sched.c 213.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/stop_machine.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326 327 328 329 330 331 332 333 334
	/*
	 * Strictly speaking this rcu_read_lock() is not needed since the
	 * task_group is tied to the cgroup, which in turn can never go away
	 * as long as there are tasks attached to it.
	 *
	 * However since task_group() uses task_subsys_state() which is an
	 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
	 */
	rcu_read_lock();
335
#ifdef CONFIG_FAIR_GROUP_SCHED
336 337
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
338
#endif
P
Peter Zijlstra 已提交
339

340
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
341 342
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
343
#endif
344
	rcu_read_unlock();
S
Srivatsa Vaddagiri 已提交
345 346 347 348
}

#else

P
Peter Zijlstra 已提交
349
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 351 352 353
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
354

D
Dhaval Giani 已提交
355
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
356

I
Ingo Molnar 已提交
357 358 359 360 361 362
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
363
	u64 min_vruntime;
I
Ingo Molnar 已提交
364 365 366

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
367 368 369 370 371 372

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
373 374
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
375
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
376

P
Peter Zijlstra 已提交
377
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
378

379
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
380 381
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
382 383
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
384 385 386 387 388 389
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
390 391
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
392 393 394

#ifdef CONFIG_SMP
	/*
395
	 * the part of load.weight contributed by tasks
396
	 */
397
	unsigned long task_weight;
398

399 400 401 402 403 404 405
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
406

407 408 409 410
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
411 412 413 414 415

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
416
#endif
I
Ingo Molnar 已提交
417 418
#endif
};
L
Linus Torvalds 已提交
419

I
Ingo Molnar 已提交
420 421 422
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
423
	unsigned long rt_nr_running;
424
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 426
	struct {
		int curr; /* highest queued rt task prio */
427
#ifdef CONFIG_SMP
428
		int next; /* next highest */
429
#endif
430
	} highest_prio;
P
Peter Zijlstra 已提交
431
#endif
P
Peter Zijlstra 已提交
432
#ifdef CONFIG_SMP
433
	unsigned long rt_nr_migratory;
434
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
435
	int overloaded;
436
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
437
#endif
P
Peter Zijlstra 已提交
438
	int rt_throttled;
P
Peter Zijlstra 已提交
439
	u64 rt_time;
P
Peter Zijlstra 已提交
440
	u64 rt_runtime;
I
Ingo Molnar 已提交
441
	/* Nests inside the rq lock: */
442
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
443

444
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
447 448 449 450
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
451 452
};

G
Gregory Haskins 已提交
453 454 455 456
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
457 458
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
459 460 461 462 463 464
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
465 466
	cpumask_var_t span;
	cpumask_var_t online;
467

I
Ingo Molnar 已提交
468
	/*
469 470 471
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
472
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
473
	atomic_t rto_count;
474 475 476
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
477 478
};

479 480 481 482
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
483 484 485 486
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
487 488 489 490 491 492 493
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
494
struct rq {
495
	/* runqueue lock: */
496
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
497 498 499 500 501 502

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
503 504
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505
#ifdef CONFIG_NO_HZ
M
Mike Galbraith 已提交
506
	u64 nohz_stamp;
507 508
	unsigned char in_nohz_recently;
#endif
509 510
	unsigned int skip_clock_update;

511 512
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
513 514 515 516
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
517 518
	struct rt_rq rt;

I
Ingo Molnar 已提交
519
#ifdef CONFIG_FAIR_GROUP_SCHED
520 521
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
522 523
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
524
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
525 526 527 528 529 530 531 532 533 534
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

535
	struct task_struct *curr, *idle;
536
	unsigned long next_balance;
L
Linus Torvalds 已提交
537
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
538

539
	u64 clock;
I
Ingo Molnar 已提交
540

L
Linus Torvalds 已提交
541 542 543
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
544
	struct root_domain *rd;
L
Linus Torvalds 已提交
545 546
	struct sched_domain *sd;

547
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
548
	/* For active balancing */
549
	int post_schedule;
L
Linus Torvalds 已提交
550 551
	int active_balance;
	int push_cpu;
552
	struct cpu_stop_work active_balance_work;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
558

559 560
	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
561 562
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
563 564
#endif

565 566 567 568
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
569
#ifdef CONFIG_SCHED_HRTICK
570 571 572 573
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
574 575 576
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
577 578 579
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
580 581
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
582 583

	/* sys_sched_yield() stats */
584
	unsigned int yld_count;
L
Linus Torvalds 已提交
585 586

	/* schedule() stats */
587 588 589
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
590 591

	/* try_to_wake_up() stats */
592 593
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
594 595

	/* BKL stats */
596
	unsigned int bkl_count;
L
Linus Torvalds 已提交
597 598 599
#endif
};

600
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
601

P
Peter Zijlstra 已提交
602 603
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
604
{
P
Peter Zijlstra 已提交
605
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
606 607 608 609 610 611 612

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
	if (test_tsk_need_resched(p))
		rq->skip_clock_update = 1;
I
Ingo Molnar 已提交
613 614
}

615 616 617 618 619 620 621 622 623
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

624
#define rcu_dereference_check_sched_domain(p) \
625 626 627 628
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
629 630
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
632 633 634 635
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
636
#define for_each_domain(cpu, __sd) \
637
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
638 639 640 641 642

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
643
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
644

I
Ingo Molnar 已提交
645
inline void update_rq_clock(struct rq *rq)
646
{
647 648
	if (!rq->skip_clock_update)
		rq->clock = sched_clock_cpu(cpu_of(rq));
649 650
}

I
Ingo Molnar 已提交
651 652 653 654 655 656 657 658 659
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
660 661
/**
 * runqueue_is_locked
662
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
663 664 665 666 667
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
668
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
669
{
670
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
671 672
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
706
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
707 708 709 710
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
711 712 713
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
714
	}
L
Li Zefan 已提交
715
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
716

L
Li Zefan 已提交
717
	return 0;
P
Peter Zijlstra 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
737
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

757
	*ppos += cnt;
P
Peter Zijlstra 已提交
758 759 760 761

	return cnt;
}

L
Li Zefan 已提交
762 763 764 765 766
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

767
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
768 769 770 771 772
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
787

788 789 790 791 792 793
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
794 795
/*
 * ratelimit for updating the group shares.
796
 * default: 0.25ms
P
Peter Zijlstra 已提交
797
 */
798
unsigned int sysctl_sched_shares_ratelimit = 250000;
799
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
800

801 802 803 804 805 806 807
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

808 809 810 811 812 813 814 815
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
816
/*
P
Peter Zijlstra 已提交
817
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
818 819
 * default: 1s
 */
P
Peter Zijlstra 已提交
820
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
821

822 823
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
824 825 826 827 828
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
829

830 831 832 833 834 835 836
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
837
	if (sysctl_sched_rt_runtime < 0)
838 839 840 841
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
842

L
Linus Torvalds 已提交
843
#ifndef prepare_arch_switch
844 845 846 847 848 849
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

850 851 852 853 854
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

855
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
856
static inline int task_running(struct rq *rq, struct task_struct *p)
857
{
858
	return task_current(rq, p);
859 860
}

861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 863 864
{
}

865
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866
{
867 868 869 870
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
871 872 873 874 875 876 877
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

878
	raw_spin_unlock_irq(&rq->lock);
879 880 881
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
882
static inline int task_running(struct rq *rq, struct task_struct *p)
883 884 885 886
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
887
	return task_current(rq, p);
888 889 890
#endif
}

891
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 893 894 895 896 897 898 899 900 901
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902
	raw_spin_unlock_irq(&rq->lock);
903
#else
904
	raw_spin_unlock(&rq->lock);
905 906 907
#endif
}

908
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 910 911 912 913 914 915 916 917 918 919 920
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
921
#endif
922 923
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
924

925
/*
P
Peter Zijlstra 已提交
926 927
 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
 * against ttwu().
928 929 930
 */
static inline int task_is_waking(struct task_struct *p)
{
931
	return unlikely(p->state == TASK_WAKING);
932 933
}

934 935 936 937
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
938
static inline struct rq *__task_rq_lock(struct task_struct *p)
939 940
	__acquires(rq->lock)
{
941 942
	struct rq *rq;

943
	for (;;) {
944
		rq = task_rq(p);
945
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
946
		if (likely(rq == task_rq(p)))
947
			return rq;
948
		raw_spin_unlock(&rq->lock);
949 950 951
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
965
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
966
		if (likely(rq == task_rq(p)))
967
			return rq;
968
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
969 970 971
	}
}

972 973 974 975 976
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977
	raw_spin_unlock_wait(&rq->lock);
978 979
}

A
Alexey Dobriyan 已提交
980
static void __task_rq_unlock(struct rq *rq)
981 982
	__releases(rq->lock)
{
983
	raw_spin_unlock(&rq->lock);
984 985
}

986
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
987 988
	__releases(rq->lock)
{
989
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
990 991 992
}

/*
993
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
994
 */
A
Alexey Dobriyan 已提交
995
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999 1000 1001

	local_irq_disable();
	rq = this_rq();
1002
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1003 1004 1005 1006

	return rq;
}

P
Peter Zijlstra 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1028
	if (!cpu_active(cpu_of(rq)))
1029
		return 0;
P
Peter Zijlstra 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1049
	raw_spin_lock(&rq->lock);
1050
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1051
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1053 1054 1055 1056

	return HRTIMER_NORESTART;
}

1057
#ifdef CONFIG_SMP
1058 1059 1060 1061
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1062
{
1063
	struct rq *rq = arg;
1064

1065
	raw_spin_lock(&rq->lock);
1066 1067
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1068
	raw_spin_unlock(&rq->lock);
1069 1070
}

1071 1072 1073 1074 1075 1076
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1077
{
1078 1079
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080

1081
	hrtimer_set_expires(timer, time);
1082 1083 1084 1085

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1086
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1087 1088
		rq->hrtick_csd_pending = 1;
	}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1103
		hrtick_clear(cpu_rq(cpu));
1104 1105 1106 1107 1108 1109
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1110
static __init void init_hrtick(void)
1111 1112 1113
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1114 1115 1116 1117 1118 1119 1120 1121
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1122
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1123
			HRTIMER_MODE_REL_PINNED, 0);
1124
}
1125

A
Andrew Morton 已提交
1126
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1127 1128
{
}
1129
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1130

1131
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1132
{
1133 1134
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1135

1136 1137 1138 1139
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1140

1141 1142
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1143
}
A
Andrew Morton 已提交
1144
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151 1152
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1153 1154 1155
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1156
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1157

I
Ingo Molnar 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1171
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1172 1173 1174
{
	int cpu;

1175
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1176

1177
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1178 1179
		return;

1180
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1197
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1198 1199
		return;
	resched_task(cpu_curr(cpu));
1200
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1201
}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1236
	set_tsk_need_resched(rq->idle);
1237 1238 1239 1240 1241 1242

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
M
Mike Galbraith 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

int nohz_ratelimit(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 diff = rq->clock - rq->nohz_stamp;

	rq->nohz_stamp = rq->clock;

	return diff < (NSEC_PER_SEC / HZ) >> 1;
}

1254
#endif /* CONFIG_NO_HZ */
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1277
#else /* !CONFIG_SMP */
1278
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1279
{
1280
	assert_raw_spin_locked(&task_rq(p)->lock);
1281
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1282
}
1283 1284 1285 1286

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1287
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1288

1289 1290 1291 1292 1293 1294 1295 1296
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1297 1298 1299
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1300
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1301

1302 1303 1304
/*
 * delta *= weight / lw
 */
1305
static unsigned long
1306 1307 1308 1309 1310
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1311 1312 1313 1314 1315 1316 1317
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1318 1319 1320 1321 1322

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1323
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1324
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1325 1326
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1327
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328

1329
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 1331
}

1332
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 1334
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 1340
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1341
	lw->inv_weight = 0;
1342 1343
}

1344 1345 1346 1347
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1348
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 1350 1351 1352
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1353 1354
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 1365 1366
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1367 1368
 */
static const int prio_to_weight[40] = {
1369 1370 1371 1372 1373 1374 1375 1376
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1377 1378
};

1379 1380 1381 1382 1383 1384 1385
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1386
static const u32 prio_to_wmult[40] = {
1387 1388 1389 1390 1391 1392 1393 1394
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1395
};
1396

1397 1398 1399 1400 1401 1402 1403 1404
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1405 1406
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1407 1408
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1409 1410
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1411 1412
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1413 1414
#endif

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1425
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1426
typedef int (*tg_visitor)(struct task_group *, void *);
1427 1428 1429 1430 1431

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1432
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1433 1434
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1435
	int ret;
1436 1437 1438 1439

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1440 1441 1442
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1443 1444 1445 1446 1447 1448 1449
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1450 1451 1452
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1453 1454 1455 1456 1457

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1458
out_unlock:
1459
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1460 1461

	return ret;
1462 1463
}

P
Peter Zijlstra 已提交
1464 1465 1466
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1467
}
P
Peter Zijlstra 已提交
1468 1469 1470
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1510 1511
static struct sched_group *group_of(int cpu)
{
1512
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1530 1531 1532 1533 1534
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1535
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1536

1537 1538
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1539 1540
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1541 1542 1543 1544 1545

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1546

1547
static __read_mostly unsigned long __percpu *update_shares_data;
1548

1549 1550 1551 1552 1553
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1554 1555 1556
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1557
				    unsigned long *usd_rq_weight)
1558
{
1559
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1560
	int boost = 0;
1561

1562
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1563 1564 1565 1566
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1567

1568
	/*
P
Peter Zijlstra 已提交
1569 1570 1571
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1572
	 */
1573
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1574
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1575

1576 1577 1578 1579
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1580

1581
		raw_spin_lock_irqsave(&rq->lock, flags);
1582
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1583
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1584
		__set_se_shares(tg->se[cpu], shares);
1585
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1586
	}
1587
}
1588 1589

/*
1590 1591 1592
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1593
 */
P
Peter Zijlstra 已提交
1594
static int tg_shares_up(struct task_group *tg, void *data)
1595
{
1596
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1597
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1598
	struct sched_domain *sd = data;
1599
	unsigned long flags;
1600
	int i;
1601

1602 1603 1604 1605
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1606
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1607

1608
	for_each_cpu(i, sched_domain_span(sd)) {
1609
		weight = tg->cfs_rq[i]->load.weight;
1610
		usd_rq_weight[i] = weight;
1611

1612
		rq_weight += weight;
1613 1614 1615 1616 1617 1618 1619 1620
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1621
		sum_weight += weight;
1622
		shares += tg->cfs_rq[i]->shares;
1623 1624
	}

1625 1626 1627
	if (!rq_weight)
		rq_weight = sum_weight;

1628 1629 1630 1631 1632
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1633

1634
	for_each_cpu(i, sched_domain_span(sd))
1635
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1636 1637

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1638 1639

	return 0;
1640 1641 1642
}

/*
1643 1644 1645
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1646
 */
P
Peter Zijlstra 已提交
1647
static int tg_load_down(struct task_group *tg, void *data)
1648
{
1649
	unsigned long load;
P
Peter Zijlstra 已提交
1650
	long cpu = (long)data;
1651

1652 1653 1654 1655 1656 1657 1658
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1659

1660
	tg->cfs_rq[cpu]->h_load = load;
1661

P
Peter Zijlstra 已提交
1662
	return 0;
1663 1664
}

1665
static void update_shares(struct sched_domain *sd)
1666
{
1667 1668 1669 1670 1671 1672 1673 1674
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1675 1676 1677

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1678
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1679
	}
1680 1681
}

P
Peter Zijlstra 已提交
1682
static void update_h_load(long cpu)
1683
{
1684 1685 1686
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1687
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1688 1689 1690 1691
}

#else

1692
static inline void update_shares(struct sched_domain *sd)
1693 1694 1695
{
}

1696 1697
#endif

1698 1699
#ifdef CONFIG_PREEMPT

1700 1701
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1702
/*
1703 1704 1705 1706 1707 1708
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1709
 */
1710 1711 1712 1713 1714
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1715
	raw_spin_unlock(&this_rq->lock);
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1730 1731 1732 1733 1734 1735
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1736
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1737
		if (busiest < this_rq) {
1738 1739 1740 1741
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1742 1743
			ret = 1;
		} else
1744 1745
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1746 1747 1748 1749
	}
	return ret;
}

1750 1751 1752 1753 1754 1755 1756 1757 1758
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1759
		raw_spin_unlock(&this_rq->lock);
1760 1761 1762 1763 1764 1765
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1766 1767 1768
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1769
	raw_spin_unlock(&busiest->lock);
1770 1771
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1815 1816
#endif

V
Vegard Nossum 已提交
1817
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1818 1819
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1820
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1821 1822 1823
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1824
#endif
1825

1826
static void calc_load_account_idle(struct rq *this_rq);
1827
static void update_sysctl(void);
1828
static int get_update_sysctl_factor(void);
1829

P
Peter Zijlstra 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1843

1844
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1845 1846

#define sched_class_highest (&rt_sched_class)
1847 1848
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1849

1850 1851
#include "sched_stats.h"

1852
static void inc_nr_running(struct rq *rq)
1853 1854 1855 1856
{
	rq->nr_running++;
}

1857
static void dec_nr_running(struct rq *rq)
1858 1859 1860 1861
{
	rq->nr_running--;
}

1862 1863 1864
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1865 1866 1867 1868
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1869

I
Ingo Molnar 已提交
1870 1871 1872 1873 1874 1875 1876 1877
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1878

I
Ingo Molnar 已提交
1879 1880
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1881 1882
}

1883
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1884
{
1885
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1886
	sched_info_queued(p);
1887
	p->sched_class->enqueue_task(rq, p, flags);
I
Ingo Molnar 已提交
1888
	p->se.on_rq = 1;
1889 1890
}

1891
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1892
{
1893
	update_rq_clock(rq);
1894
	sched_info_dequeued(p);
1895
	p->sched_class->dequeue_task(rq, p, flags);
I
Ingo Molnar 已提交
1896
	p->se.on_rq = 0;
1897 1898
}

1899 1900 1901
/*
 * activate_task - move a task to the runqueue.
 */
1902
static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1903 1904 1905 1906
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1907
	enqueue_task(rq, p, flags);
1908 1909 1910 1911 1912 1913
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1914
static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1915 1916 1917 1918
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

1919
	dequeue_task(rq, p, flags);
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1930
/*
I
Ingo Molnar 已提交
1931
 * __normal_prio - return the priority that is based on the static prio
1932 1933 1934
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1935
	return p->static_prio;
1936 1937
}

1938 1939 1940 1941 1942 1943 1944
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1945
static inline int normal_prio(struct task_struct *p)
1946 1947 1948
{
	int prio;

1949
	if (task_has_rt_policy(p))
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1963
static int effective_prio(struct task_struct *p)
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1976 1977 1978 1979
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1980
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1981 1982 1983 1984
{
	return cpu_curr(task_cpu(p)) == p;
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1997
#ifdef CONFIG_SMP
1998 1999 2000
/*
 * Is this task likely cache-hot:
 */
2001
static int
2002 2003 2004 2005
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2006 2007 2008
	if (p->sched_class != &fair_sched_class)
		return 0;

2009 2010 2011
	/*
	 * Buddy candidates are cache hot:
	 */
2012
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2013 2014
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2015 2016
		return 1;

2017 2018 2019 2020 2021
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2022 2023 2024 2025 2026
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2027
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2028
{
2029 2030 2031 2032 2033
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2034 2035
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2036 2037
#endif

2038
	trace_sched_migrate_task(p, new_cpu);
2039

2040 2041 2042 2043
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2044 2045

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2046 2047
}

2048
struct migration_arg {
2049
	struct task_struct *task;
L
Linus Torvalds 已提交
2050
	int dest_cpu;
2051
};
L
Linus Torvalds 已提交
2052

2053 2054
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
2055 2056 2057 2058
/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2059
static bool migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2060
{
2061
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2062 2063 2064

	/*
	 * If the task is not on a runqueue (and not running), then
2065
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2066
	 */
2067
	return p->se.on_rq || task_running(rq, p);
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2073 2074 2075 2076 2077 2078 2079
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2086
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2087 2088
{
	unsigned long flags;
I
Ingo Molnar 已提交
2089
	int running, on_rq;
R
Roland McGrath 已提交
2090
	unsigned long ncsw;
2091
	struct rq *rq;
L
Linus Torvalds 已提交
2092

2093 2094 2095 2096 2097 2098 2099 2100
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2113 2114 2115
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2116
			cpu_relax();
R
Roland McGrath 已提交
2117
		}
2118

2119 2120 2121 2122 2123 2124
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2125
		trace_sched_wait_task(p);
2126 2127
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2128
		ncsw = 0;
2129
		if (!match_state || p->state == match_state)
2130
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131
		task_rq_unlock(rq, &flags);
2132

R
Roland McGrath 已提交
2133 2134 2135 2136 2137 2138
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2149

2150 2151 2152 2153 2154
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2155
		 * So if it was still runnable (but just not actively
2156 2157 2158 2159 2160 2161 2162
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2163

2164 2165 2166 2167 2168 2169 2170
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2171 2172

	return ncsw;
L
Linus Torvalds 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2188
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2198
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2199
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2200

T
Thomas Gleixner 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2222
#ifdef CONFIG_SMP
2223 2224 2225
/*
 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
 */
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
2242
	if (unlikely(dest_cpu >= nr_cpu_ids)) {
2243
		dest_cpu = cpuset_cpus_allowed_fallback(p);
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2259
/*
2260
 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2261
 */
2262
static inline
2263
int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2264
{
2265
	int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2278
		     !cpu_online(cpu)))
2279
		cpu = select_fallback_rq(task_cpu(p), p);
2280 2281

	return cpu;
2282
}
2283 2284 2285 2286 2287 2288

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
2289 2290
#endif

L
Linus Torvalds 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2305 2306
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2307
{
2308
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2309
	unsigned long flags;
2310
	unsigned long en_flags = ENQUEUE_WAKEUP;
2311
	struct rq *rq;
L
Linus Torvalds 已提交
2312

P
Peter Zijlstra 已提交
2313
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2314

2315
	smp_wmb();
2316
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2317
	if (!(p->state & state))
L
Linus Torvalds 已提交
2318 2319
		goto out;

I
Ingo Molnar 已提交
2320
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2321 2322 2323
		goto out_running;

	cpu = task_cpu(p);
2324
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2325 2326 2327 2328 2329

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2330 2331 2332
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2333 2334
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2335
	 */
2336 2337 2338 2339 2340 2341
	if (task_contributes_to_load(p)) {
		if (likely(cpu_online(orig_cpu)))
			rq->nr_uninterruptible--;
		else
			this_rq()->nr_uninterruptible--;
	}
P
Peter Zijlstra 已提交
2342
	p->state = TASK_WAKING;
2343

2344
	if (p->sched_class->task_waking) {
2345
		p->sched_class->task_waking(rq, p);
2346 2347
		en_flags |= ENQUEUE_WAKING;
	}
2348

2349 2350
	cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
	if (cpu != orig_cpu)
2351
		set_task_cpu(p, cpu);
2352
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2353

2354 2355
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
2356

2357 2358 2359 2360 2361 2362 2363
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2364
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2365

2366 2367 2368 2369 2370 2371 2372
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2373
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2374 2375 2376 2377 2378
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2379
#endif /* CONFIG_SCHEDSTATS */
2380

L
Linus Torvalds 已提交
2381 2382
out_activate:
#endif /* CONFIG_SMP */
2383
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
2384
	if (wake_flags & WF_SYNC)
2385
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
2386
	if (orig_cpu != cpu)
2387
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2388
	if (cpu == this_cpu)
2389
		schedstat_inc(p, se.statistics.nr_wakeups_local);
2390
	else
2391
		schedstat_inc(p, se.statistics.nr_wakeups_remote);
2392
	activate_task(rq, p, en_flags);
L
Linus Torvalds 已提交
2393 2394 2395
	success = 1;

out_running:
2396
	trace_sched_wakeup(p, success);
P
Peter Zijlstra 已提交
2397
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2398

L
Linus Torvalds 已提交
2399
	p->state = TASK_RUNNING;
2400
#ifdef CONFIG_SMP
2401 2402
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2414
#endif
L
Linus Torvalds 已提交
2415 2416
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2417
	put_cpu();
L
Linus Torvalds 已提交
2418 2419 2420 2421

	return success;
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2433
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2434
{
2435
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2436 2437 2438
}
EXPORT_SYMBOL(wake_up_process);

2439
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2440 2441 2442 2443 2444 2445 2446
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2447 2448 2449 2450 2451 2452 2453
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2454
	p->se.prev_sum_exec_runtime	= 0;
2455
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2456 2457

#ifdef CONFIG_SCHEDSTATS
2458
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
2459
#endif
N
Nick Piggin 已提交
2460

P
Peter Zijlstra 已提交
2461
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2462
	p->se.on_rq = 0;
2463
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2464

2465 2466 2467
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2478
	/*
2479
	 * We mark the process as running here. This guarantees that
2480 2481 2482
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
2483
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2484

2485 2486 2487 2488
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2489
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2490
			p->policy = SCHED_NORMAL;
2491 2492
			p->normal_prio = p->static_prio;
		}
2493

2494 2495
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2496
			p->normal_prio = p->static_prio;
2497 2498 2499
			set_load_weight(p);
		}

2500 2501 2502 2503 2504 2505
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2506

2507 2508 2509 2510 2511
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2512 2513
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2514

P
Peter Zijlstra 已提交
2515 2516 2517
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2518 2519
	set_task_cpu(p, cpu);

2520
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2521
	if (likely(sched_info_on()))
2522
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2523
#endif
2524
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2525 2526
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2527
#ifdef CONFIG_PREEMPT
2528
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2529
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2530
#endif
2531 2532
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2533
	put_cpu();
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2543
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2544 2545
{
	unsigned long flags;
I
Ingo Molnar 已提交
2546
	struct rq *rq;
2547
	int cpu __maybe_unused = get_cpu();
2548 2549

#ifdef CONFIG_SMP
2550 2551 2552
	rq = task_rq_lock(p, &flags);
	p->state = TASK_WAKING;

2553 2554 2555 2556 2557
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
2558 2559
	 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
	 * without people poking at ->cpus_allowed.
2560
	 */
2561
	cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2562
	set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2563

2564
	p->state = TASK_RUNNING;
2565 2566 2567 2568
	task_rq_unlock(rq, &flags);
#endif

	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
2569
	activate_task(rq, p, 0);
2570
	trace_sched_wakeup_new(p, 1);
P
Peter Zijlstra 已提交
2571
	check_preempt_curr(rq, p, WF_FORK);
2572
#ifdef CONFIG_SMP
2573 2574
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2575
#endif
I
Ingo Molnar 已提交
2576
	task_rq_unlock(rq, &flags);
2577
	put_cpu();
L
Linus Torvalds 已提交
2578 2579
}

2580 2581 2582
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2583
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2584
 * @notifier: notifier struct to register
2585 2586 2587 2588 2589 2590 2591 2592 2593
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2594
 * @notifier: notifier struct to unregister
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2624
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2636
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2637

2638 2639 2640
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2641
 * @prev: the current task that is being switched out
2642 2643 2644 2645 2646 2647 2648 2649 2650
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2651 2652 2653
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2654
{
2655
	fire_sched_out_preempt_notifiers(prev, next);
2656 2657 2658 2659
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2660 2661
/**
 * finish_task_switch - clean up after a task-switch
2662
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2663 2664
 * @prev: the thread we just switched away from.
 *
2665 2666 2667 2668
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2669 2670
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2671
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2672 2673 2674
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2675
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2676 2677 2678
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2679
	long prev_state;
L
Linus Torvalds 已提交
2680 2681 2682 2683 2684

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2685
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2686 2687
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2688
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2694
	prev_state = prev->state;
2695
	finish_arch_switch(prev);
2696 2697 2698
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2699
	perf_event_task_sched_in(current);
2700 2701 2702
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2703
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2704

2705
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2706 2707
	if (mm)
		mmdrop(mm);
2708
	if (unlikely(prev_state == TASK_DEAD)) {
2709 2710 2711
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2712
		 */
2713
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2714
		put_task_struct(prev);
2715
	}
L
Linus Torvalds 已提交
2716 2717
}

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2733
		raw_spin_lock_irqsave(&rq->lock, flags);
2734 2735
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2736
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2737 2738 2739 2740 2741 2742

		rq->post_schedule = 0;
	}
}

#else
2743

2744 2745 2746 2747 2748 2749
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2750 2751
}

2752 2753
#endif

L
Linus Torvalds 已提交
2754 2755 2756 2757
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2758
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2759 2760
	__releases(rq->lock)
{
2761 2762
	struct rq *rq = this_rq();

2763
	finish_task_switch(rq, prev);
2764

2765 2766 2767 2768 2769
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2770

2771 2772 2773 2774
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2775
	if (current->set_child_tid)
2776
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2777 2778 2779 2780 2781 2782
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2783
static inline void
2784
context_switch(struct rq *rq, struct task_struct *prev,
2785
	       struct task_struct *next)
L
Linus Torvalds 已提交
2786
{
I
Ingo Molnar 已提交
2787
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2788

2789
	prepare_task_switch(rq, prev, next);
2790
	trace_sched_switch(prev, next);
I
Ingo Molnar 已提交
2791 2792
	mm = next->mm;
	oldmm = prev->active_mm;
2793 2794 2795 2796 2797
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2798
	arch_start_context_switch(prev);
2799

2800
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805 2806
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2807
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2808 2809 2810
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2811 2812 2813 2814 2815 2816 2817
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2818
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2819
#endif
L
Linus Torvalds 已提交
2820 2821 2822 2823

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2824 2825 2826 2827 2828 2829 2830
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2848
}
L
Linus Torvalds 已提交
2849 2850

unsigned long nr_uninterruptible(void)
2851
{
L
Linus Torvalds 已提交
2852
	unsigned long i, sum = 0;
2853

2854
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2855
		sum += cpu_rq(i)->nr_uninterruptible;
2856 2857

	/*
L
Linus Torvalds 已提交
2858 2859
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2860
	 */
L
Linus Torvalds 已提交
2861 2862
	if (unlikely((long)sum < 0))
		sum = 0;
2863

L
Linus Torvalds 已提交
2864
	return sum;
2865 2866
}

L
Linus Torvalds 已提交
2867
unsigned long long nr_context_switches(void)
2868
{
2869 2870
	int i;
	unsigned long long sum = 0;
2871

2872
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2873
		sum += cpu_rq(i)->nr_switches;
2874

L
Linus Torvalds 已提交
2875 2876
	return sum;
}
2877

L
Linus Torvalds 已提交
2878 2879 2880
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2881

2882
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2883
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2884

L
Linus Torvalds 已提交
2885 2886
	return sum;
}
2887

2888 2889 2890 2891 2892
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
2893

2894 2895 2896 2897 2898
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
2899

2900

2901 2902 2903 2904 2905
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
2906

2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
static long calc_load_fold_active(struct rq *this_rq)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

#ifdef CONFIG_NO_HZ
/*
 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_tasks_idle;

static void calc_load_account_idle(struct rq *this_rq)
{
	long delta;

	delta = calc_load_fold_active(this_rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks_idle);
}

static long calc_load_fold_idle(void)
{
	long delta = 0;

	/*
	 * Its got a race, we don't care...
	 */
	if (atomic_long_read(&calc_load_tasks_idle))
		delta = atomic_long_xchg(&calc_load_tasks_idle, 0);

	return delta;
}
#else
static void calc_load_account_idle(struct rq *this_rq)
{
}

static inline long calc_load_fold_idle(void)
{
	return 0;
}
#endif

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
2975 2976
}

2977 2978
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2979
{
2980 2981 2982 2983
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2984 2985

/*
2986 2987
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
2988
 */
2989
void calc_global_load(void)
2990
{
2991 2992
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
2993

2994 2995
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
2996

2997 2998
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
2999

3000 3001 3002
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3003

3004 3005
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3006

3007
/*
3008 3009
 * Called from update_cpu_load() to periodically update this CPU's
 * active count.
3010 3011 3012
 */
static void calc_load_account_active(struct rq *this_rq)
{
3013
	long delta;
3014

3015 3016
	if (time_before(jiffies, this_rq->calc_load_update))
		return;
3017

3018 3019 3020
	delta  = calc_load_fold_active(this_rq);
	delta += calc_load_fold_idle();
	if (delta)
3021
		atomic_long_add(delta, &calc_load_tasks);
3022 3023

	this_rq->calc_load_update += LOAD_FREQ;
3024 3025 3026
}

/*
I
Ingo Molnar 已提交
3027 3028
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3029
 */
I
Ingo Molnar 已提交
3030
static void update_cpu_load(struct rq *this_rq)
3031
{
3032
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3033
	int i, scale;
3034

I
Ingo Molnar 已提交
3035
	this_rq->nr_load_updates++;
3036

I
Ingo Molnar 已提交
3037 3038 3039
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3040

I
Ingo Molnar 已提交
3041
		/* scale is effectively 1 << i now, and >> i divides by scale */
3042

I
Ingo Molnar 已提交
3043 3044
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3045 3046 3047 3048 3049 3050 3051
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3052 3053
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3054

3055
	calc_load_account_active(this_rq);
3056 3057
}

I
Ingo Molnar 已提交
3058
#ifdef CONFIG_SMP
3059

3060
/*
P
Peter Zijlstra 已提交
3061 3062
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3063
 */
P
Peter Zijlstra 已提交
3064
void sched_exec(void)
3065
{
P
Peter Zijlstra 已提交
3066
	struct task_struct *p = current;
L
Linus Torvalds 已提交
3067
	unsigned long flags;
3068
	struct rq *rq;
3069
	int dest_cpu;
3070

L
Linus Torvalds 已提交
3071
	rq = task_rq_lock(p, &flags);
3072 3073 3074
	dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
3075

3076
	/*
P
Peter Zijlstra 已提交
3077
	 * select_task_rq() can race against ->cpus_allowed
3078
	 */
3079
	if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3080 3081
	    likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
3082

L
Linus Torvalds 已提交
3083
		task_rq_unlock(rq, &flags);
3084
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
3085 3086
		return;
	}
3087
unlock:
L
Linus Torvalds 已提交
3088 3089
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3090

L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3098
 * Return any ns on the sched_clock that have not yet been accounted in
3099
 * @p in case that task is currently running.
3100 3101
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3102
 */
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3117
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3118 3119
{
	unsigned long flags;
3120
	struct rq *rq;
3121
	u64 ns = 0;
3122

3123
	rq = task_rq_lock(p, &flags);
3124 3125
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3126

3127 3128
	return ns;
}
3129

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3147

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3167
	task_rq_unlock(rq, &flags);
3168

L
Linus Torvalds 已提交
3169 3170 3171 3172 3173 3174 3175
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3176
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3177
 */
3178 3179
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3180 3181 3182 3183
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3184
	/* Add user time to process. */
L
Linus Torvalds 已提交
3185
	p->utime = cputime_add(p->utime, cputime);
3186
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3187
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192 3193 3194

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3195 3196

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3197 3198
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3199 3200
}

3201 3202 3203 3204
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3205
 * @cputime_scaled: cputime scaled by cpu frequency
3206
 */
3207 3208
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3209 3210 3211 3212 3213 3214
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3215
	/* Add guest time to process. */
3216
	p->utime = cputime_add(p->utime, cputime);
3217
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3218
	account_group_user_time(p, cputime);
3219 3220
	p->gtime = cputime_add(p->gtime, cputime);

3221
	/* Add guest time to cpustat. */
3222 3223 3224 3225 3226 3227 3228
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3229 3230
}

L
Linus Torvalds 已提交
3231 3232 3233 3234 3235
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3236
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3237 3238
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3239
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3240 3241 3242 3243
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3244
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3245
		account_guest_time(p, cputime, cputime_scaled);
3246 3247
		return;
	}
3248

3249
	/* Add system time to process. */
L
Linus Torvalds 已提交
3250
	p->stime = cputime_add(p->stime, cputime);
3251
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3252
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3253 3254 3255 3256 3257 3258 3259 3260

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3261 3262
		cpustat->system = cputime64_add(cpustat->system, tmp);

3263 3264
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3265 3266 3267 3268
	/* Account for system time used */
	acct_update_integrals(p);
}

3269
/*
L
Linus Torvalds 已提交
3270 3271
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3272
 */
3273
void account_steal_time(cputime_t cputime)
3274
{
3275 3276 3277 3278
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3279 3280
}

L
Linus Torvalds 已提交
3281
/*
3282 3283
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3284
 */
3285
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3286 3287
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3288
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3289
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3290

3291 3292 3293 3294
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3295 3296
}

3297 3298 3299 3300 3301 3302 3303 3304 3305
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3306
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3307 3308 3309
	struct rq *rq = this_rq();

	if (user_tick)
3310
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3311
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3312
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3313 3314
				    one_jiffy_scaled);
	else
3315
		account_idle_time(cputime_one_jiffy);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3335 3336
}

3337 3338
#endif

3339 3340 3341 3342
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3343
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3344
{
3345 3346
	*ut = p->utime;
	*st = p->stime;
3347 3348
}

3349
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3350
{
3351 3352 3353 3354 3355 3356
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3357 3358
}
#else
3359 3360

#ifndef nsecs_to_cputime
3361
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3362 3363
#endif

3364
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3365
{
3366
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3367 3368 3369 3370

	/*
	 * Use CFS's precise accounting:
	 */
3371
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3372 3373

	if (total) {
3374 3375 3376
		u64 temp;

		temp = (u64)(rtime * utime);
3377
		do_div(temp, total);
3378 3379 3380
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3381

3382 3383 3384
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3385
	p->prev_utime = max(p->prev_utime, utime);
3386
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3387

3388 3389
	*ut = p->prev_utime;
	*st = p->prev_stime;
3390 3391
}

3392 3393 3394 3395
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3396
{
3397 3398 3399
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3400

3401
	thread_group_cputime(p, &cputime);
3402

3403 3404
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3405

3406 3407
	if (total) {
		u64 temp;
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3421 3422 3423
}
#endif

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3435
	struct task_struct *curr = rq->curr;
3436 3437

	sched_clock_tick();
I
Ingo Molnar 已提交
3438

3439
	raw_spin_lock(&rq->lock);
3440
	update_rq_clock(rq);
3441
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3442
	curr->sched_class->task_tick(rq, curr, 0);
3443
	raw_spin_unlock(&rq->lock);
3444

3445
	perf_event_task_tick(curr);
3446

3447
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3448 3449
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3450
#endif
L
Linus Torvalds 已提交
3451 3452
}

3453
notrace unsigned long get_parent_ip(unsigned long addr)
3454 3455 3456 3457 3458 3459 3460 3461
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3462

3463 3464 3465
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3466
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3467
{
3468
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3469 3470 3471
	/*
	 * Underflow?
	 */
3472 3473
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3474
#endif
L
Linus Torvalds 已提交
3475
	preempt_count() += val;
3476
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3477 3478 3479
	/*
	 * Spinlock count overflowing soon?
	 */
3480 3481
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3482 3483 3484
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3485 3486 3487
}
EXPORT_SYMBOL(add_preempt_count);

3488
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3489
{
3490
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3491 3492 3493
	/*
	 * Underflow?
	 */
3494
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3495
		return;
L
Linus Torvalds 已提交
3496 3497 3498
	/*
	 * Is the spinlock portion underflowing?
	 */
3499 3500 3501
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3502
#endif
3503

3504 3505
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3506 3507 3508 3509 3510 3511 3512
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3513
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3514
 */
I
Ingo Molnar 已提交
3515
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3516
{
3517 3518
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3519 3520
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3521

I
Ingo Molnar 已提交
3522
	debug_show_held_locks(prev);
3523
	print_modules();
I
Ingo Molnar 已提交
3524 3525
	if (irqs_disabled())
		print_irqtrace_events(prev);
3526 3527 3528 3529 3530

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3531
}
L
Linus Torvalds 已提交
3532

I
Ingo Molnar 已提交
3533 3534 3535 3536 3537
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3538
	/*
I
Ingo Molnar 已提交
3539
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3540 3541 3542
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3543
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3544 3545
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3546 3547
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3548
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3549 3550
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3551 3552
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3553 3554
	}
#endif
I
Ingo Molnar 已提交
3555 3556
}

P
Peter Zijlstra 已提交
3557
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3558
{
3559 3560 3561
	if (prev->se.on_rq)
		update_rq_clock(rq);
	rq->skip_clock_update = 0;
P
Peter Zijlstra 已提交
3562
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3563 3564
}

I
Ingo Molnar 已提交
3565 3566 3567 3568
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3569
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3570
{
3571
	const struct sched_class *class;
I
Ingo Molnar 已提交
3572
	struct task_struct *p;
L
Linus Torvalds 已提交
3573 3574

	/*
I
Ingo Molnar 已提交
3575 3576
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3577
	 */
I
Ingo Molnar 已提交
3578
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3579
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3580 3581
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3582 3583
	}

I
Ingo Molnar 已提交
3584 3585
	class = sched_class_highest;
	for ( ; ; ) {
3586
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3596

I
Ingo Molnar 已提交
3597 3598 3599
/*
 * schedule() is the main scheduler function.
 */
3600
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3601 3602
{
	struct task_struct *prev, *next;
3603
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3604
	struct rq *rq;
3605
	int cpu;
I
Ingo Molnar 已提交
3606

3607 3608
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3609 3610
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3611
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
3612 3613 3614 3615 3616 3617 3618
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3619

3620
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3621
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3622

3623
	raw_spin_lock_irq(&rq->lock);
3624
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3625 3626

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3627
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3628
			prev->state = TASK_RUNNING;
3629
		else
3630
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
I
Ingo Molnar 已提交
3631
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3632 3633
	}

3634
	pre_schedule(rq, prev);
3635

I
Ingo Molnar 已提交
3636
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3637 3638
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3639
	put_prev_task(rq, prev);
3640
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3641 3642

	if (likely(prev != next)) {
3643
		sched_info_switch(prev, next);
3644
		perf_event_task_sched_out(prev, next);
3645

L
Linus Torvalds 已提交
3646 3647 3648 3649
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3650
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3651 3652 3653 3654 3655 3656
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3657
	} else
3658
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3659

3660
	post_schedule(rq);
L
Linus Torvalds 已提交
3661

3662 3663 3664
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3665
		goto need_resched_nonpreemptible;
3666
	}
P
Peter Zijlstra 已提交
3667

L
Linus Torvalds 已提交
3668
	preempt_enable_no_resched();
3669
	if (need_resched())
L
Linus Torvalds 已提交
3670 3671 3672 3673
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3674
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3694
		return 0;
3695 3696 3697 3698 3699 3700 3701 3702 3703
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3704
		return 0;
3705 3706 3707 3708 3709 3710

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3711
		return 0;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3730

3731 3732 3733 3734
	return 1;
}
#endif

L
Linus Torvalds 已提交
3735 3736
#ifdef CONFIG_PREEMPT
/*
3737
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3738
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3744

L
Linus Torvalds 已提交
3745 3746
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3747
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3748
	 */
N
Nick Piggin 已提交
3749
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3750 3751
		return;

3752 3753 3754 3755
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3756

3757 3758 3759 3760 3761
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3762
	} while (need_resched());
L
Linus Torvalds 已提交
3763 3764 3765 3766
}
EXPORT_SYMBOL(preempt_schedule);

/*
3767
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3768 3769 3770 3771 3772 3773 3774
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3775

3776
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3777 3778
	BUG_ON(ti->preempt_count || !irqs_disabled());

3779 3780 3781 3782 3783 3784
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3785

3786 3787 3788 3789 3790
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3791
	} while (need_resched());
L
Linus Torvalds 已提交
3792 3793 3794 3795
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3796
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3797
			  void *key)
L
Linus Torvalds 已提交
3798
{
P
Peter Zijlstra 已提交
3799
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3800 3801 3802 3803
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3804 3805
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3806 3807 3808
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3809
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3810 3811
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3812
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3813
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3814
{
3815
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3816

3817
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3818 3819
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3820
		if (curr->func(curr, mode, wake_flags, key) &&
3821
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3831
 * @key: is directly passed to the wakeup function
3832 3833 3834
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3835
 */
3836
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3837
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3850
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3851 3852 3853 3854
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3855 3856 3857 3858 3859
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3860
/**
3861
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3862 3863 3864
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3865
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3866 3867 3868 3869 3870 3871 3872
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3873 3874 3875
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3876
 */
3877 3878
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3879 3880
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3881
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3882 3883 3884 3885 3886

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3887
		wake_flags = 0;
L
Linus Torvalds 已提交
3888 3889

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3890
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3891 3892
	spin_unlock_irqrestore(&q->lock, flags);
}
3893 3894 3895 3896 3897 3898 3899 3900 3901
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
3902 3903
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3904 3905 3906 3907 3908 3909 3910 3911
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
3912 3913 3914
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3915
 */
3916
void complete(struct completion *x)
L
Linus Torvalds 已提交
3917 3918 3919 3920 3921
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3922
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3923 3924 3925 3926
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3927 3928 3929 3930 3931
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
3932 3933 3934
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
3935
 */
3936
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3937 3938 3939 3940 3941
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3942
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3943 3944 3945 3946
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3947 3948
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3949 3950 3951 3952
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

C
Changli Gao 已提交
3953
		__add_wait_queue_tail_exclusive(&x->wait, &wait);
L
Linus Torvalds 已提交
3954
		do {
3955
			if (signal_pending_state(state, current)) {
3956 3957
				timeout = -ERESTARTSYS;
				break;
3958 3959
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3960 3961 3962
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
3963
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
3964
		__remove_wait_queue(&x->wait, &wait);
3965 3966
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
3967 3968
	}
	x->done--;
3969
	return timeout ?: 1;
L
Linus Torvalds 已提交
3970 3971
}

3972 3973
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3974 3975 3976 3977
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3978
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3979
	spin_unlock_irq(&x->wait.lock);
3980 3981
	return timeout;
}
L
Linus Torvalds 已提交
3982

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
3993
void __sched wait_for_completion(struct completion *x)
3994 3995
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3996
}
3997
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3998

3999 4000 4001 4002 4003 4004 4005 4006 4007
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4008
unsigned long __sched
4009
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4010
{
4011
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4012
}
4013
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4014

4015 4016 4017 4018 4019 4020 4021
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4022
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4023
{
4024 4025 4026 4027
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4028
}
4029
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4030

4031 4032 4033 4034 4035 4036 4037 4038
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4039
unsigned long __sched
4040 4041
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4042
{
4043
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4044
}
4045
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4046

4047 4048 4049 4050 4051 4052 4053
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4077
	unsigned long flags;
4078 4079
	int ret = 1;

4080
	spin_lock_irqsave(&x->wait.lock, flags);
4081 4082 4083 4084
	if (!x->done)
		ret = 0;
	else
		x->done--;
4085
	spin_unlock_irqrestore(&x->wait.lock, flags);
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4100
	unsigned long flags;
4101 4102
	int ret = 1;

4103
	spin_lock_irqsave(&x->wait.lock, flags);
4104 4105
	if (!x->done)
		ret = 0;
4106
	spin_unlock_irqrestore(&x->wait.lock, flags);
4107 4108 4109 4110
	return ret;
}
EXPORT_SYMBOL(completion_done);

4111 4112
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4113
{
I
Ingo Molnar 已提交
4114 4115 4116 4117
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4118

4119
	__set_current_state(state);
L
Linus Torvalds 已提交
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4135 4136 4137
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4138
long __sched
I
Ingo Molnar 已提交
4139
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4140
{
4141
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4142 4143 4144
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4145
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4146
{
4147
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4148 4149 4150
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4151
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4152
{
4153
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4154 4155 4156
}
EXPORT_SYMBOL(sleep_on_timeout);

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4169
void rt_mutex_setprio(struct task_struct *p, int prio)
4170 4171
{
	unsigned long flags;
4172
	int oldprio, on_rq, running;
4173
	struct rq *rq;
4174
	const struct sched_class *prev_class;
4175 4176 4177 4178 4179

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);

4180
	oldprio = p->prio;
4181
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4182
	on_rq = p->se.on_rq;
4183
	running = task_current(rq, p);
4184
	if (on_rq)
4185
		dequeue_task(rq, p, 0);
4186 4187
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4188 4189 4190 4191 4192 4193

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4194 4195
	p->prio = prio;

4196 4197
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4198
	if (on_rq) {
4199
		enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4200 4201

		check_class_changed(rq, p, prev_class, oldprio, running);
4202 4203 4204 4205 4206 4207
	}
	task_rq_unlock(rq, &flags);
}

#endif

4208
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4209
{
I
Ingo Molnar 已提交
4210
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4211
	unsigned long flags;
4212
	struct rq *rq;
L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4225
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4226
	 */
4227
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4228 4229 4230
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4231
	on_rq = p->se.on_rq;
4232
	if (on_rq)
4233
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4234 4235

	p->static_prio = NICE_TO_PRIO(nice);
4236
	set_load_weight(p);
4237 4238 4239
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4240

I
Ingo Molnar 已提交
4241
	if (on_rq) {
4242
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4243
		/*
4244 4245
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4246
		 */
4247
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4248 4249 4250 4251 4252 4253 4254
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4255 4256 4257 4258 4259
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4260
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4261
{
4262 4263
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4264

4265
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4266 4267 4268
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275 4276 4277
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4278
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4279
{
4280
	long nice, retval;
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4287 4288
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4289 4290 4291
	if (increment > 40)
		increment = 40;

4292
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4293 4294 4295 4296 4297
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4298 4299 4300
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4319
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326 4327
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4328
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4329 4330 4331
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4332
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4347
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352 4353 4354 4355
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4356
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4357
{
4358
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4359 4360 4361
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4362 4363
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4364
{
I
Ingo Molnar 已提交
4365
	BUG_ON(p->se.on_rq);
4366

L
Linus Torvalds 已提交
4367 4368
	p->policy = policy;
	p->rt_priority = prio;
4369 4370 4371
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4372 4373 4374 4375
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4376
	set_load_weight(p);
L
Linus Torvalds 已提交
4377 4378
}

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4395 4396
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4397
{
4398
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4399
	unsigned long flags;
4400
	const struct sched_class *prev_class;
4401
	struct rq *rq;
4402
	int reset_on_fork;
L
Linus Torvalds 已提交
4403

4404 4405
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4406 4407
recheck:
	/* double check policy once rq lock held */
4408 4409
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4410
		policy = oldpolicy = p->policy;
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4421 4422
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4423 4424
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4425 4426
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4427
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4428
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4429
		return -EINVAL;
4430
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4431 4432
		return -EINVAL;

4433 4434 4435
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4436
	if (user && !capable(CAP_SYS_NICE)) {
4437
		if (rt_policy(policy)) {
4438 4439 4440 4441
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4442
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4454 4455 4456 4457 4458 4459
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4460

4461
		/* can't change other user's priorities */
4462
		if (!check_same_owner(p))
4463
			return -EPERM;
4464 4465 4466 4467

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4468
	}
L
Linus Torvalds 已提交
4469

4470
	if (user) {
4471
#ifdef CONFIG_RT_GROUP_SCHED
4472 4473 4474 4475
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4476 4477
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4478
			return -EPERM;
4479 4480
#endif

4481 4482 4483 4484 4485
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4486 4487 4488 4489
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4490
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4491 4492 4493 4494
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4495
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4496 4497 4498
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4499
		__task_rq_unlock(rq);
4500
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4501 4502
		goto recheck;
	}
I
Ingo Molnar 已提交
4503
	on_rq = p->se.on_rq;
4504
	running = task_current(rq, p);
4505
	if (on_rq)
4506
		deactivate_task(rq, p, 0);
4507 4508
	if (running)
		p->sched_class->put_prev_task(rq, p);
4509

4510 4511
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4512
	oldprio = p->prio;
4513
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4514
	__setscheduler(rq, p, policy, param->sched_priority);
4515

4516 4517
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4518 4519
	if (on_rq) {
		activate_task(rq, p, 0);
4520 4521

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4522
	}
4523
	__task_rq_unlock(rq);
4524
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4525

4526 4527
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4528 4529
	return 0;
}
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4544 4545
EXPORT_SYMBOL_GPL(sched_setscheduler);

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4563 4564
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4565 4566 4567
{
	struct sched_param lparam;
	struct task_struct *p;
4568
	int retval;
L
Linus Torvalds 已提交
4569 4570 4571 4572 4573

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4574 4575 4576

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4577
	p = find_process_by_pid(pid);
4578 4579 4580
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4581

L
Linus Torvalds 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4591 4592
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4593
{
4594 4595 4596 4597
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4598 4599 4600 4601 4602 4603 4604 4605
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4606
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4607 4608 4609 4610 4611 4612 4613 4614
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4615
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4616
{
4617
	struct task_struct *p;
4618
	int retval;
L
Linus Torvalds 已提交
4619 4620

	if (pid < 0)
4621
		return -EINVAL;
L
Linus Torvalds 已提交
4622 4623

	retval = -ESRCH;
4624
	rcu_read_lock();
L
Linus Torvalds 已提交
4625 4626 4627 4628
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4629 4630
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4631
	}
4632
	rcu_read_unlock();
L
Linus Torvalds 已提交
4633 4634 4635 4636
	return retval;
}

/**
4637
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4638 4639 4640
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4641
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4642 4643
{
	struct sched_param lp;
4644
	struct task_struct *p;
4645
	int retval;
L
Linus Torvalds 已提交
4646 4647

	if (!param || pid < 0)
4648
		return -EINVAL;
L
Linus Torvalds 已提交
4649

4650
	rcu_read_lock();
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4661
	rcu_read_unlock();
L
Linus Torvalds 已提交
4662 4663 4664 4665 4666 4667 4668 4669 4670

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4671
	rcu_read_unlock();
L
Linus Torvalds 已提交
4672 4673 4674
	return retval;
}

4675
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4676
{
4677
	cpumask_var_t cpus_allowed, new_mask;
4678 4679
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4680

4681
	get_online_cpus();
4682
	rcu_read_lock();
L
Linus Torvalds 已提交
4683 4684 4685

	p = find_process_by_pid(pid);
	if (!p) {
4686
		rcu_read_unlock();
4687
		put_online_cpus();
L
Linus Torvalds 已提交
4688 4689 4690
		return -ESRCH;
	}

4691
	/* Prevent p going away */
L
Linus Torvalds 已提交
4692
	get_task_struct(p);
4693
	rcu_read_unlock();
L
Linus Torvalds 已提交
4694

4695 4696 4697 4698 4699 4700 4701 4702
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4703
	retval = -EPERM;
4704
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4705 4706
		goto out_unlock;

4707 4708 4709 4710
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4711 4712
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4713
 again:
4714
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4715

P
Paul Menage 已提交
4716
	if (!retval) {
4717 4718
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4719 4720 4721 4722 4723
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4724
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4725 4726 4727
			goto again;
		}
	}
L
Linus Torvalds 已提交
4728
out_unlock:
4729 4730 4731 4732
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4733
	put_task_struct(p);
4734
	put_online_cpus();
L
Linus Torvalds 已提交
4735 4736 4737 4738
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4739
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4740
{
4741 4742 4743 4744 4745
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4755 4756
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4757
{
4758
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4759 4760
	int retval;

4761 4762
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4763

4764 4765 4766 4767 4768
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4769 4770
}

4771
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4772
{
4773
	struct task_struct *p;
4774 4775
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4776 4777
	int retval;

4778
	get_online_cpus();
4779
	rcu_read_lock();
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4786 4787 4788 4789
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4790
	rq = task_rq_lock(p, &flags);
4791
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4792
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4793 4794

out_unlock:
4795
	rcu_read_unlock();
4796
	put_online_cpus();
L
Linus Torvalds 已提交
4797

4798
	return retval;
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803 4804 4805 4806
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4807 4808
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4809 4810
{
	int ret;
4811
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4812

A
Anton Blanchard 已提交
4813
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4814 4815
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4816 4817
		return -EINVAL;

4818 4819
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4820

4821 4822
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4823
		size_t retlen = min_t(size_t, len, cpumask_size());
4824 4825

		if (copy_to_user(user_mask_ptr, mask, retlen))
4826 4827
			ret = -EFAULT;
		else
4828
			ret = retlen;
4829 4830
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4831

4832
	return ret;
L
Linus Torvalds 已提交
4833 4834 4835 4836 4837
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4838 4839
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4840
 */
4841
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4842
{
4843
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4844

4845
	schedstat_inc(rq, yld_count);
4846
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4853
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4854
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4855 4856 4857 4858 4859 4860 4861
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4862 4863 4864 4865 4866
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4867
static void __cond_resched(void)
L
Linus Torvalds 已提交
4868
{
4869 4870 4871
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4872 4873
}

4874
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4875
{
P
Peter Zijlstra 已提交
4876
	if (should_resched()) {
L
Linus Torvalds 已提交
4877 4878 4879 4880 4881
		__cond_resched();
		return 1;
	}
	return 0;
}
4882
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4883 4884

/*
4885
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4886 4887
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4888
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4889 4890 4891
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4892
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4893
{
P
Peter Zijlstra 已提交
4894
	int resched = should_resched();
J
Jan Kara 已提交
4895 4896
	int ret = 0;

4897 4898
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
4899
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4900
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4901
		if (resched)
N
Nick Piggin 已提交
4902 4903 4904
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4905
		ret = 1;
L
Linus Torvalds 已提交
4906 4907
		spin_lock(lock);
	}
J
Jan Kara 已提交
4908
	return ret;
L
Linus Torvalds 已提交
4909
}
4910
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4911

4912
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4913 4914 4915
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4916
	if (should_resched()) {
4917
		local_bh_enable();
L
Linus Torvalds 已提交
4918 4919 4920 4921 4922 4923
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4924
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4925 4926 4927 4928

/**
 * yield - yield the current processor to other threads.
 *
4929
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4940
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4941 4942 4943 4944
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4945
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4946

4947
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4948
	atomic_inc(&rq->nr_iowait);
4949
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4950
	schedule();
4951
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4952
	atomic_dec(&rq->nr_iowait);
4953
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4954 4955 4956 4957 4958
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4959
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4960 4961
	long ret;

4962
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4963
	atomic_inc(&rq->nr_iowait);
4964
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4965
	ret = schedule_timeout(timeout);
4966
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4967
	atomic_dec(&rq->nr_iowait);
4968
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
4979
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4989
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4990
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5004
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5014
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5015
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5029
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5030
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5031
{
5032
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5033
	unsigned int time_slice;
5034 5035
	unsigned long flags;
	struct rq *rq;
5036
	int retval;
L
Linus Torvalds 已提交
5037 5038 5039
	struct timespec t;

	if (pid < 0)
5040
		return -EINVAL;
L
Linus Torvalds 已提交
5041 5042

	retval = -ESRCH;
5043
	rcu_read_lock();
L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5052 5053 5054
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5055

5056
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5057
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5058 5059
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5060

L
Linus Torvalds 已提交
5061
out_unlock:
5062
	rcu_read_unlock();
L
Linus Torvalds 已提交
5063 5064 5065
	return retval;
}

5066
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5067

5068
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5069 5070
{
	unsigned long free = 0;
5071
	unsigned state;
L
Linus Torvalds 已提交
5072 5073

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5074
	printk(KERN_INFO "%-13.13s %c", p->comm,
5075
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5076
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5077
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5078
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5079
	else
P
Peter Zijlstra 已提交
5080
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5081 5082
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5083
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5084
	else
P
Peter Zijlstra 已提交
5085
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5086 5087
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5088
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5089
#endif
P
Peter Zijlstra 已提交
5090
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5091 5092
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5093

5094
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5095 5096
}

I
Ingo Molnar 已提交
5097
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5098
{
5099
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5100

5101
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5102 5103
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5104
#else
P
Peter Zijlstra 已提交
5105 5106
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113 5114
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5115
		if (!state_filter || (p->state & state_filter))
5116
			sched_show_task(p);
L
Linus Torvalds 已提交
5117 5118
	} while_each_thread(g, p);

5119 5120
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5121 5122 5123
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5124
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5125 5126 5127
	/*
	 * Only show locks if all tasks are dumped:
	 */
5128
	if (!state_filter)
I
Ingo Molnar 已提交
5129
		debug_show_all_locks();
L
Linus Torvalds 已提交
5130 5131
}

I
Ingo Molnar 已提交
5132 5133
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5134
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5135 5136
}

5137 5138 5139 5140 5141 5142 5143 5144
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5145
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5146
{
5147
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5148 5149
	unsigned long flags;

5150
	raw_spin_lock_irqsave(&rq->lock, flags);
5151

I
Ingo Molnar 已提交
5152
	__sched_fork(idle);
5153
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5154 5155
	idle->se.exec_start = sched_clock();

5156
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5157
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5158 5159

	rq->curr = rq->idle = idle;
5160 5161 5162
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5163
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5164 5165

	/* Set the preempt count _outside_ the spinlocks! */
5166 5167 5168
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5169
	task_thread_info(idle)->preempt_count = 0;
5170
#endif
I
Ingo Molnar 已提交
5171 5172 5173 5174
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5175
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180 5181 5182
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5183
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5184
 */
5185
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5186

I
Ingo Molnar 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5196
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5197
{
5198
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5213

5214 5215
	return factor;
}
I
Ingo Molnar 已提交
5216

5217 5218 5219
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5220

5221 5222 5223 5224 5225 5226 5227 5228
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5229

5230 5231 5232
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5233 5234
}

L
Linus Torvalds 已提交
5235 5236 5237 5238
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5239 5240 5241 5242 5243 5244
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
5245
 *    it and puts it into the right queue.
5246 5247
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
5248 5249 5250 5251 5252 5253 5254 5255
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5256
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5257 5258
 * call is not atomic; no spinlocks may be held.
 */
5259
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5260 5261
{
	unsigned long flags;
5262
	struct rq *rq;
5263
	unsigned int dest_cpu;
5264
	int ret = 0;
L
Linus Torvalds 已提交
5265

P
Peter Zijlstra 已提交
5266 5267 5268 5269 5270 5271 5272
	/*
	 * Serialize against TASK_WAKING so that ttwu() and wunt() can
	 * drop the rq->lock and still rely on ->cpus_allowed.
	 */
again:
	while (task_is_waking(p))
		cpu_relax();
L
Linus Torvalds 已提交
5273
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
5274 5275 5276 5277
	if (task_is_waking(p)) {
		task_rq_unlock(rq, &flags);
		goto again;
	}
5278

5279
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5280 5281 5282 5283
		ret = -EINVAL;
		goto out;
	}

5284
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5285
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5286 5287 5288 5289
		ret = -EINVAL;
		goto out;
	}

5290
	if (p->sched_class->set_cpus_allowed)
5291
		p->sched_class->set_cpus_allowed(p, new_mask);
5292
	else {
5293 5294
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5295 5296
	}

L
Linus Torvalds 已提交
5297
	/* Can the task run on the task's current CPU? If so, we're done */
5298
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5299 5300
		goto out;

5301 5302 5303
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
	if (migrate_task(p, dest_cpu)) {
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
5304 5305
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
5306
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
5307 5308 5309 5310 5311
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5312

L
Linus Torvalds 已提交
5313 5314
	return ret;
}
5315
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5316 5317

/*
I
Ingo Molnar 已提交
5318
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5319 5320 5321 5322 5323 5324
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5325 5326
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5327
 */
5328
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5329
{
5330
	struct rq *rq_dest, *rq_src;
5331
	int ret = 0;
L
Linus Torvalds 已提交
5332

5333
	if (unlikely(!cpu_active(dest_cpu)))
5334
		return ret;
L
Linus Torvalds 已提交
5335 5336 5337 5338 5339 5340 5341

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5342
		goto done;
L
Linus Torvalds 已提交
5343
	/* Affinity changed (again). */
5344
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5345
		goto fail;
L
Linus Torvalds 已提交
5346

5347 5348 5349 5350 5351
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5352
		deactivate_task(rq_src, p, 0);
5353
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5354
		activate_task(rq_dest, p, 0);
5355
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5356
	}
L
Linus Torvalds 已提交
5357
done:
5358
	ret = 1;
L
Linus Torvalds 已提交
5359
fail:
L
Linus Torvalds 已提交
5360
	double_rq_unlock(rq_src, rq_dest);
5361
	return ret;
L
Linus Torvalds 已提交
5362 5363 5364
}

/*
5365 5366 5367
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
5368
 */
5369
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
5370
{
5371
	struct migration_arg *arg = data;
5372

5373 5374 5375 5376
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
5377
	local_irq_disable();
5378
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5379
	local_irq_enable();
L
Linus Torvalds 已提交
5380
	return 0;
5381 5382
}

L
Linus Torvalds 已提交
5383
#ifdef CONFIG_HOTPLUG_CPU
5384
/*
5385
 * Figure out where task on dead CPU should go, use force if necessary.
5386
 */
5387
void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5388
{
5389 5390 5391
	struct rq *rq = cpu_rq(dead_cpu);
	int needs_cpu, uninitialized_var(dest_cpu);
	unsigned long flags;
5392

5393
	local_irq_save(flags);
5394

5395 5396 5397 5398 5399
	raw_spin_lock(&rq->lock);
	needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
	if (needs_cpu)
		dest_cpu = select_fallback_rq(dead_cpu, p);
	raw_spin_unlock(&rq->lock);
5400 5401 5402 5403
	/*
	 * It can only fail if we race with set_cpus_allowed(),
	 * in the racer should migrate the task anyway.
	 */
5404
	if (needs_cpu)
5405
		__migrate_task(p, dead_cpu, dest_cpu);
5406
	local_irq_restore(flags);
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411 5412 5413 5414 5415
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5416
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5417
{
5418
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5432
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5433

5434
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5435

5436 5437
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5438 5439
			continue;

5440 5441 5442
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5443

5444
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5445 5446
}

I
Ingo Molnar 已提交
5447 5448
/*
 * Schedules idle task to be the next runnable task on current CPU.
5449 5450
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5451 5452 5453
 */
void sched_idle_next(void)
{
5454
	int this_cpu = smp_processor_id();
5455
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5456 5457 5458 5459
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5460
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5461

5462 5463 5464
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5465
	 */
5466
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5467

I
Ingo Molnar 已提交
5468
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5469

5470
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5471

5472
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5473 5474
}

5475 5476
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5490
/* called under rq->lock with disabled interrupts */
5491
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5492
{
5493
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5494 5495

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5496
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5497 5498

	/* Cannot have done final schedule yet: would have vanished. */
5499
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5500

5501
	get_task_struct(p);
L
Linus Torvalds 已提交
5502 5503 5504

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5505
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5506 5507
	 * fine.
	 */
5508
	raw_spin_unlock_irq(&rq->lock);
5509
	move_task_off_dead_cpu(dead_cpu, p);
5510
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5511

5512
	put_task_struct(p);
L
Linus Torvalds 已提交
5513 5514 5515 5516 5517
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5518
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5519
	struct task_struct *next;
5520

I
Ingo Molnar 已提交
5521 5522 5523
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
5524
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5525 5526
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5527
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5528
		migrate_dead(dead_cpu, next);
5529

L
Linus Torvalds 已提交
5530 5531
	}
}
5532 5533 5534 5535 5536 5537 5538

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5539
	rq->calc_load_active = 0;
5540
}
L
Linus Torvalds 已提交
5541 5542
#endif /* CONFIG_HOTPLUG_CPU */

5543 5544 5545
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5546 5547
	{
		.procname	= "sched_domain",
5548
		.mode		= 0555,
5549
	},
5550
	{}
5551 5552 5553
};

static struct ctl_table sd_ctl_root[] = {
5554 5555
	{
		.procname	= "kernel",
5556
		.mode		= 0555,
5557 5558
		.child		= sd_ctl_dir,
	},
5559
	{}
5560 5561 5562 5563 5564
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5565
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5566 5567 5568 5569

	return entry;
}

5570 5571
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5572
	struct ctl_table *entry;
5573

5574 5575 5576
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5577
	 * will always be set. In the lowest directory the names are
5578 5579 5580
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5581 5582
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5583 5584 5585
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5586 5587 5588 5589 5590

	kfree(*tablep);
	*tablep = NULL;
}

5591
static void
5592
set_table_entry(struct ctl_table *entry,
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5606
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5607

5608 5609 5610
	if (table == NULL)
		return NULL;

5611
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5612
		sizeof(long), 0644, proc_doulongvec_minmax);
5613
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5614
		sizeof(long), 0644, proc_doulongvec_minmax);
5615
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5616
		sizeof(int), 0644, proc_dointvec_minmax);
5617
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5618
		sizeof(int), 0644, proc_dointvec_minmax);
5619
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5620
		sizeof(int), 0644, proc_dointvec_minmax);
5621
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5622
		sizeof(int), 0644, proc_dointvec_minmax);
5623
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5624
		sizeof(int), 0644, proc_dointvec_minmax);
5625
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5626
		sizeof(int), 0644, proc_dointvec_minmax);
5627
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5628
		sizeof(int), 0644, proc_dointvec_minmax);
5629
	set_table_entry(&table[9], "cache_nice_tries",
5630 5631
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5632
	set_table_entry(&table[10], "flags", &sd->flags,
5633
		sizeof(int), 0644, proc_dointvec_minmax);
5634 5635 5636
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5637 5638 5639 5640

	return table;
}

5641
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5642 5643 5644 5645 5646 5647 5648 5649 5650
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5651 5652
	if (table == NULL)
		return NULL;
5653 5654 5655 5656 5657

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5658
		entry->mode = 0555;
5659 5660 5661 5662 5663 5664 5665 5666
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5667
static void register_sched_domain_sysctl(void)
5668
{
5669
	int i, cpu_num = num_possible_cpus();
5670 5671 5672
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5673 5674 5675
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5676 5677 5678
	if (entry == NULL)
		return;

5679
	for_each_possible_cpu(i) {
5680 5681
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5682
		entry->mode = 0555;
5683
		entry->child = sd_alloc_ctl_cpu_table(i);
5684
		entry++;
5685
	}
5686 5687

	WARN_ON(sd_sysctl_header);
5688 5689
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5690

5691
/* may be called multiple times per register */
5692 5693
static void unregister_sched_domain_sysctl(void)
{
5694 5695
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5696
	sd_sysctl_header = NULL;
5697 5698
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5699
}
5700
#else
5701 5702 5703 5704
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5705 5706 5707 5708
{
}
#endif

5709 5710 5711 5712 5713
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5714
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5734
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5735 5736 5737 5738
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5739 5740 5741 5742
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5743 5744
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5745
{
5746
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5747
	unsigned long flags;
5748
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5749 5750

	switch (action) {
5751

L
Linus Torvalds 已提交
5752
	case CPU_UP_PREPARE:
5753
	case CPU_UP_PREPARE_FROZEN:
5754
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5755
		break;
5756

L
Linus Torvalds 已提交
5757
	case CPU_ONLINE:
5758
	case CPU_ONLINE_FROZEN:
5759
		/* Update our root-domain */
5760
		raw_spin_lock_irqsave(&rq->lock, flags);
5761
		if (rq->rd) {
5762
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5763 5764

			set_rq_online(rq);
5765
		}
5766
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5767
		break;
5768

L
Linus Torvalds 已提交
5769 5770
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
5771
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5772 5773
		migrate_live_tasks(cpu);
		/* Idle task back to normal (off runqueue, low prio) */
5774
		raw_spin_lock_irq(&rq->lock);
5775
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5776 5777
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5778
		migrate_dead_tasks(cpu);
5779
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5780 5781
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5782
		calc_global_load_remove(rq);
L
Linus Torvalds 已提交
5783
		break;
G
Gregory Haskins 已提交
5784

5785 5786
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5787
		/* Update our root-domain */
5788
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5789
		if (rq->rd) {
5790
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5791
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5792
		}
5793
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5794
		break;
L
Linus Torvalds 已提交
5795 5796 5797 5798 5799
#endif
	}
	return NOTIFY_OK;
}

5800 5801 5802
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5803
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5804
 */
5805
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5806 5807 5808 5809
	.notifier_call = migration_call,
	.priority = 10
};

5810
static int __init migration_init(void)
L
Linus Torvalds 已提交
5811 5812
{
	void *cpu = (void *)(long)smp_processor_id();
5813
	int err;
5814 5815

	/* Start one for the boot CPU: */
5816 5817
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5818 5819
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5820

5821
	return 0;
L
Linus Torvalds 已提交
5822
}
5823
early_initcall(migration_init);
L
Linus Torvalds 已提交
5824 5825 5826
#endif

#ifdef CONFIG_SMP
5827

5828
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5829

5830 5831 5832 5833 5834 5835 5836 5837 5838 5839
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

5840
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5841
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5842
{
I
Ingo Molnar 已提交
5843
	struct sched_group *group = sd->groups;
5844
	char str[256];
L
Linus Torvalds 已提交
5845

R
Rusty Russell 已提交
5846
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5847
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5848 5849 5850 5851

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5852
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5853
		if (sd->parent)
P
Peter Zijlstra 已提交
5854 5855
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5856
		return -1;
N
Nick Piggin 已提交
5857 5858
	}

P
Peter Zijlstra 已提交
5859
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5860

5861
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5862 5863
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5864
	}
5865
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5866 5867
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5868
	}
L
Linus Torvalds 已提交
5869

I
Ingo Molnar 已提交
5870
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5871
	do {
I
Ingo Molnar 已提交
5872
		if (!group) {
P
Peter Zijlstra 已提交
5873 5874
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5875 5876 5877
			break;
		}

5878
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
5879 5880 5881
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
5882 5883
			break;
		}
L
Linus Torvalds 已提交
5884

5885
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5886 5887
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5888 5889
			break;
		}
L
Linus Torvalds 已提交
5890

5891
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5892 5893
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5894 5895
			break;
		}
L
Linus Torvalds 已提交
5896

5897
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5898

R
Rusty Russell 已提交
5899
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5900

P
Peter Zijlstra 已提交
5901
		printk(KERN_CONT " %s", str);
5902
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
5903 5904
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
5905
		}
L
Linus Torvalds 已提交
5906

I
Ingo Molnar 已提交
5907 5908
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5909
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5910

5911
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5912
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5913

5914 5915
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5916 5917
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5918 5919
	return 0;
}
L
Linus Torvalds 已提交
5920

I
Ingo Molnar 已提交
5921 5922
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
5923
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
5924
	int level = 0;
L
Linus Torvalds 已提交
5925

5926 5927 5928
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
5929 5930 5931 5932
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5933

I
Ingo Molnar 已提交
5934 5935
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

5936
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5937 5938 5939 5940
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
5941
	for (;;) {
5942
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
5943
			break;
L
Linus Torvalds 已提交
5944 5945
		level++;
		sd = sd->parent;
5946
		if (!sd)
I
Ingo Molnar 已提交
5947 5948
			break;
	}
5949
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
5950
}
5951
#else /* !CONFIG_SCHED_DEBUG */
5952
# define sched_domain_debug(sd, cpu) do { } while (0)
5953
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5954

5955
static int sd_degenerate(struct sched_domain *sd)
5956
{
5957
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5958 5959 5960 5961 5962 5963
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5964 5965 5966
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5967 5968 5969 5970 5971
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5972
	if (sd->flags & (SD_WAKE_AFFINE))
5973 5974 5975 5976 5977
		return 0;

	return 1;
}

5978 5979
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5980 5981 5982 5983 5984 5985
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5986
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5987 5988 5989 5990 5991 5992 5993
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5994 5995 5996
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5997 5998
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5999 6000 6001 6002 6003 6004 6005
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6006 6007
static void free_rootdomain(struct root_domain *rd)
{
6008 6009
	synchronize_sched();

6010 6011
	cpupri_cleanup(&rd->cpupri);

6012 6013 6014 6015 6016 6017
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6018 6019
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6020
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6021 6022
	unsigned long flags;

6023
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6024 6025

	if (rq->rd) {
I
Ingo Molnar 已提交
6026
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6027

6028
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6029
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6030

6031
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6032

I
Ingo Molnar 已提交
6033 6034 6035 6036 6037 6038 6039
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6040 6041 6042 6043 6044
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6045
	cpumask_set_cpu(rq->cpu, rd->span);
6046
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6047
		set_rq_online(rq);
G
Gregory Haskins 已提交
6048

6049
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6050 6051 6052

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6053 6054
}

L
Li Zefan 已提交
6055
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6056
{
6057 6058
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6059 6060
	memset(rd, 0, sizeof(*rd));

6061 6062
	if (bootmem)
		gfp = GFP_NOWAIT;
6063

6064
	if (!alloc_cpumask_var(&rd->span, gfp))
6065
		goto out;
6066
	if (!alloc_cpumask_var(&rd->online, gfp))
6067
		goto free_span;
6068
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6069
		goto free_online;
6070

P
Pekka Enberg 已提交
6071
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6072
		goto free_rto_mask;
6073
	return 0;
6074

6075 6076
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6077 6078 6079 6080
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6081
out:
6082
	return -ENOMEM;
G
Gregory Haskins 已提交
6083 6084 6085 6086
}

static void init_defrootdomain(void)
{
6087 6088
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6089 6090 6091
	atomic_set(&def_root_domain.refcount, 1);
}

6092
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6093 6094 6095 6096 6097 6098 6099
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6100 6101 6102 6103
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6104 6105 6106 6107

	return rd;
}

L
Linus Torvalds 已提交
6108
/*
I
Ingo Molnar 已提交
6109
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6110 6111
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6112 6113
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6114
{
6115
	struct rq *rq = cpu_rq(cpu);
6116 6117
	struct sched_domain *tmp;

6118 6119 6120
	for (tmp = sd; tmp; tmp = tmp->parent)
		tmp->span_weight = cpumask_weight(sched_domain_span(tmp));

6121
	/* Remove the sched domains which do not contribute to scheduling. */
6122
	for (tmp = sd; tmp; ) {
6123 6124 6125
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6126

6127
		if (sd_parent_degenerate(tmp, parent)) {
6128
			tmp->parent = parent->parent;
6129 6130
			if (parent->parent)
				parent->parent->child = tmp;
6131 6132
		} else
			tmp = tmp->parent;
6133 6134
	}

6135
	if (sd && sd_degenerate(sd)) {
6136
		sd = sd->parent;
6137 6138 6139
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6140 6141 6142

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6143
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6144
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6145 6146 6147
}

/* cpus with isolated domains */
6148
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6149 6150 6151 6152

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6153
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6154
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6155 6156 6157
	return 1;
}

I
Ingo Molnar 已提交
6158
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6159 6160

/*
6161 6162
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6163 6164
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6170
static void
6171 6172 6173
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6174
					struct sched_group **sg,
6175 6176
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6177 6178 6179 6180
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6181
	cpumask_clear(covered);
6182

6183
	for_each_cpu(i, span) {
6184
		struct sched_group *sg;
6185
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6186 6187
		int j;

6188
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6189 6190
			continue;

6191
		cpumask_clear(sched_group_cpus(sg));
6192
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6193

6194
		for_each_cpu(j, span) {
6195
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6196 6197
				continue;

6198
			cpumask_set_cpu(j, covered);
6199
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6210
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6211

6212
#ifdef CONFIG_NUMA
6213

6214 6215 6216 6217 6218
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6219
 * Find the next node to include in a given scheduling domain. Simply
6220 6221 6222 6223
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6224
static int find_next_best_node(int node, nodemask_t *used_nodes)
6225 6226 6227 6228 6229
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6230
	for (i = 0; i < nr_node_ids; i++) {
6231
		/* Start at @node */
6232
		n = (node + i) % nr_node_ids;
6233 6234 6235 6236 6237

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6238
		if (node_isset(n, *used_nodes))
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6250
	node_set(best_node, *used_nodes);
6251 6252 6253 6254 6255 6256
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6257
 * @span: resulting cpumask
6258
 *
I
Ingo Molnar 已提交
6259
 * Given a node, construct a good cpumask for its sched_domain to span. It
6260 6261 6262
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6263
static void sched_domain_node_span(int node, struct cpumask *span)
6264
{
6265
	nodemask_t used_nodes;
6266
	int i;
6267

6268
	cpumask_clear(span);
6269
	nodes_clear(used_nodes);
6270

6271
	cpumask_or(span, span, cpumask_of_node(node));
6272
	node_set(node, used_nodes);
6273 6274

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6275
		int next_node = find_next_best_node(node, &used_nodes);
6276

6277
		cpumask_or(span, span, cpumask_of_node(next_node));
6278 6279
	}
}
6280
#endif /* CONFIG_NUMA */
6281

6282
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6283

6284 6285
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6286 6287 6288
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6333
/*
6334
 * SMT sched-domains:
6335
 */
L
Linus Torvalds 已提交
6336
#ifdef CONFIG_SCHED_SMT
6337
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6338
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6339

I
Ingo Molnar 已提交
6340
static int
6341 6342
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6343
{
6344
	if (sg)
6345
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6346 6347
	return cpu;
}
6348
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6349

6350 6351 6352
/*
 * multi-core sched-domains:
 */
6353
#ifdef CONFIG_SCHED_MC
6354 6355
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6356
#endif /* CONFIG_SCHED_MC */
6357 6358

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6359
static int
6360 6361
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6362
{
6363
	int group;
6364

6365
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6366
	group = cpumask_first(mask);
6367
	if (sg)
6368
		*sg = &per_cpu(sched_group_core, group).sg;
6369
	return group;
6370 6371
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6372
static int
6373 6374
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6375
{
6376
	if (sg)
6377
		*sg = &per_cpu(sched_group_core, cpu).sg;
6378 6379 6380 6381
	return cpu;
}
#endif

6382 6383
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6384

I
Ingo Molnar 已提交
6385
static int
6386 6387
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6388
{
6389
	int group;
6390
#ifdef CONFIG_SCHED_MC
6391
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6392
	group = cpumask_first(mask);
6393
#elif defined(CONFIG_SCHED_SMT)
6394
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6395
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6396
#else
6397
	group = cpu;
L
Linus Torvalds 已提交
6398
#endif
6399
	if (sg)
6400
		*sg = &per_cpu(sched_group_phys, group).sg;
6401
	return group;
L
Linus Torvalds 已提交
6402 6403 6404 6405
}

#ifdef CONFIG_NUMA
/*
6406 6407 6408
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6409
 */
6410
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6411
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6412

6413
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6414
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6415

6416 6417 6418
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6419
{
6420 6421
	int group;

6422
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6423
	group = cpumask_first(nodemask);
6424 6425

	if (sg)
6426
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6427
	return group;
L
Linus Torvalds 已提交
6428
}
6429

6430 6431 6432 6433 6434 6435 6436
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6437
	do {
6438
		for_each_cpu(j, sched_group_cpus(sg)) {
6439
			struct sched_domain *sd;
6440

6441
			sd = &per_cpu(phys_domains, j).sd;
6442
			if (j != group_first_cpu(sd->groups)) {
6443 6444 6445 6446 6447 6448
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6449

6450
			sg->cpu_power += sd->groups->cpu_power;
6451 6452 6453
		}
		sg = sg->next;
	} while (sg != group_head);
6454
}
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6476 6477
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6478 6479 6480 6481 6482 6483 6484 6485 6486
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6487
	sg->cpu_power = 0;
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6506 6507
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6508 6509
			return -ENOMEM;
		}
6510
		sg->cpu_power = 0;
6511 6512 6513 6514 6515 6516 6517 6518 6519
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6520
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6521

6522
#ifdef CONFIG_NUMA
6523
/* Free memory allocated for various sched_group structures */
6524 6525
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6526
{
6527
	int cpu, i;
6528

6529
	for_each_cpu(cpu, cpu_map) {
6530 6531 6532 6533 6534 6535
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6536
		for (i = 0; i < nr_node_ids; i++) {
6537 6538
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6539
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6540
			if (cpumask_empty(nodemask))
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6557
#else /* !CONFIG_NUMA */
6558 6559
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6560 6561
{
}
6562
#endif /* CONFIG_NUMA */
6563

6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6578 6579
	long power;
	int weight;
6580 6581 6582

	WARN_ON(!sd || !sd->groups);

6583
	if (cpu != group_first_cpu(sd->groups))
6584 6585 6586 6587
		return;

	child = sd->child;

6588
	sd->groups->cpu_power = 0;
6589

6590 6591 6592 6593 6594
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6595 6596 6597
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6598
		 */
P
Peter Zijlstra 已提交
6599 6600
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6601
			power /= weight;
P
Peter Zijlstra 已提交
6602 6603
			power >>= SCHED_LOAD_SHIFT;
		}
6604
		sd->groups->cpu_power += power;
6605 6606 6607 6608
		return;
	}

	/*
6609
	 * Add cpu_power of each child group to this groups cpu_power.
6610 6611 6612
	 */
	group = child->groups;
	do {
6613
		sd->groups->cpu_power += group->cpu_power;
6614 6615 6616 6617
		group = group->next;
	} while (group != child->groups);
}

6618 6619 6620 6621 6622
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6623 6624 6625 6626 6627 6628
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6629
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6630

6631 6632 6633 6634 6635
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6636
	sd->level = SD_LV_##type;				\
6637
	SD_INIT_NAME(sd, type);					\
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6652 6653 6654 6655
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6656 6657 6658 6659 6660 6661
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6680
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6681 6682
	} else {
		/* turn on idle balance on this domain */
6683
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6684 6685 6686
	}
}

6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6707
#ifdef CONFIG_NUMA
6708 6709 6710 6711 6712 6713 6714
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6715
#endif
6716 6717 6718 6719
	case sa_none:
		break;
	}
}
6720

6721 6722 6723
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6724
#ifdef CONFIG_NUMA
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6735
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6736
		return sa_notcovered;
6737
	}
6738
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6739
#endif
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6752
		printk(KERN_WARNING "Cannot alloc root domain\n");
6753
		return sa_tmpmask;
G
Gregory Haskins 已提交
6754
	}
6755 6756
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6757

6758 6759 6760 6761
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6762
#ifdef CONFIG_NUMA
6763
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6764

6765 6766 6767 6768 6769
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6770
		set_domain_attribute(sd, attr);
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6785
#endif
6786 6787
	return sd;
}
L
Linus Torvalds 已提交
6788

6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
6804

6805 6806 6807 6808 6809
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
6810
#ifdef CONFIG_SCHED_MC
6811 6812 6813 6814 6815 6816 6817
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6818
#endif
6819 6820
	return sd;
}
6821

6822 6823 6824 6825 6826
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
6827
#ifdef CONFIG_SCHED_SMT
6828 6829 6830 6831 6832 6833 6834
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
6835
#endif
6836 6837
	return sd;
}
L
Linus Torvalds 已提交
6838

6839 6840 6841 6842
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
6843
#ifdef CONFIG_SCHED_SMT
6844 6845 6846 6847 6848 6849 6850 6851
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6852
#endif
6853
#ifdef CONFIG_SCHED_MC
6854 6855 6856 6857 6858 6859 6860
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
6861
#endif
6862 6863 6864 6865 6866 6867 6868
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
6869
#ifdef CONFIG_NUMA
6870 6871 6872 6873 6874
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
6875 6876
	default:
		break;
6877
	}
6878
}
6879

6880 6881 6882 6883 6884 6885 6886 6887 6888
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
6889
	struct sched_domain *sd;
6890
	int i;
6891
#ifdef CONFIG_NUMA
6892
	d.sd_allnodes = 0;
6893
#endif
6894

6895 6896 6897 6898
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
6899

L
Linus Torvalds 已提交
6900
	/*
6901
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6902
	 */
6903
	for_each_cpu(i, cpu_map) {
6904 6905
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
6906

6907
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6908
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6909
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6910
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
6911
	}
6912

6913
	for_each_cpu(i, cpu_map) {
6914
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6915
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
6916
	}
6917

L
Linus Torvalds 已提交
6918
	/* Set up physical groups */
6919 6920
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6921

L
Linus Torvalds 已提交
6922 6923
#ifdef CONFIG_NUMA
	/* Set up node groups */
6924 6925
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6926

6927 6928
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
6929
			goto error;
L
Linus Torvalds 已提交
6930 6931 6932
#endif

	/* Calculate CPU power for physical packages and nodes */
6933
#ifdef CONFIG_SCHED_SMT
6934
	for_each_cpu(i, cpu_map) {
6935
		sd = &per_cpu(cpu_domains, i).sd;
6936
		init_sched_groups_power(i, sd);
6937
	}
L
Linus Torvalds 已提交
6938
#endif
6939
#ifdef CONFIG_SCHED_MC
6940
	for_each_cpu(i, cpu_map) {
6941
		sd = &per_cpu(core_domains, i).sd;
6942
		init_sched_groups_power(i, sd);
6943 6944
	}
#endif
6945

6946
	for_each_cpu(i, cpu_map) {
6947
		sd = &per_cpu(phys_domains, i).sd;
6948
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6949 6950
	}

6951
#ifdef CONFIG_NUMA
6952
	for (i = 0; i < nr_node_ids; i++)
6953
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
6954

6955
	if (d.sd_allnodes) {
6956
		struct sched_group *sg;
6957

6958
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6959
								d.tmpmask);
6960 6961
		init_numa_sched_groups_power(sg);
	}
6962 6963
#endif

L
Linus Torvalds 已提交
6964
	/* Attach the domains */
6965
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
6966
#ifdef CONFIG_SCHED_SMT
6967
		sd = &per_cpu(cpu_domains, i).sd;
6968
#elif defined(CONFIG_SCHED_MC)
6969
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
6970
#else
6971
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
6972
#endif
6973
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6974
	}
6975

6976 6977 6978
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
6979 6980

error:
6981 6982
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
6983
}
P
Paul Jackson 已提交
6984

6985
static int build_sched_domains(const struct cpumask *cpu_map)
6986 6987 6988 6989
{
	return __build_sched_domains(cpu_map, NULL);
}

6990
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6991
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6992 6993
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6994 6995 6996

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6997 6998
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6999
 */
7000
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7001

7002 7003 7004 7005 7006 7007
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7008
{
7009
	return 0;
7010 7011
}

7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7037
/*
I
Ingo Molnar 已提交
7038
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7039 7040
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7041
 */
7042
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7043
{
7044 7045
	int err;

7046
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7047
	ndoms_cur = 1;
7048
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7049
	if (!doms_cur)
7050 7051
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7052
	dattr_cur = NULL;
7053
	err = build_sched_domains(doms_cur[0]);
7054
	register_sched_domain_sysctl();
7055 7056

	return err;
7057 7058
}

7059 7060
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7061
{
7062
	free_sched_groups(cpu_map, tmpmask);
7063
}
L
Linus Torvalds 已提交
7064

7065 7066 7067 7068
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7069
static void detach_destroy_domains(const struct cpumask *cpu_map)
7070
{
7071 7072
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7073 7074
	int i;

7075
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7076
		cpu_attach_domain(NULL, &def_root_domain, i);
7077
	synchronize_sched();
7078
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7079 7080
}

7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7097 7098
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7099
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7100 7101 7102
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7103
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7104 7105 7106
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7107 7108 7109
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7110 7111 7112 7113 7114 7115
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7116
 *
7117
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7118 7119
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7120
 *
P
Paul Jackson 已提交
7121 7122
 * Call with hotplug lock held
 */
7123
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7124
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7125
{
7126
	int i, j, n;
7127
	int new_topology;
P
Paul Jackson 已提交
7128

7129
	mutex_lock(&sched_domains_mutex);
7130

7131 7132 7133
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7134 7135 7136
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7137
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7138 7139 7140

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7141
		for (j = 0; j < n && !new_topology; j++) {
7142
			if (cpumask_equal(doms_cur[i], doms_new[j])
7143
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7144 7145 7146
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7147
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7148 7149 7150 7151
match1:
		;
	}

7152 7153
	if (doms_new == NULL) {
		ndoms_cur = 0;
7154
		doms_new = &fallback_doms;
7155
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7156
		WARN_ON_ONCE(dattr_new);
7157 7158
	}

P
Paul Jackson 已提交
7159 7160
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7161
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7162
			if (cpumask_equal(doms_new[i], doms_cur[j])
7163
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7164 7165 7166
				goto match2;
		}
		/* no match - add a new doms_new */
7167
		__build_sched_domains(doms_new[i],
7168
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7169 7170 7171 7172 7173
match2:
		;
	}

	/* Remember the new sched domains */
7174 7175
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7176
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7177
	doms_cur = doms_new;
7178
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7179
	ndoms_cur = ndoms_new;
7180 7181

	register_sched_domain_sysctl();
7182

7183
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7184 7185
}

7186
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7187
static void arch_reinit_sched_domains(void)
7188
{
7189
	get_online_cpus();
7190 7191 7192 7193

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7194
	rebuild_sched_domains();
7195
	put_online_cpus();
7196 7197 7198 7199
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7200
	unsigned int level = 0;
7201

7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7213 7214 7215
		return -EINVAL;

	if (smt)
7216
		sched_smt_power_savings = level;
7217
	else
7218
		sched_mc_power_savings = level;
7219

7220
	arch_reinit_sched_domains();
7221

7222
	return count;
7223 7224 7225
}

#ifdef CONFIG_SCHED_MC
7226
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7227
					   struct sysdev_class_attribute *attr,
7228
					   char *page)
7229 7230 7231
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7232
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7233
					    struct sysdev_class_attribute *attr,
7234
					    const char *buf, size_t count)
7235 7236 7237
{
	return sched_power_savings_store(buf, count, 0);
}
7238 7239 7240
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7241 7242 7243
#endif

#ifdef CONFIG_SCHED_SMT
7244
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7245
					    struct sysdev_class_attribute *attr,
7246
					    char *page)
7247 7248 7249
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7250
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7251
					     struct sysdev_class_attribute *attr,
7252
					     const char *buf, size_t count)
7253 7254 7255
{
	return sched_power_savings_store(buf, count, 1);
}
7256 7257
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7258 7259 7260
		   sched_smt_power_savings_store);
#endif

7261
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7277
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7278

7279
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7280
/*
7281 7282
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7283 7284 7285
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7286 7287 7288 7289
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7290 7291 7292 7293
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7294
		partition_sched_domains(1, NULL, NULL);
7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7305
{
P
Peter Zijlstra 已提交
7306 7307
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7308 7309
	switch (action) {
	case CPU_DOWN_PREPARE:
7310
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7311
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7312 7313 7314
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7315
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7316
	case CPU_ONLINE:
7317
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7318
		enable_runtime(cpu_rq(cpu));
7319 7320
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7321 7322 7323 7324 7325 7326 7327
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7328 7329 7330
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7331
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7332

7333 7334 7335 7336 7337
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7338
	get_online_cpus();
7339
	mutex_lock(&sched_domains_mutex);
7340
	arch_init_sched_domains(cpu_active_mask);
7341 7342 7343
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7344
	mutex_unlock(&sched_domains_mutex);
7345
	put_online_cpus();
7346 7347

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7348 7349
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7350 7351 7352 7353 7354
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7355
	init_hrtick();
7356 7357

	/* Move init over to a non-isolated CPU */
7358
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7359
		BUG();
I
Ingo Molnar 已提交
7360
	sched_init_granularity();
7361
	free_cpumask_var(non_isolated_cpus);
7362

7363
	init_sched_rt_class();
L
Linus Torvalds 已提交
7364 7365 7366 7367
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7368
	sched_init_granularity();
L
Linus Torvalds 已提交
7369 7370 7371
}
#endif /* CONFIG_SMP */

7372 7373
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7374 7375 7376 7377 7378 7379 7380
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7381
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7382 7383
{
	cfs_rq->tasks_timeline = RB_ROOT;
7384
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7385 7386 7387
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7388
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7389 7390
}

P
Peter Zijlstra 已提交
7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7404
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7405
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7406
#ifdef CONFIG_SMP
7407
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7408 7409
#endif
#endif
P
Peter Zijlstra 已提交
7410 7411 7412
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7413
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7414 7415 7416 7417
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7418
	rt_rq->rt_runtime = 0;
7419
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7420

7421
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7422
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7423 7424
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7425 7426
}

P
Peter Zijlstra 已提交
7427
#ifdef CONFIG_FAIR_GROUP_SCHED
7428 7429 7430
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7431
{
7432
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7433 7434 7435 7436 7437 7438 7439
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7440 7441 7442 7443
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7444 7445 7446 7447 7448
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7449 7450
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7451
	se->load.inv_weight = 0;
7452
	se->parent = parent;
P
Peter Zijlstra 已提交
7453
}
7454
#endif
P
Peter Zijlstra 已提交
7455

7456
#ifdef CONFIG_RT_GROUP_SCHED
7457 7458 7459
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7460
{
7461 7462
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7463 7464 7465
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7466
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7467 7468 7469 7470
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7471 7472 7473
	if (!rt_se)
		return;

7474 7475 7476 7477 7478
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7479
	rt_se->my_q = rt_rq;
7480
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7481 7482 7483 7484
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7485 7486
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7487
	int i, j;
7488 7489 7490 7491 7492 7493 7494
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7495
#endif
7496
#ifdef CONFIG_CPUMASK_OFFSTACK
7497
	alloc_size += num_possible_cpus() * cpumask_size();
7498 7499
#endif
	if (alloc_size) {
7500
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7501 7502 7503 7504 7505 7506 7507

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7508

7509
#endif /* CONFIG_FAIR_GROUP_SCHED */
7510 7511 7512 7513 7514
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7515 7516
		ptr += nr_cpu_ids * sizeof(void **);

7517
#endif /* CONFIG_RT_GROUP_SCHED */
7518 7519 7520 7521 7522 7523
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7524
	}
I
Ingo Molnar 已提交
7525

G
Gregory Haskins 已提交
7526 7527 7528 7529
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7530 7531 7532 7533 7534 7535
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7536
#endif /* CONFIG_RT_GROUP_SCHED */
7537

D
Dhaval Giani 已提交
7538
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7539
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7540 7541
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7542
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7543

7544 7545 7546 7547
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7548
	for_each_possible_cpu(i) {
7549
		struct rq *rq;
L
Linus Torvalds 已提交
7550 7551

		rq = cpu_rq(i);
7552
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7553
		rq->nr_running = 0;
7554 7555
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7556
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7557
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7558
#ifdef CONFIG_FAIR_GROUP_SCHED
7559
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7560
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7576
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7577 7578 7579 7580
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7581
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7582
#endif
D
Dhaval Giani 已提交
7583 7584 7585
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7586
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7587
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7588
#ifdef CONFIG_CGROUP_SCHED
7589
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7590
#endif
I
Ingo Molnar 已提交
7591
#endif
L
Linus Torvalds 已提交
7592

I
Ingo Molnar 已提交
7593 7594
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7595
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7596
		rq->sd = NULL;
G
Gregory Haskins 已提交
7597
		rq->rd = NULL;
7598
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7599
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7600
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7601
		rq->push_cpu = 0;
7602
		rq->cpu = i;
7603
		rq->online = 0;
7604 7605
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7606
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7607
#endif
P
Peter Zijlstra 已提交
7608
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7609 7610 7611
		atomic_set(&rq->nr_iowait, 0);
	}

7612
	set_load_weight(&init_task);
7613

7614 7615 7616 7617
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7618
#ifdef CONFIG_SMP
7619
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7620 7621
#endif

7622
#ifdef CONFIG_RT_MUTEXES
7623
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7624 7625
#endif

L
Linus Torvalds 已提交
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7639 7640 7641

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7642 7643 7644 7645
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7646

7647
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7648
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7649
#ifdef CONFIG_SMP
7650
#ifdef CONFIG_NO_HZ
7651
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7652
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7653
#endif
R
Rusty Russell 已提交
7654 7655 7656
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7657
#endif /* SMP */
7658

7659
	perf_event_init();
7660

7661
	scheduler_running = 1;
L
Linus Torvalds 已提交
7662 7663 7664
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7665 7666
static inline int preempt_count_equals(int preempt_offset)
{
7667
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7668 7669 7670 7671

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7672
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7673
{
7674
#ifdef in_atomic
L
Linus Torvalds 已提交
7675 7676
	static unsigned long prev_jiffy;	/* ratelimiting */

7677 7678
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7679 7680 7681 7682 7683
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7684 7685 7686 7687 7688 7689 7690
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7691 7692 7693 7694 7695

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7696 7697 7698 7699 7700 7701
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7702 7703 7704
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7705

7706 7707 7708 7709 7710 7711 7712 7713 7714 7715
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7716 7717
void normalize_rt_tasks(void)
{
7718
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7719
	unsigned long flags;
7720
	struct rq *rq;
L
Linus Torvalds 已提交
7721

7722
	read_lock_irqsave(&tasklist_lock, flags);
7723
	do_each_thread(g, p) {
7724 7725 7726 7727 7728 7729
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7730 7731
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7732 7733 7734
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7735
#endif
I
Ingo Molnar 已提交
7736 7737 7738 7739 7740 7741 7742 7743

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7744
			continue;
I
Ingo Molnar 已提交
7745
		}
L
Linus Torvalds 已提交
7746

7747
		raw_spin_lock(&p->pi_lock);
7748
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7749

7750
		normalize_task(rq, p);
7751

7752
		__task_rq_unlock(rq);
7753
		raw_spin_unlock(&p->pi_lock);
7754 7755
	} while_each_thread(g, p);

7756
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7757 7758 7759
}

#endif /* CONFIG_MAGIC_SYSRQ */
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7778
struct task_struct *curr_task(int cpu)
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7789 7790
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7791 7792 7793 7794 7795 7796 7797
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7798
void set_curr_task(int cpu, struct task_struct *p)
7799 7800 7801 7802 7803
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7804

7805 7806
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7821 7822
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7823 7824
{
	struct cfs_rq *cfs_rq;
7825
	struct sched_entity *se;
7826
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7827 7828
	int i;

7829
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7830 7831
	if (!tg->cfs_rq)
		goto err;
7832
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7833 7834
	if (!tg->se)
		goto err;
7835 7836

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7837 7838

	for_each_possible_cpu(i) {
7839
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7840

7841 7842
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7843 7844 7845
		if (!cfs_rq)
			goto err;

7846 7847
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7848
		if (!se)
7849
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7850

7851
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7852 7853 7854 7855
	}

	return 1;

7856 7857
 err_free_rq:
	kfree(cfs_rq);
7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
7872
#else /* !CONFG_FAIR_GROUP_SCHED */
7873 7874 7875 7876
static inline void free_fair_sched_group(struct task_group *tg)
{
}

7877 7878
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7890
#endif /* CONFIG_FAIR_GROUP_SCHED */
7891 7892

#ifdef CONFIG_RT_GROUP_SCHED
7893 7894 7895 7896
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7897 7898
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

7910 7911
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7912 7913
{
	struct rt_rq *rt_rq;
7914
	struct sched_rt_entity *rt_se;
7915 7916 7917
	struct rq *rq;
	int i;

7918
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7919 7920
	if (!tg->rt_rq)
		goto err;
7921
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7922 7923 7924
	if (!tg->rt_se)
		goto err;

7925 7926
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7927 7928 7929 7930

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

7931 7932
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7933 7934
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7935

7936 7937
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
7938
		if (!rt_se)
7939
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
7940

7941
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
7942 7943
	}

7944 7945
	return 1;

7946 7947
 err_free_rq:
	kfree(rt_rq);
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
7962
#else /* !CONFIG_RT_GROUP_SCHED */
7963 7964 7965 7966
static inline void free_rt_sched_group(struct task_group *tg)
{
}

7967 7968
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
7980
#endif /* CONFIG_RT_GROUP_SCHED */
7981

D
Dhaval Giani 已提交
7982
#ifdef CONFIG_CGROUP_SCHED
7983 7984 7985 7986 7987 7988 7989 7990
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7991
struct task_group *sched_create_group(struct task_group *parent)
7992 7993 7994 7995 7996 7997 7998 7999 8000
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8001
	if (!alloc_fair_sched_group(tg, parent))
8002 8003
		goto err;

8004
	if (!alloc_rt_sched_group(tg, parent))
8005 8006
		goto err;

8007
	spin_lock_irqsave(&task_group_lock, flags);
8008
	for_each_possible_cpu(i) {
8009 8010
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8011
	}
P
Peter Zijlstra 已提交
8012
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8013 8014 8015 8016 8017

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8018
	list_add_rcu(&tg->siblings, &parent->children);
8019
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8020

8021
	return tg;
S
Srivatsa Vaddagiri 已提交
8022 8023

err:
P
Peter Zijlstra 已提交
8024
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8025 8026 8027
	return ERR_PTR(-ENOMEM);
}

8028
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8029
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8030 8031
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8032
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8033 8034
}

8035
/* Destroy runqueue etc associated with a task group */
8036
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8037
{
8038
	unsigned long flags;
8039
	int i;
S
Srivatsa Vaddagiri 已提交
8040

8041
	spin_lock_irqsave(&task_group_lock, flags);
8042
	for_each_possible_cpu(i) {
8043 8044
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8045
	}
P
Peter Zijlstra 已提交
8046
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8047
	list_del_rcu(&tg->siblings);
8048
	spin_unlock_irqrestore(&task_group_lock, flags);
8049 8050

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8051
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8052 8053
}

8054
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8055 8056 8057
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8058 8059
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8060 8061 8062 8063 8064 8065 8066
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

8067
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8068 8069
	on_rq = tsk->se.on_rq;

8070
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8071
		dequeue_task(rq, tsk, 0);
8072 8073
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8074

P
Peter Zijlstra 已提交
8075
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8076

P
Peter Zijlstra 已提交
8077 8078
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8079
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8080 8081
#endif

8082 8083 8084
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8085
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8086 8087 8088

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8089
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8090

8091
#ifdef CONFIG_FAIR_GROUP_SCHED
8092
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8093 8094 8095 8096 8097
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8098
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8099 8100 8101
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8102
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8103

8104
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8105
		enqueue_entity(cfs_rq, se, 0);
8106
}
8107

8108 8109 8110 8111 8112 8113
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8114
	raw_spin_lock_irqsave(&rq->lock, flags);
8115
	__set_se_shares(se, shares);
8116
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8117 8118
}

8119 8120
static DEFINE_MUTEX(shares_mutex);

8121
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8122 8123
{
	int i;
8124
	unsigned long flags;
8125

8126 8127 8128 8129 8130 8131
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8132 8133
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8134 8135
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8136

8137
	mutex_lock(&shares_mutex);
8138
	if (tg->shares == shares)
8139
		goto done;
S
Srivatsa Vaddagiri 已提交
8140

8141
	spin_lock_irqsave(&task_group_lock, flags);
8142 8143
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8144
	list_del_rcu(&tg->siblings);
8145
	spin_unlock_irqrestore(&task_group_lock, flags);
8146 8147 8148 8149 8150 8151 8152 8153

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8154
	tg->shares = shares;
8155 8156 8157 8158 8159
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8160
		set_se_shares(tg->se[i], shares);
8161
	}
S
Srivatsa Vaddagiri 已提交
8162

8163 8164 8165 8166
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8167
	spin_lock_irqsave(&task_group_lock, flags);
8168 8169
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8170
	list_add_rcu(&tg->siblings, &tg->parent->children);
8171
	spin_unlock_irqrestore(&task_group_lock, flags);
8172
done:
8173
	mutex_unlock(&shares_mutex);
8174
	return 0;
S
Srivatsa Vaddagiri 已提交
8175 8176
}

8177 8178 8179 8180
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8181
#endif
8182

8183
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8184
/*
P
Peter Zijlstra 已提交
8185
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8186
 */
P
Peter Zijlstra 已提交
8187 8188 8189 8190 8191
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8192
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8193

P
Peter Zijlstra 已提交
8194
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8195 8196
}

P
Peter Zijlstra 已提交
8197 8198
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8199
{
P
Peter Zijlstra 已提交
8200
	struct task_struct *g, *p;
8201

P
Peter Zijlstra 已提交
8202 8203 8204 8205
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8206

P
Peter Zijlstra 已提交
8207 8208
	return 0;
}
8209

P
Peter Zijlstra 已提交
8210 8211 8212 8213 8214
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8215

P
Peter Zijlstra 已提交
8216 8217 8218 8219 8220 8221
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8222

P
Peter Zijlstra 已提交
8223 8224
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8225

P
Peter Zijlstra 已提交
8226 8227 8228
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8229 8230
	}

8231 8232 8233 8234 8235
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8236

8237 8238 8239
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8240 8241
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8242

P
Peter Zijlstra 已提交
8243
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8244

8245 8246 8247 8248 8249
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8250

8251 8252 8253
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8254 8255 8256
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8257

P
Peter Zijlstra 已提交
8258 8259 8260 8261
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8262

P
Peter Zijlstra 已提交
8263
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8264
	}
P
Peter Zijlstra 已提交
8265

P
Peter Zijlstra 已提交
8266 8267 8268 8269
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8270 8271
}

P
Peter Zijlstra 已提交
8272
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8273
{
P
Peter Zijlstra 已提交
8274 8275 8276 8277 8278 8279 8280
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8281 8282
}

8283 8284
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8285
{
P
Peter Zijlstra 已提交
8286
	int i, err = 0;
P
Peter Zijlstra 已提交
8287 8288

	mutex_lock(&rt_constraints_mutex);
8289
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8290 8291
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8292
		goto unlock;
P
Peter Zijlstra 已提交
8293

8294
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8295 8296
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8297 8298 8299 8300

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8301
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8302
		rt_rq->rt_runtime = rt_runtime;
8303
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8304
	}
8305
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8306
 unlock:
8307
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8308 8309 8310
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8311 8312
}

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8325 8326 8327 8328
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8329
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8330 8331
		return -1;

8332
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8333 8334 8335
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8336 8337 8338 8339 8340 8341 8342 8343

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8344 8345 8346
	if (rt_period == 0)
		return -EINVAL;

8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8361
	u64 runtime, period;
8362 8363
	int ret = 0;

8364 8365 8366
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8367 8368 8369 8370 8371 8372 8373 8374
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8375

8376
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8377
	read_lock(&tasklist_lock);
8378
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8379
	read_unlock(&tasklist_lock);
8380 8381 8382 8383
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8384 8385 8386 8387 8388 8389 8390 8391 8392 8393

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8394
#else /* !CONFIG_RT_GROUP_SCHED */
8395 8396
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8397 8398 8399
	unsigned long flags;
	int i;

8400 8401 8402
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8403 8404 8405 8406 8407 8408 8409
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8410
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8411 8412 8413
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8414
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8415
		rt_rq->rt_runtime = global_rt_runtime();
8416
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8417
	}
8418
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8419

8420 8421
	return 0;
}
8422
#endif /* CONFIG_RT_GROUP_SCHED */
8423 8424

int sched_rt_handler(struct ctl_table *table, int write,
8425
		void __user *buffer, size_t *lenp,
8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8436
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8453

8454
#ifdef CONFIG_CGROUP_SCHED
8455 8456

/* return corresponding task_group object of a cgroup */
8457
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8458
{
8459 8460
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8461 8462 8463
}

static struct cgroup_subsys_state *
8464
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8465
{
8466
	struct task_group *tg, *parent;
8467

8468
	if (!cgrp->parent) {
8469 8470 8471 8472
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8473 8474
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8475 8476 8477 8478 8479 8480
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8481 8482
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8483
{
8484
	struct task_group *tg = cgroup_tg(cgrp);
8485 8486 8487 8488

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8489
static int
8490
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8491
{
8492
#ifdef CONFIG_RT_GROUP_SCHED
8493
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8494 8495
		return -EINVAL;
#else
8496 8497 8498
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8499
#endif
8500 8501
	return 0;
}
8502

8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8522 8523 8524 8525
	return 0;
}

static void
8526
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8527 8528
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8529 8530
{
	sched_move_task(tsk);
8531 8532 8533 8534 8535 8536 8537 8538
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8539 8540
}

8541
#ifdef CONFIG_FAIR_GROUP_SCHED
8542
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8543
				u64 shareval)
8544
{
8545
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8546 8547
}

8548
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8549
{
8550
	struct task_group *tg = cgroup_tg(cgrp);
8551 8552 8553

	return (u64) tg->shares;
}
8554
#endif /* CONFIG_FAIR_GROUP_SCHED */
8555

8556
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8557
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8558
				s64 val)
P
Peter Zijlstra 已提交
8559
{
8560
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8561 8562
}

8563
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8564
{
8565
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8566
}
8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8578
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8579

8580
static struct cftype cpu_files[] = {
8581
#ifdef CONFIG_FAIR_GROUP_SCHED
8582 8583
	{
		.name = "shares",
8584 8585
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8586
	},
8587 8588
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8589
	{
P
Peter Zijlstra 已提交
8590
		.name = "rt_runtime_us",
8591 8592
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8593
	},
8594 8595
	{
		.name = "rt_period_us",
8596 8597
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8598
	},
8599
#endif
8600 8601 8602 8603
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8604
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8605 8606 8607
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8608 8609 8610 8611 8612 8613 8614
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8615 8616 8617
	.early_init	= 1,
};

8618
#endif	/* CONFIG_CGROUP_SCHED */
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8629
/* track cpu usage of a group of tasks and its child groups */
8630 8631 8632
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8633
	u64 __percpu *cpuusage;
8634
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8635
	struct cpuacct *parent;
8636 8637 8638 8639 8640
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8641
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8642
{
8643
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8656
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8657 8658
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8659
	int i;
8660 8661

	if (!ca)
8662
		goto out;
8663 8664

	ca->cpuusage = alloc_percpu(u64);
8665 8666 8667 8668 8669 8670
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8671

8672 8673 8674
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8675
	return &ca->css;
8676 8677 8678 8679 8680 8681 8682 8683 8684

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8685 8686 8687
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8688
static void
8689
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8690
{
8691
	struct cpuacct *ca = cgroup_ca(cgrp);
8692
	int i;
8693

8694 8695
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8696 8697 8698 8699
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8700 8701
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8702
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8703 8704 8705 8706 8707 8708
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8709
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8710
	data = *cpuusage;
8711
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8712 8713 8714 8715 8716 8717 8718 8719 8720
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8721
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8722 8723 8724 8725 8726

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8727
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8728
	*cpuusage = val;
8729
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8730 8731 8732 8733 8734
#else
	*cpuusage = val;
#endif
}

8735
/* return total cpu usage (in nanoseconds) of a group */
8736
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8737
{
8738
	struct cpuacct *ca = cgroup_ca(cgrp);
8739 8740 8741
	u64 totalcpuusage = 0;
	int i;

8742 8743
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8744 8745 8746 8747

	return totalcpuusage;
}

8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8760 8761
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8762 8763 8764 8765 8766

out:
	return err;
}

8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

8801 8802 8803
static struct cftype files[] = {
	{
		.name = "usage",
8804 8805
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8806
	},
8807 8808 8809 8810
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
8811 8812 8813 8814
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
8815 8816
};

8817
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8818
{
8819
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8820 8821 8822 8823 8824 8825 8826 8827 8828 8829
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
8830
	int cpu;
8831

L
Li Zefan 已提交
8832
	if (unlikely(!cpuacct_subsys.active))
8833 8834
		return;

8835
	cpu = task_cpu(tsk);
8836 8837 8838

	rcu_read_lock();

8839 8840
	ca = task_ca(tsk);

8841
	for (; ca; ca = ca->parent) {
8842
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8843 8844
		*cpuusage += cputime;
	}
8845 8846

	rcu_read_unlock();
8847 8848
}

8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

8866 8867 8868 8869 8870 8871 8872
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
8873
	int batch = CPUACCT_BATCH;
8874 8875 8876 8877 8878 8879 8880 8881

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
8882
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
8883 8884 8885 8886 8887
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

8888 8889 8890 8891 8892 8893 8894 8895
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
8896 8897 8898 8899 8900

#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
8901
	barrier();
8902 8903 8904 8905 8906
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

8907
static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8908

8909
static int synchronize_sched_expedited_cpu_stop(void *data)
8910
{
8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
8922
	smp_mb(); /* See above comment block. */
8923
	return 0;
8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
8938
	int snap, trycount = 0;
8939 8940

	smp_mb();  /* ensure prior mod happens before capturing snap. */
8941
	snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8942
	get_online_cpus();
8943 8944
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
8945
			     NULL) == -EAGAIN) {
8946 8947 8948 8949 8950 8951 8952
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
8953
		if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8954 8955 8956 8957 8958
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
8959
	atomic_inc(&synchronize_sched_expedited_count);
8960
	smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8961 8962 8963 8964 8965
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */