sched.c 217.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

929 930 931 932
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
933
static inline struct rq *__task_rq_lock(struct task_struct *p)
934 935
	__acquires(rq->lock)
{
936 937
	struct rq *rq;

938
	for (;;) {
939 940 941
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
942
		raw_spin_lock(&rq->lock);
943
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
944
			return rq;
945
		raw_spin_unlock(&rq->lock);
946 947 948
	}
}

L
Linus Torvalds 已提交
949 950
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
951
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
952 953
 * explicitly disabling preemption.
 */
954
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
955 956
	__acquires(rq->lock)
{
957
	struct rq *rq;
L
Linus Torvalds 已提交
958

959
	for (;;) {
960 961
		while (task_is_waking(p))
			cpu_relax();
962 963
		local_irq_save(*flags);
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
965
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
966
			return rq;
967
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
968 969 970
	}
}

971 972 973 974 975
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976
	raw_spin_unlock_wait(&rq->lock);
977 978
}

A
Alexey Dobriyan 已提交
979
static void __task_rq_unlock(struct rq *rq)
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock(&rq->lock);
983 984
}

985
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
986 987
	__releases(rq->lock)
{
988
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
989 990 991
}

/*
992
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
993
 */
A
Alexey Dobriyan 已提交
994
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998 999 1000

	local_irq_disable();
	rq = this_rq();
1001
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1002 1003 1004 1005

	return rq;
}

P
Peter Zijlstra 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1027
	if (!cpu_active(cpu_of(rq)))
1028
		return 0;
P
Peter Zijlstra 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1048
	raw_spin_lock(&rq->lock);
1049
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1050
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1052 1053 1054 1055

	return HRTIMER_NORESTART;
}

1056
#ifdef CONFIG_SMP
1057 1058 1059 1060
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1061
{
1062
	struct rq *rq = arg;
1063

1064
	raw_spin_lock(&rq->lock);
1065 1066
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1067
	raw_spin_unlock(&rq->lock);
1068 1069
}

1070 1071 1072 1073 1074 1075
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1076
{
1077 1078
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079

1080
	hrtimer_set_expires(timer, time);
1081 1082 1083 1084

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1085
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 1087
		rq->hrtick_csd_pending = 1;
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1102
		hrtick_clear(cpu_rq(cpu));
1103 1104 1105 1106 1107 1108
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1109
static __init void init_hrtick(void)
1110 1111 1112
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1113 1114 1115 1116 1117 1118 1119 1120
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1121
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122
			HRTIMER_MODE_REL_PINNED, 0);
1123
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1142
}
A
Andrew Morton 已提交
1143
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1144 1145 1146 1147 1148 1149 1150 1151
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1152 1153 1154
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1155
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1156

I
Ingo Molnar 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1170
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1171 1172 1173
{
	int cpu;

1174
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1175

1176
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1177 1178
		return;

1179
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1196
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1197 1198
		return;
	resched_task(cpu_curr(cpu));
1199
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1200
}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1235
	set_tsk_need_resched(rq->idle);
1236 1237 1238 1239 1240 1241

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1253
#endif /* CONFIG_NO_HZ */
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1276
#else /* !CONFIG_SMP */
1277
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1278
{
1279
	assert_raw_spin_locked(&task_rq(p)->lock);
1280
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1281
}
1282 1283 1284 1285

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

1396 1397 1398 1399 1400 1401 1402 1403
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1404 1405
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 1407
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1408 1409
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 1411
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1412 1413
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1424
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1425
typedef int (*tg_visitor)(struct task_group *, void *);
1426 1427 1428 1429 1430

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1431
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1432 1433
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1434
	int ret;
1435 1436 1437 1438

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1439 1440 1441
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1442 1443 1444 1445 1446 1447 1448
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1449 1450 1451
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1452 1453 1454 1455 1456

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1457
out_unlock:
1458
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1459 1460

	return ret;
1461 1462
}

P
Peter Zijlstra 已提交
1463 1464 1465
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1466
}
P
Peter Zijlstra 已提交
1467 1468 1469
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1509 1510
static struct sched_group *group_of(int cpu)
{
1511
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1534
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1535

1536 1537
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1538 1539
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1540 1541 1542 1543 1544

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1545

1546
static __read_mostly unsigned long __percpu *update_shares_data;
1547

1548 1549 1550 1551 1552
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1553 1554 1555
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1556
				    unsigned long *usd_rq_weight)
1557
{
1558
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1559
	int boost = 0;
1560

1561
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1562 1563 1564 1565
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1566

1567
	/*
P
Peter Zijlstra 已提交
1568 1569 1570
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1571
	 */
1572
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1573
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574

1575 1576 1577 1578
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1579

1580
		raw_spin_lock_irqsave(&rq->lock, flags);
1581
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1582
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583
		__set_se_shares(tg->se[cpu], shares);
1584
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1585
	}
1586
}
1587 1588

/*
1589 1590 1591
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1592
 */
P
Peter Zijlstra 已提交
1593
static int tg_shares_up(struct task_group *tg, void *data)
1594
{
1595
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1597
	struct sched_domain *sd = data;
1598
	unsigned long flags;
1599
	int i;
1600

1601 1602 1603 1604
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1605
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606

1607
	for_each_cpu(i, sched_domain_span(sd)) {
1608
		weight = tg->cfs_rq[i]->load.weight;
1609
		usd_rq_weight[i] = weight;
1610

1611
		rq_weight += weight;
1612 1613 1614 1615 1616 1617 1618 1619
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1620
		sum_weight += weight;
1621
		shares += tg->cfs_rq[i]->shares;
1622 1623
	}

1624 1625 1626
	if (!rq_weight)
		rq_weight = sum_weight;

1627 1628 1629 1630 1631
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1632

1633
	for_each_cpu(i, sched_domain_span(sd))
1634
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635 1636

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1637 1638

	return 0;
1639 1640 1641
}

/*
1642 1643 1644
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1645
 */
P
Peter Zijlstra 已提交
1646
static int tg_load_down(struct task_group *tg, void *data)
1647
{
1648
	unsigned long load;
P
Peter Zijlstra 已提交
1649
	long cpu = (long)data;
1650

1651 1652 1653 1654 1655 1656 1657
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1658

1659
	tg->cfs_rq[cpu]->h_load = load;
1660

P
Peter Zijlstra 已提交
1661
	return 0;
1662 1663
}

1664
static void update_shares(struct sched_domain *sd)
1665
{
1666 1667 1668 1669 1670 1671 1672 1673
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1674 1675 1676

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1677
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1678
	}
1679 1680
}

P
Peter Zijlstra 已提交
1681
static void update_h_load(long cpu)
1682
{
1683 1684 1685
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1686
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 1688 1689 1690
}

#else

1691
static inline void update_shares(struct sched_domain *sd)
1692 1693 1694
{
}

1695 1696
#endif

1697 1698
#ifdef CONFIG_PREEMPT

1699 1700
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1701
/*
1702 1703 1704 1705 1706 1707
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1708
 */
1709 1710 1711 1712 1713
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1714
	raw_spin_unlock(&this_rq->lock);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 1730 1731 1732 1733 1734
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1735
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736
		if (busiest < this_rq) {
1737 1738 1739 1740
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1741 1742
			ret = 1;
		} else
1743 1744
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1745 1746 1747 1748
	}
	return ret;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1758
		raw_spin_unlock(&this_rq->lock);
1759 1760 1761 1762 1763 1764
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1765 1766 1767
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1768
	raw_spin_unlock(&busiest->lock);
1769 1770
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1814 1815
#endif

V
Vegard Nossum 已提交
1816
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1817 1818
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1819
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1820 1821 1822
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1823
#endif
1824

1825
static void calc_load_account_active(struct rq *this_rq);
1826
static void update_sysctl(void);
1827
static int get_update_sysctl_factor(void);
1828

P
Peter Zijlstra 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1842

1843
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1844 1845

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849 1850
#include "sched_stats.h"

1851
static void inc_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running++;
}

1856
static void dec_nr_running(struct rq *rq)
1857 1858 1859 1860
{
	rq->nr_running--;
}

1861 1862 1863
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1864 1865 1866 1867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1877

I
Ingo Molnar 已提交
1878 1879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 1881
}

1882 1883 1884 1885 1886 1887
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1888 1889
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1890
{
1891
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1892
	sched_info_queued(p);
1893
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 1;
1895 1896
}

1897
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1898
{
1899
	update_rq_clock(rq);
1900
	sched_info_dequeued(p);
1901
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1902
	p->se.on_rq = 0;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1913
	enqueue_task(rq, p, wakeup, false);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1936
/*
I
Ingo Molnar 已提交
1937
 * __normal_prio - return the priority that is based on the static prio
1938 1939 1940
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1941
	return p->static_prio;
1942 1943
}

1944 1945 1946 1947 1948 1949 1950
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1951
static inline int normal_prio(struct task_struct *p)
1952 1953 1954
{
	int prio;

1955
	if (task_has_rt_policy(p))
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1969
static int effective_prio(struct task_struct *p)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1982 1983 1984 1985
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1986
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990
{
	return cpu_curr(task_cpu(p)) == p;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2003
#ifdef CONFIG_SMP
2004 2005 2006
/*
 * Is this task likely cache-hot:
 */
2007
static int
2008 2009 2010 2011
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2012 2013 2014
	if (p->sched_class != &fair_sched_class)
		return 0;

2015 2016 2017
	/*
	 * Buddy candidates are cache hot:
	 */
2018
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2019 2020
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2021 2022
		return 1;

2023 2024 2025 2026 2027
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2028 2029 2030 2031 2032
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2033
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2034
{
2035 2036 2037 2038 2039
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2040 2041
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2042 2043
#endif

2044
	trace_sched_migrate_task(p, new_cpu);
2045

2046 2047 2048 2049
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2050 2051

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2052 2053
}

2054
struct migration_req {
L
Linus Torvalds 已提交
2055 2056
	struct list_head list;

2057
	struct task_struct *task;
L
Linus Torvalds 已提交
2058 2059 2060
	int dest_cpu;

	struct completion done;
2061
};
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2067
static int
2068
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2069
{
2070
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2071 2072 2073

	/*
	 * If the task is not on a runqueue (and not running), then
2074
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2075
	 */
2076
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2083

L
Linus Torvalds 已提交
2084 2085 2086
	return 1;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2130 2131 2132
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138 2139
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2146
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2147 2148
{
	unsigned long flags;
I
Ingo Molnar 已提交
2149
	int running, on_rq;
R
Roland McGrath 已提交
2150
	unsigned long ncsw;
2151
	struct rq *rq;
L
Linus Torvalds 已提交
2152

2153 2154 2155 2156 2157 2158 2159 2160
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2173 2174 2175
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2176
			cpu_relax();
R
Roland McGrath 已提交
2177
		}
2178

2179 2180 2181 2182 2183 2184
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2185
		trace_sched_wait_task(rq, p);
2186 2187
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2188
		ncsw = 0;
2189
		if (!match_state || p->state == match_state)
2190
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2191
		task_rq_unlock(rq, &flags);
2192

R
Roland McGrath 已提交
2193 2194 2195 2196 2197 2198
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2209

2210 2211 2212 2213 2214
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2215
		 * So if it was still runnable (but just not actively
2216 2217 2218 2219 2220 2221 2222
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2223

2224 2225 2226 2227 2228 2229 2230
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2231 2232

	return ncsw;
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2248
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2258
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2259
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2260

T
Thomas Gleixner 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2282
#ifdef CONFIG_SMP
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2299 2300 2301
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
		cpumask_copy(&p->cpus_allowed, cpu_possible_mask);
		dest_cpu = cpumask_any(cpu_active_mask);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2318
/*
2319 2320 2321
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2322
 *
2323 2324
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2325
 */
2326 2327 2328
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2342
		     !cpu_online(cpu)))
2343
		cpu = select_fallback_rq(task_cpu(p), p);
2344 2345

	return cpu;
2346 2347 2348
}
#endif

L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2363 2364
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2365
{
2366
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2367
	unsigned long flags;
2368
	struct rq *rq;
L
Linus Torvalds 已提交
2369

P
Peter Zijlstra 已提交
2370
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2371

2372
	smp_wmb();
2373
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2374
	if (!(p->state & state))
L
Linus Torvalds 已提交
2375 2376
		goto out;

I
Ingo Molnar 已提交
2377
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2378 2379 2380
		goto out_running;

	cpu = task_cpu(p);
2381
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2387 2388 2389
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2390 2391
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2392
	 */
2393 2394
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2395
	p->state = TASK_WAKING;
2396 2397 2398 2399

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2400
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2401

2402
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2403 2404 2405 2406 2407 2408
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2409
		set_task_cpu(p, cpu);
2410
	}
P
Peter Zijlstra 已提交
2411

2412 2413
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2414

2415 2416 2417 2418 2419 2420 2421
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2422
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2423

2424 2425 2426 2427 2428 2429 2430
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2431
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2432 2433 2434 2435 2436
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2437
#endif /* CONFIG_SCHEDSTATS */
2438

L
Linus Torvalds 已提交
2439 2440
out_activate:
#endif /* CONFIG_SMP */
2441
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2442
	if (wake_flags & WF_SYNC)
2443
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2444
	if (orig_cpu != cpu)
2445
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2446
	if (cpu == this_cpu)
2447
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2448
	else
2449
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2450
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2451 2452 2453
	success = 1;

out_running:
2454
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2455
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2456

L
Linus Torvalds 已提交
2457
	p->state = TASK_RUNNING;
2458
#ifdef CONFIG_SMP
2459 2460
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2472
#endif
L
Linus Torvalds 已提交
2473 2474
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2475
	put_cpu();
L
Linus Torvalds 已提交
2476 2477 2478 2479

	return success;
}

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2491
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2492
{
2493
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2494 2495 2496
}
EXPORT_SYMBOL(wake_up_process);

2497
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2498 2499 2500 2501 2502 2503 2504
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2505 2506 2507 2508 2509 2510 2511
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2512
	p->se.prev_sum_exec_runtime	= 0;
2513
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2514 2515

#ifdef CONFIG_SCHEDSTATS
2516
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2517
#endif
N
Nick Piggin 已提交
2518

P
Peter Zijlstra 已提交
2519
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2520
	p->se.on_rq = 0;
2521
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2522

2523 2524 2525
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2536 2537 2538 2539 2540 2541
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2542

2543 2544 2545 2546
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2547
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2548
			p->policy = SCHED_NORMAL;
2549 2550
			p->normal_prio = p->static_prio;
		}
2551

2552 2553
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2554
			p->normal_prio = p->static_prio;
2555 2556 2557
			set_load_weight(p);
		}

2558 2559 2560 2561 2562 2563
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2564

2565 2566 2567 2568 2569
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2570 2571
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2572

P
Peter Zijlstra 已提交
2573 2574 2575
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2576 2577
	set_task_cpu(p, cpu);

2578
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2579
	if (likely(sched_info_on()))
2580
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2581
#endif
2582
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2583 2584
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2585
#ifdef CONFIG_PREEMPT
2586
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2587
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2588
#endif
2589 2590
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2591
	put_cpu();
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2601
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2602 2603
{
	unsigned long flags;
I
Ingo Molnar 已提交
2604
	struct rq *rq;
2605
	int cpu __maybe_unused = get_cpu();
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2620

2621 2622 2623 2624 2625 2626 2627
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2628 2629
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
P
Peter Zijlstra 已提交
2630
	activate_task(rq, p, 0);
2631
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2632
	check_preempt_curr(rq, p, WF_FORK);
2633
#ifdef CONFIG_SMP
2634 2635
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2636
#endif
I
Ingo Molnar 已提交
2637
	task_rq_unlock(rq, &flags);
2638
	put_cpu();
L
Linus Torvalds 已提交
2639 2640
}

2641 2642 2643
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2644
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2645
 * @notifier: notifier struct to register
2646 2647 2648 2649 2650 2651 2652 2653 2654
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2655
 * @notifier: notifier struct to unregister
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2685
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2697
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2698

2699 2700 2701
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2702
 * @prev: the current task that is being switched out
2703 2704 2705 2706 2707 2708 2709 2710 2711
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2712 2713 2714
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2715
{
2716
	fire_sched_out_preempt_notifiers(prev, next);
2717 2718 2719 2720
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2721 2722
/**
 * finish_task_switch - clean up after a task-switch
2723
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2724 2725
 * @prev: the thread we just switched away from.
 *
2726 2727 2728 2729
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2730 2731
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2732
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2733 2734 2735
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2736
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2737 2738 2739
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2740
	long prev_state;
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2746
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2747 2748
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2749
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2755
	prev_state = prev->state;
2756
	finish_arch_switch(prev);
2757 2758 2759
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2760
	perf_event_task_sched_in(current);
2761 2762 2763
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2764
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2765

2766
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2767 2768
	if (mm)
		mmdrop(mm);
2769
	if (unlikely(prev_state == TASK_DEAD)) {
2770 2771 2772
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2773
		 */
2774
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2775
		put_task_struct(prev);
2776
	}
L
Linus Torvalds 已提交
2777 2778
}

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2794
		raw_spin_lock_irqsave(&rq->lock, flags);
2795 2796
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2797
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2798 2799 2800 2801 2802 2803

		rq->post_schedule = 0;
	}
}

#else
2804

2805 2806 2807 2808 2809 2810
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2811 2812
}

2813 2814
#endif

L
Linus Torvalds 已提交
2815 2816 2817 2818
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2819
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2820 2821
	__releases(rq->lock)
{
2822 2823
	struct rq *rq = this_rq();

2824
	finish_task_switch(rq, prev);
2825

2826 2827 2828 2829 2830
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2831

2832 2833 2834 2835
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2836
	if (current->set_child_tid)
2837
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2844
static inline void
2845
context_switch(struct rq *rq, struct task_struct *prev,
2846
	       struct task_struct *next)
L
Linus Torvalds 已提交
2847
{
I
Ingo Molnar 已提交
2848
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2849

2850
	prepare_task_switch(rq, prev, next);
2851
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2852 2853
	mm = next->mm;
	oldmm = prev->active_mm;
2854 2855 2856 2857 2858
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2859
	arch_start_context_switch(prev);
2860

2861
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866 2867
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2868
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2869 2870 2871
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2872 2873 2874 2875 2876 2877 2878
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2879
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2880
#endif
L
Linus Torvalds 已提交
2881 2882 2883 2884

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2885 2886 2887 2888 2889 2890 2891
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2909
}
L
Linus Torvalds 已提交
2910 2911

unsigned long nr_uninterruptible(void)
2912
{
L
Linus Torvalds 已提交
2913
	unsigned long i, sum = 0;
2914

2915
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2916
		sum += cpu_rq(i)->nr_uninterruptible;
2917 2918

	/*
L
Linus Torvalds 已提交
2919 2920
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2921
	 */
L
Linus Torvalds 已提交
2922 2923
	if (unlikely((long)sum < 0))
		sum = 0;
2924

L
Linus Torvalds 已提交
2925
	return sum;
2926 2927
}

L
Linus Torvalds 已提交
2928
unsigned long long nr_context_switches(void)
2929
{
2930 2931
	int i;
	unsigned long long sum = 0;
2932

2933
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2934
		sum += cpu_rq(i)->nr_switches;
2935

L
Linus Torvalds 已提交
2936 2937
	return sum;
}
2938

L
Linus Torvalds 已提交
2939 2940 2941
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2942

2943
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2944
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2945

L
Linus Torvalds 已提交
2946 2947
	return sum;
}
2948

2949 2950 2951 2952 2953
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2954

2955 2956 2957 2958 2959
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2960

2961

2962 2963 2964 2965 2966
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2981 2982
}

2983 2984
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2985
{
2986 2987 2988 2989
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2990 2991

/*
2992 2993
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2994
 */
2995
void calc_global_load(void)
2996
{
2997 2998
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2999

3000 3001
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3002

3003 3004
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3005

3006 3007 3008
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3009

3010 3011
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3012

3013 3014 3015 3016 3017 3018
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3019

3020 3021
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3022

3023 3024 3025 3026
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3027
	}
3028 3029 3030
}

/*
I
Ingo Molnar 已提交
3031 3032
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3033
 */
I
Ingo Molnar 已提交
3034
static void update_cpu_load(struct rq *this_rq)
3035
{
3036
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3037
	int i, scale;
3038

I
Ingo Molnar 已提交
3039
	this_rq->nr_load_updates++;
3040

I
Ingo Molnar 已提交
3041 3042 3043
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3044

I
Ingo Molnar 已提交
3045
		/* scale is effectively 1 << i now, and >> i divides by scale */
3046

I
Ingo Molnar 已提交
3047 3048
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3049 3050 3051 3052 3053 3054 3055
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3056 3057
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3058

3059 3060 3061
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3062 3063 3064
	}
}

I
Ingo Molnar 已提交
3065
#ifdef CONFIG_SMP
3066

3067
/*
P
Peter Zijlstra 已提交
3068 3069
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3070
 */
P
Peter Zijlstra 已提交
3071
void sched_exec(void)
3072
{
P
Peter Zijlstra 已提交
3073
	struct task_struct *p = current;
3074
	struct migration_req req;
P
Peter Zijlstra 已提交
3075
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3076
	unsigned long flags;
3077
	struct rq *rq;
3078

P
Peter Zijlstra 已提交
3079 3080 3081 3082 3083 3084
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3085 3086
	}

L
Linus Torvalds 已提交
3087
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3088 3089
	put_cpu();

3090
	/*
P
Peter Zijlstra 已提交
3091
	 * select_task_rq() can race against ->cpus_allowed
3092
	 */
3093
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3094 3095 3096
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
3097 3098
	}

L
Linus Torvalds 已提交
3099 3100 3101 3102
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3103

L
Linus Torvalds 已提交
3104 3105 3106 3107 3108
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3109

L
Linus Torvalds 已提交
3110 3111 3112 3113
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3114

L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120 3121
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3122
 * Return any ns on the sched_clock that have not yet been accounted in
3123
 * @p in case that task is currently running.
3124 3125
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3126
 */
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3141
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3142 3143
{
	unsigned long flags;
3144
	struct rq *rq;
3145
	u64 ns = 0;
3146

3147
	rq = task_rq_lock(p, &flags);
3148 3149
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3150

3151 3152
	return ns;
}
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3191
	task_rq_unlock(rq, &flags);
3192

L
Linus Torvalds 已提交
3193 3194 3195 3196 3197 3198 3199
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3200
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3201
 */
3202 3203
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3204 3205 3206 3207
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3208
	/* Add user time to process. */
L
Linus Torvalds 已提交
3209
	p->utime = cputime_add(p->utime, cputime);
3210
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3211
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3212 3213 3214 3215 3216 3217 3218

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3219 3220

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3221 3222
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3223 3224
}

3225 3226 3227 3228
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3229
 * @cputime_scaled: cputime scaled by cpu frequency
3230
 */
3231 3232
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3233 3234 3235 3236 3237 3238
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3239
	/* Add guest time to process. */
3240
	p->utime = cputime_add(p->utime, cputime);
3241
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3242
	account_group_user_time(p, cputime);
3243 3244
	p->gtime = cputime_add(p->gtime, cputime);

3245
	/* Add guest time to cpustat. */
3246 3247 3248 3249 3250 3251 3252
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3253 3254
}

L
Linus Torvalds 已提交
3255 3256 3257 3258 3259
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3260
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3261 3262
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3263
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3264 3265 3266 3267
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3268
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3269
		account_guest_time(p, cputime, cputime_scaled);
3270 3271
		return;
	}
3272

3273
	/* Add system time to process. */
L
Linus Torvalds 已提交
3274
	p->stime = cputime_add(p->stime, cputime);
3275
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3276
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283 3284

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3285 3286
		cpustat->system = cputime64_add(cpustat->system, tmp);

3287 3288
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3289 3290 3291 3292
	/* Account for system time used */
	acct_update_integrals(p);
}

3293
/*
L
Linus Torvalds 已提交
3294 3295
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3296
 */
3297
void account_steal_time(cputime_t cputime)
3298
{
3299 3300 3301 3302
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3303 3304
}

L
Linus Torvalds 已提交
3305
/*
3306 3307
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3308
 */
3309
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3310 3311
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3312
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3313
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3314

3315 3316 3317 3318
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3319 3320
}

3321 3322 3323 3324 3325 3326 3327 3328 3329
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3330
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3331 3332 3333
	struct rq *rq = this_rq();

	if (user_tick)
3334
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3335
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3336
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3337 3338
				    one_jiffy_scaled);
	else
3339
		account_idle_time(cputime_one_jiffy);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3359 3360
}

3361 3362
#endif

3363 3364 3365 3366
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3367
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3368
{
3369 3370
	*ut = p->utime;
	*st = p->stime;
3371 3372
}

3373
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3374
{
3375 3376 3377 3378 3379 3380
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3381 3382
}
#else
3383 3384

#ifndef nsecs_to_cputime
3385
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3386 3387
#endif

3388
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3389
{
3390
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3391 3392 3393 3394

	/*
	 * Use CFS's precise accounting:
	 */
3395
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3396 3397

	if (total) {
3398 3399 3400
		u64 temp;

		temp = (u64)(rtime * utime);
3401
		do_div(temp, total);
3402 3403 3404
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3405

3406 3407 3408
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3409
	p->prev_utime = max(p->prev_utime, utime);
3410
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3411

3412 3413
	*ut = p->prev_utime;
	*st = p->prev_stime;
3414 3415
}

3416 3417 3418 3419
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3420
{
3421 3422 3423
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3424

3425
	thread_group_cputime(p, &cputime);
3426

3427 3428
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3429

3430 3431
	if (total) {
		u64 temp;
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3445 3446 3447
}
#endif

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3459
	struct task_struct *curr = rq->curr;
3460 3461

	sched_clock_tick();
I
Ingo Molnar 已提交
3462

3463
	raw_spin_lock(&rq->lock);
3464
	update_rq_clock(rq);
3465
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3466
	curr->sched_class->task_tick(rq, curr, 0);
3467
	raw_spin_unlock(&rq->lock);
3468

3469
	perf_event_task_tick(curr);
3470

3471
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3472 3473
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3474
#endif
L
Linus Torvalds 已提交
3475 3476
}

3477
notrace unsigned long get_parent_ip(unsigned long addr)
3478 3479 3480 3481 3482 3483 3484 3485
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3486

3487 3488 3489
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3490
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3491
{
3492
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3493 3494 3495
	/*
	 * Underflow?
	 */
3496 3497
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3498
#endif
L
Linus Torvalds 已提交
3499
	preempt_count() += val;
3500
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3501 3502 3503
	/*
	 * Spinlock count overflowing soon?
	 */
3504 3505
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3506 3507 3508
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3509 3510 3511
}
EXPORT_SYMBOL(add_preempt_count);

3512
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3513
{
3514
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3515 3516 3517
	/*
	 * Underflow?
	 */
3518
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3519
		return;
L
Linus Torvalds 已提交
3520 3521 3522
	/*
	 * Is the spinlock portion underflowing?
	 */
3523 3524 3525
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3526
#endif
3527

3528 3529
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535 3536
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3537
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3538
 */
I
Ingo Molnar 已提交
3539
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3540
{
3541 3542
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3543 3544
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3545

I
Ingo Molnar 已提交
3546
	debug_show_held_locks(prev);
3547
	print_modules();
I
Ingo Molnar 已提交
3548 3549
	if (irqs_disabled())
		print_irqtrace_events(prev);
3550 3551 3552 3553 3554

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3555
}
L
Linus Torvalds 已提交
3556

I
Ingo Molnar 已提交
3557 3558 3559 3560 3561
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3562
	/*
I
Ingo Molnar 已提交
3563
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3564 3565 3566
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3567
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3568 3569
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3570 3571
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3572
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3573 3574
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3575 3576
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3577 3578
	}
#endif
I
Ingo Molnar 已提交
3579 3580
}

P
Peter Zijlstra 已提交
3581
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3582
{
3583 3584 3585
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3586
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3587 3588
}

I
Ingo Molnar 已提交
3589 3590 3591 3592
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3593
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3594
{
3595
	const struct sched_class *class;
I
Ingo Molnar 已提交
3596
	struct task_struct *p;
L
Linus Torvalds 已提交
3597 3598

	/*
I
Ingo Molnar 已提交
3599 3600
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3601
	 */
I
Ingo Molnar 已提交
3602
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3603
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3604 3605
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3606 3607
	}

I
Ingo Molnar 已提交
3608 3609
	class = sched_class_highest;
	for ( ; ; ) {
3610
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3620

I
Ingo Molnar 已提交
3621 3622 3623
/*
 * schedule() is the main scheduler function.
 */
3624
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3625 3626
{
	struct task_struct *prev, *next;
3627
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3628
	struct rq *rq;
3629
	int cpu;
I
Ingo Molnar 已提交
3630

3631 3632
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3633 3634
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3635
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3636 3637 3638 3639 3640 3641 3642
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3643

3644
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3645
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3646

3647
	raw_spin_lock_irq(&rq->lock);
3648
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3649 3650

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3651
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3652
			prev->state = TASK_RUNNING;
3653
		else
3654
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3655
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3656 3657
	}

3658
	pre_schedule(rq, prev);
3659

I
Ingo Molnar 已提交
3660
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3661 3662
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3663
	put_prev_task(rq, prev);
3664
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3665 3666

	if (likely(prev != next)) {
3667
		sched_info_switch(prev, next);
3668
		perf_event_task_sched_out(prev, next);
3669

L
Linus Torvalds 已提交
3670 3671 3672 3673
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3674
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3675 3676 3677 3678 3679 3680
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3681
	} else
3682
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3683

3684
	post_schedule(rq);
L
Linus Torvalds 已提交
3685

3686 3687 3688
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3689
		goto need_resched_nonpreemptible;
3690
	}
P
Peter Zijlstra 已提交
3691

L
Linus Torvalds 已提交
3692
	preempt_enable_no_resched();
3693
	if (need_resched())
L
Linus Torvalds 已提交
3694 3695 3696 3697
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3698
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3759 3760
#ifdef CONFIG_PREEMPT
/*
3761
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3762
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3763 3764 3765 3766 3767
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3768

L
Linus Torvalds 已提交
3769 3770
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3771
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3772
	 */
N
Nick Piggin 已提交
3773
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3774 3775
		return;

3776 3777 3778 3779
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3780

3781 3782 3783 3784 3785
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3786
	} while (need_resched());
L
Linus Torvalds 已提交
3787 3788 3789 3790
}
EXPORT_SYMBOL(preempt_schedule);

/*
3791
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3792 3793 3794 3795 3796 3797 3798
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3799

3800
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3801 3802
	BUG_ON(ti->preempt_count || !irqs_disabled());

3803 3804 3805 3806 3807 3808
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3809

3810 3811 3812 3813 3814
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3815
	} while (need_resched());
L
Linus Torvalds 已提交
3816 3817 3818 3819
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3820
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3821
			  void *key)
L
Linus Torvalds 已提交
3822
{
P
Peter Zijlstra 已提交
3823
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3824 3825 3826 3827
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3828 3829
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3830 3831 3832
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3833
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3834 3835
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3836
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3837
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3838
{
3839
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3840

3841
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3842 3843
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3844
		if (curr->func(curr, mode, wake_flags, key) &&
3845
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3855
 * @key: is directly passed to the wakeup function
3856 3857 3858
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3859
 */
3860
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3861
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3874
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3875 3876 3877 3878
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3879 3880 3881 3882 3883
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3884
/**
3885
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3886 3887 3888
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3889
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894 3895 3896
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3897 3898 3899
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3900
 */
3901 3902
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3903 3904
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3905
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3906 3907 3908 3909 3910

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3911
		wake_flags = 0;
L
Linus Torvalds 已提交
3912 3913

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3914
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3915 3916
	spin_unlock_irqrestore(&q->lock, flags);
}
3917 3918 3919 3920 3921 3922 3923 3924 3925
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3926 3927
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3928 3929 3930 3931 3932 3933 3934 3935
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3936 3937 3938
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3939
 */
3940
void complete(struct completion *x)
L
Linus Torvalds 已提交
3941 3942 3943 3944 3945
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3946
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3947 3948 3949 3950
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3951 3952 3953 3954 3955
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3956 3957 3958
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3959
 */
3960
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3961 3962 3963 3964 3965
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3966
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3967 3968 3969 3970
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3971 3972
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3980
			if (signal_pending_state(state, current)) {
3981 3982
				timeout = -ERESTARTSYS;
				break;
3983 3984
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3985 3986 3987
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3988
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3989
		__remove_wait_queue(&x->wait, &wait);
3990 3991
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3992 3993
	}
	x->done--;
3994
	return timeout ?: 1;
L
Linus Torvalds 已提交
3995 3996
}

3997 3998
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3999 4000 4001 4002
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4003
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4004
	spin_unlock_irq(&x->wait.lock);
4005 4006
	return timeout;
}
L
Linus Torvalds 已提交
4007

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4018
void __sched wait_for_completion(struct completion *x)
4019 4020
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4021
}
4022
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4023

4024 4025 4026 4027 4028 4029 4030 4031 4032
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4033
unsigned long __sched
4034
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4035
{
4036
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4037
}
4038
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4039

4040 4041 4042 4043 4044 4045 4046
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4047
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4048
{
4049 4050 4051 4052
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4053
}
4054
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4055

4056 4057 4058 4059 4060 4061 4062 4063
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4064
unsigned long __sched
4065 4066
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4067
{
4068
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4069
}
4070
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4071

4072 4073 4074 4075 4076 4077 4078
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4102
	unsigned long flags;
4103 4104
	int ret = 1;

4105
	spin_lock_irqsave(&x->wait.lock, flags);
4106 4107 4108 4109
	if (!x->done)
		ret = 0;
	else
		x->done--;
4110
	spin_unlock_irqrestore(&x->wait.lock, flags);
4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4125
	unsigned long flags;
4126 4127
	int ret = 1;

4128
	spin_lock_irqsave(&x->wait.lock, flags);
4129 4130
	if (!x->done)
		ret = 0;
4131
	spin_unlock_irqrestore(&x->wait.lock, flags);
4132 4133 4134 4135
	return ret;
}
EXPORT_SYMBOL(completion_done);

4136 4137
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4138
{
I
Ingo Molnar 已提交
4139 4140 4141 4142
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4143

4144
	__set_current_state(state);
L
Linus Torvalds 已提交
4145

4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4160 4161 4162
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4163
long __sched
I
Ingo Molnar 已提交
4164
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4165
{
4166
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4167 4168 4169
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4170
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4171
{
4172
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4173 4174 4175
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4176
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4177
{
4178
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4179 4180 4181
}
EXPORT_SYMBOL(sleep_on_timeout);

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4194
void rt_mutex_setprio(struct task_struct *p, int prio)
4195 4196
{
	unsigned long flags;
4197
	int oldprio, on_rq, running;
4198
	struct rq *rq;
4199
	const struct sched_class *prev_class;
4200 4201 4202 4203 4204

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4205
	oldprio = p->prio;
4206
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4207
	on_rq = p->se.on_rq;
4208
	running = task_current(rq, p);
4209
	if (on_rq)
4210
		dequeue_task(rq, p, 0);
4211 4212
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4213 4214 4215 4216 4217 4218

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4219 4220
	p->prio = prio;

4221 4222
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4223
	if (on_rq) {
4224
		enqueue_task(rq, p, 0, oldprio < prio);
4225 4226

		check_class_changed(rq, p, prev_class, oldprio, running);
4227 4228 4229 4230 4231 4232
	}
	task_rq_unlock(rq, &flags);
}

#endif

4233
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4234
{
I
Ingo Molnar 已提交
4235
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4236
	unsigned long flags;
4237
	struct rq *rq;
L
Linus Torvalds 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4250
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4251
	 */
4252
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4253 4254 4255
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4256
	on_rq = p->se.on_rq;
4257
	if (on_rq)
4258
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4259 4260

	p->static_prio = NICE_TO_PRIO(nice);
4261
	set_load_weight(p);
4262 4263 4264
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4265

I
Ingo Molnar 已提交
4266
	if (on_rq) {
4267
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4268
		/*
4269 4270
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4271
		 */
4272
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4280 4281 4282 4283 4284
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4285
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4286
{
4287 4288
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4289

4290
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4291 4292 4293
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4303
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4304
{
4305
	long nice, retval;
L
Linus Torvalds 已提交
4306 4307 4308 4309 4310 4311

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4312 4313
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4314 4315 4316
	if (increment > 40)
		increment = 40;

4317
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4318 4319 4320 4321 4322
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4323 4324 4325
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4344
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4353
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4354 4355 4356
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4357
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4372
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4373 4374 4375 4376 4377 4378 4379 4380
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4381
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4382
{
4383
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4384 4385 4386
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4387 4388
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4389
{
I
Ingo Molnar 已提交
4390
	BUG_ON(p->se.on_rq);
4391

L
Linus Torvalds 已提交
4392 4393
	p->policy = policy;
	p->rt_priority = prio;
4394 4395 4396
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4397 4398 4399 4400
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4401
	set_load_weight(p);
L
Linus Torvalds 已提交
4402 4403
}

4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4420 4421
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4422
{
4423
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4424
	unsigned long flags;
4425
	const struct sched_class *prev_class;
4426
	struct rq *rq;
4427
	int reset_on_fork;
L
Linus Torvalds 已提交
4428

4429 4430
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4431 4432
recheck:
	/* double check policy once rq lock held */
4433 4434
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4435
		policy = oldpolicy = p->policy;
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4446 4447
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4448 4449
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4450 4451
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4452
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4453
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4454
		return -EINVAL;
4455
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4456 4457
		return -EINVAL;

4458 4459 4460
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4461
	if (user && !capable(CAP_SYS_NICE)) {
4462
		if (rt_policy(policy)) {
4463 4464 4465 4466
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4467
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4479 4480 4481 4482 4483 4484
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4485

4486
		/* can't change other user's priorities */
4487
		if (!check_same_owner(p))
4488
			return -EPERM;
4489 4490 4491 4492

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4493
	}
L
Linus Torvalds 已提交
4494

4495
	if (user) {
4496
#ifdef CONFIG_RT_GROUP_SCHED
4497 4498 4499 4500
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4501 4502
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4503
			return -EPERM;
4504 4505
#endif

4506 4507 4508 4509 4510
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4511 4512 4513 4514
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4515
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4516 4517 4518 4519
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4520
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4521 4522 4523
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4524
		__task_rq_unlock(rq);
4525
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4526 4527
		goto recheck;
	}
I
Ingo Molnar 已提交
4528
	on_rq = p->se.on_rq;
4529
	running = task_current(rq, p);
4530
	if (on_rq)
4531
		deactivate_task(rq, p, 0);
4532 4533
	if (running)
		p->sched_class->put_prev_task(rq, p);
4534

4535 4536
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4537
	oldprio = p->prio;
4538
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4539
	__setscheduler(rq, p, policy, param->sched_priority);
4540

4541 4542
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4543 4544
	if (on_rq) {
		activate_task(rq, p, 0);
4545 4546

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4547
	}
4548
	__task_rq_unlock(rq);
4549
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4550

4551 4552
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4553 4554
	return 0;
}
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4569 4570
EXPORT_SYMBOL_GPL(sched_setscheduler);

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4588 4589
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4590 4591 4592
{
	struct sched_param lparam;
	struct task_struct *p;
4593
	int retval;
L
Linus Torvalds 已提交
4594 4595 4596 4597 4598

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4599 4600 4601

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4602
	p = find_process_by_pid(pid);
4603 4604 4605
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4606

L
Linus Torvalds 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4616 4617
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4618
{
4619 4620 4621 4622
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4623 4624 4625 4626 4627 4628 4629 4630
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4631
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4632 4633 4634 4635 4636 4637 4638 4639
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4640
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4641
{
4642
	struct task_struct *p;
4643
	int retval;
L
Linus Torvalds 已提交
4644 4645

	if (pid < 0)
4646
		return -EINVAL;
L
Linus Torvalds 已提交
4647 4648

	retval = -ESRCH;
4649
	rcu_read_lock();
L
Linus Torvalds 已提交
4650 4651 4652 4653
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4654 4655
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4656
	}
4657
	rcu_read_unlock();
L
Linus Torvalds 已提交
4658 4659 4660 4661
	return retval;
}

/**
4662
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4663 4664 4665
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4666
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4667 4668
{
	struct sched_param lp;
4669
	struct task_struct *p;
4670
	int retval;
L
Linus Torvalds 已提交
4671 4672

	if (!param || pid < 0)
4673
		return -EINVAL;
L
Linus Torvalds 已提交
4674

4675
	rcu_read_lock();
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4686
	rcu_read_unlock();
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4696
	rcu_read_unlock();
L
Linus Torvalds 已提交
4697 4698 4699
	return retval;
}

4700
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4701
{
4702
	cpumask_var_t cpus_allowed, new_mask;
4703 4704
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4705

4706
	get_online_cpus();
4707
	rcu_read_lock();
L
Linus Torvalds 已提交
4708 4709 4710

	p = find_process_by_pid(pid);
	if (!p) {
4711
		rcu_read_unlock();
4712
		put_online_cpus();
L
Linus Torvalds 已提交
4713 4714 4715
		return -ESRCH;
	}

4716
	/* Prevent p going away */
L
Linus Torvalds 已提交
4717
	get_task_struct(p);
4718
	rcu_read_unlock();
L
Linus Torvalds 已提交
4719

4720 4721 4722 4723 4724 4725 4726 4727
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4728
	retval = -EPERM;
4729
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4730 4731
		goto out_unlock;

4732 4733 4734 4735
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4736 4737
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4738
 again:
4739
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4740

P
Paul Menage 已提交
4741
	if (!retval) {
4742 4743
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4744 4745 4746 4747 4748
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4749
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4750 4751 4752
			goto again;
		}
	}
L
Linus Torvalds 已提交
4753
out_unlock:
4754 4755 4756 4757
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4758
	put_task_struct(p);
4759
	put_online_cpus();
L
Linus Torvalds 已提交
4760 4761 4762 4763
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4764
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4765
{
4766 4767 4768 4769 4770
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4771 4772 4773 4774 4775 4776 4777 4778 4779
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4780 4781
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4782
{
4783
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4784 4785
	int retval;

4786 4787
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4788

4789 4790 4791 4792 4793
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4794 4795
}

4796
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4797
{
4798
	struct task_struct *p;
4799 4800
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4801 4802
	int retval;

4803
	get_online_cpus();
4804
	rcu_read_lock();
L
Linus Torvalds 已提交
4805 4806 4807 4808 4809 4810

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4811 4812 4813 4814
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4815
	rq = task_rq_lock(p, &flags);
4816
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4817
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4818 4819

out_unlock:
4820
	rcu_read_unlock();
4821
	put_online_cpus();
L
Linus Torvalds 已提交
4822

4823
	return retval;
L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830 4831
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4832 4833
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4834 4835
{
	int ret;
4836
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4837

4838 4839 4840
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4841 4842
		return -EINVAL;

4843 4844
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4845

4846 4847
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4848
		size_t retlen = min_t(size_t, len, cpumask_size());
4849 4850

		if (copy_to_user(user_mask_ptr, mask, retlen))
4851 4852
			ret = -EFAULT;
		else
4853
			ret = retlen;
4854 4855
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4856

4857
	return ret;
L
Linus Torvalds 已提交
4858 4859 4860 4861 4862
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4863 4864
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4865
 */
4866
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4867
{
4868
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4869

4870
	schedstat_inc(rq, yld_count);
4871
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876 4877

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4878
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4879
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4880 4881 4882 4883 4884 4885 4886
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4887 4888 4889 4890 4891
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4892
static void __cond_resched(void)
L
Linus Torvalds 已提交
4893
{
4894 4895 4896
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4897 4898
}

4899
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4900
{
P
Peter Zijlstra 已提交
4901
	if (should_resched()) {
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906
		__cond_resched();
		return 1;
	}
	return 0;
}
4907
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4908 4909

/*
4910
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4911 4912
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4913
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4914 4915 4916
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4917
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4918
{
P
Peter Zijlstra 已提交
4919
	int resched = should_resched();
J
Jan Kara 已提交
4920 4921
	int ret = 0;

4922 4923
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4924
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4925
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4926
		if (resched)
N
Nick Piggin 已提交
4927 4928 4929
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4930
		ret = 1;
L
Linus Torvalds 已提交
4931 4932
		spin_lock(lock);
	}
J
Jan Kara 已提交
4933
	return ret;
L
Linus Torvalds 已提交
4934
}
4935
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4936

4937
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4938 4939 4940
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4941
	if (should_resched()) {
4942
		local_bh_enable();
L
Linus Torvalds 已提交
4943 4944 4945 4946 4947 4948
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4949
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4950 4951 4952 4953

/**
 * yield - yield the current processor to other threads.
 *
4954
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4965
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4966 4967 4968 4969
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4970
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4971

4972
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4973
	atomic_inc(&rq->nr_iowait);
4974
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4975
	schedule();
4976
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4977
	atomic_dec(&rq->nr_iowait);
4978
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4984
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4985 4986
	long ret;

4987
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4988
	atomic_inc(&rq->nr_iowait);
4989
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4990
	ret = schedule_timeout(timeout);
4991
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4992
	atomic_dec(&rq->nr_iowait);
4993
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5004
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5014
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5015
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5029
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5039
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5040
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5054
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5055
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5056
{
5057
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5058
	unsigned int time_slice;
5059 5060
	unsigned long flags;
	struct rq *rq;
5061
	int retval;
L
Linus Torvalds 已提交
5062 5063 5064
	struct timespec t;

	if (pid < 0)
5065
		return -EINVAL;
L
Linus Torvalds 已提交
5066 5067

	retval = -ESRCH;
5068
	rcu_read_lock();
L
Linus Torvalds 已提交
5069 5070 5071 5072 5073 5074 5075 5076
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5077 5078 5079
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5080

5081
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5082
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5083 5084
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5085

L
Linus Torvalds 已提交
5086
out_unlock:
5087
	rcu_read_unlock();
L
Linus Torvalds 已提交
5088 5089 5090
	return retval;
}

5091
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5092

5093
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5094 5095
{
	unsigned long free = 0;
5096
	unsigned state;
L
Linus Torvalds 已提交
5097 5098

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5099
	printk(KERN_INFO "%-13.13s %c", p->comm,
5100
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5101
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5102
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5103
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5104
	else
P
Peter Zijlstra 已提交
5105
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5106 5107
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5108
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5109
	else
P
Peter Zijlstra 已提交
5110
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5111 5112
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5113
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5114
#endif
P
Peter Zijlstra 已提交
5115
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5116 5117
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5118

5119
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5120 5121
}

I
Ingo Molnar 已提交
5122
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5123
{
5124
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5125

5126
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5127 5128
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5129
#else
P
Peter Zijlstra 已提交
5130 5131
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5132 5133 5134 5135 5136 5137 5138 5139
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5140
		if (!state_filter || (p->state & state_filter))
5141
			sched_show_task(p);
L
Linus Torvalds 已提交
5142 5143
	} while_each_thread(g, p);

5144 5145
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5146 5147 5148
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5149
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5150 5151 5152
	/*
	 * Only show locks if all tasks are dumped:
	 */
5153
	if (!state_filter)
I
Ingo Molnar 已提交
5154
		debug_show_all_locks();
L
Linus Torvalds 已提交
5155 5156
}

I
Ingo Molnar 已提交
5157 5158
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5159
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5160 5161
}

5162 5163 5164 5165 5166 5167 5168 5169
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5170
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5171
{
5172
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5173 5174
	unsigned long flags;

5175
	raw_spin_lock_irqsave(&rq->lock, flags);
5176

I
Ingo Molnar 已提交
5177
	__sched_fork(idle);
5178
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5179 5180
	idle->se.exec_start = sched_clock();

5181
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5182
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5183 5184

	rq->curr = rq->idle = idle;
5185 5186 5187
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5188
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5189 5190

	/* Set the preempt count _outside_ the spinlocks! */
5191 5192 5193
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5194
	task_thread_info(idle)->preempt_count = 0;
5195
#endif
I
Ingo Molnar 已提交
5196 5197 5198 5199
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5200
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5201 5202 5203 5204 5205 5206 5207
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5208
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5209
 */
5210
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5211

I
Ingo Molnar 已提交
5212 5213 5214 5215 5216 5217 5218 5219 5220
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5221
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5222
{
5223
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5238

5239 5240
	return factor;
}
I
Ingo Molnar 已提交
5241

5242 5243 5244
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5245

5246 5247 5248 5249 5250 5251 5252 5253
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5254

5255 5256 5257
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5258 5259
}

L
Linus Torvalds 已提交
5260 5261 5262 5263
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5264
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5283
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5284 5285
 * call is not atomic; no spinlocks may be held.
 */
5286
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5287
{
5288
	struct migration_req req;
L
Linus Torvalds 已提交
5289
	unsigned long flags;
5290
	struct rq *rq;
5291
	int ret = 0;
L
Linus Torvalds 已提交
5292 5293

	rq = task_rq_lock(p, &flags);
5294

5295
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5296 5297 5298 5299
		ret = -EINVAL;
		goto out;
	}

5300
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5301
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5302 5303 5304 5305
		ret = -EINVAL;
		goto out;
	}

5306
	if (p->sched_class->set_cpus_allowed)
5307
		p->sched_class->set_cpus_allowed(p, new_mask);
5308
	else {
5309 5310
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5311 5312
	}

L
Linus Torvalds 已提交
5313
	/* Can the task run on the task's current CPU? If so, we're done */
5314
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5315 5316
		goto out;

5317
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5318
		/* Need help from migration thread: drop lock and wait. */
5319 5320 5321
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5322 5323
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5324
		put_task_struct(mt);
L
Linus Torvalds 已提交
5325 5326 5327 5328 5329 5330
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5331

L
Linus Torvalds 已提交
5332 5333
	return ret;
}
5334
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5335 5336

/*
I
Ingo Molnar 已提交
5337
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5338 5339 5340 5341 5342 5343
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5344 5345
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5346
 */
5347
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5348
{
5349
	struct rq *rq_dest, *rq_src;
5350
	int ret = 0;
L
Linus Torvalds 已提交
5351

5352
	if (unlikely(!cpu_active(dest_cpu)))
5353
		return ret;
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358 5359 5360

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5361
		goto done;
L
Linus Torvalds 已提交
5362
	/* Affinity changed (again). */
5363
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5364
		goto fail;
L
Linus Torvalds 已提交
5365

5366 5367 5368 5369 5370
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5371
		deactivate_task(rq_src, p, 0);
5372
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5373
		activate_task(rq_dest, p, 0);
5374
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5375
	}
L
Linus Torvalds 已提交
5376
done:
5377
	ret = 1;
L
Linus Torvalds 已提交
5378
fail:
L
Linus Torvalds 已提交
5379
	double_rq_unlock(rq_src, rq_dest);
5380
	return ret;
L
Linus Torvalds 已提交
5381 5382
}

5383 5384 5385 5386 5387
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5388 5389 5390 5391 5392
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5393
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5394
{
5395
	int badcpu;
L
Linus Torvalds 已提交
5396
	int cpu = (long)data;
5397
	struct rq *rq;
L
Linus Torvalds 已提交
5398 5399 5400 5401 5402 5403

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5404
		struct migration_req *req;
L
Linus Torvalds 已提交
5405 5406
		struct list_head *head;

5407
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5408 5409

		if (cpu_is_offline(cpu)) {
5410
			raw_spin_unlock_irq(&rq->lock);
5411
			break;
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5422
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5423 5424 5425 5426
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5427
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5428 5429
		list_del_init(head->next);

5430
		if (req->task != NULL) {
5431
			raw_spin_unlock(&rq->lock);
5432 5433 5434
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5435
			raw_spin_unlock(&rq->lock);
5436 5437
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5438
			raw_spin_unlock(&rq->lock);
5439 5440
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5441
		local_irq_enable();
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5451
/*
5452
 * Figure out where task on dead CPU should go, use force if necessary.
5453
 */
5454
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5455
{
5456 5457 5458
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5459

5460 5461 5462 5463 5464 5465 5466
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5467 5468 5469 5470
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5471
	if (needs_cpu)
5472
		__migrate_task(p, dead_cpu, dest_cpu);
5473
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5483
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5484
{
5485
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5499
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5500

5501
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5502

5503 5504
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5505 5506
			continue;

5507 5508 5509
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5510

5511
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5512 5513
}

I
Ingo Molnar 已提交
5514 5515
/*
 * Schedules idle task to be the next runnable task on current CPU.
5516 5517
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5518 5519 5520
 */
void sched_idle_next(void)
{
5521
	int this_cpu = smp_processor_id();
5522
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5523 5524 5525 5526
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5527
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5528

5529 5530 5531
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5532
	 */
5533
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5534

I
Ingo Molnar 已提交
5535
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5536

5537
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5538

5539
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5540 5541
}

5542 5543
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5557
/* called under rq->lock with disabled interrupts */
5558
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5559
{
5560
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5561 5562

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5563
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5564 5565

	/* Cannot have done final schedule yet: would have vanished. */
5566
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5567

5568
	get_task_struct(p);
L
Linus Torvalds 已提交
5569 5570 5571

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5572
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5573 5574
	 * fine.
	 */
5575
	raw_spin_unlock_irq(&rq->lock);
5576
	move_task_off_dead_cpu(dead_cpu, p);
5577
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5578

5579
	put_task_struct(p);
L
Linus Torvalds 已提交
5580 5581 5582 5583 5584
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5585
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5586
	struct task_struct *next;
5587

I
Ingo Molnar 已提交
5588 5589 5590
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5591
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5592 5593
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5594
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5595
		migrate_dead(dead_cpu, next);
5596

L
Linus Torvalds 已提交
5597 5598
	}
}
5599 5600 5601 5602 5603 5604 5605

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5606
	rq->calc_load_active = 0;
5607
}
L
Linus Torvalds 已提交
5608 5609
#endif /* CONFIG_HOTPLUG_CPU */

5610 5611 5612
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5613 5614
	{
		.procname	= "sched_domain",
5615
		.mode		= 0555,
5616
	},
5617
	{}
5618 5619 5620
};

static struct ctl_table sd_ctl_root[] = {
5621 5622
	{
		.procname	= "kernel",
5623
		.mode		= 0555,
5624 5625
		.child		= sd_ctl_dir,
	},
5626
	{}
5627 5628 5629 5630 5631
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5632
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5633 5634 5635 5636

	return entry;
}

5637 5638
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5639
	struct ctl_table *entry;
5640

5641 5642 5643
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5644
	 * will always be set. In the lowest directory the names are
5645 5646 5647
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5648 5649
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5650 5651 5652
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5653 5654 5655 5656 5657

	kfree(*tablep);
	*tablep = NULL;
}

5658
static void
5659
set_table_entry(struct ctl_table *entry,
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5673
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5674

5675 5676 5677
	if (table == NULL)
		return NULL;

5678
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5679
		sizeof(long), 0644, proc_doulongvec_minmax);
5680
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5681
		sizeof(long), 0644, proc_doulongvec_minmax);
5682
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5683
		sizeof(int), 0644, proc_dointvec_minmax);
5684
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5685
		sizeof(int), 0644, proc_dointvec_minmax);
5686
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5687
		sizeof(int), 0644, proc_dointvec_minmax);
5688
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5689
		sizeof(int), 0644, proc_dointvec_minmax);
5690
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5691
		sizeof(int), 0644, proc_dointvec_minmax);
5692
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5693
		sizeof(int), 0644, proc_dointvec_minmax);
5694
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5695
		sizeof(int), 0644, proc_dointvec_minmax);
5696
	set_table_entry(&table[9], "cache_nice_tries",
5697 5698
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5699
	set_table_entry(&table[10], "flags", &sd->flags,
5700
		sizeof(int), 0644, proc_dointvec_minmax);
5701 5702 5703
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5704 5705 5706 5707

	return table;
}

5708
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5709 5710 5711 5712 5713 5714 5715 5716 5717
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5718 5719
	if (table == NULL)
		return NULL;
5720 5721 5722 5723 5724

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5725
		entry->mode = 0555;
5726 5727 5728 5729 5730 5731 5732 5733
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5734
static void register_sched_domain_sysctl(void)
5735
{
5736
	int i, cpu_num = num_possible_cpus();
5737 5738 5739
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5740 5741 5742
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5743 5744 5745
	if (entry == NULL)
		return;

5746
	for_each_possible_cpu(i) {
5747 5748
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5749
		entry->mode = 0555;
5750
		entry->child = sd_alloc_ctl_cpu_table(i);
5751
		entry++;
5752
	}
5753 5754

	WARN_ON(sd_sysctl_header);
5755 5756
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5757

5758
/* may be called multiple times per register */
5759 5760
static void unregister_sched_domain_sysctl(void)
{
5761 5762
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5763
	sd_sysctl_header = NULL;
5764 5765
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5766
}
5767
#else
5768 5769 5770 5771
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5772 5773 5774 5775
{
}
#endif

5776 5777 5778 5779 5780
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5781
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5801
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5802 5803 5804 5805
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5806 5807 5808 5809
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5810 5811
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5812 5813
{
	struct task_struct *p;
5814
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5815
	unsigned long flags;
5816
	struct rq *rq;
L
Linus Torvalds 已提交
5817 5818

	switch (action) {
5819

L
Linus Torvalds 已提交
5820
	case CPU_UP_PREPARE:
5821
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5822
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5823 5824 5825 5826 5827
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5828
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5829
		task_rq_unlock(rq, &flags);
5830
		get_task_struct(p);
L
Linus Torvalds 已提交
5831
		cpu_rq(cpu)->migration_thread = p;
5832
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5833
		break;
5834

L
Linus Torvalds 已提交
5835
	case CPU_ONLINE:
5836
	case CPU_ONLINE_FROZEN:
5837
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5838
		wake_up_process(cpu_rq(cpu)->migration_thread);
5839 5840 5841

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5842
		raw_spin_lock_irqsave(&rq->lock, flags);
5843
		if (rq->rd) {
5844
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5845 5846

			set_rq_online(rq);
5847
		}
5848
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5849
		break;
5850

L
Linus Torvalds 已提交
5851 5852
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5853
	case CPU_UP_CANCELED_FROZEN:
5854 5855
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5856
		/* Unbind it from offline cpu so it can run. Fall thru. */
5857
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5858
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5859
		kthread_stop(cpu_rq(cpu)->migration_thread);
5860
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5861 5862
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5863

L
Linus Torvalds 已提交
5864
	case CPU_DEAD:
5865
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5866 5867 5868
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5869
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5870 5871
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5872
		raw_spin_lock_irq(&rq->lock);
5873
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5874 5875
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5876
		migrate_dead_tasks(cpu);
5877
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5878 5879
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5880
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5881 5882 5883 5884 5885
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5886
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5887
		while (!list_empty(&rq->migration_queue)) {
5888 5889
			struct migration_req *req;

L
Linus Torvalds 已提交
5890
			req = list_entry(rq->migration_queue.next,
5891
					 struct migration_req, list);
L
Linus Torvalds 已提交
5892
			list_del_init(&req->list);
5893
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5894
			complete(&req->done);
5895
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5896
		}
5897
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5898
		break;
G
Gregory Haskins 已提交
5899

5900 5901
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5902 5903
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5904
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5905
		if (rq->rd) {
5906
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5907
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5908
		}
5909
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5910
		break;
L
Linus Torvalds 已提交
5911 5912 5913 5914 5915
#endif
	}
	return NOTIFY_OK;
}

5916 5917 5918
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5919
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5920
 */
5921
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5922 5923 5924 5925
	.notifier_call = migration_call,
	.priority = 10
};

5926
static int __init migration_init(void)
L
Linus Torvalds 已提交
5927 5928
{
	void *cpu = (void *)(long)smp_processor_id();
5929
	int err;
5930 5931

	/* Start one for the boot CPU: */
5932 5933
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5934 5935
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5936

5937
	return 0;
L
Linus Torvalds 已提交
5938
}
5939
early_initcall(migration_init);
L
Linus Torvalds 已提交
5940 5941 5942
#endif

#ifdef CONFIG_SMP
5943

5944
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5945

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5956
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5957
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5958
{
I
Ingo Molnar 已提交
5959
	struct sched_group *group = sd->groups;
5960
	char str[256];
L
Linus Torvalds 已提交
5961

R
Rusty Russell 已提交
5962
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5963
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5964 5965 5966 5967

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5968
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5969
		if (sd->parent)
P
Peter Zijlstra 已提交
5970 5971
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5972
		return -1;
N
Nick Piggin 已提交
5973 5974
	}

P
Peter Zijlstra 已提交
5975
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5976

5977
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5978 5979
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5980
	}
5981
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5982 5983
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5984
	}
L
Linus Torvalds 已提交
5985

I
Ingo Molnar 已提交
5986
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5987
	do {
I
Ingo Molnar 已提交
5988
		if (!group) {
P
Peter Zijlstra 已提交
5989 5990
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5991 5992 5993
			break;
		}

5994
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5995 5996 5997
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5998 5999
			break;
		}
L
Linus Torvalds 已提交
6000

6001
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6002 6003
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6004 6005
			break;
		}
L
Linus Torvalds 已提交
6006

6007
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6008 6009
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6010 6011
			break;
		}
L
Linus Torvalds 已提交
6012

6013
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6014

R
Rusty Russell 已提交
6015
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6016

P
Peter Zijlstra 已提交
6017
		printk(KERN_CONT " %s", str);
6018
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6019 6020
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6021
		}
L
Linus Torvalds 已提交
6022

I
Ingo Molnar 已提交
6023 6024
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6025
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6026

6027
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6028
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6029

6030 6031
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6032 6033
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6034 6035
	return 0;
}
L
Linus Torvalds 已提交
6036

I
Ingo Molnar 已提交
6037 6038
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6039
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6040
	int level = 0;
L
Linus Torvalds 已提交
6041

6042 6043 6044
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6045 6046 6047 6048
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6049

I
Ingo Molnar 已提交
6050 6051
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6052
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6053 6054 6055 6056
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6057
	for (;;) {
6058
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6059
			break;
L
Linus Torvalds 已提交
6060 6061
		level++;
		sd = sd->parent;
6062
		if (!sd)
I
Ingo Molnar 已提交
6063 6064
			break;
	}
6065
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6066
}
6067
#else /* !CONFIG_SCHED_DEBUG */
6068
# define sched_domain_debug(sd, cpu) do { } while (0)
6069
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6070

6071
static int sd_degenerate(struct sched_domain *sd)
6072
{
6073
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6074 6075 6076 6077 6078 6079
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6080 6081 6082
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6083 6084 6085 6086 6087
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6088
	if (sd->flags & (SD_WAKE_AFFINE))
6089 6090 6091 6092 6093
		return 0;

	return 1;
}

6094 6095
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6096 6097 6098 6099 6100 6101
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6102
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6103 6104 6105 6106 6107 6108 6109
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6110 6111 6112
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6113 6114
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6115 6116 6117 6118 6119 6120 6121
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6122 6123
static void free_rootdomain(struct root_domain *rd)
{
6124 6125
	synchronize_sched();

6126 6127
	cpupri_cleanup(&rd->cpupri);

6128 6129 6130 6131 6132 6133
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6134 6135
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6136
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6137 6138
	unsigned long flags;

6139
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6140 6141

	if (rq->rd) {
I
Ingo Molnar 已提交
6142
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6143

6144
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6145
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6146

6147
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6148

I
Ingo Molnar 已提交
6149 6150 6151 6152 6153 6154 6155
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6156 6157 6158 6159 6160
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6161
	cpumask_set_cpu(rq->cpu, rd->span);
6162
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6163
		set_rq_online(rq);
G
Gregory Haskins 已提交
6164

6165
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6166 6167 6168

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6169 6170
}

L
Li Zefan 已提交
6171
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6172
{
6173 6174
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6175 6176
	memset(rd, 0, sizeof(*rd));

6177 6178
	if (bootmem)
		gfp = GFP_NOWAIT;
6179

6180
	if (!alloc_cpumask_var(&rd->span, gfp))
6181
		goto out;
6182
	if (!alloc_cpumask_var(&rd->online, gfp))
6183
		goto free_span;
6184
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6185
		goto free_online;
6186

P
Pekka Enberg 已提交
6187
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6188
		goto free_rto_mask;
6189
	return 0;
6190

6191 6192
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6193 6194 6195 6196
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6197
out:
6198
	return -ENOMEM;
G
Gregory Haskins 已提交
6199 6200 6201 6202
}

static void init_defrootdomain(void)
{
6203 6204
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6205 6206 6207
	atomic_set(&def_root_domain.refcount, 1);
}

6208
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6209 6210 6211 6212 6213 6214 6215
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6216 6217 6218 6219
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6220 6221 6222 6223

	return rd;
}

L
Linus Torvalds 已提交
6224
/*
I
Ingo Molnar 已提交
6225
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6226 6227
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6228 6229
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6230
{
6231
	struct rq *rq = cpu_rq(cpu);
6232 6233 6234
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6235
	for (tmp = sd; tmp; ) {
6236 6237 6238
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6239

6240
		if (sd_parent_degenerate(tmp, parent)) {
6241
			tmp->parent = parent->parent;
6242 6243
			if (parent->parent)
				parent->parent->child = tmp;
6244 6245
		} else
			tmp = tmp->parent;
6246 6247
	}

6248
	if (sd && sd_degenerate(sd)) {
6249
		sd = sd->parent;
6250 6251 6252
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6253 6254 6255

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6256
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6257
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6258 6259 6260
}

/* cpus with isolated domains */
6261
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6262 6263 6264 6265

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6266
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6267
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6268 6269 6270
	return 1;
}

I
Ingo Molnar 已提交
6271
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6272 6273

/*
6274 6275
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6276 6277
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6278 6279 6280 6281 6282
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6283
static void
6284 6285 6286
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6287
					struct sched_group **sg,
6288 6289
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6290 6291 6292 6293
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6294
	cpumask_clear(covered);
6295

6296
	for_each_cpu(i, span) {
6297
		struct sched_group *sg;
6298
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6299 6300
		int j;

6301
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6302 6303
			continue;

6304
		cpumask_clear(sched_group_cpus(sg));
6305
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6306

6307
		for_each_cpu(j, span) {
6308
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6309 6310
				continue;

6311
			cpumask_set_cpu(j, covered);
6312
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6323
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6324

6325
#ifdef CONFIG_NUMA
6326

6327 6328 6329 6330 6331
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6332
 * Find the next node to include in a given scheduling domain. Simply
6333 6334 6335 6336
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6337
static int find_next_best_node(int node, nodemask_t *used_nodes)
6338 6339 6340 6341 6342
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6343
	for (i = 0; i < nr_node_ids; i++) {
6344
		/* Start at @node */
6345
		n = (node + i) % nr_node_ids;
6346 6347 6348 6349 6350

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6351
		if (node_isset(n, *used_nodes))
6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6363
	node_set(best_node, *used_nodes);
6364 6365 6366 6367 6368 6369
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6370
 * @span: resulting cpumask
6371
 *
I
Ingo Molnar 已提交
6372
 * Given a node, construct a good cpumask for its sched_domain to span. It
6373 6374 6375
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6376
static void sched_domain_node_span(int node, struct cpumask *span)
6377
{
6378
	nodemask_t used_nodes;
6379
	int i;
6380

6381
	cpumask_clear(span);
6382
	nodes_clear(used_nodes);
6383

6384
	cpumask_or(span, span, cpumask_of_node(node));
6385
	node_set(node, used_nodes);
6386 6387

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6388
		int next_node = find_next_best_node(node, &used_nodes);
6389

6390
		cpumask_or(span, span, cpumask_of_node(next_node));
6391 6392
	}
}
6393
#endif /* CONFIG_NUMA */
6394

6395
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6396

6397 6398
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6399 6400 6401
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6446
/*
6447
 * SMT sched-domains:
6448
 */
L
Linus Torvalds 已提交
6449
#ifdef CONFIG_SCHED_SMT
6450
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6451
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6452

I
Ingo Molnar 已提交
6453
static int
6454 6455
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6456
{
6457
	if (sg)
6458
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6459 6460
	return cpu;
}
6461
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6462

6463 6464 6465
/*
 * multi-core sched-domains:
 */
6466
#ifdef CONFIG_SCHED_MC
6467 6468
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6469
#endif /* CONFIG_SCHED_MC */
6470 6471

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6472
static int
6473 6474
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6475
{
6476
	int group;
6477

6478
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6479
	group = cpumask_first(mask);
6480
	if (sg)
6481
		*sg = &per_cpu(sched_group_core, group).sg;
6482
	return group;
6483 6484
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6485
static int
6486 6487
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6488
{
6489
	if (sg)
6490
		*sg = &per_cpu(sched_group_core, cpu).sg;
6491 6492 6493 6494
	return cpu;
}
#endif

6495 6496
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6497

I
Ingo Molnar 已提交
6498
static int
6499 6500
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6501
{
6502
	int group;
6503
#ifdef CONFIG_SCHED_MC
6504
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6505
	group = cpumask_first(mask);
6506
#elif defined(CONFIG_SCHED_SMT)
6507
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6508
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6509
#else
6510
	group = cpu;
L
Linus Torvalds 已提交
6511
#endif
6512
	if (sg)
6513
		*sg = &per_cpu(sched_group_phys, group).sg;
6514
	return group;
L
Linus Torvalds 已提交
6515 6516 6517 6518
}

#ifdef CONFIG_NUMA
/*
6519 6520 6521
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6522
 */
6523
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6524
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6525

6526
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6527
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6528

6529 6530 6531
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6532
{
6533 6534
	int group;

6535
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6536
	group = cpumask_first(nodemask);
6537 6538

	if (sg)
6539
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6540
	return group;
L
Linus Torvalds 已提交
6541
}
6542

6543 6544 6545 6546 6547 6548 6549
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6550
	do {
6551
		for_each_cpu(j, sched_group_cpus(sg)) {
6552
			struct sched_domain *sd;
6553

6554
			sd = &per_cpu(phys_domains, j).sd;
6555
			if (j != group_first_cpu(sd->groups)) {
6556 6557 6558 6559 6560 6561
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6562

6563
			sg->cpu_power += sd->groups->cpu_power;
6564 6565 6566
		}
		sg = sg->next;
	} while (sg != group_head);
6567
}
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6589 6590
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6591 6592 6593 6594 6595 6596 6597 6598 6599
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6600
	sg->cpu_power = 0;
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6619 6620
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6621 6622
			return -ENOMEM;
		}
6623
		sg->cpu_power = 0;
6624 6625 6626 6627 6628 6629 6630 6631 6632
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6633
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6634

6635
#ifdef CONFIG_NUMA
6636
/* Free memory allocated for various sched_group structures */
6637 6638
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6639
{
6640
	int cpu, i;
6641

6642
	for_each_cpu(cpu, cpu_map) {
6643 6644 6645 6646 6647 6648
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6649
		for (i = 0; i < nr_node_ids; i++) {
6650 6651
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6652
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6653
			if (cpumask_empty(nodemask))
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6670
#else /* !CONFIG_NUMA */
6671 6672
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6673 6674
{
}
6675
#endif /* CONFIG_NUMA */
6676

6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6691 6692
	long power;
	int weight;
6693 6694 6695

	WARN_ON(!sd || !sd->groups);

6696
	if (cpu != group_first_cpu(sd->groups))
6697 6698 6699 6700
		return;

	child = sd->child;

6701
	sd->groups->cpu_power = 0;
6702

6703 6704 6705 6706 6707
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6708 6709 6710
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6711
		 */
P
Peter Zijlstra 已提交
6712 6713
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6714
			power /= weight;
P
Peter Zijlstra 已提交
6715 6716
			power >>= SCHED_LOAD_SHIFT;
		}
6717
		sd->groups->cpu_power += power;
6718 6719 6720 6721
		return;
	}

	/*
6722
	 * Add cpu_power of each child group to this groups cpu_power.
6723 6724 6725
	 */
	group = child->groups;
	do {
6726
		sd->groups->cpu_power += group->cpu_power;
6727 6728 6729 6730
		group = group->next;
	} while (group != child->groups);
}

6731 6732 6733 6734 6735
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6736 6737 6738 6739 6740 6741
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6742
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6743

6744 6745 6746 6747 6748
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6749
	sd->level = SD_LV_##type;				\
6750
	SD_INIT_NAME(sd, type);					\
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6765 6766 6767 6768
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6769 6770 6771 6772 6773 6774
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6793
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6794 6795
	} else {
		/* turn on idle balance on this domain */
6796
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6797 6798 6799
	}
}

6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6820
#ifdef CONFIG_NUMA
6821 6822 6823 6824 6825 6826 6827
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6828
#endif
6829 6830 6831 6832
	case sa_none:
		break;
	}
}
6833

6834 6835 6836
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6837
#ifdef CONFIG_NUMA
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6848
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6849
		return sa_notcovered;
6850
	}
6851
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6852
#endif
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6865
		printk(KERN_WARNING "Cannot alloc root domain\n");
6866
		return sa_tmpmask;
G
Gregory Haskins 已提交
6867
	}
6868 6869
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6870

6871 6872 6873 6874
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6875
#ifdef CONFIG_NUMA
6876
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6877

6878 6879 6880 6881 6882
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6883
		set_domain_attribute(sd, attr);
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6898
#endif
6899 6900
	return sd;
}
L
Linus Torvalds 已提交
6901

6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6917

6918 6919 6920 6921 6922
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6923
#ifdef CONFIG_SCHED_MC
6924 6925 6926 6927 6928 6929 6930
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6931
#endif
6932 6933
	return sd;
}
6934

6935 6936 6937 6938 6939
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6940
#ifdef CONFIG_SCHED_SMT
6941 6942 6943 6944 6945 6946 6947
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6948
#endif
6949 6950
	return sd;
}
L
Linus Torvalds 已提交
6951

6952 6953 6954 6955
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6956
#ifdef CONFIG_SCHED_SMT
6957 6958 6959 6960 6961 6962 6963 6964
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6965
#endif
6966
#ifdef CONFIG_SCHED_MC
6967 6968 6969 6970 6971 6972 6973
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6974
#endif
6975 6976 6977 6978 6979 6980 6981
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6982
#ifdef CONFIG_NUMA
6983 6984 6985 6986 6987
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6988 6989
	default:
		break;
6990
	}
6991
}
6992

6993 6994 6995 6996 6997 6998 6999 7000 7001
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7002
	struct sched_domain *sd;
7003
	int i;
7004
#ifdef CONFIG_NUMA
7005
	d.sd_allnodes = 0;
7006
#endif
7007

7008 7009 7010 7011
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7012

L
Linus Torvalds 已提交
7013
	/*
7014
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7015
	 */
7016
	for_each_cpu(i, cpu_map) {
7017 7018
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7019

7020
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7021
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7022
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7023
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7024
	}
7025

7026
	for_each_cpu(i, cpu_map) {
7027
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7028
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7029
	}
7030

L
Linus Torvalds 已提交
7031
	/* Set up physical groups */
7032 7033
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7034

L
Linus Torvalds 已提交
7035 7036
#ifdef CONFIG_NUMA
	/* Set up node groups */
7037 7038
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7039

7040 7041
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7042
			goto error;
L
Linus Torvalds 已提交
7043 7044 7045
#endif

	/* Calculate CPU power for physical packages and nodes */
7046
#ifdef CONFIG_SCHED_SMT
7047
	for_each_cpu(i, cpu_map) {
7048
		sd = &per_cpu(cpu_domains, i).sd;
7049
		init_sched_groups_power(i, sd);
7050
	}
L
Linus Torvalds 已提交
7051
#endif
7052
#ifdef CONFIG_SCHED_MC
7053
	for_each_cpu(i, cpu_map) {
7054
		sd = &per_cpu(core_domains, i).sd;
7055
		init_sched_groups_power(i, sd);
7056 7057
	}
#endif
7058

7059
	for_each_cpu(i, cpu_map) {
7060
		sd = &per_cpu(phys_domains, i).sd;
7061
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7062 7063
	}

7064
#ifdef CONFIG_NUMA
7065
	for (i = 0; i < nr_node_ids; i++)
7066
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7067

7068
	if (d.sd_allnodes) {
7069
		struct sched_group *sg;
7070

7071
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7072
								d.tmpmask);
7073 7074
		init_numa_sched_groups_power(sg);
	}
7075 7076
#endif

L
Linus Torvalds 已提交
7077
	/* Attach the domains */
7078
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7079
#ifdef CONFIG_SCHED_SMT
7080
		sd = &per_cpu(cpu_domains, i).sd;
7081
#elif defined(CONFIG_SCHED_MC)
7082
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7083
#else
7084
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7085
#endif
7086
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7087
	}
7088

7089 7090 7091
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7092 7093

error:
7094 7095
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7096
}
P
Paul Jackson 已提交
7097

7098
static int build_sched_domains(const struct cpumask *cpu_map)
7099 7100 7101 7102
{
	return __build_sched_domains(cpu_map, NULL);
}

7103
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7104
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7105 7106
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7107 7108 7109

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7110 7111
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7112
 */
7113
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7114

7115 7116 7117 7118 7119 7120
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7121
{
7122
	return 0;
7123 7124
}

7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7150
/*
I
Ingo Molnar 已提交
7151
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7152 7153
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7154
 */
7155
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7156
{
7157 7158
	int err;

7159
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7160
	ndoms_cur = 1;
7161
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7162
	if (!doms_cur)
7163 7164
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7165
	dattr_cur = NULL;
7166
	err = build_sched_domains(doms_cur[0]);
7167
	register_sched_domain_sysctl();
7168 7169

	return err;
7170 7171
}

7172 7173
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7174
{
7175
	free_sched_groups(cpu_map, tmpmask);
7176
}
L
Linus Torvalds 已提交
7177

7178 7179 7180 7181
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7182
static void detach_destroy_domains(const struct cpumask *cpu_map)
7183
{
7184 7185
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7186 7187
	int i;

7188
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7189
		cpu_attach_domain(NULL, &def_root_domain, i);
7190
	synchronize_sched();
7191
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7192 7193
}

7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7210 7211
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7212
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7213 7214 7215
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7216
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7217 7218 7219
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7220 7221 7222
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7223 7224 7225 7226 7227 7228
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7229
 *
7230
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7231 7232
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7233
 *
P
Paul Jackson 已提交
7234 7235
 * Call with hotplug lock held
 */
7236
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7237
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7238
{
7239
	int i, j, n;
7240
	int new_topology;
P
Paul Jackson 已提交
7241

7242
	mutex_lock(&sched_domains_mutex);
7243

7244 7245 7246
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7247 7248 7249
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7250
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7251 7252 7253

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7254
		for (j = 0; j < n && !new_topology; j++) {
7255
			if (cpumask_equal(doms_cur[i], doms_new[j])
7256
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7257 7258 7259
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7260
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7261 7262 7263 7264
match1:
		;
	}

7265 7266
	if (doms_new == NULL) {
		ndoms_cur = 0;
7267
		doms_new = &fallback_doms;
7268
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7269
		WARN_ON_ONCE(dattr_new);
7270 7271
	}

P
Paul Jackson 已提交
7272 7273
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7274
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7275
			if (cpumask_equal(doms_new[i], doms_cur[j])
7276
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7277 7278 7279
				goto match2;
		}
		/* no match - add a new doms_new */
7280
		__build_sched_domains(doms_new[i],
7281
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7282 7283 7284 7285 7286
match2:
		;
	}

	/* Remember the new sched domains */
7287 7288
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7289
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7290
	doms_cur = doms_new;
7291
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7292
	ndoms_cur = ndoms_new;
7293 7294

	register_sched_domain_sysctl();
7295

7296
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7297 7298
}

7299
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7300
static void arch_reinit_sched_domains(void)
7301
{
7302
	get_online_cpus();
7303 7304 7305 7306

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7307
	rebuild_sched_domains();
7308
	put_online_cpus();
7309 7310 7311 7312
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7313
	unsigned int level = 0;
7314

7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7326 7327 7328
		return -EINVAL;

	if (smt)
7329
		sched_smt_power_savings = level;
7330
	else
7331
		sched_mc_power_savings = level;
7332

7333
	arch_reinit_sched_domains();
7334

7335
	return count;
7336 7337 7338
}

#ifdef CONFIG_SCHED_MC
7339
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7340
					   struct sysdev_class_attribute *attr,
7341
					   char *page)
7342 7343 7344
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7345
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7346
					    struct sysdev_class_attribute *attr,
7347
					    const char *buf, size_t count)
7348 7349 7350
{
	return sched_power_savings_store(buf, count, 0);
}
7351 7352 7353
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7354 7355 7356
#endif

#ifdef CONFIG_SCHED_SMT
7357
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7358
					    struct sysdev_class_attribute *attr,
7359
					    char *page)
7360 7361 7362
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7363
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7364
					     struct sysdev_class_attribute *attr,
7365
					     const char *buf, size_t count)
7366 7367 7368
{
	return sched_power_savings_store(buf, count, 1);
}
7369 7370
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7371 7372 7373
		   sched_smt_power_savings_store);
#endif

7374
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7390
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7391

7392
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7393
/*
7394 7395
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7396 7397 7398
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7399 7400 7401 7402
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7403 7404 7405 7406
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7407
		partition_sched_domains(1, NULL, NULL);
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7418
{
P
Peter Zijlstra 已提交
7419 7420
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7421 7422
	switch (action) {
	case CPU_DOWN_PREPARE:
7423
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7424
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7425 7426 7427
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7428
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7429
	case CPU_ONLINE:
7430
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7431
		enable_runtime(cpu_rq(cpu));
7432 7433
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7434 7435 7436 7437 7438 7439 7440
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7441 7442 7443
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7444
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7445

7446 7447 7448 7449 7450
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7451
	get_online_cpus();
7452
	mutex_lock(&sched_domains_mutex);
7453
	arch_init_sched_domains(cpu_active_mask);
7454 7455 7456
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7457
	mutex_unlock(&sched_domains_mutex);
7458
	put_online_cpus();
7459 7460

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7461 7462
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7463 7464 7465 7466 7467
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7468
	init_hrtick();
7469 7470

	/* Move init over to a non-isolated CPU */
7471
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7472
		BUG();
I
Ingo Molnar 已提交
7473
	sched_init_granularity();
7474
	free_cpumask_var(non_isolated_cpus);
7475

7476
	init_sched_rt_class();
L
Linus Torvalds 已提交
7477 7478 7479 7480
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7481
	sched_init_granularity();
L
Linus Torvalds 已提交
7482 7483 7484
}
#endif /* CONFIG_SMP */

7485 7486
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7487 7488 7489 7490 7491 7492 7493
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7494
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7495 7496
{
	cfs_rq->tasks_timeline = RB_ROOT;
7497
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7498 7499 7500
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7501
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7502 7503
}

P
Peter Zijlstra 已提交
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7517
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7518
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7519
#ifdef CONFIG_SMP
7520
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7521 7522
#endif
#endif
P
Peter Zijlstra 已提交
7523 7524 7525
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7526
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7527 7528 7529 7530
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7531
	rt_rq->rt_runtime = 0;
7532
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7533

7534
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7535
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7536 7537
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7538 7539
}

P
Peter Zijlstra 已提交
7540
#ifdef CONFIG_FAIR_GROUP_SCHED
7541 7542 7543
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7544
{
7545
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7546 7547 7548 7549 7550 7551 7552
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7553 7554 7555 7556
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7557 7558 7559 7560 7561
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7562 7563
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7564
	se->load.inv_weight = 0;
7565
	se->parent = parent;
P
Peter Zijlstra 已提交
7566
}
7567
#endif
P
Peter Zijlstra 已提交
7568

7569
#ifdef CONFIG_RT_GROUP_SCHED
7570 7571 7572
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7573
{
7574 7575
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7576 7577 7578
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7579
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7580 7581 7582 7583
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7584 7585 7586
	if (!rt_se)
		return;

7587 7588 7589 7590 7591
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7592
	rt_se->my_q = rt_rq;
7593
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7594 7595 7596 7597
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7598 7599
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7600
	int i, j;
7601 7602 7603 7604 7605 7606 7607
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7608
#endif
7609
#ifdef CONFIG_CPUMASK_OFFSTACK
7610
	alloc_size += num_possible_cpus() * cpumask_size();
7611 7612
#endif
	if (alloc_size) {
7613
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7614 7615 7616 7617 7618 7619 7620

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7621

7622
#endif /* CONFIG_FAIR_GROUP_SCHED */
7623 7624 7625 7626 7627
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7628 7629
		ptr += nr_cpu_ids * sizeof(void **);

7630
#endif /* CONFIG_RT_GROUP_SCHED */
7631 7632 7633 7634 7635 7636
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7637
	}
I
Ingo Molnar 已提交
7638

G
Gregory Haskins 已提交
7639 7640 7641 7642
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7643 7644 7645 7646 7647 7648
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7649
#endif /* CONFIG_RT_GROUP_SCHED */
7650

D
Dhaval Giani 已提交
7651
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7652
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7653 7654
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7655
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7656

7657 7658 7659 7660
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7661
	for_each_possible_cpu(i) {
7662
		struct rq *rq;
L
Linus Torvalds 已提交
7663 7664

		rq = cpu_rq(i);
7665
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7666
		rq->nr_running = 0;
7667 7668
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7669
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7670
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7671
#ifdef CONFIG_FAIR_GROUP_SCHED
7672
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7673
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7689
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7690 7691 7692 7693
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7694
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7695
#endif
D
Dhaval Giani 已提交
7696 7697 7698
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7699
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7700
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7701
#ifdef CONFIG_CGROUP_SCHED
7702
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7703
#endif
I
Ingo Molnar 已提交
7704
#endif
L
Linus Torvalds 已提交
7705

I
Ingo Molnar 已提交
7706 7707
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7708
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7709
		rq->sd = NULL;
G
Gregory Haskins 已提交
7710
		rq->rd = NULL;
7711
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7712
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7713
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7714
		rq->push_cpu = 0;
7715
		rq->cpu = i;
7716
		rq->online = 0;
L
Linus Torvalds 已提交
7717
		rq->migration_thread = NULL;
7718 7719
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7720
		INIT_LIST_HEAD(&rq->migration_queue);
7721
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7722
#endif
P
Peter Zijlstra 已提交
7723
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7724 7725 7726
		atomic_set(&rq->nr_iowait, 0);
	}

7727
	set_load_weight(&init_task);
7728

7729 7730 7731 7732
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7733
#ifdef CONFIG_SMP
7734
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7735 7736
#endif

7737
#ifdef CONFIG_RT_MUTEXES
7738
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7739 7740
#endif

L
Linus Torvalds 已提交
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7754 7755 7756

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7757 7758 7759 7760
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7761

7762
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7763
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7764
#ifdef CONFIG_SMP
7765
#ifdef CONFIG_NO_HZ
7766
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7767
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7768
#endif
R
Rusty Russell 已提交
7769 7770 7771
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7772
#endif /* SMP */
7773

7774
	perf_event_init();
7775

7776
	scheduler_running = 1;
L
Linus Torvalds 已提交
7777 7778 7779
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7780 7781
static inline int preempt_count_equals(int preempt_offset)
{
7782
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7783 7784 7785 7786

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7787
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7788
{
7789
#ifdef in_atomic
L
Linus Torvalds 已提交
7790 7791
	static unsigned long prev_jiffy;	/* ratelimiting */

7792 7793
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7794 7795 7796 7797 7798
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7799 7800 7801 7802 7803 7804 7805
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7806 7807 7808 7809 7810

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7811 7812 7813 7814 7815 7816
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7817 7818 7819
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7820

7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7831 7832
void normalize_rt_tasks(void)
{
7833
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7834
	unsigned long flags;
7835
	struct rq *rq;
L
Linus Torvalds 已提交
7836

7837
	read_lock_irqsave(&tasklist_lock, flags);
7838
	do_each_thread(g, p) {
7839 7840 7841 7842 7843 7844
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7845 7846
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7847 7848 7849
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7850
#endif
I
Ingo Molnar 已提交
7851 7852 7853 7854 7855 7856 7857 7858

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7859
			continue;
I
Ingo Molnar 已提交
7860
		}
L
Linus Torvalds 已提交
7861

7862
		raw_spin_lock(&p->pi_lock);
7863
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7864

7865
		normalize_task(rq, p);
7866

7867
		__task_rq_unlock(rq);
7868
		raw_spin_unlock(&p->pi_lock);
7869 7870
	} while_each_thread(g, p);

7871
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7872 7873 7874
}

#endif /* CONFIG_MAGIC_SYSRQ */
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7893
struct task_struct *curr_task(int cpu)
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7904 7905
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7906 7907 7908 7909 7910 7911 7912
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7913
void set_curr_task(int cpu, struct task_struct *p)
7914 7915 7916 7917 7918
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7919

7920 7921
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7936 7937
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7938 7939
{
	struct cfs_rq *cfs_rq;
7940
	struct sched_entity *se;
7941
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7942 7943
	int i;

7944
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7945 7946
	if (!tg->cfs_rq)
		goto err;
7947
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7948 7949
	if (!tg->se)
		goto err;
7950 7951

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7952 7953

	for_each_possible_cpu(i) {
7954
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7955

7956 7957
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7958 7959 7960
		if (!cfs_rq)
			goto err;

7961 7962
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7963
		if (!se)
7964
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7965

7966
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7967 7968 7969 7970
	}

	return 1;

7971 7972
 err_free_rq:
	kfree(cfs_rq);
7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7987
#else /* !CONFG_FAIR_GROUP_SCHED */
7988 7989 7990 7991
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7992 7993
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8005
#endif /* CONFIG_FAIR_GROUP_SCHED */
8006 8007

#ifdef CONFIG_RT_GROUP_SCHED
8008 8009 8010 8011
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8012 8013
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8025 8026
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8027 8028
{
	struct rt_rq *rt_rq;
8029
	struct sched_rt_entity *rt_se;
8030 8031 8032
	struct rq *rq;
	int i;

8033
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8034 8035
	if (!tg->rt_rq)
		goto err;
8036
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8037 8038 8039
	if (!tg->rt_se)
		goto err;

8040 8041
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8042 8043 8044 8045

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8046 8047
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8048 8049
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8050

8051 8052
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8053
		if (!rt_se)
8054
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8055

8056
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8057 8058
	}

8059 8060
	return 1;

8061 8062
 err_free_rq:
	kfree(rt_rq);
8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8077
#else /* !CONFIG_RT_GROUP_SCHED */
8078 8079 8080 8081
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8082 8083
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8095
#endif /* CONFIG_RT_GROUP_SCHED */
8096

D
Dhaval Giani 已提交
8097
#ifdef CONFIG_CGROUP_SCHED
8098 8099 8100 8101 8102 8103 8104 8105
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8106
struct task_group *sched_create_group(struct task_group *parent)
8107 8108 8109 8110 8111 8112 8113 8114 8115
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8116
	if (!alloc_fair_sched_group(tg, parent))
8117 8118
		goto err;

8119
	if (!alloc_rt_sched_group(tg, parent))
8120 8121
		goto err;

8122
	spin_lock_irqsave(&task_group_lock, flags);
8123
	for_each_possible_cpu(i) {
8124 8125
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8126
	}
P
Peter Zijlstra 已提交
8127
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8128 8129 8130 8131 8132

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8133
	list_add_rcu(&tg->siblings, &parent->children);
8134
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8135

8136
	return tg;
S
Srivatsa Vaddagiri 已提交
8137 8138

err:
P
Peter Zijlstra 已提交
8139
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8140 8141 8142
	return ERR_PTR(-ENOMEM);
}

8143
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8144
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8145 8146
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8147
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8148 8149
}

8150
/* Destroy runqueue etc associated with a task group */
8151
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8152
{
8153
	unsigned long flags;
8154
	int i;
S
Srivatsa Vaddagiri 已提交
8155

8156
	spin_lock_irqsave(&task_group_lock, flags);
8157
	for_each_possible_cpu(i) {
8158 8159
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8160
	}
P
Peter Zijlstra 已提交
8161
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8162
	list_del_rcu(&tg->siblings);
8163
	spin_unlock_irqrestore(&task_group_lock, flags);
8164 8165

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8166
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8167 8168
}

8169
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8170 8171 8172
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8173 8174
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8175 8176 8177 8178 8179 8180 8181
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8182
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8183 8184
	on_rq = tsk->se.on_rq;

8185
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8186
		dequeue_task(rq, tsk, 0);
8187 8188
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8189

P
Peter Zijlstra 已提交
8190
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8191

P
Peter Zijlstra 已提交
8192 8193
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8194
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8195 8196
#endif

8197 8198 8199
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8200
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8201 8202 8203

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8204
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8205

8206
#ifdef CONFIG_FAIR_GROUP_SCHED
8207
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8208 8209 8210 8211 8212
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8213
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8214 8215 8216
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8217
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8218

8219
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8220
		enqueue_entity(cfs_rq, se, 0);
8221
}
8222

8223 8224 8225 8226 8227 8228
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8229
	raw_spin_lock_irqsave(&rq->lock, flags);
8230
	__set_se_shares(se, shares);
8231
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8232 8233
}

8234 8235
static DEFINE_MUTEX(shares_mutex);

8236
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8237 8238
{
	int i;
8239
	unsigned long flags;
8240

8241 8242 8243 8244 8245 8246
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8247 8248
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8249 8250
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8251

8252
	mutex_lock(&shares_mutex);
8253
	if (tg->shares == shares)
8254
		goto done;
S
Srivatsa Vaddagiri 已提交
8255

8256
	spin_lock_irqsave(&task_group_lock, flags);
8257 8258
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8259
	list_del_rcu(&tg->siblings);
8260
	spin_unlock_irqrestore(&task_group_lock, flags);
8261 8262 8263 8264 8265 8266 8267 8268

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8269
	tg->shares = shares;
8270 8271 8272 8273 8274
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8275
		set_se_shares(tg->se[i], shares);
8276
	}
S
Srivatsa Vaddagiri 已提交
8277

8278 8279 8280 8281
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8282
	spin_lock_irqsave(&task_group_lock, flags);
8283 8284
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8285
	list_add_rcu(&tg->siblings, &tg->parent->children);
8286
	spin_unlock_irqrestore(&task_group_lock, flags);
8287
done:
8288
	mutex_unlock(&shares_mutex);
8289
	return 0;
S
Srivatsa Vaddagiri 已提交
8290 8291
}

8292 8293 8294 8295
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8296
#endif
8297

8298
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8299
/*
P
Peter Zijlstra 已提交
8300
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8301
 */
P
Peter Zijlstra 已提交
8302 8303 8304 8305 8306
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8307
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8308

P
Peter Zijlstra 已提交
8309
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8310 8311
}

P
Peter Zijlstra 已提交
8312 8313
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8314
{
P
Peter Zijlstra 已提交
8315
	struct task_struct *g, *p;
8316

P
Peter Zijlstra 已提交
8317 8318 8319 8320
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8321

P
Peter Zijlstra 已提交
8322 8323
	return 0;
}
8324

P
Peter Zijlstra 已提交
8325 8326 8327 8328 8329
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8330

P
Peter Zijlstra 已提交
8331 8332 8333 8334 8335 8336
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8337

P
Peter Zijlstra 已提交
8338 8339
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8340

P
Peter Zijlstra 已提交
8341 8342 8343
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8344 8345
	}

8346 8347 8348 8349 8350
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8351

8352 8353 8354
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8355 8356
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8357

P
Peter Zijlstra 已提交
8358
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8359

8360 8361 8362 8363 8364
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8365

8366 8367 8368
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8369 8370 8371
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8372

P
Peter Zijlstra 已提交
8373 8374 8375 8376
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8377

P
Peter Zijlstra 已提交
8378
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8379
	}
P
Peter Zijlstra 已提交
8380

P
Peter Zijlstra 已提交
8381 8382 8383 8384
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8385 8386
}

P
Peter Zijlstra 已提交
8387
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8388
{
P
Peter Zijlstra 已提交
8389 8390 8391 8392 8393 8394 8395
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8396 8397
}

8398 8399
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8400
{
P
Peter Zijlstra 已提交
8401
	int i, err = 0;
P
Peter Zijlstra 已提交
8402 8403

	mutex_lock(&rt_constraints_mutex);
8404
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8405 8406
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8407
		goto unlock;
P
Peter Zijlstra 已提交
8408

8409
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8410 8411
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8412 8413 8414 8415

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8416
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8417
		rt_rq->rt_runtime = rt_runtime;
8418
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8419
	}
8420
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8421
 unlock:
8422
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8423 8424 8425
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8426 8427
}

8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8440 8441 8442 8443
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8444
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8445 8446
		return -1;

8447
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8448 8449 8450
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8451 8452 8453 8454 8455 8456 8457 8458

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8459 8460 8461
	if (rt_period == 0)
		return -EINVAL;

8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8476
	u64 runtime, period;
8477 8478
	int ret = 0;

8479 8480 8481
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8482 8483 8484 8485 8486 8487 8488 8489
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8490

8491
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8492
	read_lock(&tasklist_lock);
8493
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8494
	read_unlock(&tasklist_lock);
8495 8496 8497 8498
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8509
#else /* !CONFIG_RT_GROUP_SCHED */
8510 8511
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8512 8513 8514
	unsigned long flags;
	int i;

8515 8516 8517
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8518 8519 8520 8521 8522 8523 8524
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8525
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8526 8527 8528
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8529
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8530
		rt_rq->rt_runtime = global_rt_runtime();
8531
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8532
	}
8533
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8534

8535 8536
	return 0;
}
8537
#endif /* CONFIG_RT_GROUP_SCHED */
8538 8539

int sched_rt_handler(struct ctl_table *table, int write,
8540
		void __user *buffer, size_t *lenp,
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8551
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8568

8569
#ifdef CONFIG_CGROUP_SCHED
8570 8571

/* return corresponding task_group object of a cgroup */
8572
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8573
{
8574 8575
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8576 8577 8578
}

static struct cgroup_subsys_state *
8579
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8580
{
8581
	struct task_group *tg, *parent;
8582

8583
	if (!cgrp->parent) {
8584 8585 8586 8587
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8588 8589
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8590 8591 8592 8593 8594 8595
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8596 8597
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8598
{
8599
	struct task_group *tg = cgroup_tg(cgrp);
8600 8601 8602 8603

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8604
static int
8605
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8606
{
8607
#ifdef CONFIG_RT_GROUP_SCHED
8608
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8609 8610
		return -EINVAL;
#else
8611 8612 8613
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8614
#endif
8615 8616
	return 0;
}
8617

8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8637 8638 8639 8640
	return 0;
}

static void
8641
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8642 8643
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8644 8645
{
	sched_move_task(tsk);
8646 8647 8648 8649 8650 8651 8652 8653
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8654 8655
}

8656
#ifdef CONFIG_FAIR_GROUP_SCHED
8657
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8658
				u64 shareval)
8659
{
8660
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8661 8662
}

8663
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8664
{
8665
	struct task_group *tg = cgroup_tg(cgrp);
8666 8667 8668

	return (u64) tg->shares;
}
8669
#endif /* CONFIG_FAIR_GROUP_SCHED */
8670

8671
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8672
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8673
				s64 val)
P
Peter Zijlstra 已提交
8674
{
8675
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8676 8677
}

8678
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8679
{
8680
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8681
}
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8693
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8694

8695
static struct cftype cpu_files[] = {
8696
#ifdef CONFIG_FAIR_GROUP_SCHED
8697 8698
	{
		.name = "shares",
8699 8700
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8701
	},
8702 8703
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8704
	{
P
Peter Zijlstra 已提交
8705
		.name = "rt_runtime_us",
8706 8707
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8708
	},
8709 8710
	{
		.name = "rt_period_us",
8711 8712
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8713
	},
8714
#endif
8715 8716 8717 8718
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8719
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8720 8721 8722
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8723 8724 8725 8726 8727 8728 8729
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8730 8731 8732
	.early_init	= 1,
};

8733
#endif	/* CONFIG_CGROUP_SCHED */
8734 8735 8736 8737 8738 8739 8740 8741 8742 8743

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8744
/* track cpu usage of a group of tasks and its child groups */
8745 8746 8747
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8748
	u64 __percpu *cpuusage;
8749
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8750
	struct cpuacct *parent;
8751 8752 8753 8754 8755
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8756
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8757
{
8758
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8771
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8772 8773
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8774
	int i;
8775 8776

	if (!ca)
8777
		goto out;
8778 8779

	ca->cpuusage = alloc_percpu(u64);
8780 8781 8782 8783 8784 8785
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8786

8787 8788 8789
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8790
	return &ca->css;
8791 8792 8793 8794 8795 8796 8797 8798 8799

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8800 8801 8802
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8803
static void
8804
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8805
{
8806
	struct cpuacct *ca = cgroup_ca(cgrp);
8807
	int i;
8808

8809 8810
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8811 8812 8813 8814
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8815 8816
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8817
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8818 8819 8820 8821 8822 8823
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8824
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8825
	data = *cpuusage;
8826
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8827 8828 8829 8830 8831 8832 8833 8834 8835
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8836
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8837 8838 8839 8840 8841

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8842
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8843
	*cpuusage = val;
8844
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8845 8846 8847 8848 8849
#else
	*cpuusage = val;
#endif
}

8850
/* return total cpu usage (in nanoseconds) of a group */
8851
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8852
{
8853
	struct cpuacct *ca = cgroup_ca(cgrp);
8854 8855 8856
	u64 totalcpuusage = 0;
	int i;

8857 8858
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8859 8860 8861 8862

	return totalcpuusage;
}

8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8875 8876
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8877 8878 8879 8880 8881

out:
	return err;
}

8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8916 8917 8918
static struct cftype files[] = {
	{
		.name = "usage",
8919 8920
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8921
	},
8922 8923 8924 8925
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8926 8927 8928 8929
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8930 8931
};

8932
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8933
{
8934
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8945
	int cpu;
8946

L
Li Zefan 已提交
8947
	if (unlikely(!cpuacct_subsys.active))
8948 8949
		return;

8950
	cpu = task_cpu(tsk);
8951 8952 8953

	rcu_read_lock();

8954 8955
	ca = task_ca(tsk);

8956
	for (; ca; ca = ca->parent) {
8957
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8958 8959
		*cpuusage += cputime;
	}
8960 8961

	rcu_read_unlock();
8962 8963
}

8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8981 8982 8983 8984 8985 8986 8987
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8988
	int batch = CPUACCT_BATCH;
8989 8990 8991 8992 8993 8994 8995 8996

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8997
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8998 8999 9000 9001 9002
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9003 9004 9005 9006 9007 9008 9009 9010
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9096
		raw_spin_lock_irqsave(&rq->lock, flags);
9097
		list_add(&req->list, &rq->migration_queue);
9098
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9099 9100 9101 9102 9103 9104 9105
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9106
		raw_spin_lock_irqsave(&rq->lock, flags);
9107 9108 9109
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9110
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9111 9112
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9113
	synchronize_sched_expedited_count++;
9114 9115 9116 9117 9118 9119 9120 9121
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */