4691 4692 4693 4694 4695
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4696
	retval = -EPERM;
4697
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4698 4699
		goto out_unlock;

4700 4701 4702 4703
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4704 4705
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4706
 again:
4707
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4708

P
Paul Menage 已提交
4709
	if (!retval) {
4710 4711
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4712 4713 4714 4715 4716
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4717
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4718 4719 4720
			goto again;
		}
	}
L
Linus Torvalds 已提交
4721
out_unlock:
4722 4723 4724 4725
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4726
	put_task_struct(p);
4727
	put_online_cpus();
L
Linus Torvalds 已提交
4728 4729 4730 4731
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4732
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4733
{
4734 4735 4736 4737 4738
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4748 4749
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4750
{
4751
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4752 4753
	int retval;

4754 4755
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4756

4757 4758 4759 4760 4761
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4762 4763
}

4764
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4765
{
4766
	struct task_struct *p;
4767 4768
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4769 4770
	int retval;

4771
	get_online_cpus();
4772
	rcu_read_lock();
L
Linus Torvalds 已提交
4773 4774 4775 4776 4777 4778

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4779 4780 4781 4782
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4783
	rq = task_rq_lock(p, &flags);
4784
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4785
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4786 4787

out_unlock:
4788
	rcu_read_unlock();
4789
	put_online_cpus();
L
Linus Torvalds 已提交
4790

4791
	return retval;
L
Linus Torvalds 已提交
4792 4793 4794 4795 4796 4797 4798 4799
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4800 4801
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4802 4803
{
	int ret;
4804
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4805

A
Anton Blanchard 已提交
4806
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4807 4808
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4809 4810
		return -EINVAL;

4811 4812
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4813

4814 4815
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4816
		size_t retlen = min_t(size_t, len, cpumask_size());
4817 4818

		if (copy_to_user(user_mask_ptr, mask, retlen))
4819 4820
			ret = -EFAULT;
		else
4821
			ret = retlen;
4822 4823
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4824

4825
	return ret;
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4831 4832
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4833
 */
4834
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4835
{
4836
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4837

4838
	schedstat_inc(rq, yld_count);
4839
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4846
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4847
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4848 4849 4850 4851 4852 4853 4854
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4855 4856 4857 4858 4859
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4860
static void __cond_resched(void)
L
Linus Torvalds 已提交
4861
{
4862 4863 4864
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4865 4866
}

4867
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4868
{
P
Peter Zijlstra 已提交
4869
	if (should_resched()) {
L
Linus Torvalds 已提交
4870 4871 4872 4873 4874
		__cond_resched();
		return 1;
	}
	return 0;
}
4875
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4876 4877

/*
4878
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4879 4880
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4881
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4882 4883 4884
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4885
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4886
{
P
Peter Zijlstra 已提交
4887
	int resched = should_resched();
J
Jan Kara 已提交
4888 4889
	int ret = 0;

4890 4891
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4892
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4893
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4894
		if (resched)
N
Nick Piggin 已提交
4895 4896 4897
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4898
		ret = 1;
L
Linus Torvalds 已提交
4899 4900
		spin_lock(lock);
	}
J
Jan Kara 已提交
4901
	return ret;
L
Linus Torvalds 已提交
4902
}
4903
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4904

4905
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4906 4907 4908
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4909
	if (should_resched()) {
4910
		local_bh_enable();
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915 4916
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4917
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4918 4919 4920 4921

/**
 * yield - yield the current processor to other threads.
 *
4922
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4933
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4934 4935 4936 4937
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4938
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4939

4940
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4941
	atomic_inc(&rq->nr_iowait);
4942
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4943
	schedule();
4944
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4945
	atomic_dec(&rq->nr_iowait);
4946
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4947 4948 4949 4950 4951
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4952
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4953 4954
	long ret;

4955
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4956
	atomic_inc(&rq->nr_iowait);
4957
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4958
	ret = schedule_timeout(timeout);
4959
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4960
	atomic_dec(&rq->nr_iowait);
4961
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4972
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4973 4974 4975 4976 4977 4978 4979 4980 4981
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4982
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4983
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
4997
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5007
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5008
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5022
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5023
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5024
{
5025
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5026
	unsigned int time_slice;
5027 5028
	unsigned long flags;
	struct rq *rq;
5029
	int retval;
L
Linus Torvalds 已提交
5030 5031 5032
	struct timespec t;

	if (pid < 0)
5033
		return -EINVAL;
L
Linus Torvalds 已提交
5034 5035

	retval = -ESRCH;
5036
	rcu_read_lock();
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5045 5046 5047
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5048

5049
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5050
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5051 5052
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5053

L
Linus Torvalds 已提交
5054
out_unlock:
5055
	rcu_read_unlock();
L
Linus Torvalds 已提交
5056 5057 5058
	return retval;
}

5059
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5060

5061
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5062 5063
{
	unsigned long free = 0;
5064
	unsigned state;
L
Linus Torvalds 已提交
5065 5066

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5067
	printk(KERN_INFO "%-13.13s %c", p->comm,
5068
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5069
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5070
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5071
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5072
	else
P
Peter Zijlstra 已提交
5073
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5074 5075
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5076
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5077
	else
P
Peter Zijlstra 已提交
5078
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5079 5080
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5081
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5082
#endif
P
Peter Zijlstra 已提交
5083
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5084 5085
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5086

5087
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5088 5089
}

I
Ingo Molnar 已提交
5090
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5091
{
5092
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5093

5094
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5095 5096
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5097
#else
P
Peter Zijlstra 已提交
5098 5099
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104 5105 5106 5107
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5108
		if (!state_filter || (p->state & state_filter))
5109
			sched_show_task(p);
L
Linus Torvalds 已提交
5110 5111
	} while_each_thread(g, p);

5112 5113
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5114 5115 5116
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5117
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5118 5119 5120
	/*
	 * Only show locks if all tasks are dumped:
	 */
5121
	if (!state_filter)
I
Ingo Molnar 已提交
5122
		debug_show_all_locks();
L
Linus Torvalds 已提交
5123 5124
}

I
Ingo Molnar 已提交
5125 5126
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5127
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5128 5129
}

5130 5131 5132 5133 5134 5135 5136 5137
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5138
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5139
{
5140
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5141 5142
	unsigned long flags;

5143
	raw_spin_lock_irqsave(&rq->lock, flags);
5144

I
Ingo Molnar 已提交
5145
	__sched_fork(idle);
5146
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5147 5148
	idle->se.exec_start = sched_clock();

5149
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5150
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5151 5152

	rq->curr = rq->idle = idle;
5153 5154 5155
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5156
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5157 5158

	/* Set the preempt count _outside_ the spinlocks! */
5159 5160 5161
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5162
	task_thread_info(idle)->preempt_count = 0;
5163
#endif
I
Ingo Molnar 已提交
5164 5165 5166 5167
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5168
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5169 5170 5171 5172 5173 5174 5175
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5176
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5177
 */
5178
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5179

I
Ingo Molnar 已提交
5180 5181 5182 5183 5184 5185 5186 5187 5188
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5189
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5190
{
5191
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5206

5207 5208
	return factor;
}
I
Ingo Molnar 已提交
5209

5210 5211 5212
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5213

5214 5215 5216 5217 5218 5219 5220 5221
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5222

5223 5224 5225
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5226 5227
}

L
Linus Torvalds 已提交
5228 5229 5230 5231
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5232 5233 5234 5235 5236 5237
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5238
 *    it and puts it into the right queue.
5239 5240
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246 5247 5248
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5249
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5250 5251
 * call is not atomic; no spinlocks may be held.
 */
5252
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5253 5254
{
	unsigned long flags;
5255
	struct rq *rq;
5256
	unsigned int dest_cpu;
5257
	int ret = 0;
L
Linus Torvalds 已提交
5258

P
Peter Zijlstra 已提交
5259 5260 5261 5262 5263 5264 5265
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5266
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5267 5268 5269 5270
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5271

5272
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5273 5274 5275 5276
		ret = -EINVAL;
		goto out;
	}

5277
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5278
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5279 5280 5281 5282
		ret = -EINVAL;
		goto out;
	}

5283
	if (p->sched_class->set_cpus_allowed)
5284
		p->sched_class->set_cpus_allowed(p, new_mask);
5285
	else {
5286 5287
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5288 5289
	}

L
Linus Torvalds 已提交
5290
	/* Can the task run on the task's current CPU? If so, we're done */
5291
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5292 5293
		goto out;

5294 5295 5296
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5297 5298
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5299
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5300 5301 5302 5303 5304
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5305

L
Linus Torvalds 已提交
5306 5307
	return ret;
}
5308
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5309 5310

/*
I
Ingo Molnar 已提交
5311
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5312 5313 5314 5315 5316 5317
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5318 5319
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5320
 */
5321
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5322
{
5323
	struct rq *rq_dest, *rq_src;
5324
	int ret = 0;
L
Linus Torvalds 已提交
5325

5326
	if (unlikely(!cpu_active(dest_cpu)))
5327
		return ret;
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333 5334

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5335
		goto done;
L
Linus Torvalds 已提交
5336
	/* Affinity changed (again). */
5337
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5338
		goto fail;
L
Linus Torvalds 已提交
5339

5340 5341 5342 5343 5344
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5345
		deactivate_task(rq_src, p, 0);
5346
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5347
		activate_task(rq_dest, p, 0);
5348
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5349
	}
L
Linus Torvalds 已提交
5350
done:
5351
	ret = 1;
L
Linus Torvalds 已提交
5352
fail:
L
Linus Torvalds 已提交
5353
	double_rq_unlock(rq_src, rq_dest);
5354
	return ret;
L
Linus Torvalds 已提交
5355 5356 5357
}

/*
5358 5359 5360
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5361
 */
5362
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5363
{
5364
	struct migration_arg *arg = data;
5365

5366 5367 5368 5369
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5370
	local_irq_disable();
5371
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5372
	local_irq_enable();
L
Linus Torvalds 已提交
5373
	return 0;
5374 5375
}

L
Linus Torvalds 已提交
5376
#ifdef CONFIG_HOTPLUG_CPU
5377
/*
5378
 * Figure out where task on dead CPU should go, use force if necessary.
5379
 */
5380
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5381
{
5382 5383 5384
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5385

5386
	local_irq_save(flags);
5387

5388 5389 5390 5391 5392
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5393 5394 5395 5396
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5397
	if (needs_cpu)
5398
		__migrate_task(p, dead_cpu, dest_cpu);
5399
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405 5406 5407 5408
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5409
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5410
{
5411
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5425
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5426

5427
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5428

5429 5430
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5431 5432
			continue;

5433 5434 5435
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5436

5437
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5438 5439
}

I
Ingo Molnar 已提交
5440 5441
/*
 * Schedules idle task to be the next runnable task on current CPU.
5442 5443
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5444 5445 5446
 */
void sched_idle_next(void)
{
5447
	int this_cpu = smp_processor_id();
5448
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5449 5450 5451 5452
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5453
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5454

5455 5456 5457
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5458
	 */
5459
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5460

I
Ingo Molnar 已提交
5461
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5462

5463
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5464

5465
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5466 5467
}

5468 5469
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5483
/* called under rq->lock with disabled interrupts */
5484
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5485
{
5486
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5487 5488

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5489
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5490 5491

	/* Cannot have done final schedule yet: would have vanished. */
5492
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5493

5494
	get_task_struct(p);
L
Linus Torvalds 已提交
5495 5496 5497

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5498
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5499 5500
	 * fine.
	 */
5501
	raw_spin_unlock_irq(&rq->lock);
5502
	move_task_off_dead_cpu(dead_cpu, p);
5503
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5504

5505
	put_task_struct(p);
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5511
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5512
	struct task_struct *next;
5513

I
Ingo Molnar 已提交
5514 5515 5516
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5517
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5518 5519
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5520
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5521
		migrate_dead(dead_cpu, next);
5522

L
Linus Torvalds 已提交
5523 5524
	}
}
5525 5526 5527 5528 5529 5530 5531

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5532
	rq->calc_load_active = 0;
5533
}
L
Linus Torvalds 已提交
5534 5535
#endif /* CONFIG_HOTPLUG_CPU */

5536 5537 5538
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5539 5540
	{
		.procname	= "sched_domain",
5541
		.mode		= 0555,
5542
	},
5543
	{}
5544 5545 5546
};

static struct ctl_table sd_ctl_root[] = {
5547 5548
	{
		.procname	= "kernel",
5549
		.mode		= 0555,
5550 5551
		.child		= sd_ctl_dir,
	},
5552
	{}
5553 5554 5555 5556 5557
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5558
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5559 5560 5561 5562

	return entry;
}

5563 5564
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5565
	struct ctl_table *entry;
5566

5567 5568 5569
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5570
	 * will always be set. In the lowest directory the names are
5571 5572 5573
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5574 5575
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5576 5577 5578
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5579 5580 5581 5582 5583

	kfree(*tablep);
	*tablep = NULL;
}

5584
static void
5585
set_table_entry(struct ctl_table *entry,
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5599
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5600

5601 5602 5603
	if (table == NULL)
		return NULL;

5604
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5605
		sizeof(long), 0644, proc_doulongvec_minmax);
5606
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5607
		sizeof(long), 0644, proc_doulongvec_minmax);
5608
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5609
		sizeof(int), 0644, proc_dointvec_minmax);
5610
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5611
		sizeof(int), 0644, proc_dointvec_minmax);
5612
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5613
		sizeof(int), 0644, proc_dointvec_minmax);
5614
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5615
		sizeof(int), 0644, proc_dointvec_minmax);
5616
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5617
		sizeof(int), 0644, proc_dointvec_minmax);
5618
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5619
		sizeof(int), 0644, proc_dointvec_minmax);
5620
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5621
		sizeof(int), 0644, proc_dointvec_minmax);
5622
	set_table_entry(&table[9], "cache_nice_tries",
5623 5624
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5625
	set_table_entry(&table[10], "flags", &sd->flags,
5626
		sizeof(int), 0644, proc_dointvec_minmax);
5627 5628 5629
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5630 5631 5632 5633

	return table;
}

5634
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5635 5636 5637 5638 5639 5640 5641 5642 5643
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5644 5645
	if (table == NULL)
		return NULL;
5646 5647 5648 5649 5650

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5651
		entry->mode = 0555;
5652 5653 5654 5655 5656 5657 5658 5659
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5660
static void register_sched_domain_sysctl(void)
5661
{
5662
	int i, cpu_num = num_possible_cpus();
5663 5664 5665
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5666 5667 5668
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5669 5670 5671
	if (entry == NULL)
		return;

5672
	for_each_possible_cpu(i) {
5673 5674
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5675
		entry->mode = 0555;
5676
		entry->child = sd_alloc_ctl_cpu_table(i);
5677
		entry++;
5678
	}
5679 5680

	WARN_ON(sd_sysctl_header);
5681 5682
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5683

5684
/* may be called multiple times per register */
5685 5686
static void unregister_sched_domain_sysctl(void)
{
5687 5688
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5689
	sd_sysctl_header = NULL;
5690 5691
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5692
}
5693
#else
5694 5695 5696 5697
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5698 5699 5700 5701
{
}
#endif

5702 5703 5704 5705 5706
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5707
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5727
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5728 5729 5730 5731
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5732 5733 5734 5735
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5736 5737
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5738
{
5739
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5740
	unsigned long flags;
5741
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5742 5743

	switch (action) {
5744

L
Linus Torvalds 已提交
5745
	case CPU_UP_PREPARE:
5746
	case CPU_UP_PREPARE_FROZEN:
5747
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5748
		break;
5749

L
Linus Torvalds 已提交
5750
	case CPU_ONLINE:
5751
	case CPU_ONLINE_FROZEN:
5752
		/* Update our root-domain */
5753
		raw_spin_lock_irqsave(&rq->lock, flags);
5754
		if (rq->rd) {
5755
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5756 5757

			set_rq_online(rq);
5758
		}
5759
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5760
		break;
5761

L
Linus Torvalds 已提交
5762 5763
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5764
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5765 5766
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5767
		raw_spin_lock_irq(&rq->lock);
5768
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5769 5770
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5771
		migrate_dead_tasks(cpu);
5772
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5773 5774
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5775
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5776
		break;
G
Gregory Haskins 已提交
5777

5778 5779
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5780
		/* Update our root-domain */
5781
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5782
		if (rq->rd) {
5783
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5784
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5785
		}
5786
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5787
		break;
L
Linus Torvalds 已提交
5788 5789 5790 5791 5792
#endif
	}
	return NOTIFY_OK;
}

5793 5794 5795
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5796
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5797
 */
5798
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5799 5800 5801 5802
	.notifier_call = migration_call,
	.priority = 10
};

5803
static int __init migration_init(void)
L
Linus Torvalds 已提交
5804 5805
{
	void *cpu = (void *)(long)smp_processor_id();
5806
	int err;
5807 5808

	/* Start one for the boot CPU: */
5809 5810
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5811 5812
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5813

5814
	return 0;
L
Linus Torvalds 已提交
5815
}
5816
early_initcall(migration_init);
L
Linus Torvalds 已提交
5817 5818 5819
#endif

#ifdef CONFIG_SMP
5820

5821
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5822

5823 5824 5825 5826 5827 5828 5829 5830 5831 5832
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5833
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5834
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5835
{
I
Ingo Molnar 已提交
5836
	struct sched_group *group = sd->groups;
5837
	char str[256];
L
Linus Torvalds 已提交
5838

R
Rusty Russell 已提交
5839
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5840
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5841 5842 5843 5844

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5845
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5846
		if (sd->parent)
P
Peter Zijlstra 已提交
5847 5848
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5849
		return -1;
N
Nick Piggin 已提交
5850 5851
	}

P
Peter Zijlstra 已提交
5852
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5853

5854
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5855 5856
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5857
	}
5858
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5859 5860
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5861
	}
L
Linus Torvalds 已提交
5862

I
Ingo Molnar 已提交
5863
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5864
	do {
I
Ingo Molnar 已提交
5865
		if (!group) {
P
Peter Zijlstra 已提交
5866 5867
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5868 5869 5870
			break;
		}

5871
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5872 5873 5874
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5875 5876
			break;
		}
L
Linus Torvalds 已提交
5877

5878
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5879 5880
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5881 5882
			break;
		}
L
Linus Torvalds 已提交
5883

5884
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5885 5886
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5887 5888
			break;
		}
L
Linus Torvalds 已提交
5889

5890
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5891

R
Rusty Russell 已提交
5892
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5893

P
Peter Zijlstra 已提交
5894
		printk(KERN_CONT " %s", str);
5895
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5896 5897
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
5898
		}
L
Linus Torvalds 已提交
5899

I
Ingo Molnar 已提交
5900 5901
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5902
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5903

5904
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5905
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5906

5907 5908
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5909 5910
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5911 5912
	return 0;
}
L
Linus Torvalds 已提交
5913

I
Ingo Molnar 已提交
5914 5915
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
5916
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
5917
	int level = 0;
L
Linus Torvalds 已提交
5918

5919 5920 5921
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5922 5923 5924 5925
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5926

I
Ingo Molnar 已提交
5927 5928
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

5929
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5930 5931 5932 5933
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
5934
	for (;;) {
5935
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
5936
			break;
L
Linus Torvalds 已提交
5937 5938
		level++;
		sd = sd->parent;
5939
		if (!sd)
I
Ingo Molnar 已提交
5940 5941
			break;
	}
5942
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
5943
}
5944
#else /* !CONFIG_SCHED_DEBUG */
5945
# define sched_domain_debug(sd, cpu) do { } while (0)
5946
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5947

5948
static int sd_degenerate(struct sched_domain *sd)
5949
{
5950
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5951 5952 5953 5954 5955 5956
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5957 5958 5959
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5960 5961 5962 5963 5964
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5965
	if (sd->flags & (SD_WAKE_AFFINE))
5966 5967 5968 5969 5970
		return 0;

	return 1;
}

5971 5972
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5973 5974 5975 5976 5977 5978
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5979
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5980 5981 5982 5983 5984 5985 5986
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5987 5988 5989
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5990 5991
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5992 5993 5994 5995 5996 5997 5998
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5999 6000
static void free_rootdomain(struct root_domain *rd)
{
6001 6002
	synchronize_sched();

6003 6004
	cpupri_cleanup(&rd->cpupri);

6005 6006 6007 6008 6009 6010
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6011 6012
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6013
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6014 6015
	unsigned long flags;

6016
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6017 6018

	if (rq->rd) {
I
Ingo Molnar 已提交
6019
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6020

6021
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6022
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6023

6024
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6025

I
Ingo Molnar 已提交
6026 6027 6028 6029 6030 6031 6032
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6033 6034 6035 6036 6037
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6038
	cpumask_set_cpu(rq->cpu, rd->span);
6039
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6040
		set_rq_online(rq);
G
Gregory Haskins 已提交
6041

6042
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6043 6044 6045

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6046 6047
}

L
Li Zefan 已提交
6048
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6049
{
6050 6051
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6052 6053
	memset(rd, 0, sizeof(*rd));

6054 6055
	if (bootmem)
		gfp = GFP_NOWAIT;
6056

6057
	if (!alloc_cpumask_var(&rd->span, gfp))
6058
		goto out;
6059
	if (!alloc_cpumask_var(&rd->online, gfp))
6060
		goto free_span;
6061
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6062
		goto free_online;
6063

P
Pekka Enberg 已提交
6064
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6065
		goto free_rto_mask;
6066
	return 0;
6067

6068 6069
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6070 6071 6072 6073
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6074
out:
6075
	return -ENOMEM;
G
Gregory Haskins 已提交
6076 6077 6078 6079
}

static void init_defrootdomain(void)
{
6080 6081
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6082 6083 6084
	atomic_set(&def_root_domain.refcount, 1);
}

6085
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6086 6087 6088 6089 6090 6091 6092
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6093 6094 6095 6096
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6097 6098 6099 6100

	return rd;
}

L
Linus Torvalds 已提交
6101
/*
I
Ingo Molnar 已提交
6102
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6103 6104
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6105 6106
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6107
{
6108
	struct rq *rq = cpu_rq(cpu);
6109 6110
	struct sched_domain *tmp;

6111 6112 6113
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6114
	/* Remove the sched domains which do not contribute to scheduling. */
6115
	for (tmp = sd; tmp; ) {
6116 6117 6118
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6119

6120
		if (sd_parent_degenerate(tmp, parent)) {
6121
			tmp->parent = parent->parent;
6122 6123
			if (parent->parent)
				parent->parent->child = tmp;
6124 6125
		} else
			tmp = tmp->parent;
6126 6127
	}

6128
	if (sd && sd_degenerate(sd)) {
6129
		sd = sd->parent;
6130 6131 6132
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6133 6134 6135

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6136
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6137
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6138 6139 6140
}

/* cpus with isolated domains */
6141
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6142 6143 6144 6145

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6146
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6147
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6148 6149 6150
	return 1;
}

I
Ingo Molnar 已提交
6151
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6152 6153

/*
6154 6155
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6156 6157
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6158 6159 6160 6161 6162
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6163
static void
6164 6165 6166
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6167
					struct sched_group **sg,
6168 6169
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6170 6171 6172 6173
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6174
	cpumask_clear(covered);
6175

6176
	for_each_cpu(i, span) {
6177
		struct sched_group *sg;
6178
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6179 6180
		int j;

6181
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6182 6183
			continue;

6184
		cpumask_clear(sched_group_cpus(sg));
6185
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6186

6187
		for_each_cpu(j, span) {
6188
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6189 6190
				continue;

6191
			cpumask_set_cpu(j, covered);
6192
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6203
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6204

6205
#ifdef CONFIG_NUMA
6206

6207 6208 6209 6210 6211
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6212
 * Find the next node to include in a given scheduling domain. Simply
6213 6214 6215 6216
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6217
static int find_next_best_node(int node, nodemask_t *used_nodes)
6218 6219 6220 6221 6222
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6223
	for (i = 0; i < nr_node_ids; i++) {
6224
		/* Start at @node */
6225
		n = (node + i) % nr_node_ids;
6226 6227 6228 6229 6230

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6231
		if (node_isset(n, *used_nodes))
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6243
	node_set(best_node, *used_nodes);
6244 6245 6246 6247 6248 6249
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6250
 * @span: resulting cpumask
6251
 *
I
Ingo Molnar 已提交
6252
 * Given a node, construct a good cpumask for its sched_domain to span. It
6253 6254 6255
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6256
static void sched_domain_node_span(int node, struct cpumask *span)
6257
{
6258
	nodemask_t used_nodes;
6259
	int i;
6260

6261
	cpumask_clear(span);
6262
	nodes_clear(used_nodes);
6263

6264
	cpumask_or(span, span, cpumask_of_node(node));
6265
	node_set(node, used_nodes);
6266 6267

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6268
		int next_node = find_next_best_node(node, &used_nodes);
6269

6270
		cpumask_or(span, span, cpumask_of_node(next_node));
6271 6272
	}
}
6273
#endif /* CONFIG_NUMA */
6274

6275
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6276

6277 6278
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6279 6280 6281
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6326
/*
6327
 * SMT sched-domains:
6328
 */
L
Linus Torvalds 已提交
6329
#ifdef CONFIG_SCHED_SMT
6330
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6331
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6332

I
Ingo Molnar 已提交
6333
static int
6334 6335
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6336
{
6337
	if (sg)
6338
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6339 6340
	return cpu;
}
6341
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6342

6343 6344 6345
/*
 * multi-core sched-domains:
 */
6346
#ifdef CONFIG_SCHED_MC
6347 6348
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6349
#endif /* CONFIG_SCHED_MC */
6350 6351

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6352
static int
6353 6354
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6355
{
6356
	int group;
6357

6358
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6359
	group = cpumask_first(mask);
6360
	if (sg)
6361
		*sg = &per_cpu(sched_group_core, group).sg;
6362
	return group;
6363 6364
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6365
static int
6366 6367
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6368
{
6369
	if (sg)
6370
		*sg = &per_cpu(sched_group_core, cpu).sg;
6371 6372 6373 6374
	return cpu;
}
#endif

6375 6376
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6377

I
Ingo Molnar 已提交
6378
static int
6379 6380
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6381
{
6382
	int group;
6383
#ifdef CONFIG_SCHED_MC
6384
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6385
	group = cpumask_first(mask);
6386
#elif defined(CONFIG_SCHED_SMT)
6387
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6388
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6389
#else
6390
	group = cpu;
L
Linus Torvalds 已提交
6391
#endif
6392
	if (sg)
6393
		*sg = &per_cpu(sched_group_phys, group).sg;
6394
	return group;
L
Linus Torvalds 已提交
6395 6396 6397 6398
}

#ifdef CONFIG_NUMA
/*
6399 6400 6401
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6402
 */
6403
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6404
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6405

6406
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6407
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6408

6409 6410 6411
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6412
{
6413 6414
	int group;

6415
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6416
	group = cpumask_first(nodemask);
6417 6418

	if (sg)
6419
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6420
	return group;
L
Linus Torvalds 已提交
6421
}
6422

6423 6424 6425 6426 6427 6428 6429
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6430
	do {
6431
		for_each_cpu(j, sched_group_cpus(sg)) {
6432
			struct sched_domain *sd;
6433

6434
			sd = &per_cpu(phys_domains, j).sd;
6435
			if (j != group_first_cpu(sd->groups)) {
6436 6437 6438 6439 6440 6441
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6442

6443
			sg->cpu_power += sd->groups->cpu_power;
6444 6445 6446
		}
		sg = sg->next;
	} while (sg != group_head);
6447
}
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6469 6470
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6471 6472 6473 6474 6475 6476 6477 6478 6479
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6480
	sg->cpu_power = 0;
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6499 6500
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6501 6502
			return -ENOMEM;
		}
6503
		sg->cpu_power = 0;
6504 6505 6506 6507 6508 6509 6510 6511 6512
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6513
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6514

6515
#ifdef CONFIG_NUMA
6516
/* Free memory allocated for various sched_group structures */
6517 6518
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6519
{
6520
	int cpu, i;
6521

6522
	for_each_cpu(cpu, cpu_map) {
6523 6524 6525 6526 6527 6528
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6529
		for (i = 0; i < nr_node_ids; i++) {
6530 6531
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6532
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6533
			if (cpumask_empty(nodemask))
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6550
#else /* !CONFIG_NUMA */
6551 6552
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6553 6554
{
}
6555
#endif /* CONFIG_NUMA */
6556

6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6571 6572
	long power;
	int weight;
6573 6574 6575

	WARN_ON(!sd || !sd->groups);

6576
	if (cpu != group_first_cpu(sd->groups))
6577 6578 6579 6580
		return;

	child = sd->child;

6581
	sd->groups->cpu_power = 0;
6582

6583 6584 6585 6586 6587
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6588 6589 6590
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6591
		 */
P
Peter Zijlstra 已提交
6592 6593
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6594
			power /= weight;
P
Peter Zijlstra 已提交
6595 6596
			power >>= SCHED_LOAD_SHIFT;
		}
6597
		sd->groups->cpu_power += power;
6598 6599 6600 6601
		return;
	}

	/*
6602
	 * Add cpu_power of each child group to this groups cpu_power.
6603 6604 6605
	 */
	group = child->groups;
	do {
6606
		sd->groups->cpu_power += group->cpu_power;
6607 6608 6609 6610
		group = group->next;
	} while (group != child->groups);
}

6611 6612 6613 6614 6615
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6616 6617 6618 6619 6620 6621
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6622
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6623

6624 6625 6626 6627 6628
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6629
	sd->level = SD_LV_##type;				\
6630
	SD_INIT_NAME(sd, type);					\
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6645 6646 6647 6648
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6649 6650 6651 6652 6653 6654
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6673
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6674 6675
	} else {
		/* turn on idle balance on this domain */
6676
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6677 6678 6679
	}
}

6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6700
#ifdef CONFIG_NUMA
6701 6702 6703 6704 6705 6706 6707
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6708
#endif
6709 6710 6711 6712
	case sa_none:
		break;
	}
}
6713

6714 6715 6716
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6717
#ifdef CONFIG_NUMA
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6728
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6729
		return sa_notcovered;
6730
	}
6731
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6732
#endif
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6745
		printk(KERN_WARNING "Cannot alloc root domain\n");
6746
		return sa_tmpmask;
G
Gregory Haskins 已提交
6747
	}
6748 6749
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6750

6751 6752 6753 6754
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6755
#ifdef CONFIG_NUMA
6756
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6757

6758 6759 6760 6761 6762
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6763
		set_domain_attribute(sd, attr);
6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6778
#endif
6779 6780
	return sd;
}
L
Linus Torvalds 已提交
6781

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6797

6798 6799 6800 6801 6802
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6803
#ifdef CONFIG_SCHED_MC
6804 6805 6806 6807 6808 6809 6810
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6811
#endif
6812 6813
	return sd;
}
6814

6815 6816 6817 6818 6819
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6820
#ifdef CONFIG_SCHED_SMT
6821 6822 6823 6824 6825 6826 6827
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6828
#endif
6829 6830
	return sd;
}
L
Linus Torvalds 已提交
6831

6832 6833 6834 6835
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6836
#ifdef CONFIG_SCHED_SMT
6837 6838 6839 6840 6841 6842 6843 6844
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6845
#endif
6846
#ifdef CONFIG_SCHED_MC
6847 6848 6849 6850 6851 6852 6853
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6854
#endif
6855 6856 6857 6858 6859 6860 6861
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6862
#ifdef CONFIG_NUMA
6863 6864 6865 6866 6867
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6868 6869
	default:
		break;
6870
	}
6871
}
6872

6873 6874 6875 6876 6877 6878 6879 6880 6881
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6882
	struct sched_domain *sd;
6883
	int i;
6884
#ifdef CONFIG_NUMA
6885
	d.sd_allnodes = 0;
6886
#endif
6887

6888 6889 6890 6891
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6892

L
Linus Torvalds 已提交
6893
	/*
6894
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6895
	 */
6896
	for_each_cpu(i, cpu_map) {
6897 6898
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6899

6900
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6901
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6902
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6903
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
6904
	}
6905

6906
	for_each_cpu(i, cpu_map) {
6907
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6908
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
6909
	}
6910

L
Linus Torvalds 已提交
6911
	/* Set up physical groups */
6912 6913
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6914

L
Linus Torvalds 已提交
6915 6916
#ifdef CONFIG_NUMA
	/* Set up node groups */
6917 6918
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6919

6920 6921
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
6922
			goto error;
L
Linus Torvalds 已提交
6923 6924 6925
#endif

	/* Calculate CPU power for physical packages and nodes */
6926
#ifdef CONFIG_SCHED_SMT
6927
	for_each_cpu(i, cpu_map) {
6928
		sd = &per_cpu(cpu_domains, i).sd;
6929
		init_sched_groups_power(i, sd);
6930
	}
L
Linus Torvalds 已提交
6931
#endif
6932
#ifdef CONFIG_SCHED_MC
6933
	for_each_cpu(i, cpu_map) {
6934
		sd = &per_cpu(core_domains, i).sd;
6935
		init_sched_groups_power(i, sd);
6936 6937
	}
#endif
6938

6939
	for_each_cpu(i, cpu_map) {
6940
		sd = &per_cpu(phys_domains, i).sd;
6941
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6942 6943
	}

6944
#ifdef CONFIG_NUMA
6945
	for (i = 0; i < nr_node_ids; i++)
6946
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
6947

6948
	if (d.sd_allnodes) {
6949
		struct sched_group *sg;
6950

6951
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6952
								d.tmpmask);
6953 6954
		init_numa_sched_groups_power(sg);
	}
6955 6956
#endif

L
Linus Torvalds 已提交
6957
	/* Attach the domains */
6958
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
6959
#ifdef CONFIG_SCHED_SMT
6960
		sd = &per_cpu(cpu_domains, i).sd;
6961
#elif defined(CONFIG_SCHED_MC)
6962
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
6963
#else
6964
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
6965
#endif
6966
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6967
	}
6968

6969 6970 6971
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
6972 6973

error:
6974 6975
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
6976
}
P
Paul Jackson 已提交
6977

6978
static int build_sched_domains(const struct cpumask *cpu_map)
6979 6980 6981 6982
{
	return __build_sched_domains(cpu_map, NULL);
}

6983
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6984
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6985 6986
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6987 6988 6989

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6990 6991
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6992
 */
6993
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6994

6995 6996 6997 6998 6999 7000
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7001
{
7002
	return 0;
7003 7004
}

7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7030
/*
I
Ingo Molnar 已提交
7031
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7032 7033
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7034
 */
7035
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7036
{
7037 7038
	int err;

7039
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7040
	ndoms_cur = 1;
7041
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7042
	if (!doms_cur)
7043 7044
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7045
	dattr_cur = NULL;
7046
	err = build_sched_domains(doms_cur[0]);
7047
	register_sched_domain_sysctl();
7048 7049

	return err;
7050 7051
}

7052 7053
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7054
{
7055
	free_sched_groups(cpu_map, tmpmask);
7056
}
L
Linus Torvalds 已提交
7057

7058 7059 7060 7061
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7062
static void detach_destroy_domains(const struct cpumask *cpu_map)
7063
{
7064 7065
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7066 7067
	int i;

7068
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7069
		cpu_attach_domain(NULL, &def_root_domain, i);
7070
	synchronize_sched();
7071
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7072 7073
}

7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7090 7091
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7092
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7093 7094 7095
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7096
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7097 7098 7099
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7100 7101 7102
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7103 7104 7105 7106 7107 7108
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7109
 *
7110
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7111 7112
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7113
 *
P
Paul Jackson 已提交
7114 7115
 * Call with hotplug lock held
 */
7116
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7117
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7118
{
7119
	int i, j, n;
7120
	int new_topology;
P
Paul Jackson 已提交
7121

7122
	mutex_lock(&sched_domains_mutex);
7123

7124 7125 7126
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7127 7128 7129
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7130
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7131 7132 7133

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7134
		for (j = 0; j < n && !new_topology; j++) {
7135
			if (cpumask_equal(doms_cur[i], doms_new[j])
7136
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7137 7138 7139
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7140
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7141 7142 7143 7144
match1:
		;
	}

7145 7146
	if (doms_new == NULL) {
		ndoms_cur = 0;
7147
		doms_new = &fallback_doms;
7148
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7149
		WARN_ON_ONCE(dattr_new);
7150 7151
	}

P
Paul Jackson 已提交
7152 7153
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7154
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7155
			if (cpumask_equal(doms_new[i], doms_cur[j])
7156
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7157 7158 7159
				goto match2;
		}
		/* no match - add a new doms_new */
7160
		__build_sched_domains(doms_new[i],
7161
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7162 7163 7164 7165 7166
match2:
		;
	}

	/* Remember the new sched domains */
7167 7168
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7169
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7170
	doms_cur = doms_new;
7171
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7172
	ndoms_cur = ndoms_new;
7173 7174

	register_sched_domain_sysctl();
7175

7176
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7177 7178
}

7179
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7180
static void arch_reinit_sched_domains(void)
7181
{
7182
	get_online_cpus();
7183 7184 7185 7186

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7187
	rebuild_sched_domains();
7188
	put_online_cpus();
7189 7190 7191 7192
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7193
	unsigned int level = 0;
7194

7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7206 7207 7208
		return -EINVAL;

	if (smt)
7209
		sched_smt_power_savings = level;
7210
	else
7211
		sched_mc_power_savings = level;
7212

7213
	arch_reinit_sched_domains();
7214

7215
	return count;
7216 7217 7218
}

#ifdef CONFIG_SCHED_MC
7219
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7220
					   struct sysdev_class_attribute *attr,
7221
					   char *page)
7222 7223 7224
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7225
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7226
					    struct sysdev_class_attribute *attr,
7227
					    const char *buf, size_t count)
7228 7229 7230
{
	return sched_power_savings_store(buf, count, 0);
}
7231 7232 7233
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7234 7235 7236
#endif

#ifdef CONFIG_SCHED_SMT
7237
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7238
					    struct sysdev_class_attribute *attr,
7239
					    char *page)
7240 7241 7242
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7243
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7244
					     struct sysdev_class_attribute *attr,
7245
					     const char *buf, size_t count)
7246 7247 7248
{
	return sched_power_savings_store(buf, count, 1);
}
7249 7250
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7251 7252 7253
		   sched_smt_power_savings_store);
#endif

7254
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7270
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7271

7272
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7273
/*
7274 7275
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7276 7277 7278
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7279 7280 7281 7282
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7283 7284 7285 7286
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7287
		partition_sched_domains(1, NULL, NULL);
7288 7289 7290 7291 7292 7293 7294 7295 7296 7297
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7298
{
P
Peter Zijlstra 已提交
7299 7300
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7301 7302
	switch (action) {
	case CPU_DOWN_PREPARE:
7303
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7304
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7305 7306 7307
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7308
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7309
	case CPU_ONLINE:
7310
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7311
		enable_runtime(cpu_rq(cpu));
7312 7313
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7314 7315 7316 7317 7318 7319 7320
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7321 7322 7323
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7324
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7325

7326 7327 7328 7329 7330
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7331
	get_online_cpus();
7332
	mutex_lock(&sched_domains_mutex);
7333
	arch_init_sched_domains(cpu_active_mask);
7334 7335 7336
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7337
	mutex_unlock(&sched_domains_mutex);
7338
	put_online_cpus();
7339 7340

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7341 7342
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7343 7344 7345 7346 7347
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7348
	init_hrtick();
7349 7350

	/* Move init over to a non-isolated CPU */
7351
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7352
		BUG();
I
Ingo Molnar 已提交
7353
	sched_init_granularity();
7354
	free_cpumask_var(non_isolated_cpus);
7355

7356
	init_sched_rt_class();
L
Linus Torvalds 已提交
7357 7358 7359 7360
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7361
	sched_init_granularity();
L
Linus Torvalds 已提交
7362 7363 7364
}
#endif /* CONFIG_SMP */

7365 7366
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7367 7368 7369 7370 7371 7372 7373
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7374
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7375 7376
{
	cfs_rq->tasks_timeline = RB_ROOT;
7377
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7378 7379 7380
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7381
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7382 7383
}

P
Peter Zijlstra 已提交
7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7397
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7398
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7399
#ifdef CONFIG_SMP
7400
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7401 7402
#endif
#endif
P
Peter Zijlstra 已提交
7403 7404 7405
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7406
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7407 7408 7409 7410
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7411
	rt_rq->rt_runtime = 0;
7412
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7413

7414
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7415
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7416 7417
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7418 7419
}

P
Peter Zijlstra 已提交
7420
#ifdef CONFIG_FAIR_GROUP_SCHED
7421 7422 7423
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7424
{
7425
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7426 7427 7428 7429 7430 7431 7432
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7433 7434 7435 7436
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7437 7438 7439 7440 7441
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7442 7443
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7444
	se->load.inv_weight = 0;
7445
	se->parent = parent;
P
Peter Zijlstra 已提交
7446
}
7447
#endif
P
Peter Zijlstra 已提交
7448

7449
#ifdef CONFIG_RT_GROUP_SCHED
7450 7451 7452
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7453
{
7454 7455
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7456 7457 7458
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7459
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7460 7461 7462 7463
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7464 7465 7466
	if (!rt_se)
		return;

7467 7468 7469 7470 7471
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7472
	rt_se->my_q = rt_rq;
7473
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7474 7475 7476 7477
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7478 7479
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7480
	int i, j;
7481 7482 7483 7484 7485 7486 7487
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7488
#endif
7489
#ifdef CONFIG_CPUMASK_OFFSTACK
7490
	alloc_size += num_possible_cpus() * cpumask_size();
7491 7492
#endif
	if (alloc_size) {
7493
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7494 7495 7496 7497 7498 7499 7500

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7501

7502
#endif /* CONFIG_FAIR_GROUP_SCHED */
7503 7504 7505 7506 7507
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7508 7509
		ptr += nr_cpu_ids * sizeof(void **);

7510
#endif /* CONFIG_RT_GROUP_SCHED */
7511 7512 7513 7514 7515 7516
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7517
	}
I
Ingo Molnar 已提交
7518

G
Gregory Haskins 已提交
7519 7520 7521 7522
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7523 7524 7525 7526 7527 7528
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7529
#endif /* CONFIG_RT_GROUP_SCHED */
7530

D
Dhaval Giani 已提交
7531
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7532
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7533 7534
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7535
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7536

7537 7538 7539 7540
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7541
	for_each_possible_cpu(i) {
7542
		struct rq *rq;
L
Linus Torvalds 已提交
7543 7544

		rq = cpu_rq(i);
7545
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7546
		rq->nr_running = 0;
7547 7548
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7549
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7550
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7551
#ifdef CONFIG_FAIR_GROUP_SCHED
7552
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7553
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7569
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7570 7571 7572 7573
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7574
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7575
#endif
D
Dhaval Giani 已提交
7576 7577 7578
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7579
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7580
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7581
#ifdef CONFIG_CGROUP_SCHED
7582
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7583
#endif
I
Ingo Molnar 已提交
7584
#endif
L
Linus Torvalds 已提交
7585

I
Ingo Molnar 已提交
7586 7587
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7588
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7589
		rq->sd = NULL;
G
Gregory Haskins 已提交
7590
		rq->rd = NULL;
7591
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7592
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7593
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7594
		rq->push_cpu = 0;
7595
		rq->cpu = i;
7596
		rq->online = 0;
7597 7598
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7599
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7600
#endif
P
Peter Zijlstra 已提交
7601
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7602 7603 7604
		atomic_set(&rq->nr_iowait, 0);
	}

7605
	set_load_weight(&init_task);
7606

7607 7608 7609 7610
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7611
#ifdef CONFIG_SMP
7612
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7613 7614
#endif

7615
#ifdef CONFIG_RT_MUTEXES
7616
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7617 7618
#endif

L
Linus Torvalds 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7632 7633 7634

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7635 7636 7637 7638
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7639

7640
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7641
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7642
#ifdef CONFIG_SMP
7643
#ifdef CONFIG_NO_HZ
7644
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7645
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7646
#endif
R
Rusty Russell 已提交
7647 7648 7649
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7650
#endif /* SMP */
7651

7652
	perf_event_init();
7653

7654
	scheduler_running = 1;
L
Linus Torvalds 已提交
7655 7656 7657
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7658 7659
static inline int preempt_count_equals(int preempt_offset)
{
7660
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7661 7662 7663 7664

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7665
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7666
{
7667
#ifdef in_atomic
L
Linus Torvalds 已提交
7668 7669
	static unsigned long prev_jiffy;	/* ratelimiting */

7670 7671
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7672 7673 7674 7675 7676
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7677 7678 7679 7680 7681 7682 7683
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7684 7685 7686 7687 7688

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7689 7690 7691 7692 7693 7694
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7695 7696 7697
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7698

7699 7700 7701 7702 7703 7704 7705 7706 7707 7708
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7709 7710
void normalize_rt_tasks(void)
{
7711
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7712
	unsigned long flags;
7713
	struct rq *rq;
L
Linus Torvalds 已提交
7714

7715
	read_lock_irqsave(&tasklist_lock, flags);
7716
	do_each_thread(g, p) {
7717 7718 7719 7720 7721 7722
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7723 7724
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7725 7726 7727
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7728
#endif
I
Ingo Molnar 已提交
7729 7730 7731 7732 7733 7734 7735 7736

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7737
			continue;
I
Ingo Molnar 已提交
7738
		}
L
Linus Torvalds 已提交
7739

7740
		raw_spin_lock(&p->pi_lock);
7741
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7742

7743
		normalize_task(rq, p);
7744

7745
		__task_rq_unlock(rq);
7746
		raw_spin_unlock(&p->pi_lock);
7747 7748
	} while_each_thread(g, p);

7749
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7750 7751 7752
}

#endif /* CONFIG_MAGIC_SYSRQ */
7753

7754
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7755
/*
7756
 * These functions are only useful for the IA64 MCA handling, or kdb.
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7771
struct task_struct *curr_task(int cpu)
7772 7773 7774 7775
{
	return cpu_curr(cpu);
}

7776 7777 7778
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7779 7780 7781 7782 7783 7784
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7785 7786
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7787 7788 7789 7790 7791 7792 7793
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7794
void set_curr_task(int cpu, struct task_struct *p)
7795 7796 7797 7798 7799
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7800

7801 7802
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7817 7818
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7819 7820
{
	struct cfs_rq *cfs_rq;
7821
	struct sched_entity *se;
7822
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7823 7824
	int i;

7825
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7826 7827
	if (!tg->cfs_rq)
		goto err;
7828
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7829 7830
	if (!tg->se)
		goto err;
7831 7832

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7833 7834

	for_each_possible_cpu(i) {
7835
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7836

7837 7838
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7839 7840 7841
		if (!cfs_rq)
			goto err;

7842 7843
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7844
		if (!se)
7845
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7846

7847
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7848 7849 7850 7851
	}

	return 1;

7852 7853
 err_free_rq:
	kfree(cfs_rq);
7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7868
#else /* !CONFG_FAIR_GROUP_SCHED */
7869 7870 7871 7872
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7873 7874
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7886
#endif /* CONFIG_FAIR_GROUP_SCHED */
7887 7888

#ifdef CONFIG_RT_GROUP_SCHED
7889 7890 7891 7892
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7893 7894
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

7906 7907
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7908 7909
{
	struct rt_rq *rt_rq;
7910
	struct sched_rt_entity *rt_se;
7911 7912 7913
	struct rq *rq;
	int i;

7914
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7915 7916
	if (!tg->rt_rq)
		goto err;
7917
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7918 7919 7920
	if (!tg->rt_se)
		goto err;

7921 7922
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7923 7924 7925 7926

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

7927 7928
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7929 7930
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7931

7932 7933
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7934
		if (!rt_se)
7935
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7936

7937
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
7938 7939
	}

7940 7941
	return 1;

7942 7943
 err_free_rq:
	kfree(rt_rq);
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
7958
#else /* !CONFIG_RT_GROUP_SCHED */
7959 7960 7961 7962
static inline void free_rt_sched_group(struct task_group *tg)
{
}

7963 7964
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
7976
#endif /* CONFIG_RT_GROUP_SCHED */
7977

D
Dhaval Giani 已提交
7978
#ifdef CONFIG_CGROUP_SCHED
7979 7980 7981 7982 7983 7984 7985 7986
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7987
struct task_group *sched_create_group(struct task_group *parent)
7988 7989 7990 7991 7992 7993 7994 7995 7996
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7997
	if (!alloc_fair_sched_group(tg, parent))
7998 7999
		goto err;

8000
	if (!alloc_rt_sched_group(tg, parent))
8001 8002
		goto err;

8003
	spin_lock_irqsave(&task_group_lock, flags);
8004
	for_each_possible_cpu(i) {
8005 8006
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8007
	}
P
Peter Zijlstra 已提交
8008
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8009 8010 8011 8012 8013

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8014
	list_add_rcu(&tg->siblings, &parent->children);
8015
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8016

8017
	return tg;
S
Srivatsa Vaddagiri 已提交
8018 8019

err:
P
Peter Zijlstra 已提交
8020
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8021 8022 8023
	return ERR_PTR(-ENOMEM);
}

8024
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8025
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8026 8027
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8028
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8029 8030
}

8031
/* Destroy runqueue etc associated with a task group */
8032
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8033
{
8034
	unsigned long flags;
8035
	int i;
S
Srivatsa Vaddagiri 已提交
8036

8037
	spin_lock_irqsave(&task_group_lock, flags);
8038
	for_each_possible_cpu(i) {
8039 8040
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8041
	}
P
Peter Zijlstra 已提交
8042
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8043
	list_del_rcu(&tg->siblings);
8044
	spin_unlock_irqrestore(&task_group_lock, flags);
8045 8046

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8047
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8048 8049
}

8050
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8051 8052 8053
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8054 8055
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8056 8057 8058 8059 8060 8061 8062
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8063
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8064 8065
	on_rq = tsk->se.on_rq;

8066
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8067
		dequeue_task(rq, tsk, 0);
8068 8069
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8070

P
Peter Zijlstra 已提交
8071
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8072

P
Peter Zijlstra 已提交
8073 8074
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8075
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8076 8077
#endif

8078 8079 8080
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8081
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8082 8083 8084

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8085
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8086

8087
#ifdef CONFIG_FAIR_GROUP_SCHED
8088
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8089 8090 8091 8092 8093
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8094
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8095 8096 8097
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8098
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8099

8100
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8101
		enqueue_entity(cfs_rq, se, 0);
8102
}
8103

8104 8105 8106 8107 8108 8109
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8110
	raw_spin_lock_irqsave(&rq->lock, flags);
8111
	__set_se_shares(se, shares);
8112
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8113 8114
}

8115 8116
static DEFINE_MUTEX(shares_mutex);

8117
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8118 8119
{
	int i;
8120
	unsigned long flags;
8121

8122 8123 8124 8125 8126 8127
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8128 8129
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8130 8131
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8132

8133
	mutex_lock(&shares_mutex);
8134
	if (tg->shares == shares)
8135
		goto done;
S
Srivatsa Vaddagiri 已提交
8136

8137
	spin_lock_irqsave(&task_group_lock, flags);
8138 8139
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8140
	list_del_rcu(&tg->siblings);
8141
	spin_unlock_irqrestore(&task_group_lock, flags);
8142 8143 8144 8145 8146 8147 8148 8149

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8150
	tg->shares = shares;
8151 8152 8153 8154 8155
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8156
		set_se_shares(tg->se[i], shares);
8157
	}
S
Srivatsa Vaddagiri 已提交
8158

8159 8160 8161 8162
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8163
	spin_lock_irqsave(&task_group_lock, flags);
8164 8165
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8166
	list_add_rcu(&tg->siblings, &tg->parent->children);
8167
	spin_unlock_irqrestore(&task_group_lock, flags);
8168
done:
8169
	mutex_unlock(&shares_mutex);
8170
	return 0;
S
Srivatsa Vaddagiri 已提交
8171 8172
}

8173 8174 8175 8176
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8177
#endif
8178

8179
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8180
/*
P
Peter Zijlstra 已提交
8181
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8182
 */
P
Peter Zijlstra 已提交
8183 8184 8185 8186 8187
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8188
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8189

P
Peter Zijlstra 已提交
8190
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8191 8192
}

P
Peter Zijlstra 已提交
8193 8194
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8195
{
P
Peter Zijlstra 已提交
8196
	struct task_struct *g, *p;
8197

P
Peter Zijlstra 已提交
8198 8199 8200 8201
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8202

P
Peter Zijlstra 已提交
8203 8204
	return 0;
}
8205

P
Peter Zijlstra 已提交
8206 8207 8208 8209 8210
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8211

P
Peter Zijlstra 已提交
8212 8213 8214 8215 8216 8217
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8218

P
Peter Zijlstra 已提交
8219 8220
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8221

P
Peter Zijlstra 已提交
8222 8223 8224
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8225 8226
	}

8227 8228 8229 8230 8231
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8232

8233 8234 8235
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8236 8237
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8238

P
Peter Zijlstra 已提交
8239
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8240

8241 8242 8243 8244 8245
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8246

8247 8248 8249
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8250 8251 8252
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8253

P
Peter Zijlstra 已提交
8254 8255 8256 8257
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8258

P
Peter Zijlstra 已提交
8259
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8260
	}
P
Peter Zijlstra 已提交
8261

P
Peter Zijlstra 已提交
8262 8263 8264 8265
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8266 8267
}

P
Peter Zijlstra 已提交
8268
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8269
{
P
Peter Zijlstra 已提交
8270 8271 8272 8273 8274 8275 8276
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8277 8278
}

8279 8280
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8281
{
P
Peter Zijlstra 已提交
8282
	int i, err = 0;
P
Peter Zijlstra 已提交
8283 8284

	mutex_lock(&rt_constraints_mutex);
8285
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8286 8287
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8288
		goto unlock;
P
Peter Zijlstra 已提交
8289

8290
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8291 8292
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8293 8294 8295 8296

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8297
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8298
		rt_rq->rt_runtime = rt_runtime;
8299
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8300
	}
8301
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8302
 unlock:
8303
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8304 8305 8306
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8307 8308
}

8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8321 8322 8323 8324
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8325
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8326 8327
		return -1;

8328
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8329 8330 8331
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8332 8333 8334 8335 8336 8337 8338 8339

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8340 8341 8342
	if (rt_period == 0)
		return -EINVAL;

8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8357
	u64 runtime, period;
8358 8359
	int ret = 0;

8360 8361 8362
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8363 8364 8365 8366 8367 8368 8369 8370
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8371

8372
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8373
	read_lock(&tasklist_lock);
8374
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8375
	read_unlock(&tasklist_lock);
8376 8377 8378 8379
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8390
#else /* !CONFIG_RT_GROUP_SCHED */
8391 8392
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8393 8394 8395
	unsigned long flags;
	int i;

8396 8397 8398
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8399 8400 8401 8402 8403 8404 8405
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8406
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8407 8408 8409
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8410
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8411
		rt_rq->rt_runtime = global_rt_runtime();
8412
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8413
	}
8414
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8415

8416 8417
	return 0;
}
8418
#endif /* CONFIG_RT_GROUP_SCHED */
8419 8420

int sched_rt_handler(struct ctl_table *table, int write,
8421
		void __user *buffer, size_t *lenp,
8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8432
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8449

8450
#ifdef CONFIG_CGROUP_SCHED
8451 8452

/* return corresponding task_group object of a cgroup */
8453
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8454
{
8455 8456
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8457 8458 8459
}

static struct cgroup_subsys_state *
8460
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8461
{
8462
	struct task_group *tg, *parent;
8463

8464
	if (!cgrp->parent) {
8465 8466 8467 8468
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8469 8470
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8471 8472 8473 8474 8475 8476
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8477 8478
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8479
{
8480
	struct task_group *tg = cgroup_tg(cgrp);
8481 8482 8483 8484

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8485
static int
8486
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8487
{
8488
#ifdef CONFIG_RT_GROUP_SCHED
8489
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8490 8491
		return -EINVAL;
#else
8492 8493 8494
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8495
#endif
8496 8497
	return 0;
}
8498

8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8518 8519 8520 8521
	return 0;
}

static void
8522
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8523 8524
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8525 8526
{
	sched_move_task(tsk);
8527 8528 8529 8530 8531 8532 8533 8534
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8535 8536
}

8537
#ifdef CONFIG_FAIR_GROUP_SCHED
8538
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8539
				u64 shareval)
8540
{
8541
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8542 8543
}

8544
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8545
{
8546
	struct task_group *tg = cgroup_tg(cgrp);
8547 8548 8549

	return (u64) tg->shares;
}
8550
#endif /* CONFIG_FAIR_GROUP_SCHED */
8551

8552
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8553
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8554
				s64 val)
P
Peter Zijlstra 已提交
8555
{
8556
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8557 8558
}

8559
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8560
{
8561
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8562
}
8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8574
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8575

8576
static struct cftype cpu_files[] = {
8577
#ifdef CONFIG_FAIR_GROUP_SCHED
8578 8579
	{
		.name = "shares",
8580 8581
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8582
	},
8583 8584
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8585
	{
P
Peter Zijlstra 已提交
8586
		.name = "rt_runtime_us",
8587 8588
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8589
	},
8590 8591
	{
		.name = "rt_period_us",
8592 8593
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8594
	},
8595
#endif
8596 8597 8598 8599
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8600
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8601 8602 8603
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8604 8605 8606 8607 8608 8609 8610
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8611 8612 8613
	.early_init	= 1,
};

8614
#endif	/* CONFIG_CGROUP_SCHED */
8615 8616 8617 8618 8619 8620 8621 8622 8623 8624

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8625
/* track cpu usage of a group of tasks and its child groups */
8626 8627 8628
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8629
	u64 __percpu *cpuusage;
8630
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8631
	struct cpuacct *parent;
8632 8633 8634 8635 8636
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8637
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8638
{
8639
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8652
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8653 8654
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8655
	int i;
8656 8657

	if (!ca)
8658
		goto out;
8659 8660

	ca->cpuusage = alloc_percpu(u64);
8661 8662 8663 8664 8665 8666
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8667

8668 8669 8670
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8671
	return &ca->css;
8672 8673 8674 8675 8676 8677 8678 8679 8680

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8681 8682 8683
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8684
static void
8685
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8686
{
8687
	struct cpuacct *ca = cgroup_ca(cgrp);
8688
	int i;
8689

8690 8691
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8692 8693 8694 8695
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8696 8697
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8698
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8699 8700 8701 8702 8703 8704
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8705
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8706
	data = *cpuusage;
8707
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8708 8709 8710 8711 8712 8713 8714 8715 8716
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8717
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8718 8719 8720 8721 8722

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8723
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8724
	*cpuusage = val;
8725
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8726 8727 8728 8729 8730
#else
	*cpuusage = val;
#endif
}

8731
/* return total cpu usage (in nanoseconds) of a group */
8732
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8733
{
8734
	struct cpuacct *ca = cgroup_ca(cgrp);
8735 8736 8737
	u64 totalcpuusage = 0;
	int i;

8738 8739
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8740 8741 8742 8743

	return totalcpuusage;
}

8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8756 8757
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8758 8759 8760 8761 8762

out:
	return err;
}

8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8797 8798 8799
static struct cftype files[] = {
	{
		.name = "usage",
8800 8801
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8802
	},
8803 8804 8805 8806
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8807 8808 8809 8810
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8811 8812
};

8813
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8814
{
8815
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8826
	int cpu;
8827

L
Li Zefan 已提交
8828
	if (unlikely(!cpuacct_subsys.active))
8829 8830
		return;

8831
	cpu = task_cpu(tsk);
8832 8833 8834

	rcu_read_lock();

8835 8836
	ca = task_ca(tsk);

8837
	for (; ca; ca = ca->parent) {
8838
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8839 8840
		*cpuusage += cputime;
	}
8841 8842

	rcu_read_unlock();
8843 8844
}

8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8862 8863 8864 8865 8866 8867 8868
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8869
	int batch = CPUACCT_BATCH;
8870 8871 8872 8873 8874 8875 8876 8877

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8878
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8879 8880 8881 8882 8883
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8884 8885 8886 8887 8888 8889 8890 8891
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8892 8893 8894 8895 8896

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
8897
	barrier();
8898 8899 8900 8901 8902
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

8903
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8904

8905
static int synchronize_sched_expedited_cpu_stop(void *data)
8906
{
8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
8918
	smp_mb(); /* See above comment block. */
8919
	return 0;
8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
8934
	int snap, trycount = 0;
8935 8936

	smp_mb();  /* ensure prior mod happens before capturing snap. */
8937
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8938
	get_online_cpus();
8939 8940
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
8941
			     NULL) == -EAGAIN) {
8942 8943 8944 8945 8946 8947 8948
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
8949
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8950 8951 8952 8953 8954
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
8955
	atomic_inc(&synchronize_sched_expedited_count);
8956
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8957 8958 8959 8960 8961
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */