sched.c 217.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143
	/* nests inside the rq lock: */
144
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
145 146 147
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

181
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
182

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

203
	raw_spin_lock(&rt_b->rt_runtime_lock);
204
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219
	}
220
	raw_spin_unlock(&rt_b->rt_runtime_lock);
221 222 223 224 225 226 227 228 229
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
236
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
	struct cgroup_subsys_state css;
247

248
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
249 250 251 252 253
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
254 255 256 257 258 259
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

260
	struct rt_bandwidth rt_bandwidth;
261
#endif
262

263
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
264
	struct list_head list;
P
Peter Zijlstra 已提交
265 266 267 268

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
269 270
};

271
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
272

273
/* task_group_lock serializes add/remove of task groups and also changes to
274 275
 * a task group's cpu shares.
 */
276
static DEFINE_SPINLOCK(task_group_lock);
277

278 279
#ifdef CONFIG_FAIR_GROUP_SCHED

280 281 282 283 284 285 286
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

287 288
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

289
/*
290 291 292 293
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
294 295 296
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
297
#define MIN_SHARES	2
298
#define MAX_SHARES	(1UL << 18)
299

300 301 302
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
303
/* Default task group.
I
Ingo Molnar 已提交
304
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
305
 */
306
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
307 308

/* return group to which a task belongs */
309
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
310
{
311
	struct task_group *tg;
312

D
Dhaval Giani 已提交
313
#ifdef CONFIG_CGROUP_SCHED
314 315
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
316
#else
I
Ingo Molnar 已提交
317
	tg = &init_task_group;
318
#endif
319
	return tg;
S
Srivatsa Vaddagiri 已提交
320 321 322
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
323
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
324
{
325
#ifdef CONFIG_FAIR_GROUP_SCHED
326 327
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
328
#endif
P
Peter Zijlstra 已提交
329

330
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
331 332
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
333
#endif
S
Srivatsa Vaddagiri 已提交
334 335 336 337
}

#else

P
Peter Zijlstra 已提交
338
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 340 341 342
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
343

D
Dhaval Giani 已提交
344
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
345

I
Ingo Molnar 已提交
346 347 348 349 350 351
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
352
	u64 min_vruntime;
I
Ingo Molnar 已提交
353 354 355

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
356 357 358 359 360 361

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
362 363
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
364
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
365

P
Peter Zijlstra 已提交
366
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
367

368
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
369 370
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
371 372
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
373 374 375 376 377 378
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
379 380
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
381 382 383

#ifdef CONFIG_SMP
	/*
384
	 * the part of load.weight contributed by tasks
385
	 */
386
	unsigned long task_weight;
387

388 389 390 391 392 393 394
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
395

396 397 398 399
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
400 401 402 403 404

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
405
#endif
I
Ingo Molnar 已提交
406 407
#endif
};
L
Linus Torvalds 已提交
408

I
Ingo Molnar 已提交
409 410 411
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
412
	unsigned long rt_nr_running;
413
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 415
	struct {
		int curr; /* highest queued rt task prio */
416
#ifdef CONFIG_SMP
417
		int next; /* next highest */
418
#endif
419
	} highest_prio;
P
Peter Zijlstra 已提交
420
#endif
P
Peter Zijlstra 已提交
421
#ifdef CONFIG_SMP
422
	unsigned long rt_nr_migratory;
423
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
424
	int overloaded;
425
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
426
#endif
P
Peter Zijlstra 已提交
427
	int rt_throttled;
P
Peter Zijlstra 已提交
428
	u64 rt_time;
P
Peter Zijlstra 已提交
429
	u64 rt_runtime;
I
Ingo Molnar 已提交
430
	/* Nests inside the rq lock: */
431
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
432

433
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
434 435
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
436 437 438 439
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
440 441
};

G
Gregory Haskins 已提交
442 443 444 445
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
446 447
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
448 449 450 451 452 453
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
454 455
	cpumask_var_t span;
	cpumask_var_t online;
456

I
Ingo Molnar 已提交
457
	/*
458 459 460
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
461
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
462
	atomic_t rto_count;
463 464 465
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
466 467
};

468 469 470 471
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
472 473 474 475
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
476 477 478 479 480 481 482
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
483
struct rq {
484
	/* runqueue lock: */
485
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
486 487 488 489 490 491

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
492 493
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
495
	u64 nohz_stamp;
496 497
	unsigned char in_nohz_recently;
#endif
498 499
	unsigned int skip_clock_update;

500 501
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
502 503 504 505
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
506 507
	struct rt_rq rt;

I
Ingo Molnar 已提交
508
#ifdef CONFIG_FAIR_GROUP_SCHED
509 510
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
511 512
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
513
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
514 515 516 517 518 519 520 521 522 523
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

524
	struct task_struct *curr, *idle;
525
	unsigned long next_balance;
L
Linus Torvalds 已提交
526
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
527

528
	u64 clock;
I
Ingo Molnar 已提交
529

L
Linus Torvalds 已提交
530 531 532
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
533
	struct root_domain *rd;
L
Linus Torvalds 已提交
534 535
	struct sched_domain *sd;

536
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
537
	/* For active balancing */
538
	int post_schedule;
L
Linus Torvalds 已提交
539 540
	int active_balance;
	int push_cpu;
541 542
	/* cpu of this runqueue: */
	int cpu;
543
	int online;
L
Linus Torvalds 已提交
544

545
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
546

547
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
548
	struct list_head migration_queue;
549 550 551

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
552 553
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
554 555
#endif

556 557 558 559
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
560
#ifdef CONFIG_SCHED_HRTICK
561 562 563 564
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
565 566 567
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
568 569 570
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
571 572
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
573 574

	/* sys_sched_yield() stats */
575
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588 589 590
#endif
};

591
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
592

P
Peter Zijlstra 已提交
593 594
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
595
{
P
Peter Zijlstra 已提交
596
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597 598 599 600 601 602 603

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
604 605
}

606 607 608 609 610 611 612 613 614
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

615
#define rcu_dereference_check_sched_domain(p) \
616 617 618 619
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
620 621
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
623 624 625 626
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
627
#define for_each_domain(cpu, __sd) \
628
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
629 630 631 632 633

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
634
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
635

I
Ingo Molnar 已提交
636
inline void update_rq_clock(struct rq *rq)
637
{
638 639
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
640 641
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

929 930 931 932
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
933
static inline struct rq *__task_rq_lock(struct task_struct *p)
934 935
	__acquires(rq->lock)
{
936 937
	struct rq *rq;

938
	for (;;) {
939 940 941
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
942
		raw_spin_lock(&rq->lock);
943
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
944
			return rq;
945
		raw_spin_unlock(&rq->lock);
946 947 948
	}
}

L
Linus Torvalds 已提交
949 950
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
951
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
952 953
 * explicitly disabling preemption.
 */
954
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
955 956
	__acquires(rq->lock)
{
957
	struct rq *rq;
L
Linus Torvalds 已提交
958

959
	for (;;) {
960 961
		while (task_is_waking(p))
			cpu_relax();
962 963
		local_irq_save(*flags);
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
965
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
966
			return rq;
967
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
968 969 970
	}
}

971 972 973 974 975
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976
	raw_spin_unlock_wait(&rq->lock);
977 978
}

A
Alexey Dobriyan 已提交
979
static void __task_rq_unlock(struct rq *rq)
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock(&rq->lock);
983 984
}

985
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
986 987
	__releases(rq->lock)
{
988
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
989 990 991
}

/*
992
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
993
 */
A
Alexey Dobriyan 已提交
994
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998 999 1000

	local_irq_disable();
	rq = this_rq();
1001
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1002 1003 1004 1005

	return rq;
}

P
Peter Zijlstra 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1027
	if (!cpu_active(cpu_of(rq)))
1028
		return 0;
P
Peter Zijlstra 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1048
	raw_spin_lock(&rq->lock);
1049
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1050
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1052 1053 1054 1055

	return HRTIMER_NORESTART;
}

1056
#ifdef CONFIG_SMP
1057 1058 1059 1060
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1061
{
1062
	struct rq *rq = arg;
1063

1064
	raw_spin_lock(&rq->lock);
1065 1066
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1067
	raw_spin_unlock(&rq->lock);
1068 1069
}

1070 1071 1072 1073 1074 1075
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1076
{
1077 1078
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079

1080
	hrtimer_set_expires(timer, time);
1081 1082 1083 1084

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1085
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 1087
		rq->hrtick_csd_pending = 1;
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1102
		hrtick_clear(cpu_rq(cpu));
1103 1104 1105 1106 1107 1108
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1109
static __init void init_hrtick(void)
1110 1111 1112
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1113 1114 1115 1116 1117 1118 1119 1120
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1121
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122
			HRTIMER_MODE_REL_PINNED, 0);
1123
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1142
}
A
Andrew Morton 已提交
1143
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1144 1145 1146 1147 1148 1149 1150 1151
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1152 1153 1154
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1155
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1156

I
Ingo Molnar 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1170
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1171 1172 1173
{
	int cpu;

1174
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1175

1176
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1177 1178
		return;

1179
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1196
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1197 1198
		return;
	resched_task(cpu_curr(cpu));
1199
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1200
}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1235
	set_tsk_need_resched(rq->idle);
1236 1237 1238 1239 1240 1241

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1253
#endif /* CONFIG_NO_HZ */
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1276
#else /* !CONFIG_SMP */
1277
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1278
{
1279
	assert_raw_spin_locked(&task_rq(p)->lock);
1280
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1281
}
1282 1283 1284 1285

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

1396 1397 1398 1399 1400 1401 1402 1403
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1404 1405
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 1407
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1408 1409
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 1411
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1412 1413
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1424
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1425
typedef int (*tg_visitor)(struct task_group *, void *);
1426 1427 1428 1429 1430

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1431
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1432 1433
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1434
	int ret;
1435 1436 1437 1438

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1439 1440 1441
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1442 1443 1444 1445 1446 1447 1448
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1449 1450 1451
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1452 1453 1454 1455 1456

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1457
out_unlock:
1458
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1459 1460

	return ret;
1461 1462
}

P
Peter Zijlstra 已提交
1463 1464 1465
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1466
}
P
Peter Zijlstra 已提交
1467 1468 1469
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1509 1510
static struct sched_group *group_of(int cpu)
{
1511
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1534
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1535

1536 1537
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1538 1539
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1540 1541 1542 1543 1544

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1545

1546
static __read_mostly unsigned long __percpu *update_shares_data;
1547

1548 1549 1550 1551 1552
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1553 1554 1555
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1556
				    unsigned long *usd_rq_weight)
1557
{
1558
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1559
	int boost = 0;
1560

1561
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1562 1563 1564 1565
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1566

1567
	/*
P
Peter Zijlstra 已提交
1568 1569 1570
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1571
	 */
1572
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1573
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574

1575 1576 1577 1578
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1579

1580
		raw_spin_lock_irqsave(&rq->lock, flags);
1581
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1582
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583
		__set_se_shares(tg->se[cpu], shares);
1584
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1585
	}
1586
}
1587 1588

/*
1589 1590 1591
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1592
 */
P
Peter Zijlstra 已提交
1593
static int tg_shares_up(struct task_group *tg, void *data)
1594
{
1595
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1597
	struct sched_domain *sd = data;
1598
	unsigned long flags;
1599
	int i;
1600

1601 1602 1603 1604
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1605
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606

1607
	for_each_cpu(i, sched_domain_span(sd)) {
1608
		weight = tg->cfs_rq[i]->load.weight;
1609
		usd_rq_weight[i] = weight;
1610

1611
		rq_weight += weight;
1612 1613 1614 1615 1616 1617 1618 1619
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1620
		sum_weight += weight;
1621
		shares += tg->cfs_rq[i]->shares;
1622 1623
	}

1624 1625 1626
	if (!rq_weight)
		rq_weight = sum_weight;

1627 1628 1629 1630 1631
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1632

1633
	for_each_cpu(i, sched_domain_span(sd))
1634
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635 1636

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1637 1638

	return 0;
1639 1640 1641
}

/*
1642 1643 1644
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1645
 */
P
Peter Zijlstra 已提交
1646
static int tg_load_down(struct task_group *tg, void *data)
1647
{
1648
	unsigned long load;
P
Peter Zijlstra 已提交
1649
	long cpu = (long)data;
1650

1651 1652 1653 1654 1655 1656 1657
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1658

1659
	tg->cfs_rq[cpu]->h_load = load;
1660

P
Peter Zijlstra 已提交
1661
	return 0;
1662 1663
}

1664
static void update_shares(struct sched_domain *sd)
1665
{
1666 1667 1668 1669 1670 1671 1672 1673
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1674 1675 1676

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1677
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1678
	}
1679 1680
}

P
Peter Zijlstra 已提交
1681
static void update_h_load(long cpu)
1682
{
1683 1684 1685
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1686
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 1688 1689 1690
}

#else

1691
static inline void update_shares(struct sched_domain *sd)
1692 1693 1694
{
}

1695 1696
#endif

1697 1698
#ifdef CONFIG_PREEMPT

1699 1700
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1701
/*
1702 1703 1704 1705 1706 1707
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1708
 */
1709 1710 1711 1712 1713
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1714
	raw_spin_unlock(&this_rq->lock);
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 1730 1731 1732 1733 1734
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1735
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736
		if (busiest < this_rq) {
1737 1738 1739 1740
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1741 1742
			ret = 1;
		} else
1743 1744
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1745 1746 1747 1748
	}
	return ret;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1758
		raw_spin_unlock(&this_rq->lock);
1759 1760 1761 1762 1763 1764
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1765 1766 1767
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1768
	raw_spin_unlock(&busiest->lock);
1769 1770
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1814 1815
#endif

V
Vegard Nossum 已提交
1816
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1817 1818
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1819
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1820 1821 1822
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1823
#endif
1824

1825
static void calc_load_account_active(struct rq *this_rq);
1826
static void update_sysctl(void);
1827
static int get_update_sysctl_factor(void);
1828

P
Peter Zijlstra 已提交
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1842

1843
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1844 1845

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849 1850
#include "sched_stats.h"

1851
static void inc_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running++;
}

1856
static void dec_nr_running(struct rq *rq)
1857 1858 1859 1860
{
	rq->nr_running--;
}

1861 1862 1863
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1864 1865 1866 1867
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870 1871 1872 1873 1874 1875 1876
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1877

I
Ingo Molnar 已提交
1878 1879
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 1881
}

1882 1883 1884 1885 1886 1887
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1888 1889
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1890
{
1891
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1892
	sched_info_queued(p);
1893
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1894
	p->se.on_rq = 1;
1895 1896
}

1897
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1898
{
1899
	update_rq_clock(rq);
1900
	sched_info_dequeued(p);
1901
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1902
	p->se.on_rq = 0;
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1913
	enqueue_task(rq, p, wakeup, false);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1936
/*
I
Ingo Molnar 已提交
1937
 * __normal_prio - return the priority that is based on the static prio
1938 1939 1940
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1941
	return p->static_prio;
1942 1943
}

1944 1945 1946 1947 1948 1949 1950
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1951
static inline int normal_prio(struct task_struct *p)
1952 1953 1954
{
	int prio;

1955
	if (task_has_rt_policy(p))
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1969
static int effective_prio(struct task_struct *p)
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1982 1983 1984 1985
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1986
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990
{
	return cpu_curr(task_cpu(p)) == p;
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2003
#ifdef CONFIG_SMP
2004 2005 2006
/*
 * Is this task likely cache-hot:
 */
2007
static int
2008 2009 2010 2011
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2012 2013 2014
	if (p->sched_class != &fair_sched_class)
		return 0;

2015 2016 2017
	/*
	 * Buddy candidates are cache hot:
	 */
2018
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2019 2020
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2021 2022
		return 1;

2023 2024 2025 2026 2027
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2028 2029 2030 2031 2032
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2033
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2034
{
2035 2036 2037 2038 2039
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2040 2041
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2042 2043
#endif

2044
	trace_sched_migrate_task(p, new_cpu);
2045

2046 2047 2048 2049
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2050 2051

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2052 2053
}

2054
struct migration_req {
L
Linus Torvalds 已提交
2055 2056
	struct list_head list;

2057
	struct task_struct *task;
L
Linus Torvalds 已提交
2058 2059 2060
	int dest_cpu;

	struct completion done;
2061
};
L
Linus Torvalds 已提交
2062 2063 2064 2065 2066

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2067
static int
2068
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2069
{
2070
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2071 2072 2073

	/*
	 * If the task is not on a runqueue (and not running), then
2074
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2075
	 */
2076
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2083

L
Linus Torvalds 已提交
2084 2085 2086
	return 1;
}

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2130 2131 2132
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138 2139
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2146
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2147 2148
{
	unsigned long flags;
I
Ingo Molnar 已提交
2149
	int running, on_rq;
R
Roland McGrath 已提交
2150
	unsigned long ncsw;
2151
	struct rq *rq;
L
Linus Torvalds 已提交
2152

2153 2154 2155 2156 2157 2158 2159 2160
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2173 2174 2175
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2176
			cpu_relax();
R
Roland McGrath 已提交
2177
		}
2178

2179 2180 2181 2182 2183 2184
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2185
		trace_sched_wait_task(rq, p);
2186 2187
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2188
		ncsw = 0;
2189
		if (!match_state || p->state == match_state)
2190
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2191
		task_rq_unlock(rq, &flags);
2192

R
Roland McGrath 已提交
2193 2194 2195 2196 2197 2198
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2209

2210 2211 2212 2213 2214
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2215
		 * So if it was still runnable (but just not actively
2216 2217 2218 2219 2220 2221 2222
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2223

2224 2225 2226 2227 2228 2229 2230
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2231 2232

	return ncsw;
L
Linus Torvalds 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2248
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2258
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2259
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2260

T
Thomas Gleixner 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2282
#ifdef CONFIG_SMP
2283 2284 2285
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2302
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2303
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2319
/*
2320
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2321
 */
2322 2323 2324
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2338
		     !cpu_online(cpu)))
2339
		cpu = select_fallback_rq(task_cpu(p), p);
2340 2341

	return cpu;
2342 2343 2344
}
#endif

L
Linus Torvalds 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2359 2360
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2361
{
2362
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2363
	unsigned long flags;
2364
	struct rq *rq;
L
Linus Torvalds 已提交
2365

P
Peter Zijlstra 已提交
2366
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2367

2368
	smp_wmb();
2369
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2370
	if (!(p->state & state))
L
Linus Torvalds 已提交
2371 2372
		goto out;

I
Ingo Molnar 已提交
2373
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2374 2375 2376
		goto out_running;

	cpu = task_cpu(p);
2377
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2383 2384 2385
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2386 2387
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2388
	 */
2389 2390
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2391
	p->state = TASK_WAKING;
2392 2393 2394 2395

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2396
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2397

2398
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2399 2400 2401 2402 2403 2404
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2405
		set_task_cpu(p, cpu);
2406
	}
P
Peter Zijlstra 已提交
2407

2408 2409
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2410

2411 2412 2413 2414 2415 2416 2417
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2418
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2419

2420 2421 2422 2423 2424 2425 2426
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2427
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2428 2429 2430 2431 2432
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2433
#endif /* CONFIG_SCHEDSTATS */
2434

L
Linus Torvalds 已提交
2435 2436
out_activate:
#endif /* CONFIG_SMP */
2437
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2438
	if (wake_flags & WF_SYNC)
2439
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2440
	if (orig_cpu != cpu)
2441
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2442
	if (cpu == this_cpu)
2443
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2444
	else
2445
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
I
Ingo Molnar 已提交
2446
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2447 2448 2449
	success = 1;

out_running:
2450
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2451
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2452

L
Linus Torvalds 已提交
2453
	p->state = TASK_RUNNING;
2454
#ifdef CONFIG_SMP
2455 2456
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2468
#endif
L
Linus Torvalds 已提交
2469 2470
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2471
	put_cpu();
L
Linus Torvalds 已提交
2472 2473 2474 2475

	return success;
}

2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2487
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2488
{
2489
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2490 2491 2492
}
EXPORT_SYMBOL(wake_up_process);

2493
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2494 2495 2496 2497 2498 2499 2500
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2501 2502 2503 2504 2505 2506 2507
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2508
	p->se.prev_sum_exec_runtime	= 0;
2509
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2510 2511

#ifdef CONFIG_SCHEDSTATS
2512
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2513
#endif
N
Nick Piggin 已提交
2514

P
Peter Zijlstra 已提交
2515
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2516
	p->se.on_rq = 0;
2517
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2518

2519 2520 2521
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2532 2533 2534 2535 2536 2537
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2538

2539 2540 2541 2542
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2543
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2544
			p->policy = SCHED_NORMAL;
2545 2546
			p->normal_prio = p->static_prio;
		}
2547

2548 2549
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2550
			p->normal_prio = p->static_prio;
2551 2552 2553
			set_load_weight(p);
		}

2554 2555 2556 2557 2558 2559
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2560

2561 2562 2563 2564 2565
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2566 2567
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2568

P
Peter Zijlstra 已提交
2569 2570 2571
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2572 2573
	set_task_cpu(p, cpu);

2574
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2575
	if (likely(sched_info_on()))
2576
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2577
#endif
2578
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2579 2580
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2581
#ifdef CONFIG_PREEMPT
2582
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2583
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2584
#endif
2585 2586
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2587
	put_cpu();
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2597
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2598 2599
{
	unsigned long flags;
I
Ingo Molnar 已提交
2600
	struct rq *rq;
2601
	int cpu __maybe_unused = get_cpu();
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2616

2617 2618 2619 2620 2621 2622 2623
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2624 2625
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
P
Peter Zijlstra 已提交
2626
	activate_task(rq, p, 0);
2627
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2628
	check_preempt_curr(rq, p, WF_FORK);
2629
#ifdef CONFIG_SMP
2630 2631
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2632
#endif
I
Ingo Molnar 已提交
2633
	task_rq_unlock(rq, &flags);
2634
	put_cpu();
L
Linus Torvalds 已提交
2635 2636
}

2637 2638 2639
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2640
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2641
 * @notifier: notifier struct to register
2642 2643 2644 2645 2646 2647 2648 2649 2650
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2651
 * @notifier: notifier struct to unregister
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2681
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2693
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2694

2695 2696 2697
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2698
 * @prev: the current task that is being switched out
2699 2700 2701 2702 2703 2704 2705 2706 2707
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2708 2709 2710
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2711
{
2712
	fire_sched_out_preempt_notifiers(prev, next);
2713 2714 2715 2716
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2717 2718
/**
 * finish_task_switch - clean up after a task-switch
2719
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2720 2721
 * @prev: the thread we just switched away from.
 *
2722 2723 2724 2725
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2726 2727
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2728
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2729 2730 2731
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2732
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2733 2734 2735
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2736
	long prev_state;
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2742
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2743 2744
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2745
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2751
	prev_state = prev->state;
2752
	finish_arch_switch(prev);
2753 2754 2755
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2756
	perf_event_task_sched_in(current);
2757 2758 2759
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2760
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2761

2762
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2763 2764
	if (mm)
		mmdrop(mm);
2765
	if (unlikely(prev_state == TASK_DEAD)) {
2766 2767 2768
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2769
		 */
2770
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2771
		put_task_struct(prev);
2772
	}
L
Linus Torvalds 已提交
2773 2774
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2790
		raw_spin_lock_irqsave(&rq->lock, flags);
2791 2792
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2793
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2794 2795 2796 2797 2798 2799

		rq->post_schedule = 0;
	}
}

#else
2800

2801 2802 2803 2804 2805 2806
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2807 2808
}

2809 2810
#endif

L
Linus Torvalds 已提交
2811 2812 2813 2814
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2815
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2816 2817
	__releases(rq->lock)
{
2818 2819
	struct rq *rq = this_rq();

2820
	finish_task_switch(rq, prev);
2821

2822 2823 2824 2825 2826
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2827

2828 2829 2830 2831
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2832
	if (current->set_child_tid)
2833
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2834 2835 2836 2837 2838 2839
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2840
static inline void
2841
context_switch(struct rq *rq, struct task_struct *prev,
2842
	       struct task_struct *next)
L
Linus Torvalds 已提交
2843
{
I
Ingo Molnar 已提交
2844
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2845

2846
	prepare_task_switch(rq, prev, next);
2847
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2848 2849
	mm = next->mm;
	oldmm = prev->active_mm;
2850 2851 2852 2853 2854
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2855
	arch_start_context_switch(prev);
2856

2857
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862 2863
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2864
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2865 2866 2867
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2868 2869 2870 2871 2872 2873 2874
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2875
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2876
#endif
L
Linus Torvalds 已提交
2877 2878 2879 2880

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2881 2882 2883 2884 2885 2886 2887
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2905
}
L
Linus Torvalds 已提交
2906 2907

unsigned long nr_uninterruptible(void)
2908
{
L
Linus Torvalds 已提交
2909
	unsigned long i, sum = 0;
2910

2911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2912
		sum += cpu_rq(i)->nr_uninterruptible;
2913 2914

	/*
L
Linus Torvalds 已提交
2915 2916
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2917
	 */
L
Linus Torvalds 已提交
2918 2919
	if (unlikely((long)sum < 0))
		sum = 0;
2920

L
Linus Torvalds 已提交
2921
	return sum;
2922 2923
}

L
Linus Torvalds 已提交
2924
unsigned long long nr_context_switches(void)
2925
{
2926 2927
	int i;
	unsigned long long sum = 0;
2928

2929
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2930
		sum += cpu_rq(i)->nr_switches;
2931

L
Linus Torvalds 已提交
2932 2933
	return sum;
}
2934

L
Linus Torvalds 已提交
2935 2936 2937
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2938

2939
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2940
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2941

L
Linus Torvalds 已提交
2942 2943
	return sum;
}
2944

2945 2946 2947 2948 2949
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2950

2951 2952 2953 2954 2955
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2956

2957

2958 2959 2960 2961 2962
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2963

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2977 2978
}

2979 2980
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2981
{
2982 2983 2984 2985
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2986 2987

/*
2988 2989
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2990
 */
2991
void calc_global_load(void)
2992
{
2993 2994
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2995

2996 2997
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2998

2999 3000
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3001

3002 3003 3004
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3005

3006 3007
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3008

3009 3010 3011 3012 3013 3014
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3015

3016 3017
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3018

3019 3020 3021 3022
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3023
	}
3024 3025 3026
}

/*
I
Ingo Molnar 已提交
3027 3028
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3029
 */
I
Ingo Molnar 已提交
3030
static void update_cpu_load(struct rq *this_rq)
3031
{
3032
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3033
	int i, scale;
3034

I
Ingo Molnar 已提交
3035
	this_rq->nr_load_updates++;
3036

I
Ingo Molnar 已提交
3037 3038 3039
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3040

I
Ingo Molnar 已提交
3041
		/* scale is effectively 1 << i now, and >> i divides by scale */
3042

I
Ingo Molnar 已提交
3043 3044
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3045 3046 3047 3048 3049 3050 3051
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3052 3053
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3054

3055 3056 3057
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3058 3059 3060
	}
}

I
Ingo Molnar 已提交
3061
#ifdef CONFIG_SMP
3062

3063
/*
P
Peter Zijlstra 已提交
3064 3065
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3066
 */
P
Peter Zijlstra 已提交
3067
void sched_exec(void)
3068
{
P
Peter Zijlstra 已提交
3069
	struct task_struct *p = current;
3070
	struct migration_req req;
P
Peter Zijlstra 已提交
3071
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3072
	unsigned long flags;
3073
	struct rq *rq;
3074

P
Peter Zijlstra 已提交
3075
	this_cpu = get_cpu();
3076
	dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
P
Peter Zijlstra 已提交
3077 3078 3079
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3080 3081
	}

L
Linus Torvalds 已提交
3082
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3083
	put_cpu();
3084
	/*
P
Peter Zijlstra 已提交
3085
	 * select_task_rq() can race against ->cpus_allowed
3086
	 */
3087 3088 3089
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
	    likely(cpu_active(dest_cpu)) &&
	    migrate_task(p, dest_cpu, &req)) {
L
Linus Torvalds 已提交
3090 3091
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3092

L
Linus Torvalds 已提交
3093 3094 3095 3096 3097
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3098

L
Linus Torvalds 已提交
3099 3100 3101 3102
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3103

L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109 3110
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3111
 * Return any ns on the sched_clock that have not yet been accounted in
3112
 * @p in case that task is currently running.
3113 3114
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3115
 */
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3130
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3131 3132
{
	unsigned long flags;
3133
	struct rq *rq;
3134
	u64 ns = 0;
3135

3136
	rq = task_rq_lock(p, &flags);
3137 3138
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3139

3140 3141
	return ns;
}
3142

3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3160

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3180
	task_rq_unlock(rq, &flags);
3181

L
Linus Torvalds 已提交
3182 3183 3184 3185 3186 3187 3188
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3189
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3190
 */
3191 3192
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3193 3194 3195 3196
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3197
	/* Add user time to process. */
L
Linus Torvalds 已提交
3198
	p->utime = cputime_add(p->utime, cputime);
3199
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3200
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3201 3202 3203 3204 3205 3206 3207

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3208 3209

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3210 3211
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3212 3213
}

3214 3215 3216 3217
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3218
 * @cputime_scaled: cputime scaled by cpu frequency
3219
 */
3220 3221
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3222 3223 3224 3225 3226 3227
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3228
	/* Add guest time to process. */
3229
	p->utime = cputime_add(p->utime, cputime);
3230
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3231
	account_group_user_time(p, cputime);
3232 3233
	p->gtime = cputime_add(p->gtime, cputime);

3234
	/* Add guest time to cpustat. */
3235 3236 3237 3238 3239 3240 3241
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3242 3243
}

L
Linus Torvalds 已提交
3244 3245 3246 3247 3248
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3249
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3250 3251
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3252
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3253 3254 3255 3256
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3257
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3258
		account_guest_time(p, cputime, cputime_scaled);
3259 3260
		return;
	}
3261

3262
	/* Add system time to process. */
L
Linus Torvalds 已提交
3263
	p->stime = cputime_add(p->stime, cputime);
3264
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3265
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3266 3267 3268 3269 3270 3271 3272 3273

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3274 3275
		cpustat->system = cputime64_add(cpustat->system, tmp);

3276 3277
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3278 3279 3280 3281
	/* Account for system time used */
	acct_update_integrals(p);
}

3282
/*
L
Linus Torvalds 已提交
3283 3284
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3285
 */
3286
void account_steal_time(cputime_t cputime)
3287
{
3288 3289 3290 3291
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3292 3293
}

L
Linus Torvalds 已提交
3294
/*
3295 3296
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3297
 */
3298
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3299 3300
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3301
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3302
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3303

3304 3305 3306 3307
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3308 3309
}

3310 3311 3312 3313 3314 3315 3316 3317 3318
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3319
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3320 3321 3322
	struct rq *rq = this_rq();

	if (user_tick)
3323
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3324
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3325
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3326 3327
				    one_jiffy_scaled);
	else
3328
		account_idle_time(cputime_one_jiffy);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3348 3349
}

3350 3351
#endif

3352 3353 3354 3355
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3356
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3357
{
3358 3359
	*ut = p->utime;
	*st = p->stime;
3360 3361
}

3362
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3363
{
3364 3365 3366 3367 3368 3369
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3370 3371
}
#else
3372 3373

#ifndef nsecs_to_cputime
3374
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3375 3376
#endif

3377
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3378
{
3379
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3380 3381 3382 3383

	/*
	 * Use CFS's precise accounting:
	 */
3384
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3385 3386

	if (total) {
3387 3388 3389
		u64 temp;

		temp = (u64)(rtime * utime);
3390
		do_div(temp, total);
3391 3392 3393
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3394

3395 3396 3397
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3398
	p->prev_utime = max(p->prev_utime, utime);
3399
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3400

3401 3402
	*ut = p->prev_utime;
	*st = p->prev_stime;
3403 3404
}

3405 3406 3407 3408
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3409
{
3410 3411 3412
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3413

3414
	thread_group_cputime(p, &cputime);
3415

3416 3417
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3418

3419 3420
	if (total) {
		u64 temp;
3421

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3434 3435 3436
}
#endif

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3448
	struct task_struct *curr = rq->curr;
3449 3450

	sched_clock_tick();
I
Ingo Molnar 已提交
3451

3452
	raw_spin_lock(&rq->lock);
3453
	update_rq_clock(rq);
3454
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3455
	curr->sched_class->task_tick(rq, curr, 0);
3456
	raw_spin_unlock(&rq->lock);
3457

3458
	perf_event_task_tick(curr);
3459

3460
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3461 3462
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3463
#endif
L
Linus Torvalds 已提交
3464 3465
}

3466
notrace unsigned long get_parent_ip(unsigned long addr)
3467 3468 3469 3470 3471 3472 3473 3474
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3475

3476 3477 3478
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3479
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3480
{
3481
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3482 3483 3484
	/*
	 * Underflow?
	 */
3485 3486
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3487
#endif
L
Linus Torvalds 已提交
3488
	preempt_count() += val;
3489
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3490 3491 3492
	/*
	 * Spinlock count overflowing soon?
	 */
3493 3494
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3495 3496 3497
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3498 3499 3500
}
EXPORT_SYMBOL(add_preempt_count);

3501
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3502
{
3503
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3504 3505 3506
	/*
	 * Underflow?
	 */
3507
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3508
		return;
L
Linus Torvalds 已提交
3509 3510 3511
	/*
	 * Is the spinlock portion underflowing?
	 */
3512 3513 3514
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3515
#endif
3516

3517 3518
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524 3525
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3526
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3527
 */
I
Ingo Molnar 已提交
3528
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3529
{
3530 3531
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3532 3533
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3534

I
Ingo Molnar 已提交
3535
	debug_show_held_locks(prev);
3536
	print_modules();
I
Ingo Molnar 已提交
3537 3538
	if (irqs_disabled())
		print_irqtrace_events(prev);
3539 3540 3541 3542 3543

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3544
}
L
Linus Torvalds 已提交
3545

I
Ingo Molnar 已提交
3546 3547 3548 3549 3550
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3551
	/*
I
Ingo Molnar 已提交
3552
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3553 3554 3555
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3556
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3557 3558
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3559 3560
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3561
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3562 3563
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3564 3565
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3566 3567
	}
#endif
I
Ingo Molnar 已提交
3568 3569
}

P
Peter Zijlstra 已提交
3570
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3571
{
3572 3573 3574
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3575
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3576 3577
}

I
Ingo Molnar 已提交
3578 3579 3580 3581
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3582
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3583
{
3584
	const struct sched_class *class;
I
Ingo Molnar 已提交
3585
	struct task_struct *p;
L
Linus Torvalds 已提交
3586 3587

	/*
I
Ingo Molnar 已提交
3588 3589
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3590
	 */
I
Ingo Molnar 已提交
3591
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3592
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3593 3594
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3595 3596
	}

I
Ingo Molnar 已提交
3597 3598
	class = sched_class_highest;
	for ( ; ; ) {
3599
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3609

I
Ingo Molnar 已提交
3610 3611 3612
/*
 * schedule() is the main scheduler function.
 */
3613
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3614 3615
{
	struct task_struct *prev, *next;
3616
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3617
	struct rq *rq;
3618
	int cpu;
I
Ingo Molnar 已提交
3619

3620 3621
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3622 3623
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3624
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3625 3626 3627 3628 3629 3630 3631
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3632

3633
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3634
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3635

3636
	raw_spin_lock_irq(&rq->lock);
3637
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3638 3639

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3640
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3641
			prev->state = TASK_RUNNING;
3642
		else
3643
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3644
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3645 3646
	}

3647
	pre_schedule(rq, prev);
3648

I
Ingo Molnar 已提交
3649
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3650 3651
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3652
	put_prev_task(rq, prev);
3653
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3654 3655

	if (likely(prev != next)) {
3656
		sched_info_switch(prev, next);
3657
		perf_event_task_sched_out(prev, next);
3658

L
Linus Torvalds 已提交
3659 3660 3661 3662
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3663
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3664 3665 3666 3667 3668 3669
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3670
	} else
3671
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3672

3673
	post_schedule(rq);
L
Linus Torvalds 已提交
3674

3675 3676 3677
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3678
		goto need_resched_nonpreemptible;
3679
	}
P
Peter Zijlstra 已提交
3680

L
Linus Torvalds 已提交
3681
	preempt_enable_no_resched();
3682
	if (need_resched())
L
Linus Torvalds 已提交
3683 3684 3685 3686
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3687
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
3748 3749
#ifdef CONFIG_PREEMPT
/*
3750
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3751
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3757

L
Linus Torvalds 已提交
3758 3759
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3760
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3761
	 */
N
Nick Piggin 已提交
3762
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3763 3764
		return;

3765 3766 3767 3768
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3769

3770 3771 3772 3773 3774
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3775
	} while (need_resched());
L
Linus Torvalds 已提交
3776 3777 3778 3779
}
EXPORT_SYMBOL(preempt_schedule);

/*
3780
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3781 3782 3783 3784 3785 3786 3787
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3788

3789
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3790 3791
	BUG_ON(ti->preempt_count || !irqs_disabled());

3792 3793 3794 3795 3796 3797
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3798

3799 3800 3801 3802 3803
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3804
	} while (need_resched());
L
Linus Torvalds 已提交
3805 3806 3807 3808
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3809
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3810
			  void *key)
L
Linus Torvalds 已提交
3811
{
P
Peter Zijlstra 已提交
3812
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3813 3814 3815 3816
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3817 3818
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3819 3820 3821
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3822
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3823 3824
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3825
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3826
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3827
{
3828
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3829

3830
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3831 3832
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3833
		if (curr->func(curr, mode, wake_flags, key) &&
3834
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3844
 * @key: is directly passed to the wakeup function
3845 3846 3847
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3848
 */
3849
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3850
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3863
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3864 3865 3866 3867
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3868 3869 3870 3871 3872
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3873
/**
3874
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3875 3876 3877
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3878
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883 3884 3885
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3886 3887 3888
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3889
 */
3890 3891
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3892 3893
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3894
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3895 3896 3897 3898 3899

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3900
		wake_flags = 0;
L
Linus Torvalds 已提交
3901 3902

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3903
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3904 3905
	spin_unlock_irqrestore(&q->lock, flags);
}
3906 3907 3908 3909 3910 3911 3912 3913 3914
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3915 3916
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3917 3918 3919 3920 3921 3922 3923 3924
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3925 3926 3927
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3928
 */
3929
void complete(struct completion *x)
L
Linus Torvalds 已提交
3930 3931 3932 3933 3934
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3935
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3936 3937 3938 3939
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3940 3941 3942 3943 3944
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3945 3946 3947
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3948
 */
3949
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3955
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3956 3957 3958 3959
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3960 3961
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3969
			if (signal_pending_state(state, current)) {
3970 3971
				timeout = -ERESTARTSYS;
				break;
3972 3973
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3974 3975 3976
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3977
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3978
		__remove_wait_queue(&x->wait, &wait);
3979 3980
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3981 3982
	}
	x->done--;
3983
	return timeout ?: 1;
L
Linus Torvalds 已提交
3984 3985
}

3986 3987
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3988 3989 3990 3991
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3992
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3993
	spin_unlock_irq(&x->wait.lock);
3994 3995
	return timeout;
}
L
Linus Torvalds 已提交
3996

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4007
void __sched wait_for_completion(struct completion *x)
4008 4009
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4010
}
4011
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4012

4013 4014 4015 4016 4017 4018 4019 4020 4021
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4022
unsigned long __sched
4023
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4024
{
4025
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4026
}
4027
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4028

4029 4030 4031 4032 4033 4034 4035
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4036
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4037
{
4038 4039 4040 4041
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4042
}
4043
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4044

4045 4046 4047 4048 4049 4050 4051 4052
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4053
unsigned long __sched
4054 4055
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4056
{
4057
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4058
}
4059
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4060

4061 4062 4063 4064 4065 4066 4067
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4091
	unsigned long flags;
4092 4093
	int ret = 1;

4094
	spin_lock_irqsave(&x->wait.lock, flags);
4095 4096 4097 4098
	if (!x->done)
		ret = 0;
	else
		x->done--;
4099
	spin_unlock_irqrestore(&x->wait.lock, flags);
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4114
	unsigned long flags;
4115 4116
	int ret = 1;

4117
	spin_lock_irqsave(&x->wait.lock, flags);
4118 4119
	if (!x->done)
		ret = 0;
4120
	spin_unlock_irqrestore(&x->wait.lock, flags);
4121 4122 4123 4124
	return ret;
}
EXPORT_SYMBOL(completion_done);

4125 4126
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4127
{
I
Ingo Molnar 已提交
4128 4129 4130 4131
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4132

4133
	__set_current_state(state);
L
Linus Torvalds 已提交
4134

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4149 4150 4151
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4152
long __sched
I
Ingo Molnar 已提交
4153
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4154
{
4155
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4156 4157 4158
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4159
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4160
{
4161
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4162 4163 4164
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4165
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4166
{
4167
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4168 4169 4170
}
EXPORT_SYMBOL(sleep_on_timeout);

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4183
void rt_mutex_setprio(struct task_struct *p, int prio)
4184 4185
{
	unsigned long flags;
4186
	int oldprio, on_rq, running;
4187
	struct rq *rq;
4188
	const struct sched_class *prev_class;
4189 4190 4191 4192 4193

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4194
	oldprio = p->prio;
4195
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4196
	on_rq = p->se.on_rq;
4197
	running = task_current(rq, p);
4198
	if (on_rq)
4199
		dequeue_task(rq, p, 0);
4200 4201
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4202 4203 4204 4205 4206 4207

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4208 4209
	p->prio = prio;

4210 4211
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4212
	if (on_rq) {
4213
		enqueue_task(rq, p, 0, oldprio < prio);
4214 4215

		check_class_changed(rq, p, prev_class, oldprio, running);
4216 4217 4218 4219 4220 4221
	}
	task_rq_unlock(rq, &flags);
}

#endif

4222
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4223
{
I
Ingo Molnar 已提交
4224
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4225
	unsigned long flags;
4226
	struct rq *rq;
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4239
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4240
	 */
4241
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4242 4243 4244
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4245
	on_rq = p->se.on_rq;
4246
	if (on_rq)
4247
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4248 4249

	p->static_prio = NICE_TO_PRIO(nice);
4250
	set_load_weight(p);
4251 4252 4253
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4254

I
Ingo Molnar 已提交
4255
	if (on_rq) {
4256
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4257
		/*
4258 4259
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4260
		 */
4261
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4262 4263 4264 4265 4266 4267 4268
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4269 4270 4271 4272 4273
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4274
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4275
{
4276 4277
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4278

4279
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4280 4281 4282
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290 4291
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4292
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4293
{
4294
	long nice, retval;
L
Linus Torvalds 已提交
4295 4296 4297 4298 4299 4300

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4301 4302
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4303 4304 4305
	if (increment > 40)
		increment = 40;

4306
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4307 4308 4309 4310 4311
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4312 4313 4314
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4333
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4334 4335 4336 4337 4338 4339 4340 4341
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4342
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4343 4344 4345
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4346
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4361
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4370
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4371
{
4372
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4373 4374 4375
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4376 4377
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4378
{
I
Ingo Molnar 已提交
4379
	BUG_ON(p->se.on_rq);
4380

L
Linus Torvalds 已提交
4381 4382
	p->policy = policy;
	p->rt_priority = prio;
4383 4384 4385
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4386 4387 4388 4389
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4390
	set_load_weight(p);
L
Linus Torvalds 已提交
4391 4392
}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4409 4410
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4411
{
4412
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4413
	unsigned long flags;
4414
	const struct sched_class *prev_class;
4415
	struct rq *rq;
4416
	int reset_on_fork;
L
Linus Torvalds 已提交
4417

4418 4419
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4420 4421
recheck:
	/* double check policy once rq lock held */
4422 4423
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4424
		policy = oldpolicy = p->policy;
4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4435 4436
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4437 4438
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4439 4440
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4441
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4442
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4443
		return -EINVAL;
4444
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4445 4446
		return -EINVAL;

4447 4448 4449
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4450
	if (user && !capable(CAP_SYS_NICE)) {
4451
		if (rt_policy(policy)) {
4452 4453 4454 4455
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4456
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4468 4469 4470 4471 4472 4473
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4474

4475
		/* can't change other user's priorities */
4476
		if (!check_same_owner(p))
4477
			return -EPERM;
4478 4479 4480 4481

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4482
	}
L
Linus Torvalds 已提交
4483

4484
	if (user) {
4485
#ifdef CONFIG_RT_GROUP_SCHED
4486 4487 4488 4489
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4490 4491
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4492
			return -EPERM;
4493 4494
#endif

4495 4496 4497 4498 4499
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4500 4501 4502 4503
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4504
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4505 4506 4507 4508
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4509
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4510 4511 4512
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4513
		__task_rq_unlock(rq);
4514
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4515 4516
		goto recheck;
	}
I
Ingo Molnar 已提交
4517
	on_rq = p->se.on_rq;
4518
	running = task_current(rq, p);
4519
	if (on_rq)
4520
		deactivate_task(rq, p, 0);
4521 4522
	if (running)
		p->sched_class->put_prev_task(rq, p);
4523

4524 4525
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4526
	oldprio = p->prio;
4527
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4528
	__setscheduler(rq, p, policy, param->sched_priority);
4529

4530 4531
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4532 4533
	if (on_rq) {
		activate_task(rq, p, 0);
4534 4535

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4536
	}
4537
	__task_rq_unlock(rq);
4538
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4539

4540 4541
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4542 4543
	return 0;
}
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4558 4559
EXPORT_SYMBOL_GPL(sched_setscheduler);

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4577 4578
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4579 4580 4581
{
	struct sched_param lparam;
	struct task_struct *p;
4582
	int retval;
L
Linus Torvalds 已提交
4583 4584 4585 4586 4587

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4588 4589 4590

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4591
	p = find_process_by_pid(pid);
4592 4593 4594
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4595

L
Linus Torvalds 已提交
4596 4597 4598 4599 4600 4601 4602 4603 4604
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4605 4606
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4607
{
4608 4609 4610 4611
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4612 4613 4614 4615 4616 4617 4618 4619
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4620
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4621 4622 4623 4624 4625 4626 4627 4628
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4629
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4630
{
4631
	struct task_struct *p;
4632
	int retval;
L
Linus Torvalds 已提交
4633 4634

	if (pid < 0)
4635
		return -EINVAL;
L
Linus Torvalds 已提交
4636 4637

	retval = -ESRCH;
4638
	rcu_read_lock();
L
Linus Torvalds 已提交
4639 4640 4641 4642
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4643 4644
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4645
	}
4646
	rcu_read_unlock();
L
Linus Torvalds 已提交
4647 4648 4649 4650
	return retval;
}

/**
4651
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4652 4653 4654
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4655
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4656 4657
{
	struct sched_param lp;
4658
	struct task_struct *p;
4659
	int retval;
L
Linus Torvalds 已提交
4660 4661

	if (!param || pid < 0)
4662
		return -EINVAL;
L
Linus Torvalds 已提交
4663

4664
	rcu_read_lock();
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4675
	rcu_read_unlock();
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4685
	rcu_read_unlock();
L
Linus Torvalds 已提交
4686 4687 4688
	return retval;
}

4689
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4690
{
4691
	cpumask_var_t cpus_allowed, new_mask;
4692 4693
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4694

4695
	get_online_cpus();
4696
	rcu_read_lock();
L
Linus Torvalds 已提交
4697 4698 4699

	p = find_process_by_pid(pid);
	if (!p) {
4700
		rcu_read_unlock();
4701
		put_online_cpus();
L
Linus Torvalds 已提交
4702 4703 4704
		return -ESRCH;
	}

4705
	/* Prevent p going away */
L
Linus Torvalds 已提交
4706
	get_task_struct(p);
4707
	rcu_read_unlock();
L
Linus Torvalds 已提交
4708

4709 4710 4711 4712 4713 4714 4715 4716
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4717
	retval = -EPERM;
4718
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4719 4720
		goto out_unlock;

4721 4722 4723 4724
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4725 4726
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4727
 again:
4728
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4729

P
Paul Menage 已提交
4730
	if (!retval) {
4731 4732
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4733 4734 4735 4736 4737
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4738
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4739 4740 4741
			goto again;
		}
	}
L
Linus Torvalds 已提交
4742
out_unlock:
4743 4744 4745 4746
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4747
	put_task_struct(p);
4748
	put_online_cpus();
L
Linus Torvalds 已提交
4749 4750 4751 4752
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4753
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4754
{
4755 4756 4757 4758 4759
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4760 4761 4762 4763 4764 4765 4766 4767 4768
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4769 4770
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4771
{
4772
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4773 4774
	int retval;

4775 4776
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4777

4778 4779 4780 4781 4782
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4783 4784
}

4785
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4786
{
4787
	struct task_struct *p;
4788 4789
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4790 4791
	int retval;

4792
	get_online_cpus();
4793
	rcu_read_lock();
L
Linus Torvalds 已提交
4794 4795 4796 4797 4798 4799

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4800 4801 4802 4803
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4804
	rq = task_rq_lock(p, &flags);
4805
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4806
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4807 4808

out_unlock:
4809
	rcu_read_unlock();
4810
	put_online_cpus();
L
Linus Torvalds 已提交
4811

4812
	return retval;
L
Linus Torvalds 已提交
4813 4814 4815 4816 4817 4818 4819 4820
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4821 4822
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4823 4824
{
	int ret;
4825
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4826

4827 4828 4829
	if (len < nr_cpu_ids)
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4830 4831
		return -EINVAL;

4832 4833
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4834

4835 4836
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4837
		size_t retlen = min_t(size_t, len, cpumask_size());
4838 4839

		if (copy_to_user(user_mask_ptr, mask, retlen))
4840 4841
			ret = -EFAULT;
		else
4842
			ret = retlen;
4843 4844
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4845

4846
	return ret;
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4852 4853
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4854
 */
4855
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4856
{
4857
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4858

4859
	schedstat_inc(rq, yld_count);
4860
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4861 4862 4863 4864 4865 4866

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4867
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4868
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4869 4870 4871 4872 4873 4874 4875
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4876 4877 4878 4879 4880
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4881
static void __cond_resched(void)
L
Linus Torvalds 已提交
4882
{
4883 4884 4885
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4886 4887
}

4888
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4889
{
P
Peter Zijlstra 已提交
4890
	if (should_resched()) {
L
Linus Torvalds 已提交
4891 4892 4893 4894 4895
		__cond_resched();
		return 1;
	}
	return 0;
}
4896
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4897 4898

/*
4899
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4900 4901
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4902
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4903 4904 4905
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4906
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4907
{
P
Peter Zijlstra 已提交
4908
	int resched = should_resched();
J
Jan Kara 已提交
4909 4910
	int ret = 0;

4911 4912
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4913
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4914
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4915
		if (resched)
N
Nick Piggin 已提交
4916 4917 4918
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4919
		ret = 1;
L
Linus Torvalds 已提交
4920 4921
		spin_lock(lock);
	}
J
Jan Kara 已提交
4922
	return ret;
L
Linus Torvalds 已提交
4923
}
4924
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4925

4926
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4927 4928 4929
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4930
	if (should_resched()) {
4931
		local_bh_enable();
L
Linus Torvalds 已提交
4932 4933 4934 4935 4936 4937
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4938
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4939 4940 4941 4942

/**
 * yield - yield the current processor to other threads.
 *
4943
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4944 4945 4946 4947 4948 4949 4950 4951 4952 4953
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4954
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4955 4956 4957 4958
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4959
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4960

4961
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4962
	atomic_inc(&rq->nr_iowait);
4963
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4964
	schedule();
4965
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4966
	atomic_dec(&rq->nr_iowait);
4967
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4968 4969 4970 4971 4972
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4973
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4974 4975
	long ret;

4976
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4977
	atomic_inc(&rq->nr_iowait);
4978
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4979
	ret = schedule_timeout(timeout);
4980
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4981
	atomic_dec(&rq->nr_iowait);
4982
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4993
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000 5001 5002
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5003
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5004
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5018
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5019 5020 5021 5022 5023 5024 5025 5026 5027
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5028
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5029
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5043
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5044
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5045
{
5046
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5047
	unsigned int time_slice;
5048 5049
	unsigned long flags;
	struct rq *rq;
5050
	int retval;
L
Linus Torvalds 已提交
5051 5052 5053
	struct timespec t;

	if (pid < 0)
5054
		return -EINVAL;
L
Linus Torvalds 已提交
5055 5056

	retval = -ESRCH;
5057
	rcu_read_lock();
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5066 5067 5068
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5069

5070
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5071
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5072 5073
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5074

L
Linus Torvalds 已提交
5075
out_unlock:
5076
	rcu_read_unlock();
L
Linus Torvalds 已提交
5077 5078 5079
	return retval;
}

5080
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5081

5082
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5083 5084
{
	unsigned long free = 0;
5085
	unsigned state;
L
Linus Torvalds 已提交
5086 5087

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5088
	printk(KERN_INFO "%-13.13s %c", p->comm,
5089
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5090
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5091
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5092
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5093
	else
P
Peter Zijlstra 已提交
5094
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5095 5096
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5097
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5098
	else
P
Peter Zijlstra 已提交
5099
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5100 5101
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5102
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5103
#endif
P
Peter Zijlstra 已提交
5104
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5105 5106
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5107

5108
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5109 5110
}

I
Ingo Molnar 已提交
5111
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5112
{
5113
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5114

5115
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5116 5117
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5118
#else
P
Peter Zijlstra 已提交
5119 5120
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126 5127 5128
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5129
		if (!state_filter || (p->state & state_filter))
5130
			sched_show_task(p);
L
Linus Torvalds 已提交
5131 5132
	} while_each_thread(g, p);

5133 5134
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5135 5136 5137
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5138
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5139 5140 5141
	/*
	 * Only show locks if all tasks are dumped:
	 */
5142
	if (!state_filter)
I
Ingo Molnar 已提交
5143
		debug_show_all_locks();
L
Linus Torvalds 已提交
5144 5145
}

I
Ingo Molnar 已提交
5146 5147
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5148
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5149 5150
}

5151 5152 5153 5154 5155 5156 5157 5158
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5159
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5160
{
5161
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5162 5163
	unsigned long flags;

5164
	raw_spin_lock_irqsave(&rq->lock, flags);
5165

I
Ingo Molnar 已提交
5166
	__sched_fork(idle);
5167
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5168 5169
	idle->se.exec_start = sched_clock();

5170
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5171
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5172 5173

	rq->curr = rq->idle = idle;
5174 5175 5176
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5177
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5178 5179

	/* Set the preempt count _outside_ the spinlocks! */
5180 5181 5182
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5183
	task_thread_info(idle)->preempt_count = 0;
5184
#endif
I
Ingo Molnar 已提交
5185 5186 5187 5188
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5189
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5190 5191 5192 5193 5194 5195 5196
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5197
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5198
 */
5199
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5200

I
Ingo Molnar 已提交
5201 5202 5203 5204 5205 5206 5207 5208 5209
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5210
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5211
{
5212
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5227

5228 5229
	return factor;
}
I
Ingo Molnar 已提交
5230

5231 5232 5233
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5234

5235 5236 5237 5238 5239 5240 5241 5242
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5243

5244 5245 5246
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5247 5248
}

L
Linus Torvalds 已提交
5249 5250 5251 5252
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5253
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5272
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5273 5274
 * call is not atomic; no spinlocks may be held.
 */
5275
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5276
{
5277
	struct migration_req req;
L
Linus Torvalds 已提交
5278
	unsigned long flags;
5279
	struct rq *rq;
5280
	int ret = 0;
L
Linus Torvalds 已提交
5281 5282

	rq = task_rq_lock(p, &flags);
5283

5284
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5285 5286 5287 5288
		ret = -EINVAL;
		goto out;
	}

5289
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5290
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5291 5292 5293 5294
		ret = -EINVAL;
		goto out;
	}

5295
	if (p->sched_class->set_cpus_allowed)
5296
		p->sched_class->set_cpus_allowed(p, new_mask);
5297
	else {
5298 5299
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5300 5301
	}

L
Linus Torvalds 已提交
5302
	/* Can the task run on the task's current CPU? If so, we're done */
5303
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5304 5305
		goto out;

5306
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5307
		/* Need help from migration thread: drop lock and wait. */
5308 5309 5310
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5311 5312
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
5313
		put_task_struct(mt);
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5320

L
Linus Torvalds 已提交
5321 5322
	return ret;
}
5323
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5324 5325

/*
I
Ingo Molnar 已提交
5326
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5327 5328 5329 5330 5331 5332
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5333 5334
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5335
 */
5336
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5337
{
5338
	struct rq *rq_dest, *rq_src;
5339
	int ret = 0;
L
Linus Torvalds 已提交
5340

5341
	if (unlikely(!cpu_active(dest_cpu)))
5342
		return ret;
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5350
		goto done;
L
Linus Torvalds 已提交
5351
	/* Affinity changed (again). */
5352
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5353
		goto fail;
L
Linus Torvalds 已提交
5354

5355 5356 5357 5358 5359
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5360
		deactivate_task(rq_src, p, 0);
5361
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5362
		activate_task(rq_dest, p, 0);
5363
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5364
	}
L
Linus Torvalds 已提交
5365
done:
5366
	ret = 1;
L
Linus Torvalds 已提交
5367
fail:
L
Linus Torvalds 已提交
5368
	double_rq_unlock(rq_src, rq_dest);
5369
	return ret;
L
Linus Torvalds 已提交
5370 5371
}

5372 5373 5374 5375 5376
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5377 5378 5379 5380 5381
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5382
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5383
{
5384
	int badcpu;
L
Linus Torvalds 已提交
5385
	int cpu = (long)data;
5386
	struct rq *rq;
L
Linus Torvalds 已提交
5387 5388 5389 5390 5391 5392

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5393
		struct migration_req *req;
L
Linus Torvalds 已提交
5394 5395
		struct list_head *head;

5396
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5397 5398

		if (cpu_is_offline(cpu)) {
5399
			raw_spin_unlock_irq(&rq->lock);
5400
			break;
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5411
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5412 5413 5414 5415
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5416
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5417 5418
		list_del_init(head->next);

5419
		if (req->task != NULL) {
5420
			raw_spin_unlock(&rq->lock);
5421 5422 5423
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5424
			raw_spin_unlock(&rq->lock);
5425 5426
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5427
			raw_spin_unlock(&rq->lock);
5428 5429
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5430
		local_irq_enable();
L
Linus Torvalds 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5440
/*
5441
 * Figure out where task on dead CPU should go, use force if necessary.
5442
 */
5443
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5444
{
5445 5446 5447
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5448

5449 5450 5451 5452 5453 5454 5455
	local_irq_save(flags);

	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5456 5457 5458 5459
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5460
	if (needs_cpu)
5461
		__migrate_task(p, dead_cpu, dest_cpu);
5462
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468 5469 5470 5471
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5472
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5473
{
5474
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5488
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5489

5490
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5491

5492 5493
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5494 5495
			continue;

5496 5497 5498
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5499

5500
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5501 5502
}

I
Ingo Molnar 已提交
5503 5504
/*
 * Schedules idle task to be the next runnable task on current CPU.
5505 5506
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5507 5508 5509
 */
void sched_idle_next(void)
{
5510
	int this_cpu = smp_processor_id();
5511
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5512 5513 5514 5515
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5516
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5517

5518 5519 5520
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5521
	 */
5522
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5523

I
Ingo Molnar 已提交
5524
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5525

5526
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5527

5528
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5529 5530
}

5531 5532
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5546
/* called under rq->lock with disabled interrupts */
5547
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5548
{
5549
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5550 5551

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5552
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5553 5554

	/* Cannot have done final schedule yet: would have vanished. */
5555
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5556

5557
	get_task_struct(p);
L
Linus Torvalds 已提交
5558 5559 5560

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5561
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5562 5563
	 * fine.
	 */
5564
	raw_spin_unlock_irq(&rq->lock);
5565
	move_task_off_dead_cpu(dead_cpu, p);
5566
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5567

5568
	put_task_struct(p);
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5574
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5575
	struct task_struct *next;
5576

I
Ingo Molnar 已提交
5577 5578 5579
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5580
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5581 5582
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5583
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5584
		migrate_dead(dead_cpu, next);
5585

L
Linus Torvalds 已提交
5586 5587
	}
}
5588 5589 5590 5591 5592 5593 5594

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5595
	rq->calc_load_active = 0;
5596
}
L
Linus Torvalds 已提交
5597 5598
#endif /* CONFIG_HOTPLUG_CPU */

5599 5600 5601
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5602 5603
	{
		.procname	= "sched_domain",
5604
		.mode		= 0555,
5605
	},
5606
	{}
5607 5608 5609
};

static struct ctl_table sd_ctl_root[] = {
5610 5611
	{
		.procname	= "kernel",
5612
		.mode		= 0555,
5613 5614
		.child		= sd_ctl_dir,
	},
5615
	{}
5616 5617 5618 5619 5620
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5621
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5622 5623 5624 5625

	return entry;
}

5626 5627
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5628
	struct ctl_table *entry;
5629

5630 5631 5632
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5633
	 * will always be set. In the lowest directory the names are
5634 5635 5636
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5637 5638
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5639 5640 5641
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5642 5643 5644 5645 5646

	kfree(*tablep);
	*tablep = NULL;
}

5647
static void
5648
set_table_entry(struct ctl_table *entry,
5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5662
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5663

5664 5665 5666
	if (table == NULL)
		return NULL;

5667
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5668
		sizeof(long), 0644, proc_doulongvec_minmax);
5669
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5670
		sizeof(long), 0644, proc_doulongvec_minmax);
5671
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5672
		sizeof(int), 0644, proc_dointvec_minmax);
5673
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5674
		sizeof(int), 0644, proc_dointvec_minmax);
5675
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5676
		sizeof(int), 0644, proc_dointvec_minmax);
5677
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5678
		sizeof(int), 0644, proc_dointvec_minmax);
5679
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5680
		sizeof(int), 0644, proc_dointvec_minmax);
5681
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5682
		sizeof(int), 0644, proc_dointvec_minmax);
5683
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5684
		sizeof(int), 0644, proc_dointvec_minmax);
5685
	set_table_entry(&table[9], "cache_nice_tries",
5686 5687
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5688
	set_table_entry(&table[10], "flags", &sd->flags,
5689
		sizeof(int), 0644, proc_dointvec_minmax);
5690 5691 5692
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5693 5694 5695 5696

	return table;
}

5697
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5698 5699 5700 5701 5702 5703 5704 5705 5706
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5707 5708
	if (table == NULL)
		return NULL;
5709 5710 5711 5712 5713

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5714
		entry->mode = 0555;
5715 5716 5717 5718 5719 5720 5721 5722
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5723
static void register_sched_domain_sysctl(void)
5724
{
5725
	int i, cpu_num = num_possible_cpus();
5726 5727 5728
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5729 5730 5731
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5732 5733 5734
	if (entry == NULL)
		return;

5735
	for_each_possible_cpu(i) {
5736 5737
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5738
		entry->mode = 0555;
5739
		entry->child = sd_alloc_ctl_cpu_table(i);
5740
		entry++;
5741
	}
5742 5743

	WARN_ON(sd_sysctl_header);
5744 5745
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5746

5747
/* may be called multiple times per register */
5748 5749
static void unregister_sched_domain_sysctl(void)
{
5750 5751
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5752
	sd_sysctl_header = NULL;
5753 5754
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5755
}
5756
#else
5757 5758 5759 5760
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5761 5762 5763 5764
{
}
#endif

5765 5766 5767 5768 5769
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5770
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5790
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5791 5792 5793 5794
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5795 5796 5797 5798
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5799 5800
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5801 5802
{
	struct task_struct *p;
5803
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5804
	unsigned long flags;
5805
	struct rq *rq;
L
Linus Torvalds 已提交
5806 5807

	switch (action) {
5808

L
Linus Torvalds 已提交
5809
	case CPU_UP_PREPARE:
5810
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5811
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5812 5813 5814 5815 5816
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5817
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5818
		task_rq_unlock(rq, &flags);
5819
		get_task_struct(p);
L
Linus Torvalds 已提交
5820
		cpu_rq(cpu)->migration_thread = p;
5821
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5822
		break;
5823

L
Linus Torvalds 已提交
5824
	case CPU_ONLINE:
5825
	case CPU_ONLINE_FROZEN:
5826
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5827
		wake_up_process(cpu_rq(cpu)->migration_thread);
5828 5829 5830

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5831
		raw_spin_lock_irqsave(&rq->lock, flags);
5832
		if (rq->rd) {
5833
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5834 5835

			set_rq_online(rq);
5836
		}
5837
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5838
		break;
5839

L
Linus Torvalds 已提交
5840 5841
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5842
	case CPU_UP_CANCELED_FROZEN:
5843 5844
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5845
		/* Unbind it from offline cpu so it can run. Fall thru. */
5846
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5847
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5848
		kthread_stop(cpu_rq(cpu)->migration_thread);
5849
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5850 5851
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5852

L
Linus Torvalds 已提交
5853
	case CPU_DEAD:
5854
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5855 5856 5857
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5858
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5859 5860
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5861
		raw_spin_lock_irq(&rq->lock);
5862
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5863 5864
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5865
		migrate_dead_tasks(cpu);
5866
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5867 5868
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5869
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5870 5871 5872 5873 5874
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5875
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5876
		while (!list_empty(&rq->migration_queue)) {
5877 5878
			struct migration_req *req;

L
Linus Torvalds 已提交
5879
			req = list_entry(rq->migration_queue.next,
5880
					 struct migration_req, list);
L
Linus Torvalds 已提交
5881
			list_del_init(&req->list);
5882
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5883
			complete(&req->done);
5884
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5885
		}
5886
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5887
		break;
G
Gregory Haskins 已提交
5888

5889 5890
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5891 5892
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5893
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5894
		if (rq->rd) {
5895
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5896
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5897
		}
5898
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5899
		break;
L
Linus Torvalds 已提交
5900 5901 5902 5903 5904
#endif
	}
	return NOTIFY_OK;
}

5905 5906 5907
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5908
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5909
 */
5910
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5911 5912 5913 5914
	.notifier_call = migration_call,
	.priority = 10
};

5915
static int __init migration_init(void)
L
Linus Torvalds 已提交
5916 5917
{
	void *cpu = (void *)(long)smp_processor_id();
5918
	int err;
5919 5920

	/* Start one for the boot CPU: */
5921 5922
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5923 5924
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5925

5926
	return 0;
L
Linus Torvalds 已提交
5927
}
5928
early_initcall(migration_init);
L
Linus Torvalds 已提交
5929 5930 5931
#endif

#ifdef CONFIG_SMP
5932

5933
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5934

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5945
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5946
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5947
{
I
Ingo Molnar 已提交
5948
	struct sched_group *group = sd->groups;
5949
	char str[256];
L
Linus Torvalds 已提交
5950

R
Rusty Russell 已提交
5951
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5952
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5953 5954 5955 5956

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5957
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5958
		if (sd->parent)
P
Peter Zijlstra 已提交
5959 5960
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5961
		return -1;
N
Nick Piggin 已提交
5962 5963
	}

P
Peter Zijlstra 已提交
5964
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5965

5966
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5967 5968
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5969
	}
5970
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5971 5972
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5973
	}
L
Linus Torvalds 已提交
5974

I
Ingo Molnar 已提交
5975
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5976
	do {
I
Ingo Molnar 已提交
5977
		if (!group) {
P
Peter Zijlstra 已提交
5978 5979
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5980 5981 5982
			break;
		}

5983
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5984 5985 5986
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5987 5988
			break;
		}
L
Linus Torvalds 已提交
5989

5990
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5991 5992
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5993 5994
			break;
		}
L
Linus Torvalds 已提交
5995

5996
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5997 5998
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5999 6000
			break;
		}
L
Linus Torvalds 已提交
6001

6002
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6003

R
Rusty Russell 已提交
6004
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6005

P
Peter Zijlstra 已提交
6006
		printk(KERN_CONT " %s", str);
6007
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6008 6009
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6010
		}
L
Linus Torvalds 已提交
6011

I
Ingo Molnar 已提交
6012 6013
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6014
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6015

6016
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6017
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6018

6019 6020
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6021 6022
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6023 6024
	return 0;
}
L
Linus Torvalds 已提交
6025

I
Ingo Molnar 已提交
6026 6027
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6028
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6029
	int level = 0;
L
Linus Torvalds 已提交
6030

6031 6032 6033
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6034 6035 6036 6037
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6038

I
Ingo Molnar 已提交
6039 6040
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6041
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6042 6043 6044 6045
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6046
	for (;;) {
6047
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6048
			break;
L
Linus Torvalds 已提交
6049 6050
		level++;
		sd = sd->parent;
6051
		if (!sd)
I
Ingo Molnar 已提交
6052 6053
			break;
	}
6054
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6055
}
6056
#else /* !CONFIG_SCHED_DEBUG */
6057
# define sched_domain_debug(sd, cpu) do { } while (0)
6058
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6059

6060
static int sd_degenerate(struct sched_domain *sd)
6061
{
6062
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6063 6064 6065 6066 6067 6068
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6069 6070 6071
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6072 6073 6074 6075 6076
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6077
	if (sd->flags & (SD_WAKE_AFFINE))
6078 6079 6080 6081 6082
		return 0;

	return 1;
}

6083 6084
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6085 6086 6087 6088 6089 6090
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6091
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6092 6093 6094 6095 6096 6097 6098
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6099 6100 6101
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6102 6103
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6104 6105 6106 6107 6108 6109 6110
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6111 6112
static void free_rootdomain(struct root_domain *rd)
{
6113 6114
	synchronize_sched();

6115 6116
	cpupri_cleanup(&rd->cpupri);

6117 6118 6119 6120 6121 6122
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6123 6124
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6125
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6126 6127
	unsigned long flags;

6128
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6129 6130

	if (rq->rd) {
I
Ingo Molnar 已提交
6131
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6132

6133
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6134
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6135

6136
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6137

I
Ingo Molnar 已提交
6138 6139 6140 6141 6142 6143 6144
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6145 6146 6147 6148 6149
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6150
	cpumask_set_cpu(rq->cpu, rd->span);
6151
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6152
		set_rq_online(rq);
G
Gregory Haskins 已提交
6153

6154
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6155 6156 6157

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6158 6159
}

L
Li Zefan 已提交
6160
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6161
{
6162 6163
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6164 6165
	memset(rd, 0, sizeof(*rd));

6166 6167
	if (bootmem)
		gfp = GFP_NOWAIT;
6168

6169
	if (!alloc_cpumask_var(&rd->span, gfp))
6170
		goto out;
6171
	if (!alloc_cpumask_var(&rd->online, gfp))
6172
		goto free_span;
6173
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6174
		goto free_online;
6175

P
Pekka Enberg 已提交
6176
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6177
		goto free_rto_mask;
6178
	return 0;
6179

6180 6181
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6182 6183 6184 6185
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6186
out:
6187
	return -ENOMEM;
G
Gregory Haskins 已提交
6188 6189 6190 6191
}

static void init_defrootdomain(void)
{
6192 6193
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6194 6195 6196
	atomic_set(&def_root_domain.refcount, 1);
}

6197
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6198 6199 6200 6201 6202 6203 6204
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6205 6206 6207 6208
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6209 6210 6211 6212

	return rd;
}

L
Linus Torvalds 已提交
6213
/*
I
Ingo Molnar 已提交
6214
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6215 6216
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6217 6218
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6219
{
6220
	struct rq *rq = cpu_rq(cpu);
6221 6222 6223
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6224
	for (tmp = sd; tmp; ) {
6225 6226 6227
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6228

6229
		if (sd_parent_degenerate(tmp, parent)) {
6230
			tmp->parent = parent->parent;
6231 6232
			if (parent->parent)
				parent->parent->child = tmp;
6233 6234
		} else
			tmp = tmp->parent;
6235 6236
	}

6237
	if (sd && sd_degenerate(sd)) {
6238
		sd = sd->parent;
6239 6240 6241
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6242 6243 6244

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6245
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6246
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6247 6248 6249
}

/* cpus with isolated domains */
6250
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6251 6252 6253 6254

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6255
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6256
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6257 6258 6259
	return 1;
}

I
Ingo Molnar 已提交
6260
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6261 6262

/*
6263 6264
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6265 6266
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6267 6268 6269 6270 6271
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6272
static void
6273 6274 6275
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6276
					struct sched_group **sg,
6277 6278
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6279 6280 6281 6282
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6283
	cpumask_clear(covered);
6284

6285
	for_each_cpu(i, span) {
6286
		struct sched_group *sg;
6287
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6288 6289
		int j;

6290
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6291 6292
			continue;

6293
		cpumask_clear(sched_group_cpus(sg));
6294
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6295

6296
		for_each_cpu(j, span) {
6297
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6298 6299
				continue;

6300
			cpumask_set_cpu(j, covered);
6301
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6312
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6313

6314
#ifdef CONFIG_NUMA
6315

6316 6317 6318 6319 6320
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6321
 * Find the next node to include in a given scheduling domain. Simply
6322 6323 6324 6325
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6326
static int find_next_best_node(int node, nodemask_t *used_nodes)
6327 6328 6329 6330 6331
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6332
	for (i = 0; i < nr_node_ids; i++) {
6333
		/* Start at @node */
6334
		n = (node + i) % nr_node_ids;
6335 6336 6337 6338 6339

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6340
		if (node_isset(n, *used_nodes))
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6352
	node_set(best_node, *used_nodes);
6353 6354 6355 6356 6357 6358
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6359
 * @span: resulting cpumask
6360
 *
I
Ingo Molnar 已提交
6361
 * Given a node, construct a good cpumask for its sched_domain to span. It
6362 6363 6364
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6365
static void sched_domain_node_span(int node, struct cpumask *span)
6366
{
6367
	nodemask_t used_nodes;
6368
	int i;
6369

6370
	cpumask_clear(span);
6371
	nodes_clear(used_nodes);
6372

6373
	cpumask_or(span, span, cpumask_of_node(node));
6374
	node_set(node, used_nodes);
6375 6376

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6377
		int next_node = find_next_best_node(node, &used_nodes);
6378

6379
		cpumask_or(span, span, cpumask_of_node(next_node));
6380 6381
	}
}
6382
#endif /* CONFIG_NUMA */
6383

6384
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6385

6386 6387
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6388 6389 6390
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6435
/*
6436
 * SMT sched-domains:
6437
 */
L
Linus Torvalds 已提交
6438
#ifdef CONFIG_SCHED_SMT
6439
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6440
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6441

I
Ingo Molnar 已提交
6442
static int
6443 6444
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6445
{
6446
	if (sg)
6447
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6448 6449
	return cpu;
}
6450
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6451

6452 6453 6454
/*
 * multi-core sched-domains:
 */
6455
#ifdef CONFIG_SCHED_MC
6456 6457
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6458
#endif /* CONFIG_SCHED_MC */
6459 6460

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6461
static int
6462 6463
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6464
{
6465
	int group;
6466

6467
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6468
	group = cpumask_first(mask);
6469
	if (sg)
6470
		*sg = &per_cpu(sched_group_core, group).sg;
6471
	return group;
6472 6473
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6474
static int
6475 6476
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6477
{
6478
	if (sg)
6479
		*sg = &per_cpu(sched_group_core, cpu).sg;
6480 6481 6482 6483
	return cpu;
}
#endif

6484 6485
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6486

I
Ingo Molnar 已提交
6487
static int
6488 6489
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6490
{
6491
	int group;
6492
#ifdef CONFIG_SCHED_MC
6493
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6494
	group = cpumask_first(mask);
6495
#elif defined(CONFIG_SCHED_SMT)
6496
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6497
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6498
#else
6499
	group = cpu;
L
Linus Torvalds 已提交
6500
#endif
6501
	if (sg)
6502
		*sg = &per_cpu(sched_group_phys, group).sg;
6503
	return group;
L
Linus Torvalds 已提交
6504 6505 6506 6507
}

#ifdef CONFIG_NUMA
/*
6508 6509 6510
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6511
 */
6512
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6513
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6514

6515
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6516
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6517

6518 6519 6520
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6521
{
6522 6523
	int group;

6524
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6525
	group = cpumask_first(nodemask);
6526 6527

	if (sg)
6528
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6529
	return group;
L
Linus Torvalds 已提交
6530
}
6531

6532 6533 6534 6535 6536 6537 6538
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6539
	do {
6540
		for_each_cpu(j, sched_group_cpus(sg)) {
6541
			struct sched_domain *sd;
6542

6543
			sd = &per_cpu(phys_domains, j).sd;
6544
			if (j != group_first_cpu(sd->groups)) {
6545 6546 6547 6548 6549 6550
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6551

6552
			sg->cpu_power += sd->groups->cpu_power;
6553 6554 6555
		}
		sg = sg->next;
	} while (sg != group_head);
6556
}
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6578 6579
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6580 6581 6582 6583 6584 6585 6586 6587 6588
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6589
	sg->cpu_power = 0;
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6608 6609
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6610 6611
			return -ENOMEM;
		}
6612
		sg->cpu_power = 0;
6613 6614 6615 6616 6617 6618 6619 6620 6621
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6622
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6623

6624
#ifdef CONFIG_NUMA
6625
/* Free memory allocated for various sched_group structures */
6626 6627
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6628
{
6629
	int cpu, i;
6630

6631
	for_each_cpu(cpu, cpu_map) {
6632 6633 6634 6635 6636 6637
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6638
		for (i = 0; i < nr_node_ids; i++) {
6639 6640
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6641
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6642
			if (cpumask_empty(nodemask))
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6659
#else /* !CONFIG_NUMA */
6660 6661
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6662 6663
{
}
6664
#endif /* CONFIG_NUMA */
6665

6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6680 6681
	long power;
	int weight;
6682 6683 6684

	WARN_ON(!sd || !sd->groups);

6685
	if (cpu != group_first_cpu(sd->groups))
6686 6687 6688 6689
		return;

	child = sd->child;

6690
	sd->groups->cpu_power = 0;
6691

6692 6693 6694 6695 6696
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6697 6698 6699
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6700
		 */
P
Peter Zijlstra 已提交
6701 6702
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6703
			power /= weight;
P
Peter Zijlstra 已提交
6704 6705
			power >>= SCHED_LOAD_SHIFT;
		}
6706
		sd->groups->cpu_power += power;
6707 6708 6709 6710
		return;
	}

	/*
6711
	 * Add cpu_power of each child group to this groups cpu_power.
6712 6713 6714
	 */
	group = child->groups;
	do {
6715
		sd->groups->cpu_power += group->cpu_power;
6716 6717 6718 6719
		group = group->next;
	} while (group != child->groups);
}

6720 6721 6722 6723 6724
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6725 6726 6727 6728 6729 6730
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6731
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6732

6733 6734 6735 6736 6737
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6738
	sd->level = SD_LV_##type;				\
6739
	SD_INIT_NAME(sd, type);					\
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6754 6755 6756 6757
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6758 6759 6760 6761 6762 6763
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6782
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6783 6784
	} else {
		/* turn on idle balance on this domain */
6785
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6786 6787 6788
	}
}

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6809
#ifdef CONFIG_NUMA
6810 6811 6812 6813 6814 6815 6816
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6817
#endif
6818 6819 6820 6821
	case sa_none:
		break;
	}
}
6822

6823 6824 6825
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6826
#ifdef CONFIG_NUMA
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6837
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6838
		return sa_notcovered;
6839
	}
6840
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6841
#endif
6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6854
		printk(KERN_WARNING "Cannot alloc root domain\n");
6855
		return sa_tmpmask;
G
Gregory Haskins 已提交
6856
	}
6857 6858
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6859

6860 6861 6862 6863
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6864
#ifdef CONFIG_NUMA
6865
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6866

6867 6868 6869 6870 6871
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6872
		set_domain_attribute(sd, attr);
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6887
#endif
6888 6889
	return sd;
}
L
Linus Torvalds 已提交
6890

6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6906

6907 6908 6909 6910 6911
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6912
#ifdef CONFIG_SCHED_MC
6913 6914 6915 6916 6917 6918 6919
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6920
#endif
6921 6922
	return sd;
}
6923

6924 6925 6926 6927 6928
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6929
#ifdef CONFIG_SCHED_SMT
6930 6931 6932 6933 6934 6935 6936
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6937
#endif
6938 6939
	return sd;
}
L
Linus Torvalds 已提交
6940

6941 6942 6943 6944
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6945
#ifdef CONFIG_SCHED_SMT
6946 6947 6948 6949 6950 6951 6952 6953
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6954
#endif
6955
#ifdef CONFIG_SCHED_MC
6956 6957 6958 6959 6960 6961 6962
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6963
#endif
6964 6965 6966 6967 6968 6969 6970
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6971
#ifdef CONFIG_NUMA
6972 6973 6974 6975 6976
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6977 6978
	default:
		break;
6979
	}
6980
}
6981

6982 6983 6984 6985 6986 6987 6988 6989 6990
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6991
	struct sched_domain *sd;
6992
	int i;
6993
#ifdef CONFIG_NUMA
6994
	d.sd_allnodes = 0;
6995
#endif
6996

6997 6998 6999 7000
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7001

L
Linus Torvalds 已提交
7002
	/*
7003
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7004
	 */
7005
	for_each_cpu(i, cpu_map) {
7006 7007
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7008

7009
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7010
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7011
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7012
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7013
	}
7014

7015
	for_each_cpu(i, cpu_map) {
7016
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7017
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7018
	}
7019

L
Linus Torvalds 已提交
7020
	/* Set up physical groups */
7021 7022
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7023

L
Linus Torvalds 已提交
7024 7025
#ifdef CONFIG_NUMA
	/* Set up node groups */
7026 7027
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7028

7029 7030
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7031
			goto error;
L
Linus Torvalds 已提交
7032 7033 7034
#endif

	/* Calculate CPU power for physical packages and nodes */
7035
#ifdef CONFIG_SCHED_SMT
7036
	for_each_cpu(i, cpu_map) {
7037
		sd = &per_cpu(cpu_domains, i).sd;
7038
		init_sched_groups_power(i, sd);
7039
	}
L
Linus Torvalds 已提交
7040
#endif
7041
#ifdef CONFIG_SCHED_MC
7042
	for_each_cpu(i, cpu_map) {
7043
		sd = &per_cpu(core_domains, i).sd;
7044
		init_sched_groups_power(i, sd);
7045 7046
	}
#endif
7047

7048
	for_each_cpu(i, cpu_map) {
7049
		sd = &per_cpu(phys_domains, i).sd;
7050
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7051 7052
	}

7053
#ifdef CONFIG_NUMA
7054
	for (i = 0; i < nr_node_ids; i++)
7055
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7056

7057
	if (d.sd_allnodes) {
7058
		struct sched_group *sg;
7059

7060
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7061
								d.tmpmask);
7062 7063
		init_numa_sched_groups_power(sg);
	}
7064 7065
#endif

L
Linus Torvalds 已提交
7066
	/* Attach the domains */
7067
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7068
#ifdef CONFIG_SCHED_SMT
7069
		sd = &per_cpu(cpu_domains, i).sd;
7070
#elif defined(CONFIG_SCHED_MC)
7071
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7072
#else
7073
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7074
#endif
7075
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7076
	}
7077

7078 7079 7080
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7081 7082

error:
7083 7084
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7085
}
P
Paul Jackson 已提交
7086

7087
static int build_sched_domains(const struct cpumask *cpu_map)
7088 7089 7090 7091
{
	return __build_sched_domains(cpu_map, NULL);
}

7092
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7093
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7094 7095
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7096 7097 7098

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7099 7100
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7101
 */
7102
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7103

7104 7105 7106 7107 7108 7109
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7110
{
7111
	return 0;
7112 7113
}

7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7139
/*
I
Ingo Molnar 已提交
7140
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7141 7142
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7143
 */
7144
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7145
{
7146 7147
	int err;

7148
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7149
	ndoms_cur = 1;
7150
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7151
	if (!doms_cur)
7152 7153
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7154
	dattr_cur = NULL;
7155
	err = build_sched_domains(doms_cur[0]);
7156
	register_sched_domain_sysctl();
7157 7158

	return err;
7159 7160
}

7161 7162
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7163
{
7164
	free_sched_groups(cpu_map, tmpmask);
7165
}
L
Linus Torvalds 已提交
7166

7167 7168 7169 7170
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7171
static void detach_destroy_domains(const struct cpumask *cpu_map)
7172
{
7173 7174
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7175 7176
	int i;

7177
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7178
		cpu_attach_domain(NULL, &def_root_domain, i);
7179
	synchronize_sched();
7180
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7181 7182
}

7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7199 7200
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7201
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7202 7203 7204
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7205
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7206 7207 7208
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7209 7210 7211
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7212 7213 7214 7215 7216 7217
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7218
 *
7219
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7220 7221
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7222
 *
P
Paul Jackson 已提交
7223 7224
 * Call with hotplug lock held
 */
7225
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7226
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7227
{
7228
	int i, j, n;
7229
	int new_topology;
P
Paul Jackson 已提交
7230

7231
	mutex_lock(&sched_domains_mutex);
7232

7233 7234 7235
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7236 7237 7238
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7239
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7240 7241 7242

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7243
		for (j = 0; j < n && !new_topology; j++) {
7244
			if (cpumask_equal(doms_cur[i], doms_new[j])
7245
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7246 7247 7248
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7249
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7250 7251 7252 7253
match1:
		;
	}

7254 7255
	if (doms_new == NULL) {
		ndoms_cur = 0;
7256
		doms_new = &fallback_doms;
7257
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7258
		WARN_ON_ONCE(dattr_new);
7259 7260
	}

P
Paul Jackson 已提交
7261 7262
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7263
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7264
			if (cpumask_equal(doms_new[i], doms_cur[j])
7265
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7266 7267 7268
				goto match2;
		}
		/* no match - add a new doms_new */
7269
		__build_sched_domains(doms_new[i],
7270
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7271 7272 7273 7274 7275
match2:
		;
	}

	/* Remember the new sched domains */
7276 7277
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7278
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7279
	doms_cur = doms_new;
7280
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7281
	ndoms_cur = ndoms_new;
7282 7283

	register_sched_domain_sysctl();
7284

7285
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7286 7287
}

7288
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7289
static void arch_reinit_sched_domains(void)
7290
{
7291
	get_online_cpus();
7292 7293 7294 7295

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7296
	rebuild_sched_domains();
7297
	put_online_cpus();
7298 7299 7300 7301
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7302
	unsigned int level = 0;
7303

7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7315 7316 7317
		return -EINVAL;

	if (smt)
7318
		sched_smt_power_savings = level;
7319
	else
7320
		sched_mc_power_savings = level;
7321

7322
	arch_reinit_sched_domains();
7323

7324
	return count;
7325 7326 7327
}

#ifdef CONFIG_SCHED_MC
7328
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7329
					   struct sysdev_class_attribute *attr,
7330
					   char *page)
7331 7332 7333
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7334
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7335
					    struct sysdev_class_attribute *attr,
7336
					    const char *buf, size_t count)
7337 7338 7339
{
	return sched_power_savings_store(buf, count, 0);
}
7340 7341 7342
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7343 7344 7345
#endif

#ifdef CONFIG_SCHED_SMT
7346
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7347
					    struct sysdev_class_attribute *attr,
7348
					    char *page)
7349 7350 7351
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7352
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7353
					     struct sysdev_class_attribute *attr,
7354
					     const char *buf, size_t count)
7355 7356 7357
{
	return sched_power_savings_store(buf, count, 1);
}
7358 7359
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7360 7361 7362
		   sched_smt_power_savings_store);
#endif

7363
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7379
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7380

7381
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7382
/*
7383 7384
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7385 7386 7387
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7388 7389 7390 7391
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7392 7393 7394 7395
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7396
		partition_sched_domains(1, NULL, NULL);
7397 7398 7399 7400 7401 7402 7403 7404 7405 7406
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7407
{
P
Peter Zijlstra 已提交
7408 7409
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7410 7411
	switch (action) {
	case CPU_DOWN_PREPARE:
7412
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7413
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7414 7415 7416
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7417
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7418
	case CPU_ONLINE:
7419
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7420
		enable_runtime(cpu_rq(cpu));
7421 7422
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7423 7424 7425 7426 7427 7428 7429
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7430 7431 7432
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7433
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7434

7435 7436 7437 7438 7439
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7440
	get_online_cpus();
7441
	mutex_lock(&sched_domains_mutex);
7442
	arch_init_sched_domains(cpu_active_mask);
7443 7444 7445
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7446
	mutex_unlock(&sched_domains_mutex);
7447
	put_online_cpus();
7448 7449

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7450 7451
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7452 7453 7454 7455 7456
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7457
	init_hrtick();
7458 7459

	/* Move init over to a non-isolated CPU */
7460
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7461
		BUG();
I
Ingo Molnar 已提交
7462
	sched_init_granularity();
7463
	free_cpumask_var(non_isolated_cpus);
7464

7465
	init_sched_rt_class();
L
Linus Torvalds 已提交
7466 7467 7468 7469
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7470
	sched_init_granularity();
L
Linus Torvalds 已提交
7471 7472 7473
}
#endif /* CONFIG_SMP */

7474 7475
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7476 7477 7478 7479 7480 7481 7482
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7483
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7484 7485
{
	cfs_rq->tasks_timeline = RB_ROOT;
7486
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7487 7488 7489
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7490
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7491 7492
}

P
Peter Zijlstra 已提交
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7506
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7507
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7508
#ifdef CONFIG_SMP
7509
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7510 7511
#endif
#endif
P
Peter Zijlstra 已提交
7512 7513 7514
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7515
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7516 7517 7518 7519
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7520
	rt_rq->rt_runtime = 0;
7521
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7522

7523
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7524
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7525 7526
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7527 7528
}

P
Peter Zijlstra 已提交
7529
#ifdef CONFIG_FAIR_GROUP_SCHED
7530 7531 7532
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7533
{
7534
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7535 7536 7537 7538 7539 7540 7541
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7542 7543 7544 7545
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7546 7547 7548 7549 7550
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7551 7552
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7553
	se->load.inv_weight = 0;
7554
	se->parent = parent;
P
Peter Zijlstra 已提交
7555
}
7556
#endif
P
Peter Zijlstra 已提交
7557

7558
#ifdef CONFIG_RT_GROUP_SCHED
7559 7560 7561
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7562
{
7563 7564
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7565 7566 7567
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7568
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7569 7570 7571 7572
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7573 7574 7575
	if (!rt_se)
		return;

7576 7577 7578 7579 7580
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7581
	rt_se->my_q = rt_rq;
7582
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7583 7584 7585 7586
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7587 7588
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7589
	int i, j;
7590 7591 7592 7593 7594 7595 7596
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7597
#endif
7598
#ifdef CONFIG_CPUMASK_OFFSTACK
7599
	alloc_size += num_possible_cpus() * cpumask_size();
7600 7601
#endif
	if (alloc_size) {
7602
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7603 7604 7605 7606 7607 7608 7609

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7610

7611
#endif /* CONFIG_FAIR_GROUP_SCHED */
7612 7613 7614 7615 7616
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7617 7618
		ptr += nr_cpu_ids * sizeof(void **);

7619
#endif /* CONFIG_RT_GROUP_SCHED */
7620 7621 7622 7623 7624 7625
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7626
	}
I
Ingo Molnar 已提交
7627

G
Gregory Haskins 已提交
7628 7629 7630 7631
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7632 7633 7634 7635 7636 7637
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7638
#endif /* CONFIG_RT_GROUP_SCHED */
7639

D
Dhaval Giani 已提交
7640
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7641
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7642 7643
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7644
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7645

7646 7647 7648 7649
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7650
	for_each_possible_cpu(i) {
7651
		struct rq *rq;
L
Linus Torvalds 已提交
7652 7653

		rq = cpu_rq(i);
7654
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7655
		rq->nr_running = 0;
7656 7657
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7658
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7659
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7660
#ifdef CONFIG_FAIR_GROUP_SCHED
7661
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7662
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7678
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7679 7680 7681 7682
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7683
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7684
#endif
D
Dhaval Giani 已提交
7685 7686 7687
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7688
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7689
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7690
#ifdef CONFIG_CGROUP_SCHED
7691
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7692
#endif
I
Ingo Molnar 已提交
7693
#endif
L
Linus Torvalds 已提交
7694

I
Ingo Molnar 已提交
7695 7696
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7697
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7698
		rq->sd = NULL;
G
Gregory Haskins 已提交
7699
		rq->rd = NULL;
7700
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7701
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7702
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7703
		rq->push_cpu = 0;
7704
		rq->cpu = i;
7705
		rq->online = 0;
L
Linus Torvalds 已提交
7706
		rq->migration_thread = NULL;
7707 7708
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7709
		INIT_LIST_HEAD(&rq->migration_queue);
7710
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7711
#endif
P
Peter Zijlstra 已提交
7712
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7713 7714 7715
		atomic_set(&rq->nr_iowait, 0);
	}

7716
	set_load_weight(&init_task);
7717

7718 7719 7720 7721
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7722
#ifdef CONFIG_SMP
7723
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7724 7725
#endif

7726
#ifdef CONFIG_RT_MUTEXES
7727
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7728 7729
#endif

L
Linus Torvalds 已提交
7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7743 7744 7745

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7746 7747 7748 7749
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7750

7751
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7752
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7753
#ifdef CONFIG_SMP
7754
#ifdef CONFIG_NO_HZ
7755
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7756
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7757
#endif
R
Rusty Russell 已提交
7758 7759 7760
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7761
#endif /* SMP */
7762

7763
	perf_event_init();
7764

7765
	scheduler_running = 1;
L
Linus Torvalds 已提交
7766 7767 7768
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7769 7770
static inline int preempt_count_equals(int preempt_offset)
{
7771
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7772 7773 7774 7775

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7776
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7777
{
7778
#ifdef in_atomic
L
Linus Torvalds 已提交
7779 7780
	static unsigned long prev_jiffy;	/* ratelimiting */

7781 7782
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7783 7784 7785 7786 7787
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7788 7789 7790 7791 7792 7793 7794
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7795 7796 7797 7798 7799

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7800 7801 7802 7803 7804 7805
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7806 7807 7808
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7809

7810 7811 7812 7813 7814 7815 7816 7817 7818 7819
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7820 7821
void normalize_rt_tasks(void)
{
7822
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7823
	unsigned long flags;
7824
	struct rq *rq;
L
Linus Torvalds 已提交
7825

7826
	read_lock_irqsave(&tasklist_lock, flags);
7827
	do_each_thread(g, p) {
7828 7829 7830 7831 7832 7833
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7834 7835
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7836 7837 7838
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7839
#endif
I
Ingo Molnar 已提交
7840 7841 7842 7843 7844 7845 7846 7847

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7848
			continue;
I
Ingo Molnar 已提交
7849
		}
L
Linus Torvalds 已提交
7850

7851
		raw_spin_lock(&p->pi_lock);
7852
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7853

7854
		normalize_task(rq, p);
7855

7856
		__task_rq_unlock(rq);
7857
		raw_spin_unlock(&p->pi_lock);
7858 7859
	} while_each_thread(g, p);

7860
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7861 7862 7863
}

#endif /* CONFIG_MAGIC_SYSRQ */
7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7882
struct task_struct *curr_task(int cpu)
7883 7884 7885 7886 7887 7888 7889 7890 7891 7892
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7893 7894
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7895 7896 7897 7898 7899 7900 7901
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7902
void set_curr_task(int cpu, struct task_struct *p)
7903 7904 7905 7906 7907
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7908

7909 7910
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7925 7926
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7927 7928
{
	struct cfs_rq *cfs_rq;
7929
	struct sched_entity *se;
7930
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7931 7932
	int i;

7933
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7934 7935
	if (!tg->cfs_rq)
		goto err;
7936
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7937 7938
	if (!tg->se)
		goto err;
7939 7940

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7941 7942

	for_each_possible_cpu(i) {
7943
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7944

7945 7946
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7947 7948 7949
		if (!cfs_rq)
			goto err;

7950 7951
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7952
		if (!se)
7953
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7954

7955
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7956 7957 7958 7959
	}

	return 1;

7960 7961
 err_free_rq:
	kfree(cfs_rq);
7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7976
#else /* !CONFG_FAIR_GROUP_SCHED */
7977 7978 7979 7980
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7981 7982
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7994
#endif /* CONFIG_FAIR_GROUP_SCHED */
7995 7996

#ifdef CONFIG_RT_GROUP_SCHED
7997 7998 7999 8000
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8001 8002
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8014 8015
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8016 8017
{
	struct rt_rq *rt_rq;
8018
	struct sched_rt_entity *rt_se;
8019 8020 8021
	struct rq *rq;
	int i;

8022
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8023 8024
	if (!tg->rt_rq)
		goto err;
8025
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8026 8027 8028
	if (!tg->rt_se)
		goto err;

8029 8030
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8031 8032 8033 8034

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8035 8036
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8037 8038
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8039

8040 8041
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8042
		if (!rt_se)
8043
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8044

8045
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8046 8047
	}

8048 8049
	return 1;

8050 8051
 err_free_rq:
	kfree(rt_rq);
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8066
#else /* !CONFIG_RT_GROUP_SCHED */
8067 8068 8069 8070
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8071 8072
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8084
#endif /* CONFIG_RT_GROUP_SCHED */
8085

D
Dhaval Giani 已提交
8086
#ifdef CONFIG_CGROUP_SCHED
8087 8088 8089 8090 8091 8092 8093 8094
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8095
struct task_group *sched_create_group(struct task_group *parent)
8096 8097 8098 8099 8100 8101 8102 8103 8104
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8105
	if (!alloc_fair_sched_group(tg, parent))
8106 8107
		goto err;

8108
	if (!alloc_rt_sched_group(tg, parent))
8109 8110
		goto err;

8111
	spin_lock_irqsave(&task_group_lock, flags);
8112
	for_each_possible_cpu(i) {
8113 8114
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8115
	}
P
Peter Zijlstra 已提交
8116
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8117 8118 8119 8120 8121

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8122
	list_add_rcu(&tg->siblings, &parent->children);
8123
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8124

8125
	return tg;
S
Srivatsa Vaddagiri 已提交
8126 8127

err:
P
Peter Zijlstra 已提交
8128
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8129 8130 8131
	return ERR_PTR(-ENOMEM);
}

8132
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8133
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8134 8135
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8136
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8137 8138
}

8139
/* Destroy runqueue etc associated with a task group */
8140
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8141
{
8142
	unsigned long flags;
8143
	int i;
S
Srivatsa Vaddagiri 已提交
8144

8145
	spin_lock_irqsave(&task_group_lock, flags);
8146
	for_each_possible_cpu(i) {
8147 8148
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8149
	}
P
Peter Zijlstra 已提交
8150
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8151
	list_del_rcu(&tg->siblings);
8152
	spin_unlock_irqrestore(&task_group_lock, flags);
8153 8154

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8155
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8156 8157
}

8158
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8159 8160 8161
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8162 8163
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8164 8165 8166 8167 8168 8169 8170
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8171
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8172 8173
	on_rq = tsk->se.on_rq;

8174
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8175
		dequeue_task(rq, tsk, 0);
8176 8177
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8178

P
Peter Zijlstra 已提交
8179
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8180

P
Peter Zijlstra 已提交
8181 8182
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8183
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8184 8185
#endif

8186 8187 8188
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8189
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8190 8191 8192

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8193
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8194

8195
#ifdef CONFIG_FAIR_GROUP_SCHED
8196
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8197 8198 8199 8200 8201
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8202
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8203 8204 8205
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8206
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8207

8208
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8209
		enqueue_entity(cfs_rq, se, 0);
8210
}
8211

8212 8213 8214 8215 8216 8217
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8218
	raw_spin_lock_irqsave(&rq->lock, flags);
8219
	__set_se_shares(se, shares);
8220
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8221 8222
}

8223 8224
static DEFINE_MUTEX(shares_mutex);

8225
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8226 8227
{
	int i;
8228
	unsigned long flags;
8229

8230 8231 8232 8233 8234 8235
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8236 8237
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8238 8239
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8240

8241
	mutex_lock(&shares_mutex);
8242
	if (tg->shares == shares)
8243
		goto done;
S
Srivatsa Vaddagiri 已提交
8244

8245
	spin_lock_irqsave(&task_group_lock, flags);
8246 8247
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8248
	list_del_rcu(&tg->siblings);
8249
	spin_unlock_irqrestore(&task_group_lock, flags);
8250 8251 8252 8253 8254 8255 8256 8257

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8258
	tg->shares = shares;
8259 8260 8261 8262 8263
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8264
		set_se_shares(tg->se[i], shares);
8265
	}
S
Srivatsa Vaddagiri 已提交
8266

8267 8268 8269 8270
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8271
	spin_lock_irqsave(&task_group_lock, flags);
8272 8273
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8274
	list_add_rcu(&tg->siblings, &tg->parent->children);
8275
	spin_unlock_irqrestore(&task_group_lock, flags);
8276
done:
8277
	mutex_unlock(&shares_mutex);
8278
	return 0;
S
Srivatsa Vaddagiri 已提交
8279 8280
}

8281 8282 8283 8284
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8285
#endif
8286

8287
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8288
/*
P
Peter Zijlstra 已提交
8289
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8290
 */
P
Peter Zijlstra 已提交
8291 8292 8293 8294 8295
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8296
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8297

P
Peter Zijlstra 已提交
8298
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8299 8300
}

P
Peter Zijlstra 已提交
8301 8302
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8303
{
P
Peter Zijlstra 已提交
8304
	struct task_struct *g, *p;
8305

P
Peter Zijlstra 已提交
8306 8307 8308 8309
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8310

P
Peter Zijlstra 已提交
8311 8312
	return 0;
}
8313

P
Peter Zijlstra 已提交
8314 8315 8316 8317 8318
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8319

P
Peter Zijlstra 已提交
8320 8321 8322 8323 8324 8325
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8326

P
Peter Zijlstra 已提交
8327 8328
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8329

P
Peter Zijlstra 已提交
8330 8331 8332
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8333 8334
	}

8335 8336 8337 8338 8339
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8340

8341 8342 8343
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8344 8345
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8346

P
Peter Zijlstra 已提交
8347
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8348

8349 8350 8351 8352 8353
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8354

8355 8356 8357
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8358 8359 8360
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8361

P
Peter Zijlstra 已提交
8362 8363 8364 8365
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8366

P
Peter Zijlstra 已提交
8367
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8368
	}
P
Peter Zijlstra 已提交
8369

P
Peter Zijlstra 已提交
8370 8371 8372 8373
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8374 8375
}

P
Peter Zijlstra 已提交
8376
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8377
{
P
Peter Zijlstra 已提交
8378 8379 8380 8381 8382 8383 8384
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8385 8386
}

8387 8388
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8389
{
P
Peter Zijlstra 已提交
8390
	int i, err = 0;
P
Peter Zijlstra 已提交
8391 8392

	mutex_lock(&rt_constraints_mutex);
8393
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8394 8395
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8396
		goto unlock;
P
Peter Zijlstra 已提交
8397

8398
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8399 8400
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8401 8402 8403 8404

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8405
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8406
		rt_rq->rt_runtime = rt_runtime;
8407
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8408
	}
8409
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8410
 unlock:
8411
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8412 8413 8414
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8415 8416
}

8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8429 8430 8431 8432
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8433
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8434 8435
		return -1;

8436
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8437 8438 8439
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8440 8441 8442 8443 8444 8445 8446 8447

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8448 8449 8450
	if (rt_period == 0)
		return -EINVAL;

8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8465
	u64 runtime, period;
8466 8467
	int ret = 0;

8468 8469 8470
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8471 8472 8473 8474 8475 8476 8477 8478
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8479

8480
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8481
	read_lock(&tasklist_lock);
8482
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8483
	read_unlock(&tasklist_lock);
8484 8485 8486 8487
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8488 8489 8490 8491 8492 8493 8494 8495 8496 8497

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8498
#else /* !CONFIG_RT_GROUP_SCHED */
8499 8500
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8501 8502 8503
	unsigned long flags;
	int i;

8504 8505 8506
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8507 8508 8509 8510 8511 8512 8513
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8514
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8515 8516 8517
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8518
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8519
		rt_rq->rt_runtime = global_rt_runtime();
8520
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8521
	}
8522
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8523

8524 8525
	return 0;
}
8526
#endif /* CONFIG_RT_GROUP_SCHED */
8527 8528

int sched_rt_handler(struct ctl_table *table, int write,
8529
		void __user *buffer, size_t *lenp,
8530 8531 8532 8533 8534 8535 8536 8537 8538 8539
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8540
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8557

8558
#ifdef CONFIG_CGROUP_SCHED
8559 8560

/* return corresponding task_group object of a cgroup */
8561
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8562
{
8563 8564
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8565 8566 8567
}

static struct cgroup_subsys_state *
8568
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8569
{
8570
	struct task_group *tg, *parent;
8571

8572
	if (!cgrp->parent) {
8573 8574 8575 8576
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8577 8578
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8579 8580 8581 8582 8583 8584
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8585 8586
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8587
{
8588
	struct task_group *tg = cgroup_tg(cgrp);
8589 8590 8591 8592

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8593
static int
8594
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8595
{
8596
#ifdef CONFIG_RT_GROUP_SCHED
8597
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8598 8599
		return -EINVAL;
#else
8600 8601 8602
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8603
#endif
8604 8605
	return 0;
}
8606

8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8626 8627 8628 8629
	return 0;
}

static void
8630
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8631 8632
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8633 8634
{
	sched_move_task(tsk);
8635 8636 8637 8638 8639 8640 8641 8642
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8643 8644
}

8645
#ifdef CONFIG_FAIR_GROUP_SCHED
8646
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8647
				u64 shareval)
8648
{
8649
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8650 8651
}

8652
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8653
{
8654
	struct task_group *tg = cgroup_tg(cgrp);
8655 8656 8657

	return (u64) tg->shares;
}
8658
#endif /* CONFIG_FAIR_GROUP_SCHED */
8659

8660
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8661
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8662
				s64 val)
P
Peter Zijlstra 已提交
8663
{
8664
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8665 8666
}

8667
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8668
{
8669
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8670
}
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8682
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8683

8684
static struct cftype cpu_files[] = {
8685
#ifdef CONFIG_FAIR_GROUP_SCHED
8686 8687
	{
		.name = "shares",
8688 8689
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8690
	},
8691 8692
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8693
	{
P
Peter Zijlstra 已提交
8694
		.name = "rt_runtime_us",
8695 8696
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8697
	},
8698 8699
	{
		.name = "rt_period_us",
8700 8701
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8702
	},
8703
#endif
8704 8705 8706 8707
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8708
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8709 8710 8711
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8712 8713 8714 8715 8716 8717 8718
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8719 8720 8721
	.early_init	= 1,
};

8722
#endif	/* CONFIG_CGROUP_SCHED */
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8733
/* track cpu usage of a group of tasks and its child groups */
8734 8735 8736
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8737
	u64 __percpu *cpuusage;
8738
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8739
	struct cpuacct *parent;
8740 8741 8742 8743 8744
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8745
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8746
{
8747
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8760
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8761 8762
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8763
	int i;
8764 8765

	if (!ca)
8766
		goto out;
8767 8768

	ca->cpuusage = alloc_percpu(u64);
8769 8770 8771 8772 8773 8774
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8775

8776 8777 8778
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8779
	return &ca->css;
8780 8781 8782 8783 8784 8785 8786 8787 8788

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8789 8790 8791
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8792
static void
8793
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8794
{
8795
	struct cpuacct *ca = cgroup_ca(cgrp);
8796
	int i;
8797

8798 8799
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8800 8801 8802 8803
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8804 8805
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8806
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8807 8808 8809 8810 8811 8812
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8813
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8814
	data = *cpuusage;
8815
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8816 8817 8818 8819 8820 8821 8822 8823 8824
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8825
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8826 8827 8828 8829 8830

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8831
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8832
	*cpuusage = val;
8833
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8834 8835 8836 8837 8838
#else
	*cpuusage = val;
#endif
}

8839
/* return total cpu usage (in nanoseconds) of a group */
8840
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8841
{
8842
	struct cpuacct *ca = cgroup_ca(cgrp);
8843 8844 8845
	u64 totalcpuusage = 0;
	int i;

8846 8847
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8848 8849 8850 8851

	return totalcpuusage;
}

8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8864 8865
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8866 8867 8868 8869 8870

out:
	return err;
}

8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8905 8906 8907
static struct cftype files[] = {
	{
		.name = "usage",
8908 8909
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8910
	},
8911 8912 8913 8914
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8915 8916 8917 8918
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8919 8920
};

8921
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8922
{
8923
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8934
	int cpu;
8935

L
Li Zefan 已提交
8936
	if (unlikely(!cpuacct_subsys.active))
8937 8938
		return;

8939
	cpu = task_cpu(tsk);
8940 8941 8942

	rcu_read_lock();

8943 8944
	ca = task_ca(tsk);

8945
	for (; ca; ca = ca->parent) {
8946
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8947 8948
		*cpuusage += cputime;
	}
8949 8950

	rcu_read_unlock();
8951 8952
}

8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8970 8971 8972 8973 8974 8975 8976
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8977
	int batch = CPUACCT_BATCH;
8978 8979 8980 8981 8982 8983 8984 8985

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8986
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8987 8988 8989 8990 8991
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8992 8993 8994 8995 8996 8997 8998 8999
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9085
		raw_spin_lock_irqsave(&rq->lock, flags);
9086
		list_add(&req->list, &rq->migration_queue);
9087
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9088 9089 9090 9091 9092 9093 9094
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9095
		raw_spin_lock_irqsave(&rq->lock, flags);
9096 9097 9098
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9099
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9100 9101
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9102
	synchronize_sched_expedited_count++;
9103 9104 9105 9106 9107 9108 9109 9110
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */