sched.c 219.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
74
#include <linux/slab.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123 124
static inline int rt_policy(int policy)
{
125
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 127 128 129 130 131 132 133 134
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
135
/*
I
Ingo Molnar 已提交
136
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
137
 */
I
Ingo Molnar 已提交
138 139 140 141 142
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

143
struct rt_bandwidth {
I
Ingo Molnar 已提交
144
	/* nests inside the rq lock: */
145
	raw_spinlock_t		rt_runtime_lock;
I
Ingo Molnar 已提交
146 147 148
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

182
	raw_spin_lock_init(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
183

184 185 186 187 188
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

189 190 191
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
192 193 194 195 196 197
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

198
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 200 201 202 203
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

204
	raw_spin_lock(&rt_b->rt_runtime_lock);
205
	for (;;) {
206 207 208
		unsigned long delta;
		ktime_t soft, hard;

209 210 211 212 213
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 215 216 217 218

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219
				HRTIMER_MODE_ABS_PINNED, 0);
220
	}
221
	raw_spin_unlock(&rt_b->rt_runtime_lock);
222 223 224 225 226 227 228 229 230
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

231 232 233 234 235 236
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

D
Dhaval Giani 已提交
237
#ifdef CONFIG_CGROUP_SCHED
S
Srivatsa Vaddagiri 已提交
238

239 240
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
241 242
struct cfs_rq;

P
Peter Zijlstra 已提交
243 244
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
245
/* task group related information */
246
struct task_group {
247
	struct cgroup_subsys_state css;
248

249
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
250 251 252 253 254
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
255 256 257 258 259 260
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

261
	struct rt_bandwidth rt_bandwidth;
262
#endif
263

264
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
265
	struct list_head list;
P
Peter Zijlstra 已提交
266 267 268 269

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
270 271
};

272
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
273

274
/* task_group_lock serializes add/remove of task groups and also changes to
275 276
 * a task group's cpu shares.
 */
277
static DEFINE_SPINLOCK(task_group_lock);
278

279 280
#ifdef CONFIG_FAIR_GROUP_SCHED

281 282 283 284 285 286 287
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

288 289
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD

290
/*
291 292 293 294
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
295 296 297
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
298
#define MIN_SHARES	2
299
#define MAX_SHARES	(1UL << 18)
300

301 302 303
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
304
/* Default task group.
I
Ingo Molnar 已提交
305
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
306
 */
307
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
308 309

/* return group to which a task belongs */
310
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
311
{
312
	struct task_group *tg;
313

D
Dhaval Giani 已提交
314
#ifdef CONFIG_CGROUP_SCHED
315 316
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
317
#else
I
Ingo Molnar 已提交
318
	tg = &init_task_group;
319
#endif
320
	return tg;
S
Srivatsa Vaddagiri 已提交
321 322 323
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
324
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
325
{
326 327 328 329 330 331 332 333 334
	/*
	 * Strictly speaking this rcu_read_lock() is not needed since the
	 * task_group is tied to the cgroup, which in turn can never go away
	 * as long as there are tasks attached to it.
	 *
	 * However since task_group() uses task_subsys_state() which is an
	 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
	 */
	rcu_read_lock();
335
#ifdef CONFIG_FAIR_GROUP_SCHED
336 337
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
338
#endif
P
Peter Zijlstra 已提交
339

340
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
341 342
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
343
#endif
344
	rcu_read_unlock();
S
Srivatsa Vaddagiri 已提交
345 346 347 348
}

#else

P
Peter Zijlstra 已提交
349
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 351 352 353
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
354

D
Dhaval Giani 已提交
355
#endif	/* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
356

I
Ingo Molnar 已提交
357 358 359 360 361 362
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
363
	u64 min_vruntime;
I
Ingo Molnar 已提交
364 365 366

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
367 368 369 370 371 372

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
373 374
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
375
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
376

P
Peter Zijlstra 已提交
377
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
378

379
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
380 381
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
382 383
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
384 385 386 387 388 389
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
390 391
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
392 393 394

#ifdef CONFIG_SMP
	/*
395
	 * the part of load.weight contributed by tasks
396
	 */
397
	unsigned long task_weight;
398

399 400 401 402 403 404 405
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
406

407 408 409 410
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
411 412 413 414 415

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
416
#endif
I
Ingo Molnar 已提交
417 418
#endif
};
L
Linus Torvalds 已提交
419

I
Ingo Molnar 已提交
420 421 422
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
423
	unsigned long rt_nr_running;
424
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 426
	struct {
		int curr; /* highest queued rt task prio */
427
#ifdef CONFIG_SMP
428
		int next; /* next highest */
429
#endif
430
	} highest_prio;
P
Peter Zijlstra 已提交
431
#endif
P
Peter Zijlstra 已提交
432
#ifdef CONFIG_SMP
433
	unsigned long rt_nr_migratory;
434
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
435
	int overloaded;
436
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
437
#endif
P
Peter Zijlstra 已提交
438
	int rt_throttled;
P
Peter Zijlstra 已提交
439
	u64 rt_time;
P
Peter Zijlstra 已提交
440
	u64 rt_runtime;
I
Ingo Molnar 已提交
441
	/* Nests inside the rq lock: */
442
	raw_spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
443

444
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
447 448 449 450
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
#endif
I
Ingo Molnar 已提交
451 452
};

G
Gregory Haskins 已提交
453 454 455 456
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
457 458
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
459 460 461 462 463 464
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
465 466
	cpumask_var_t span;
	cpumask_var_t online;
467

I
Ingo Molnar 已提交
468
	/*
469 470 471
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
472
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
473
	atomic_t rto_count;
474 475 476
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
477 478
};

479 480 481 482
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
483 484 485 486
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
487 488 489 490 491 492 493
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
494
struct rq {
495
	/* runqueue lock: */
496
	raw_spinlock_t lock;
L
Linus Torvalds 已提交
497 498 499 500 501 502

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
503 504
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 506 507
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
508 509
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
510 511 512 513
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
514 515
	struct rt_rq rt;

I
Ingo Molnar 已提交
516
#ifdef CONFIG_FAIR_GROUP_SCHED
517 518
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
519 520
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
521
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
522 523 524 525 526 527 528 529 530 531
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

532
	struct task_struct *curr, *idle;
533
	unsigned long next_balance;
L
Linus Torvalds 已提交
534
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
535

536
	u64 clock;
I
Ingo Molnar 已提交
537

L
Linus Torvalds 已提交
538 539 540
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
541
	struct root_domain *rd;
L
Linus Torvalds 已提交
542 543
	struct sched_domain *sd;

544
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
545
	/* For active balancing */
546
	int post_schedule;
L
Linus Torvalds 已提交
547 548
	int active_balance;
	int push_cpu;
549 550
	/* cpu of this runqueue: */
	int cpu;
551
	int online;
L
Linus Torvalds 已提交
552

553
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
554

555
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
556
	struct list_head migration_queue;
557 558 559

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
560 561
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
562 563
#endif

564 565 566 567
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
568
#ifdef CONFIG_SCHED_HRTICK
569 570 571 572
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
573 574 575
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
576 577 578
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
579 580
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
581 582

	/* sys_sched_yield() stats */
583
	unsigned int yld_count;
L
Linus Torvalds 已提交
584 585

	/* schedule() stats */
586 587 588
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
589 590

	/* try_to_wake_up() stats */
591 592
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
593 594

	/* BKL stats */
595
	unsigned int bkl_count;
L
Linus Torvalds 已提交
596 597 598
#endif
};

599
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
600

P
Peter Zijlstra 已提交
601 602
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
603
{
P
Peter Zijlstra 已提交
604
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
605 606
}

607 608 609 610 611 612 613 614 615
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

616
#define rcu_dereference_check_sched_domain(p) \
617 618 619 620
	rcu_dereference_check((p), \
			      rcu_read_lock_sched_held() || \
			      lockdep_is_held(&sched_domains_mutex))

N
Nick Piggin 已提交
621 622
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
624 625 626 627
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
628
#define for_each_domain(cpu, __sd) \
629
	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
630 631 632 633 634

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
635
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
636

I
Ingo Molnar 已提交
637
inline void update_rq_clock(struct rq *rq)
638 639 640 641
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
642 643 644 645 646 647 648 649 650
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
651 652
/**
 * runqueue_is_locked
653
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
654 655 656 657 658
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
659
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
660
{
661
	return raw_spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
662 663
}

I
Ingo Molnar 已提交
664 665 666
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
667 668 669 670

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
671
enum {
P
Peter Zijlstra 已提交
672
#include "sched_features.h"
I
Ingo Molnar 已提交
673 674
};

P
Peter Zijlstra 已提交
675 676 677 678 679
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
680
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
681 682 683 684 685 686 687 688 689
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

690
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
691 692 693 694 695 696
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
697
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
698 699 700 701
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
702 703 704
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
705
	}
L
Li Zefan 已提交
706
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
707

L
Li Zefan 已提交
708
	return 0;
P
Peter Zijlstra 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

748
	*ppos += cnt;
P
Peter Zijlstra 已提交
749 750 751 752

	return cnt;
}

L
Li Zefan 已提交
753 754 755 756 757
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

758
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
759 760 761 762 763
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
778

779 780 781 782 783 784
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
785 786
/*
 * ratelimit for updating the group shares.
787
 * default: 0.25ms
P
Peter Zijlstra 已提交
788
 */
789
unsigned int sysctl_sched_shares_ratelimit = 250000;
790
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

799 800 801 802 803 804 805 806
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
807
/*
P
Peter Zijlstra 已提交
808
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
809 810
 * default: 1s
 */
P
Peter Zijlstra 已提交
811
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
812

813 814
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
815 816 817 818 819
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
828
	if (sysctl_sched_rt_runtime < 0)
829 830 831 832
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
833

L
Linus Torvalds 已提交
834
#ifndef prepare_arch_switch
835 836 837 838 839 840
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

841 842 843 844 845
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

846
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
847
static inline int task_running(struct rq *rq, struct task_struct *p)
848
{
849
	return task_current(rq, p);
850 851
}

852
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 854 855
{
}

856
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857
{
858 859 860 861
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
862 863 864 865 866 867 868
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

869
	raw_spin_unlock_irq(&rq->lock);
870 871 872
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
873
static inline int task_running(struct rq *rq, struct task_struct *p)
874 875 876 877
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
878
	return task_current(rq, p);
879 880 881
#endif
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885 886 887 888 889 890 891 892
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893
	raw_spin_unlock_irq(&rq->lock);
894
#else
895
	raw_spin_unlock(&rq->lock);
896 897 898
#endif
}

899
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 901 902 903 904 905 906 907 908 909 910 911
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
912
#endif
913 914
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
915

916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * Check whether the task is waking, we use this to synchronize against
 * ttwu() so that task_cpu() reports a stable number.
 *
 * We need to make an exception for PF_STARTING tasks because the fork
 * path might require task_rq_lock() to work, eg. it can call
 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
 */
static inline int task_is_waking(struct task_struct *p)
{
	return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
}

929 930 931 932
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
933
static inline struct rq *__task_rq_lock(struct task_struct *p)
934 935
	__acquires(rq->lock)
{
936 937
	struct rq *rq;

938
	for (;;) {
939 940 941
		while (task_is_waking(p))
			cpu_relax();
		rq = task_rq(p);
942
		raw_spin_lock(&rq->lock);
943
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
944
			return rq;
945
		raw_spin_unlock(&rq->lock);
946 947 948
	}
}

L
Linus Torvalds 已提交
949 950
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
951
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
952 953
 * explicitly disabling preemption.
 */
954
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
955 956
	__acquires(rq->lock)
{
957
	struct rq *rq;
L
Linus Torvalds 已提交
958

959
	for (;;) {
960 961
		while (task_is_waking(p))
			cpu_relax();
962 963
		local_irq_save(*flags);
		rq = task_rq(p);
964
		raw_spin_lock(&rq->lock);
965
		if (likely(rq == task_rq(p) && !task_is_waking(p)))
966
			return rq;
967
		raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
968 969 970
	}
}

971 972 973 974 975
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976
	raw_spin_unlock_wait(&rq->lock);
977 978
}

A
Alexey Dobriyan 已提交
979
static void __task_rq_unlock(struct rq *rq)
980 981
	__releases(rq->lock)
{
982
	raw_spin_unlock(&rq->lock);
983 984
}

985
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
986 987
	__releases(rq->lock)
{
988
	raw_spin_unlock_irqrestore(&rq->lock, *flags);
L
Linus Torvalds 已提交
989 990 991
}

/*
992
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
993
 */
A
Alexey Dobriyan 已提交
994
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
995 996
	__acquires(rq->lock)
{
997
	struct rq *rq;
L
Linus Torvalds 已提交
998 999 1000

	local_irq_disable();
	rq = this_rq();
1001
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
1002 1003 1004 1005

	return rq;
}

P
Peter Zijlstra 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1027
	if (!cpu_active(cpu_of(rq)))
1028
		return 0;
P
Peter Zijlstra 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

1048
	raw_spin_lock(&rq->lock);
1049
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1050
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
1052 1053 1054 1055

	return HRTIMER_NORESTART;
}

1056
#ifdef CONFIG_SMP
1057 1058 1059 1060
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1061
{
1062
	struct rq *rq = arg;
1063

1064
	raw_spin_lock(&rq->lock);
1065 1066
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
1067
	raw_spin_unlock(&rq->lock);
1068 1069
}

1070 1071 1072 1073 1074 1075
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1076
{
1077 1078
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079

1080
	hrtimer_set_expires(timer, time);
1081 1082 1083 1084

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1085
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 1087
		rq->hrtick_csd_pending = 1;
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1102
		hrtick_clear(cpu_rq(cpu));
1103 1104 1105 1106 1107 1108
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1109
static __init void init_hrtick(void)
1110 1111 1112
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1113 1114 1115 1116 1117 1118 1119 1120
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1121
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122
			HRTIMER_MODE_REL_PINNED, 0);
1123
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1142
}
A
Andrew Morton 已提交
1143
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1144 1145 1146 1147 1148 1149 1150 1151
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1152 1153 1154
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1155
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1156

I
Ingo Molnar 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1170
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1171 1172 1173
{
	int cpu;

1174
	assert_raw_spin_locked(&task_rq(p)->lock);
I
Ingo Molnar 已提交
1175

1176
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1177 1178
		return;

1179
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

1196
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
1197 1198
		return;
	resched_task(cpu_curr(cpu));
1199
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
1200
}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1235
	set_tsk_need_resched(rq->idle);
1236 1237 1238 1239 1240 1241

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1242
#endif /* CONFIG_NO_HZ */
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1265
#else /* !CONFIG_SMP */
1266
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1267
{
1268
	assert_raw_spin_locked(&task_rq(p)->lock);
1269
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1270
}
1271 1272 1273 1274

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1275
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1276

1277 1278 1279 1280 1281 1282 1283 1284
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1285 1286 1287
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1288
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1289

1290 1291 1292
/*
 * delta *= weight / lw
 */
1293
static unsigned long
1294 1295 1296 1297 1298
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1299 1300 1301 1302 1303 1304 1305
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1306 1307 1308 1309 1310

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1311
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1312
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1313 1314
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1315
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1316

1317
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1318 1319
}

1320
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1321 1322
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1323
	lw->inv_weight = 0;
1324 1325
}

1326
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1327 1328
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332 1333 1334 1335
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1336
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 1338 1339 1340
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1341 1342
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 1353 1354
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1355 1356
 */
static const int prio_to_weight[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1365 1366
};

1367 1368 1369 1370 1371 1372 1373
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1374
static const u32 prio_to_wmult[40] = {
1375 1376 1377 1378 1379 1380 1381 1382
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1383
};
1384

1385 1386 1387 1388 1389 1390 1391 1392
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1393 1394
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 1396
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1397 1398
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1399 1400
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1401 1402
#endif

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1413
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1414
typedef int (*tg_visitor)(struct task_group *, void *);
1415 1416 1417 1418 1419

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1420
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1421 1422
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1423
	int ret;
1424 1425 1426 1427

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1428 1429 1430
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1431 1432 1433 1434 1435 1436 1437
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1438 1439 1440
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1441 1442 1443 1444 1445

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1446
out_unlock:
1447
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1448 1449

	return ret;
1450 1451
}

P
Peter Zijlstra 已提交
1452 1453 1454
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1455
}
P
Peter Zijlstra 已提交
1456 1457 1458
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1498 1499
static struct sched_group *group_of(int cpu)
{
1500
	struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1518 1519 1520 1521 1522
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1523
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1524

1525 1526
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1527 1528
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1529 1530 1531 1532 1533

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1534

1535
static __read_mostly unsigned long __percpu *update_shares_data;
1536

1537 1538 1539 1540 1541
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1542 1543 1544
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1545
				    unsigned long *usd_rq_weight)
1546
{
1547
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1548
	int boost = 0;
1549

1550
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1551 1552 1553 1554
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1555

1556
	/*
P
Peter Zijlstra 已提交
1557 1558 1559
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1560
	 */
1561
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1562
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1563

1564 1565 1566 1567
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1568

1569
		raw_spin_lock_irqsave(&rq->lock, flags);
1570
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1571
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1572
		__set_se_shares(tg->se[cpu], shares);
1573
		raw_spin_unlock_irqrestore(&rq->lock, flags);
1574
	}
1575
}
1576 1577

/*
1578 1579 1580
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1581
 */
P
Peter Zijlstra 已提交
1582
static int tg_shares_up(struct task_group *tg, void *data)
1583
{
1584
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1585
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1586
	struct sched_domain *sd = data;
1587
	unsigned long flags;
1588
	int i;
1589

1590 1591 1592 1593
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1594
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1595

1596
	for_each_cpu(i, sched_domain_span(sd)) {
1597
		weight = tg->cfs_rq[i]->load.weight;
1598
		usd_rq_weight[i] = weight;
1599

1600
		rq_weight += weight;
1601 1602 1603 1604 1605 1606 1607 1608
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1609
		sum_weight += weight;
1610
		shares += tg->cfs_rq[i]->shares;
1611 1612
	}

1613 1614 1615
	if (!rq_weight)
		rq_weight = sum_weight;

1616 1617 1618 1619 1620
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1621

1622
	for_each_cpu(i, sched_domain_span(sd))
1623
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1624 1625

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1626 1627

	return 0;
1628 1629 1630
}

/*
1631 1632 1633
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1634
 */
P
Peter Zijlstra 已提交
1635
static int tg_load_down(struct task_group *tg, void *data)
1636
{
1637
	unsigned long load;
P
Peter Zijlstra 已提交
1638
	long cpu = (long)data;
1639

1640 1641 1642 1643 1644 1645 1646
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1647

1648
	tg->cfs_rq[cpu]->h_load = load;
1649

P
Peter Zijlstra 已提交
1650
	return 0;
1651 1652
}

1653
static void update_shares(struct sched_domain *sd)
1654
{
1655 1656 1657 1658 1659 1660 1661 1662
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1663 1664 1665

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1666
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1667
	}
1668 1669
}

P
Peter Zijlstra 已提交
1670
static void update_h_load(long cpu)
1671
{
1672 1673 1674
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1675
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1676 1677 1678 1679
}

#else

1680
static inline void update_shares(struct sched_domain *sd)
1681 1682 1683
{
}

1684 1685
#endif

1686 1687
#ifdef CONFIG_PREEMPT

1688 1689
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1690
/*
1691 1692 1693 1694 1695 1696
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1697
 */
1698 1699 1700 1701 1702
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
1703
	raw_spin_unlock(&this_rq->lock);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1718 1719 1720 1721 1722 1723
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

1724
	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1725
		if (busiest < this_rq) {
1726 1727 1728 1729
			raw_spin_unlock(&this_rq->lock);
			raw_spin_lock(&busiest->lock);
			raw_spin_lock_nested(&this_rq->lock,
					      SINGLE_DEPTH_NESTING);
1730 1731
			ret = 1;
		} else
1732 1733
			raw_spin_lock_nested(&busiest->lock,
					      SINGLE_DEPTH_NESTING);
1734 1735 1736 1737
	}
	return ret;
}

1738 1739 1740 1741 1742 1743 1744 1745 1746
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
1747
		raw_spin_unlock(&this_rq->lock);
1748 1749 1750 1751 1752 1753
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1754 1755 1756
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
1757
	raw_spin_unlock(&busiest->lock);
1758 1759
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
	BUG_ON(!irqs_disabled());
	if (rq1 == rq2) {
		raw_spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
		if (rq1 < rq2) {
			raw_spin_lock(&rq1->lock);
			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
		} else {
			raw_spin_lock(&rq2->lock);
			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
		}
	}
	update_rq_clock(rq1);
	update_rq_clock(rq2);
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	raw_spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		raw_spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

1805 1806
#endif

V
Vegard Nossum 已提交
1807
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1808 1809
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1810
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1811 1812 1813
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1814
#endif
1815

1816
static void calc_load_account_active(struct rq *this_rq);
1817
static void update_sysctl(void);
1818
static int get_update_sysctl_factor(void);
1819

P
Peter Zijlstra 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1833

1834
static const struct sched_class rt_sched_class;
I
Ingo Molnar 已提交
1835 1836

#define sched_class_highest (&rt_sched_class)
1837 1838
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1839

1840 1841
#include "sched_stats.h"

1842
static void inc_nr_running(struct rq *rq)
1843 1844 1845 1846
{
	rq->nr_running++;
}

1847
static void dec_nr_running(struct rq *rq)
1848 1849 1850 1851
{
	rq->nr_running--;
}

1852 1853 1854
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1855 1856 1857 1858
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1859

I
Ingo Molnar 已提交
1860 1861 1862 1863 1864 1865 1866 1867
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1868

I
Ingo Molnar 已提交
1869 1870
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1871 1872
}

1873 1874 1875 1876 1877 1878
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1879 1880
static void
enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1881
{
P
Peter Zijlstra 已提交
1882 1883 1884
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1885
	sched_info_queued(p);
1886
	p->sched_class->enqueue_task(rq, p, wakeup, head);
I
Ingo Molnar 已提交
1887
	p->se.on_rq = 1;
1888 1889
}

1890
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1891
{
P
Peter Zijlstra 已提交
1892 1893 1894 1895 1896 1897 1898 1899 1900
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1901 1902
	}

1903
	sched_info_dequeued(p);
1904
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1905
	p->se.on_rq = 0;
1906 1907
}

1908 1909 1910 1911 1912 1913 1914 1915
/*
 * activate_task - move a task to the runqueue.
 */
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

1916
	enqueue_task(rq, p, wakeup, false);
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	inc_nr_running(rq);
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

	dequeue_task(rq, p, sleep);
	dec_nr_running(rq);
}

#include "sched_idletask.c"
#include "sched_fair.c"
#include "sched_rt.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

1939
/*
I
Ingo Molnar 已提交
1940
 * __normal_prio - return the priority that is based on the static prio
1941 1942 1943
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1944
	return p->static_prio;
1945 1946
}

1947 1948 1949 1950 1951 1952 1953
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1954
static inline int normal_prio(struct task_struct *p)
1955 1956 1957
{
	int prio;

1958
	if (task_has_rt_policy(p))
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1972
static int effective_prio(struct task_struct *p)
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1985 1986 1987 1988
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1989
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1990 1991 1992 1993
{
	return cpu_curr(task_cpu(p)) == p;
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2006
#ifdef CONFIG_SMP
2007 2008 2009
/*
 * Is this task likely cache-hot:
 */
2010
static int
2011 2012 2013 2014
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

P
Peter Zijlstra 已提交
2015 2016 2017
	if (p->sched_class != &fair_sched_class)
		return 0;

2018 2019 2020
	/*
	 * Buddy candidates are cache hot:
	 */
2021
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2022 2023
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2024 2025
		return 1;

2026 2027 2028 2029 2030
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2031 2032 2033 2034 2035
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}

I
Ingo Molnar 已提交
2036
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2037
{
2038 2039 2040 2041 2042
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
2043 2044
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
			!(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2045 2046
#endif

2047
	trace_sched_migrate_task(p, new_cpu);
2048

2049 2050 2051 2052
	if (task_cpu(p) != new_cpu) {
		p->se.nr_migrations++;
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
	}
I
Ingo Molnar 已提交
2053 2054

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2055 2056
}

2057
struct migration_req {
L
Linus Torvalds 已提交
2058 2059
	struct list_head list;

2060
	struct task_struct *task;
L
Linus Torvalds 已提交
2061 2062 2063
	int dest_cpu;

	struct completion done;
2064
};
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2070
static int
2071
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2072
{
2073
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2074 2075 2076

	/*
	 * If the task is not on a runqueue (and not running), then
2077
	 * the next wake-up will properly place the task.
L
Linus Torvalds 已提交
2078
	 */
2079
	if (!p->se.on_rq && !task_running(rq, p))
L
Linus Torvalds 已提交
2080 2081 2082 2083 2084 2085
		return 0;

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2086

L
Linus Torvalds 已提交
2087 2088 2089
	return 1;
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2133 2134 2135
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2136 2137 2138 2139 2140 2141 2142
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2143 2144 2145 2146 2147 2148
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2149
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2150 2151
{
	unsigned long flags;
I
Ingo Molnar 已提交
2152
	int running, on_rq;
R
Roland McGrath 已提交
2153
	unsigned long ncsw;
2154
	struct rq *rq;
L
Linus Torvalds 已提交
2155

2156 2157 2158 2159 2160 2161 2162 2163
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2164

2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2176 2177 2178
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2179
			cpu_relax();
R
Roland McGrath 已提交
2180
		}
2181

2182 2183 2184 2185 2186 2187
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2188
		trace_sched_wait_task(rq, p);
2189 2190
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2191
		ncsw = 0;
2192
		if (!match_state || p->state == match_state)
2193
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2194
		task_rq_unlock(rq, &flags);
2195

R
Roland McGrath 已提交
2196 2197 2198 2199 2200 2201
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2212

2213 2214 2215 2216 2217
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2218
		 * So if it was still runnable (but just not actively
2219 2220 2221 2222 2223 2224 2225
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2226

2227 2228 2229 2230 2231 2232 2233
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2234 2235

	return ncsw;
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2251
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2261
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2262
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2263

T
Thomas Gleixner 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2285
#ifdef CONFIG_SMP
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static int select_fallback_rq(int cpu, struct task_struct *p)
{
	int dest_cpu;
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));

	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			return dest_cpu;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
	if (dest_cpu < nr_cpu_ids)
		return dest_cpu;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		rcu_read_lock();
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		rcu_read_unlock();
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, cpu);
		}
	}

	return dest_cpu;
}

2323
/*
2324 2325 2326
 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
 * by:
2327
 *
2328 2329
 *  exec:           is unstable, retry loop
 *  fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2330
 */
2331 2332 2333
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
	if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
P
Peter Zijlstra 已提交
2347
		     !cpu_online(cpu)))
2348
		cpu = select_fallback_rq(task_cpu(p), p);
2349 2350

	return cpu;
2351 2352 2353
}
#endif

L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2368 2369
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2370
{
2371
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2372
	unsigned long flags;
2373
	struct rq *rq;
L
Linus Torvalds 已提交
2374

2375
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2376
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2377

P
Peter Zijlstra 已提交
2378
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2379

2380
	smp_wmb();
2381
	rq = task_rq_lock(p, &flags);
2382
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2383
	if (!(p->state & state))
L
Linus Torvalds 已提交
2384 2385
		goto out;

I
Ingo Molnar 已提交
2386
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2387 2388 2389
		goto out_running;

	cpu = task_cpu(p);
2390
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2396 2397 2398
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2399 2400
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2401
	 */
2402 2403
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2404
	p->state = TASK_WAKING;
2405 2406 2407 2408

	if (p->sched_class->task_waking)
		p->sched_class->task_waking(rq, p);

P
Peter Zijlstra 已提交
2409
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2410

2411
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2412 2413 2414 2415 2416 2417
	if (cpu != orig_cpu) {
		/*
		 * Since we migrate the task without holding any rq->lock,
		 * we need to be careful with task_rq_lock(), since that
		 * might end up locking an invalid rq.
		 */
2418
		set_task_cpu(p, cpu);
2419
	}
P
Peter Zijlstra 已提交
2420

2421 2422
	rq = cpu_rq(cpu);
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
2423
	update_rq_clock(rq);
2424

2425 2426 2427 2428 2429 2430 2431
	/*
	 * We migrated the task without holding either rq->lock, however
	 * since the task is not on the task list itself, nobody else
	 * will try and migrate the task, hence the rq should match the
	 * cpu we just moved it to.
	 */
	WARN_ON(task_cpu(p) != cpu);
P
Peter Zijlstra 已提交
2432
	WARN_ON(p->state != TASK_WAKING);
L
Linus Torvalds 已提交
2433

2434 2435 2436 2437 2438 2439 2440
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2441
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2442 2443 2444 2445 2446
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2447
#endif /* CONFIG_SCHEDSTATS */
2448

L
Linus Torvalds 已提交
2449 2450
out_activate:
#endif /* CONFIG_SMP */
2451
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2452
	if (wake_flags & WF_SYNC)
2453 2454 2455 2456 2457 2458 2459
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2460
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2461 2462
	success = 1;

P
Peter Zijlstra 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2479
out_running:
2480
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2481
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2482

L
Linus Torvalds 已提交
2483
	p->state = TASK_RUNNING;
2484
#ifdef CONFIG_SMP
2485 2486
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2498
#endif
L
Linus Torvalds 已提交
2499 2500
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2501
	put_cpu();
L
Linus Torvalds 已提交
2502 2503 2504 2505

	return success;
}

2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2517
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2518
{
2519
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2520 2521 2522
}
EXPORT_SYMBOL(wake_up_process);

2523
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529 2530
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2531 2532 2533 2534 2535 2536 2537
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2538
	p->se.prev_sum_exec_runtime	= 0;
2539
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2540 2541
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2542 2543
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2544 2545

#ifdef CONFIG_SCHEDSTATS
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2576
#endif
N
Nick Piggin 已提交
2577

P
Peter Zijlstra 已提交
2578
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2579
	p->se.on_rq = 0;
2580
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2581

2582 2583 2584
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
I
Ingo Molnar 已提交
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);
2595 2596 2597 2598 2599 2600
	/*
	 * We mark the process as waking here. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_WAKING;
I
Ingo Molnar 已提交
2601

2602 2603 2604 2605
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2606
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2607
			p->policy = SCHED_NORMAL;
2608 2609
			p->normal_prio = p->static_prio;
		}
2610

2611 2612
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2613
			p->normal_prio = p->static_prio;
2614 2615 2616
			set_load_weight(p);
		}

2617 2618 2619 2620 2621 2622
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2623

2624 2625 2626 2627 2628
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2629 2630
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2631

P
Peter Zijlstra 已提交
2632 2633 2634
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2635 2636
	set_task_cpu(p, cpu);

2637
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2638
	if (likely(sched_info_on()))
2639
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2640
#endif
2641
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2642 2643
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2644
#ifdef CONFIG_PREEMPT
2645
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2646
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2647
#endif
2648 2649
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2650
	put_cpu();
L
Linus Torvalds 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2660
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2661 2662
{
	unsigned long flags;
I
Ingo Molnar 已提交
2663
	struct rq *rq;
2664
	int cpu __maybe_unused = get_cpu();
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 *
	 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
	 * ->cpus_allowed is stable, we have preemption disabled, meaning
	 * cpu_online_mask is stable.
	 */
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
	set_task_cpu(p, cpu);
#endif
L
Linus Torvalds 已提交
2679

2680 2681 2682 2683 2684 2685 2686
	/*
	 * Since the task is not on the rq and we still have TASK_WAKING set
	 * nobody else will migrate this task.
	 */
	rq = cpu_rq(cpu);
	raw_spin_lock_irqsave(&rq->lock, flags);

2687 2688
	BUG_ON(p->state != TASK_WAKING);
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2689
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2690
	activate_task(rq, p, 0);
2691
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2692
	check_preempt_curr(rq, p, WF_FORK);
2693
#ifdef CONFIG_SMP
2694 2695
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2696
#endif
I
Ingo Molnar 已提交
2697
	task_rq_unlock(rq, &flags);
2698
	put_cpu();
L
Linus Torvalds 已提交
2699 2700
}

2701 2702 2703
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2704
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2705
 * @notifier: notifier struct to register
2706 2707 2708 2709 2710 2711 2712 2713 2714
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2715
 * @notifier: notifier struct to unregister
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2745
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2757
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2758

2759 2760 2761
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2762
 * @prev: the current task that is being switched out
2763 2764 2765 2766 2767 2768 2769 2770 2771
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2772 2773 2774
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2775
{
2776
	fire_sched_out_preempt_notifiers(prev, next);
2777 2778 2779 2780
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2781 2782
/**
 * finish_task_switch - clean up after a task-switch
2783
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2784 2785
 * @prev: the thread we just switched away from.
 *
2786 2787 2788 2789
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2790 2791
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2792
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2793 2794 2795
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2796
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2797 2798 2799
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2800
	long prev_state;
L
Linus Torvalds 已提交
2801 2802 2803 2804 2805

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2806
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2807 2808
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2809
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2810 2811 2812 2813 2814
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2815
	prev_state = prev->state;
2816
	finish_arch_switch(prev);
2817 2818 2819
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_disable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2820
	perf_event_task_sched_in(current);
2821 2822 2823
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2824
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2825

2826
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2827 2828
	if (mm)
		mmdrop(mm);
2829
	if (unlikely(prev_state == TASK_DEAD)) {
2830 2831 2832
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2833
		 */
2834
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2835
		put_task_struct(prev);
2836
	}
L
Linus Torvalds 已提交
2837 2838
}

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2854
		raw_spin_lock_irqsave(&rq->lock, flags);
2855 2856
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2857
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2858 2859 2860 2861 2862 2863

		rq->post_schedule = 0;
	}
}

#else
2864

2865 2866 2867 2868 2869 2870
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2871 2872
}

2873 2874
#endif

L
Linus Torvalds 已提交
2875 2876 2877 2878
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2879
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2880 2881
	__releases(rq->lock)
{
2882 2883
	struct rq *rq = this_rq();

2884
	finish_task_switch(rq, prev);
2885

2886 2887 2888 2889 2890
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2891

2892 2893 2894 2895
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2896
	if (current->set_child_tid)
2897
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902 2903
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2904
static inline void
2905
context_switch(struct rq *rq, struct task_struct *prev,
2906
	       struct task_struct *next)
L
Linus Torvalds 已提交
2907
{
I
Ingo Molnar 已提交
2908
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2909

2910
	prepare_task_switch(rq, prev, next);
2911
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2912 2913
	mm = next->mm;
	oldmm = prev->active_mm;
2914 2915 2916 2917 2918
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2919
	arch_start_context_switch(prev);
2920

2921
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2928
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2929 2930 2931
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2932 2933 2934 2935 2936 2937 2938
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2939
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2940
#endif
L
Linus Torvalds 已提交
2941 2942 2943 2944

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2945 2946 2947 2948 2949 2950 2951
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2969
}
L
Linus Torvalds 已提交
2970 2971

unsigned long nr_uninterruptible(void)
2972
{
L
Linus Torvalds 已提交
2973
	unsigned long i, sum = 0;
2974

2975
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2976
		sum += cpu_rq(i)->nr_uninterruptible;
2977 2978

	/*
L
Linus Torvalds 已提交
2979 2980
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
2981
	 */
L
Linus Torvalds 已提交
2982 2983
	if (unlikely((long)sum < 0))
		sum = 0;
2984

L
Linus Torvalds 已提交
2985
	return sum;
2986 2987
}

L
Linus Torvalds 已提交
2988
unsigned long long nr_context_switches(void)
2989
{
2990 2991
	int i;
	unsigned long long sum = 0;
2992

2993
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2994
		sum += cpu_rq(i)->nr_switches;
2995

L
Linus Torvalds 已提交
2996 2997
	return sum;
}
2998

L
Linus Torvalds 已提交
2999 3000 3001
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
3002

3003
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3004
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3005

L
Linus Torvalds 已提交
3006 3007
	return sum;
}
3008

3009 3010 3011 3012 3013
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}
3014

3015 3016 3017 3018 3019
unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}
3020

3021

3022 3023 3024 3025 3026
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
3041 3042
}

3043 3044
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3045
{
3046 3047 3048 3049
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3050 3051

/*
3052 3053
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
3054
 */
3055
void calc_global_load(void)
3056
{
3057 3058
	unsigned long upd = calc_load_update + 10;
	long active;
L
Linus Torvalds 已提交
3059

3060 3061
	if (time_before(jiffies, upd))
		return;
L
Linus Torvalds 已提交
3062

3063 3064
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
L
Linus Torvalds 已提交
3065

3066 3067 3068
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);
I
Ingo Molnar 已提交
3069

3070 3071
	calc_load_update += LOAD_FREQ;
}
L
Linus Torvalds 已提交
3072

3073 3074 3075 3076 3077 3078
/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;
3079

3080 3081
	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;
3082

3083 3084 3085 3086
	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
3087
	}
3088 3089 3090
}

/*
I
Ingo Molnar 已提交
3091 3092
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3093
 */
I
Ingo Molnar 已提交
3094
static void update_cpu_load(struct rq *this_rq)
3095
{
3096
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3097
	int i, scale;
3098

I
Ingo Molnar 已提交
3099
	this_rq->nr_load_updates++;
3100

I
Ingo Molnar 已提交
3101 3102 3103
	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;
3104

I
Ingo Molnar 已提交
3105
		/* scale is effectively 1 << i now, and >> i divides by scale */
3106

I
Ingo Molnar 已提交
3107 3108
		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3109 3110 3111 3112 3113 3114 3115
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3116 3117
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3118

3119 3120 3121
	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
3122 3123 3124
	}
}

I
Ingo Molnar 已提交
3125
#ifdef CONFIG_SMP
3126

3127
/*
P
Peter Zijlstra 已提交
3128 3129
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
3130
 */
P
Peter Zijlstra 已提交
3131
void sched_exec(void)
3132
{
P
Peter Zijlstra 已提交
3133
	struct task_struct *p = current;
3134
	struct migration_req req;
P
Peter Zijlstra 已提交
3135
	int dest_cpu, this_cpu;
L
Linus Torvalds 已提交
3136
	unsigned long flags;
3137
	struct rq *rq;
3138

P
Peter Zijlstra 已提交
3139 3140 3141 3142 3143 3144
again:
	this_cpu = get_cpu();
	dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
	if (dest_cpu == this_cpu) {
		put_cpu();
		return;
3145 3146
	}

L
Linus Torvalds 已提交
3147
	rq = task_rq_lock(p, &flags);
P
Peter Zijlstra 已提交
3148 3149
	put_cpu();

3150
	/*
P
Peter Zijlstra 已提交
3151
	 * select_task_rq() can race against ->cpus_allowed
3152
	 */
3153
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
P
Peter Zijlstra 已提交
3154 3155 3156
	    || unlikely(!cpu_active(dest_cpu))) {
		task_rq_unlock(rq, &flags);
		goto again;
3157 3158
	}

L
Linus Torvalds 已提交
3159 3160 3161 3162
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
I
Ingo Molnar 已提交
3163

L
Linus Torvalds 已提交
3164 3165 3166 3167 3168
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
I
Ingo Molnar 已提交
3169

L
Linus Torvalds 已提交
3170 3171 3172 3173
		return;
	}
	task_rq_unlock(rq, &flags);
}
I
Ingo Molnar 已提交
3174

L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180 3181
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3182
 * Return any ns on the sched_clock that have not yet been accounted in
3183
 * @p in case that task is currently running.
3184 3185
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
3186
 */
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

3201
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
3202 3203
{
	unsigned long flags;
3204
	struct rq *rq;
3205
	u64 ns = 0;
3206

3207
	rq = task_rq_lock(p, &flags);
3208 3209
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
3210

3211 3212
	return ns;
}
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
3231

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3251
	task_rq_unlock(rq, &flags);
3252

L
Linus Torvalds 已提交
3253 3254 3255 3256 3257 3258 3259
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
3260
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3261
 */
3262 3263
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3264 3265 3266 3267
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3268
	/* Add user time to process. */
L
Linus Torvalds 已提交
3269
	p->utime = cputime_add(p->utime, cputime);
3270
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3271
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
3272 3273 3274 3275 3276 3277 3278

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
3279 3280

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3281 3282
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
3283 3284
}

3285 3286 3287 3288
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
3289
 * @cputime_scaled: cputime scaled by cpu frequency
3290
 */
3291 3292
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
3293 3294 3295 3296 3297 3298
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

3299
	/* Add guest time to process. */
3300
	p->utime = cputime_add(p->utime, cputime);
3301
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3302
	account_group_user_time(p, cputime);
3303 3304
	p->gtime = cputime_add(p->gtime, cputime);

3305
	/* Add guest time to cpustat. */
3306 3307 3308 3309 3310 3311 3312
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
3313 3314
}

L
Linus Torvalds 已提交
3315 3316 3317 3318 3319
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
3320
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
3321 3322
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
3323
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
3324 3325 3326 3327
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

3328
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3329
		account_guest_time(p, cputime, cputime_scaled);
3330 3331
		return;
	}
3332

3333
	/* Add system time to process. */
L
Linus Torvalds 已提交
3334
	p->stime = cputime_add(p->stime, cputime);
3335
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3336
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
3337 3338 3339 3340 3341 3342 3343 3344

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
3345 3346
		cpustat->system = cputime64_add(cpustat->system, tmp);

3347 3348
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
3349 3350 3351 3352
	/* Account for system time used */
	acct_update_integrals(p);
}

3353
/*
L
Linus Torvalds 已提交
3354 3355
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
3356
 */
3357
void account_steal_time(cputime_t cputime)
3358
{
3359 3360 3361 3362
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3363 3364
}

L
Linus Torvalds 已提交
3365
/*
3366 3367
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
3368
 */
3369
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
3370 3371
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3372
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
3373
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3374

3375 3376 3377 3378
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
3379 3380
}

3381 3382 3383 3384 3385 3386 3387 3388 3389
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
3390
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3391 3392 3393
	struct rq *rq = this_rq();

	if (user_tick)
3394
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3395
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3396
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3397 3398
				    one_jiffy_scaled);
	else
3399
		account_idle_time(cputime_one_jiffy);
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
3419 3420
}

3421 3422
#endif

3423 3424 3425 3426
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
3427
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3428
{
3429 3430
	*ut = p->utime;
	*st = p->stime;
3431 3432
}

3433
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3434
{
3435 3436 3437 3438 3439 3440
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
3441 3442
}
#else
3443 3444

#ifndef nsecs_to_cputime
3445
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
3446 3447
#endif

3448
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3449
{
3450
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3451 3452 3453 3454

	/*
	 * Use CFS's precise accounting:
	 */
3455
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3456 3457

	if (total) {
3458 3459 3460
		u64 temp;

		temp = (u64)(rtime * utime);
3461
		do_div(temp, total);
3462 3463 3464
		utime = (cputime_t)temp;
	} else
		utime = rtime;
3465

3466 3467 3468
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
3469
	p->prev_utime = max(p->prev_utime, utime);
3470
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3471

3472 3473
	*ut = p->prev_utime;
	*st = p->prev_stime;
3474 3475
}

3476 3477 3478 3479
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3480
{
3481 3482 3483
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
3484

3485
	thread_group_cputime(p, &cputime);
3486

3487 3488
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3489

3490 3491
	if (total) {
		u64 temp;
3492

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
3505 3506 3507
}
#endif

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3519
	struct task_struct *curr = rq->curr;
3520 3521

	sched_clock_tick();
I
Ingo Molnar 已提交
3522

3523
	raw_spin_lock(&rq->lock);
3524
	update_rq_clock(rq);
3525
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3526
	curr->sched_class->task_tick(rq, curr, 0);
3527
	raw_spin_unlock(&rq->lock);
3528

3529
	perf_event_task_tick(curr);
3530

3531
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3532 3533
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3534
#endif
L
Linus Torvalds 已提交
3535 3536
}

3537
notrace unsigned long get_parent_ip(unsigned long addr)
3538 3539 3540 3541 3542 3543 3544 3545
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
3546

3547 3548 3549
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

3550
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3551
{
3552
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3553 3554 3555
	/*
	 * Underflow?
	 */
3556 3557
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
3558
#endif
L
Linus Torvalds 已提交
3559
	preempt_count() += val;
3560
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3561 3562 3563
	/*
	 * Spinlock count overflowing soon?
	 */
3564 3565
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
3566 3567 3568
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3569 3570 3571
}
EXPORT_SYMBOL(add_preempt_count);

3572
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3573
{
3574
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
3575 3576 3577
	/*
	 * Underflow?
	 */
3578
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3579
		return;
L
Linus Torvalds 已提交
3580 3581 3582
	/*
	 * Is the spinlock portion underflowing?
	 */
3583 3584 3585
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
3586
#endif
3587

3588 3589
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3597
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3598
 */
I
Ingo Molnar 已提交
3599
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3600
{
3601 3602
	struct pt_regs *regs = get_irq_regs();

P
Peter Zijlstra 已提交
3603 3604
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
3605

I
Ingo Molnar 已提交
3606
	debug_show_held_locks(prev);
3607
	print_modules();
I
Ingo Molnar 已提交
3608 3609
	if (irqs_disabled())
		print_irqtrace_events(prev);
3610 3611 3612 3613 3614

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3615
}
L
Linus Torvalds 已提交
3616

I
Ingo Molnar 已提交
3617 3618 3619 3620 3621
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3622
	/*
I
Ingo Molnar 已提交
3623
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3624 3625 3626
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
3627
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
3628 3629
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3630 3631
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3632
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3633 3634
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3635 3636
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3637 3638
	}
#endif
I
Ingo Molnar 已提交
3639 3640
}

P
Peter Zijlstra 已提交
3641
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
3642
{
P
Peter Zijlstra 已提交
3643 3644
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
3645

P
Peter Zijlstra 已提交
3646 3647
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
3658
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
3659
	}
P
Peter Zijlstra 已提交
3660
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
3661 3662
}

I
Ingo Molnar 已提交
3663 3664 3665 3666
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3667
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
3668
{
3669
	const struct sched_class *class;
I
Ingo Molnar 已提交
3670
	struct task_struct *p;
L
Linus Torvalds 已提交
3671 3672

	/*
I
Ingo Molnar 已提交
3673 3674
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3675
	 */
I
Ingo Molnar 已提交
3676
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3677
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3678 3679
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3680 3681
	}

I
Ingo Molnar 已提交
3682 3683
	class = sched_class_highest;
	for ( ; ; ) {
3684
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3694

I
Ingo Molnar 已提交
3695 3696 3697
/*
 * schedule() is the main scheduler function.
 */
3698
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
3699 3700
{
	struct task_struct *prev, *next;
3701
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3702
	struct rq *rq;
3703
	int cpu;
I
Ingo Molnar 已提交
3704

3705 3706
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
3707 3708
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
3709
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
3710 3711 3712 3713 3714 3715 3716
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3717

3718
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
3719
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
3720

3721
	raw_spin_lock_irq(&rq->lock);
3722
	update_rq_clock(rq);
3723
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3724 3725

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3726
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
3727
			prev->state = TASK_RUNNING;
3728
		else
3729
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
3730
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3731 3732
	}

3733
	pre_schedule(rq, prev);
3734

I
Ingo Molnar 已提交
3735
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3736 3737
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
3738
	put_prev_task(rq, prev);
3739
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
3740 3741

	if (likely(prev != next)) {
3742
		sched_info_switch(prev, next);
3743
		perf_event_task_sched_out(prev, next);
3744

L
Linus Torvalds 已提交
3745 3746 3747 3748
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3749
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3750 3751 3752 3753 3754 3755
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3756
	} else
3757
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
3758

3759
	post_schedule(rq);
L
Linus Torvalds 已提交
3760

3761 3762 3763
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		prev = rq->curr;
		switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
3764
		goto need_resched_nonpreemptible;
3765
	}
P
Peter Zijlstra 已提交
3766

L
Linus Torvalds 已提交
3767
	preempt_enable_no_resched();
3768
	if (need_resched())
L
Linus Torvalds 已提交
3769 3770 3771 3772
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

3773
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
3793
		return 0;
3794 3795 3796 3797 3798 3799 3800 3801 3802
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
3803
		return 0;
3804 3805 3806 3807 3808 3809

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
3810
		return 0;
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
3829

3830 3831 3832 3833
	return 1;
}
#endif

L
Linus Torvalds 已提交
3834 3835
#ifdef CONFIG_PREEMPT
/*
3836
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3837
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3838 3839 3840 3841 3842
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
3843

L
Linus Torvalds 已提交
3844 3845
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3846
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3847
	 */
N
Nick Piggin 已提交
3848
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3849 3850
		return;

3851 3852 3853 3854
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3855

3856 3857 3858 3859 3860
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3861
	} while (need_resched());
L
Linus Torvalds 已提交
3862 3863 3864 3865
}
EXPORT_SYMBOL(preempt_schedule);

/*
3866
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3867 3868 3869 3870 3871 3872 3873
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
3874

3875
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3876 3877
	BUG_ON(ti->preempt_count || !irqs_disabled());

3878 3879 3880 3881 3882 3883
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3884

3885 3886 3887 3888 3889
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
3890
	} while (need_resched());
L
Linus Torvalds 已提交
3891 3892 3893 3894
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
3895
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
3896
			  void *key)
L
Linus Torvalds 已提交
3897
{
P
Peter Zijlstra 已提交
3898
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
3899 3900 3901 3902
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3903 3904
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3905 3906 3907
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3908
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3909 3910
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
3911
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
3912
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
3913
{
3914
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3915

3916
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3917 3918
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
3919
		if (curr->func(curr, mode, wake_flags, key) &&
3920
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3921 3922 3923 3924 3925 3926 3927 3928 3929
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3930
 * @key: is directly passed to the wakeup function
3931 3932 3933
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3934
 */
3935
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3936
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
3949
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
3950 3951 3952 3953
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

3954 3955 3956 3957 3958
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
3959
/**
3960
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3961 3962 3963
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3964
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
3965 3966 3967 3968 3969 3970 3971
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
3972 3973 3974
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
3975
 */
3976 3977
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3978 3979
{
	unsigned long flags;
P
Peter Zijlstra 已提交
3980
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
3986
		wake_flags = 0;
L
Linus Torvalds 已提交
3987 3988

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
3989
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
3990 3991
	spin_unlock_irqrestore(&q->lock, flags);
}
3992 3993 3994 3995 3996 3997 3998 3999 4000
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
4001 4002
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4003 4004 4005 4006 4007 4008 4009 4010
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
4011 4012 4013
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4014
 */
4015
void complete(struct completion *x)
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4021
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4022 4023 4024 4025
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4026 4027 4028 4029 4030
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
4031 4032 4033
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
4034
 */
4035
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4041
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4042 4043 4044 4045
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4046 4047
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4048 4049 4050 4051 4052 4053 4054
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4055
			if (signal_pending_state(state, current)) {
4056 4057
				timeout = -ERESTARTSYS;
				break;
4058 4059
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4060 4061 4062
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4063
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4064
		__remove_wait_queue(&x->wait, &wait);
4065 4066
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4067 4068
	}
	x->done--;
4069
	return timeout ?: 1;
L
Linus Torvalds 已提交
4070 4071
}

4072 4073
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4074 4075 4076 4077
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4078
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4079
	spin_unlock_irq(&x->wait.lock);
4080 4081
	return timeout;
}
L
Linus Torvalds 已提交
4082

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4093
void __sched wait_for_completion(struct completion *x)
4094 4095
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4096
}
4097
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4098

4099 4100 4101 4102 4103 4104 4105 4106 4107
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4108
unsigned long __sched
4109
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4110
{
4111
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4112
}
4113
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4114

4115 4116 4117 4118 4119 4120 4121
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4122
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4123
{
4124 4125 4126 4127
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4128
}
4129
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4130

4131 4132 4133 4134 4135 4136 4137 4138
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4139
unsigned long __sched
4140 4141
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4142
{
4143
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4144
}
4145
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4146

4147 4148 4149 4150 4151 4152 4153
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
4177
	unsigned long flags;
4178 4179
	int ret = 1;

4180
	spin_lock_irqsave(&x->wait.lock, flags);
4181 4182 4183 4184
	if (!x->done)
		ret = 0;
	else
		x->done--;
4185
	spin_unlock_irqrestore(&x->wait.lock, flags);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
4200
	unsigned long flags;
4201 4202
	int ret = 1;

4203
	spin_lock_irqsave(&x->wait.lock, flags);
4204 4205
	if (!x->done)
		ret = 0;
4206
	spin_unlock_irqrestore(&x->wait.lock, flags);
4207 4208 4209 4210
	return ret;
}
EXPORT_SYMBOL(completion_done);

4211 4212
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4213
{
I
Ingo Molnar 已提交
4214 4215 4216 4217
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4218

4219
	__set_current_state(state);
L
Linus Torvalds 已提交
4220

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4235 4236 4237
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4238
long __sched
I
Ingo Molnar 已提交
4239
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4240
{
4241
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4242 4243 4244
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4245
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4246
{
4247
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4248 4249 4250
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4251
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4252
{
4253
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4254 4255 4256
}
EXPORT_SYMBOL(sleep_on_timeout);

4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4269
void rt_mutex_setprio(struct task_struct *p, int prio)
4270 4271
{
	unsigned long flags;
4272
	int oldprio, on_rq, running;
4273
	struct rq *rq;
4274
	const struct sched_class *prev_class;
4275 4276 4277 4278

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4279
	update_rq_clock(rq);
4280

4281
	oldprio = p->prio;
4282
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4283
	on_rq = p->se.on_rq;
4284
	running = task_current(rq, p);
4285
	if (on_rq)
4286
		dequeue_task(rq, p, 0);
4287 4288
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4289 4290 4291 4292 4293 4294

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4295 4296
	p->prio = prio;

4297 4298
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4299
	if (on_rq) {
4300
		enqueue_task(rq, p, 0, oldprio < prio);
4301 4302

		check_class_changed(rq, p, prev_class, oldprio, running);
4303 4304 4305 4306 4307 4308
	}
	task_rq_unlock(rq, &flags);
}

#endif

4309
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4310
{
I
Ingo Molnar 已提交
4311
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4312
	unsigned long flags;
4313
	struct rq *rq;
L
Linus Torvalds 已提交
4314 4315 4316 4317 4318 4319 4320 4321

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4322
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4323 4324 4325 4326
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4327
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4328
	 */
4329
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4330 4331 4332
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4333
	on_rq = p->se.on_rq;
4334
	if (on_rq)
4335
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4336 4337

	p->static_prio = NICE_TO_PRIO(nice);
4338
	set_load_weight(p);
4339 4340 4341
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4342

I
Ingo Molnar 已提交
4343
	if (on_rq) {
4344
		enqueue_task(rq, p, 0, false);
L
Linus Torvalds 已提交
4345
		/*
4346 4347
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4348
		 */
4349
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4350 4351 4352 4353 4354 4355 4356
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4357 4358 4359 4360 4361
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4362
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4363
{
4364 4365
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4366

4367
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
4368 4369 4370
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4371 4372 4373 4374 4375 4376 4377 4378 4379
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
4380
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
4381
{
4382
	long nice, retval;
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4389 4390
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4391 4392 4393
	if (increment > 40)
		increment = 40;

4394
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
4395 4396 4397 4398 4399
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4400 4401 4402
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4421
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4430
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4431 4432 4433
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4434
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4449
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4458
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4459
{
4460
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4461 4462 4463
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4464 4465
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4466
{
I
Ingo Molnar 已提交
4467
	BUG_ON(p->se.on_rq);
4468

L
Linus Torvalds 已提交
4469 4470
	p->policy = policy;
	p->rt_priority = prio;
4471 4472 4473
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4474 4475 4476 4477
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
4478
	set_load_weight(p);
L
Linus Torvalds 已提交
4479 4480
}

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

4497 4498
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4499
{
4500
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4501
	unsigned long flags;
4502
	const struct sched_class *prev_class;
4503
	struct rq *rq;
4504
	int reset_on_fork;
L
Linus Torvalds 已提交
4505

4506 4507
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4508 4509
recheck:
	/* double check policy once rq lock held */
4510 4511
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
4512
		policy = oldpolicy = p->policy;
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
4523 4524
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4525 4526
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4527 4528
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4529
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4530
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4531
		return -EINVAL;
4532
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4533 4534
		return -EINVAL;

4535 4536 4537
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4538
	if (user && !capable(CAP_SYS_NICE)) {
4539
		if (rt_policy(policy)) {
4540 4541 4542 4543
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
4544
			rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4556 4557 4558 4559 4560 4561
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4562

4563
		/* can't change other user's priorities */
4564
		if (!check_same_owner(p))
4565
			return -EPERM;
4566 4567 4568 4569

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
4570
	}
L
Linus Torvalds 已提交
4571

4572
	if (user) {
4573
#ifdef CONFIG_RT_GROUP_SCHED
4574 4575 4576 4577
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
4578 4579
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
4580
			return -EPERM;
4581 4582
#endif

4583 4584 4585 4586 4587
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

4588 4589 4590 4591
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
4592
	raw_spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4593 4594 4595 4596
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4597
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4598 4599 4600
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4601
		__task_rq_unlock(rq);
4602
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4603 4604
		goto recheck;
	}
I
Ingo Molnar 已提交
4605
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4606
	on_rq = p->se.on_rq;
4607
	running = task_current(rq, p);
4608
	if (on_rq)
4609
		deactivate_task(rq, p, 0);
4610 4611
	if (running)
		p->sched_class->put_prev_task(rq, p);
4612

4613 4614
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
4615
	oldprio = p->prio;
4616
	prev_class = p->sched_class;
I
Ingo Molnar 已提交
4617
	__setscheduler(rq, p, policy, param->sched_priority);
4618

4619 4620
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4621 4622
	if (on_rq) {
		activate_task(rq, p, 0);
4623 4624

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4625
	}
4626
	__task_rq_unlock(rq);
4627
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4628

4629 4630
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4631 4632
	return 0;
}
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
4647 4648
EXPORT_SYMBOL_GPL(sched_setscheduler);

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
4666 4667
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4668 4669 4670
{
	struct sched_param lparam;
	struct task_struct *p;
4671
	int retval;
L
Linus Torvalds 已提交
4672 4673 4674 4675 4676

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4677 4678 4679

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4680
	p = find_process_by_pid(pid);
4681 4682 4683
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4684

L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
4694 4695
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
4696
{
4697 4698 4699 4700
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4701 4702 4703 4704 4705 4706 4707 4708
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
4709
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716 4717
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
4718
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
4719
{
4720
	struct task_struct *p;
4721
	int retval;
L
Linus Torvalds 已提交
4722 4723

	if (pid < 0)
4724
		return -EINVAL;
L
Linus Torvalds 已提交
4725 4726

	retval = -ESRCH;
4727
	rcu_read_lock();
L
Linus Torvalds 已提交
4728 4729 4730 4731
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
4732 4733
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
4734
	}
4735
	rcu_read_unlock();
L
Linus Torvalds 已提交
4736 4737 4738 4739
	return retval;
}

/**
4740
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
4741 4742 4743
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
4744
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
4745 4746
{
	struct sched_param lp;
4747
	struct task_struct *p;
4748
	int retval;
L
Linus Torvalds 已提交
4749 4750

	if (!param || pid < 0)
4751
		return -EINVAL;
L
Linus Torvalds 已提交
4752

4753
	rcu_read_lock();
L
Linus Torvalds 已提交
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
4764
	rcu_read_unlock();
L
Linus Torvalds 已提交
4765 4766 4767 4768 4769 4770 4771 4772 4773

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
4774
	rcu_read_unlock();
L
Linus Torvalds 已提交
4775 4776 4777
	return retval;
}

4778
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
4779
{
4780
	cpumask_var_t cpus_allowed, new_mask;
4781 4782
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4783

4784
	get_online_cpus();
4785
	rcu_read_lock();
L
Linus Torvalds 已提交
4786 4787 4788

	p = find_process_by_pid(pid);
	if (!p) {
4789
		rcu_read_unlock();
4790
		put_online_cpus();
L
Linus Torvalds 已提交
4791 4792 4793
		return -ESRCH;
	}

4794
	/* Prevent p going away */
L
Linus Torvalds 已提交
4795
	get_task_struct(p);
4796
	rcu_read_unlock();
L
Linus Torvalds 已提交
4797

4798 4799 4800 4801 4802 4803 4804 4805
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4806
	retval = -EPERM;
4807
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
4808 4809
		goto out_unlock;

4810 4811 4812 4813
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4814 4815
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
4816
 again:
4817
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4818

P
Paul Menage 已提交
4819
	if (!retval) {
4820 4821
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4822 4823 4824 4825 4826
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4827
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4828 4829 4830
			goto again;
		}
	}
L
Linus Torvalds 已提交
4831
out_unlock:
4832 4833 4834 4835
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4836
	put_task_struct(p);
4837
	put_online_cpus();
L
Linus Torvalds 已提交
4838 4839 4840 4841
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4842
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4843
{
4844 4845 4846 4847 4848
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
4858 4859
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4860
{
4861
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4862 4863
	int retval;

4864 4865
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4866

4867 4868 4869 4870 4871
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4872 4873
}

4874
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4875
{
4876
	struct task_struct *p;
4877 4878
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
4879 4880
	int retval;

4881
	get_online_cpus();
4882
	rcu_read_lock();
L
Linus Torvalds 已提交
4883 4884 4885 4886 4887 4888

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4889 4890 4891 4892
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4893
	rq = task_rq_lock(p, &flags);
4894
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4895
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
4896 4897

out_unlock:
4898
	rcu_read_unlock();
4899
	put_online_cpus();
L
Linus Torvalds 已提交
4900

4901
	return retval;
L
Linus Torvalds 已提交
4902 4903 4904 4905 4906 4907 4908 4909
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
4910 4911
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4912 4913
{
	int ret;
4914
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4915

A
Anton Blanchard 已提交
4916
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4917 4918
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4919 4920
		return -EINVAL;

4921 4922
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4923

4924 4925
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4926
		size_t retlen = min_t(size_t, len, cpumask_size());
4927 4928

		if (copy_to_user(user_mask_ptr, mask, retlen))
4929 4930
			ret = -EFAULT;
		else
4931
			ret = retlen;
4932 4933
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4934

4935
	return ret;
L
Linus Torvalds 已提交
4936 4937 4938 4939 4940
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4941 4942
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4943
 */
4944
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4945
{
4946
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4947

4948
	schedstat_inc(rq, yld_count);
4949
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4950 4951 4952 4953 4954 4955

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4956
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4957
	do_raw_spin_unlock(&rq->lock);
L
Linus Torvalds 已提交
4958 4959 4960 4961 4962 4963 4964
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
4965 4966 4967 4968 4969
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
4970
static void __cond_resched(void)
L
Linus Torvalds 已提交
4971
{
4972 4973 4974
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4975 4976
}

4977
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4978
{
P
Peter Zijlstra 已提交
4979
	if (should_resched()) {
L
Linus Torvalds 已提交
4980 4981 4982 4983 4984
		__cond_resched();
		return 1;
	}
	return 0;
}
4985
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4986 4987

/*
4988
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4989 4990
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4991
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4992 4993 4994
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4995
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4996
{
P
Peter Zijlstra 已提交
4997
	int resched = should_resched();
J
Jan Kara 已提交
4998 4999
	int ret = 0;

5000 5001
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
5002
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5003
		spin_unlock(lock);
P
Peter Zijlstra 已提交
5004
		if (resched)
N
Nick Piggin 已提交
5005 5006 5007
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5008
		ret = 1;
L
Linus Torvalds 已提交
5009 5010
		spin_lock(lock);
	}
J
Jan Kara 已提交
5011
	return ret;
L
Linus Torvalds 已提交
5012
}
5013
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
5014

5015
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
5016 5017 5018
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
5019
	if (should_resched()) {
5020
		local_bh_enable();
L
Linus Torvalds 已提交
5021 5022 5023 5024 5025 5026
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
5027
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
5028 5029 5030 5031

/**
 * yield - yield the current processor to other threads.
 *
5032
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5043
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5044 5045 5046 5047
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
5048
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5049

5050
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5051
	atomic_inc(&rq->nr_iowait);
5052
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5053
	schedule();
5054
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5055
	atomic_dec(&rq->nr_iowait);
5056
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5057 5058 5059 5060 5061
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5062
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
5063 5064
	long ret;

5065
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5066
	atomic_inc(&rq->nr_iowait);
5067
	current->in_iowait = 1;
L
Linus Torvalds 已提交
5068
	ret = schedule_timeout(timeout);
5069
	current->in_iowait = 0;
L
Linus Torvalds 已提交
5070
	atomic_dec(&rq->nr_iowait);
5071
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5082
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5092
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5093
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5107
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5108 5109 5110 5111 5112 5113 5114 5115 5116
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5117
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5118
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5132
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5133
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5134
{
5135
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5136
	unsigned int time_slice;
5137 5138
	unsigned long flags;
	struct rq *rq;
5139
	int retval;
L
Linus Torvalds 已提交
5140 5141 5142
	struct timespec t;

	if (pid < 0)
5143
		return -EINVAL;
L
Linus Torvalds 已提交
5144 5145

	retval = -ESRCH;
5146
	rcu_read_lock();
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153 5154
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5155 5156 5157
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
5158

5159
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
5160
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5161 5162
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5163

L
Linus Torvalds 已提交
5164
out_unlock:
5165
	rcu_read_unlock();
L
Linus Torvalds 已提交
5166 5167 5168
	return retval;
}

5169
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5170

5171
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5172 5173
{
	unsigned long free = 0;
5174
	unsigned state;
L
Linus Torvalds 已提交
5175 5176

	state = p->state ? __ffs(p->state) + 1 : 0;
P
Peter Zijlstra 已提交
5177
	printk(KERN_INFO "%-13.13s %c", p->comm,
5178
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5179
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5180
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5181
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5182
	else
P
Peter Zijlstra 已提交
5183
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5184 5185
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
5186
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5187
	else
P
Peter Zijlstra 已提交
5188
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5189 5190
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
5191
	free = stack_not_used(p);
L
Linus Torvalds 已提交
5192
#endif
P
Peter Zijlstra 已提交
5193
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5194 5195
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
5196

5197
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5198 5199
}

I
Ingo Molnar 已提交
5200
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5201
{
5202
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5203

5204
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
5205 5206
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5207
#else
P
Peter Zijlstra 已提交
5208 5209
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5210 5211 5212 5213 5214 5215 5216 5217
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5218
		if (!state_filter || (p->state & state_filter))
5219
			sched_show_task(p);
L
Linus Torvalds 已提交
5220 5221
	} while_each_thread(g, p);

5222 5223
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5224 5225 5226
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5227
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5228 5229 5230
	/*
	 * Only show locks if all tasks are dumped:
	 */
5231
	if (!state_filter)
I
Ingo Molnar 已提交
5232
		debug_show_all_locks();
L
Linus Torvalds 已提交
5233 5234
}

I
Ingo Molnar 已提交
5235 5236
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5237
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5238 5239
}

5240 5241 5242 5243 5244 5245 5246 5247
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5248
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5249
{
5250
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5251 5252
	unsigned long flags;

5253
	raw_spin_lock_irqsave(&rq->lock, flags);
5254

I
Ingo Molnar 已提交
5255
	__sched_fork(idle);
5256
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
5257 5258
	idle->se.exec_start = sched_clock();

5259
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5260
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5261 5262

	rq->curr = rq->idle = idle;
5263 5264 5265
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
5266
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5267 5268

	/* Set the preempt count _outside_ the spinlocks! */
5269 5270 5271
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5272
	task_thread_info(idle)->preempt_count = 0;
5273
#endif
I
Ingo Molnar 已提交
5274 5275 5276 5277
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5278
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283 5284 5285
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5286
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5287
 */
5288
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5289

I
Ingo Molnar 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
5299
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
5300
{
5301
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
5316

5317 5318
	return factor;
}
I
Ingo Molnar 已提交
5319

5320 5321 5322
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
5323

5324 5325 5326 5327 5328 5329 5330 5331
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
5332

5333 5334 5335
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
5336 5337
}

L
Linus Torvalds 已提交
5338 5339 5340 5341
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5342
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5361
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5362 5363
 * call is not atomic; no spinlocks may be held.
 */
5364
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
5365
{
5366
	struct migration_req req;
L
Linus Torvalds 已提交
5367
	unsigned long flags;
5368
	struct rq *rq;
5369
	int ret = 0;
L
Linus Torvalds 已提交
5370 5371

	rq = task_rq_lock(p, &flags);
5372

5373
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
5374 5375 5376 5377
		ret = -EINVAL;
		goto out;
	}

5378
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5379
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
5380 5381 5382 5383
		ret = -EINVAL;
		goto out;
	}

5384
	if (p->sched_class->set_cpus_allowed)
5385
		p->sched_class->set_cpus_allowed(p, new_mask);
5386
	else {
5387 5388
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5389 5390
	}

L
Linus Torvalds 已提交
5391
	/* Can the task run on the task's current CPU? If so, we're done */
5392
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
5393 5394
		goto out;

5395
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5396
		/* Need help from migration thread: drop lock and wait. */
5397 5398 5399
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
5400
		task_rq_unlock(rq, &flags);
5401
		wake_up_process(mt);
5402
		put_task_struct(mt);
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5409

L
Linus Torvalds 已提交
5410 5411
	return ret;
}
5412
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5413 5414

/*
I
Ingo Molnar 已提交
5415
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5416 5417 5418 5419 5420 5421
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5422 5423
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5424
 */
5425
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5426
{
5427
	struct rq *rq_dest, *rq_src;
5428
	int ret = 0;
L
Linus Torvalds 已提交
5429

5430
	if (unlikely(!cpu_active(dest_cpu)))
5431
		return ret;
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437 5438

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5439
		goto done;
L
Linus Torvalds 已提交
5440
	/* Affinity changed (again). */
5441
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
5442
		goto fail;
L
Linus Torvalds 已提交
5443

5444 5445 5446 5447 5448
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
	if (p->se.on_rq) {
5449
		deactivate_task(rq_src, p, 0);
5450
		set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5451
		activate_task(rq_dest, p, 0);
5452
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
5453
	}
L
Linus Torvalds 已提交
5454
done:
5455
	ret = 1;
L
Linus Torvalds 已提交
5456
fail:
L
Linus Torvalds 已提交
5457
	double_rq_unlock(rq_src, rq_dest);
5458
	return ret;
L
Linus Torvalds 已提交
5459 5460
}

5461 5462 5463 5464 5465
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
5466 5467 5468 5469 5470
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5471
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5472
{
5473
	int badcpu;
L
Linus Torvalds 已提交
5474
	int cpu = (long)data;
5475
	struct rq *rq;
L
Linus Torvalds 已提交
5476 5477 5478 5479 5480 5481

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5482
		struct migration_req *req;
L
Linus Torvalds 已提交
5483 5484
		struct list_head *head;

5485
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5486 5487

		if (cpu_is_offline(cpu)) {
5488
			raw_spin_unlock_irq(&rq->lock);
5489
			break;
L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
5500
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5501 5502 5503 5504
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5505
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5506 5507
		list_del_init(head->next);

5508
		if (req->task != NULL) {
5509
			raw_spin_unlock(&rq->lock);
5510 5511 5512
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
5513
			raw_spin_unlock(&rq->lock);
5514 5515
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5516
			raw_spin_unlock(&rq->lock);
5517 5518
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
5519
		local_irq_enable();
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524 5525 5526 5527 5528

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5540
/*
5541
 * Figure out where task on dead CPU should go, use force if necessary.
5542
 */
5543
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5544
{
5545
	int dest_cpu;
5546 5547

again:
5548
	dest_cpu = select_fallback_rq(dead_cpu, p);
5549 5550 5551 5552

	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
5553 5554 5555 5556 5557 5558 5559 5560 5561
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5562
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5563
{
5564
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5578
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5579

5580
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5581

5582 5583
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5584 5585
			continue;

5586 5587 5588
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5589

5590
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5591 5592
}

I
Ingo Molnar 已提交
5593 5594
/*
 * Schedules idle task to be the next runnable task on current CPU.
5595 5596
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5597 5598 5599
 */
void sched_idle_next(void)
{
5600
	int this_cpu = smp_processor_id();
5601
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5602 5603 5604 5605
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5606
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5607

5608 5609 5610
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5611
	 */
5612
	raw_spin_lock_irqsave(&rq->lock, flags);
L
Linus Torvalds 已提交
5613

I
Ingo Molnar 已提交
5614
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5615

5616 5617
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5618

5619
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5620 5621
}

5622 5623
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5637
/* called under rq->lock with disabled interrupts */
5638
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5639
{
5640
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5641 5642

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5643
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5644 5645

	/* Cannot have done final schedule yet: would have vanished. */
5646
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5647

5648
	get_task_struct(p);
L
Linus Torvalds 已提交
5649 5650 5651

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5652
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5653 5654
	 * fine.
	 */
5655
	raw_spin_unlock_irq(&rq->lock);
5656
	move_task_off_dead_cpu(dead_cpu, p);
5657
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5658

5659
	put_task_struct(p);
L
Linus Torvalds 已提交
5660 5661 5662 5663 5664
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5665
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5666
	struct task_struct *next;
5667

I
Ingo Molnar 已提交
5668 5669 5670
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5671
		update_rq_clock(rq);
5672
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
5673 5674
		if (!next)
			break;
D
Dmitry Adamushko 已提交
5675
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
5676
		migrate_dead(dead_cpu, next);
5677

L
Linus Torvalds 已提交
5678 5679
	}
}
5680 5681 5682 5683 5684 5685 5686

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5687
	rq->calc_load_active = 0;
5688
}
L
Linus Torvalds 已提交
5689 5690
#endif /* CONFIG_HOTPLUG_CPU */

5691 5692 5693
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5694 5695
	{
		.procname	= "sched_domain",
5696
		.mode		= 0555,
5697
	},
5698
	{}
5699 5700 5701
};

static struct ctl_table sd_ctl_root[] = {
5702 5703
	{
		.procname	= "kernel",
5704
		.mode		= 0555,
5705 5706
		.child		= sd_ctl_dir,
	},
5707
	{}
5708 5709 5710 5711 5712
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5713
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5714 5715 5716 5717

	return entry;
}

5718 5719
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5720
	struct ctl_table *entry;
5721

5722 5723 5724
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5725
	 * will always be set. In the lowest directory the names are
5726 5727 5728
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5729 5730
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5731 5732 5733
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5734 5735 5736 5737 5738

	kfree(*tablep);
	*tablep = NULL;
}

5739
static void
5740
set_table_entry(struct ctl_table *entry,
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5754
	struct ctl_table *table = sd_alloc_ctl_entry(13);
5755

5756 5757 5758
	if (table == NULL)
		return NULL;

5759
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5760
		sizeof(long), 0644, proc_doulongvec_minmax);
5761
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5762
		sizeof(long), 0644, proc_doulongvec_minmax);
5763
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5764
		sizeof(int), 0644, proc_dointvec_minmax);
5765
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5766
		sizeof(int), 0644, proc_dointvec_minmax);
5767
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5768
		sizeof(int), 0644, proc_dointvec_minmax);
5769
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5770
		sizeof(int), 0644, proc_dointvec_minmax);
5771
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5772
		sizeof(int), 0644, proc_dointvec_minmax);
5773
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5774
		sizeof(int), 0644, proc_dointvec_minmax);
5775
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5776
		sizeof(int), 0644, proc_dointvec_minmax);
5777
	set_table_entry(&table[9], "cache_nice_tries",
5778 5779
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5780
	set_table_entry(&table[10], "flags", &sd->flags,
5781
		sizeof(int), 0644, proc_dointvec_minmax);
5782 5783 5784
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
5785 5786 5787 5788

	return table;
}

5789
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5790 5791 5792 5793 5794 5795 5796 5797 5798
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5799 5800
	if (table == NULL)
		return NULL;
5801 5802 5803 5804 5805

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5806
		entry->mode = 0555;
5807 5808 5809 5810 5811 5812 5813 5814
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5815
static void register_sched_domain_sysctl(void)
5816
{
5817
	int i, cpu_num = num_possible_cpus();
5818 5819 5820
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5821 5822 5823
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5824 5825 5826
	if (entry == NULL)
		return;

5827
	for_each_possible_cpu(i) {
5828 5829
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5830
		entry->mode = 0555;
5831
		entry->child = sd_alloc_ctl_cpu_table(i);
5832
		entry++;
5833
	}
5834 5835

	WARN_ON(sd_sysctl_header);
5836 5837
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5838

5839
/* may be called multiple times per register */
5840 5841
static void unregister_sched_domain_sysctl(void)
{
5842 5843
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5844
	sd_sysctl_header = NULL;
5845 5846
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5847
}
5848
#else
5849 5850 5851 5852
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5853 5854 5855 5856
{
}
#endif

5857 5858 5859 5860 5861
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5862
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5882
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5883 5884 5885 5886
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5887 5888 5889 5890
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5891 5892
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5893 5894
{
	struct task_struct *p;
5895
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5896
	unsigned long flags;
5897
	struct rq *rq;
L
Linus Torvalds 已提交
5898 5899

	switch (action) {
5900

L
Linus Torvalds 已提交
5901
	case CPU_UP_PREPARE:
5902
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5903
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5904 5905 5906 5907 5908
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5909
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5910
		task_rq_unlock(rq, &flags);
5911
		get_task_struct(p);
L
Linus Torvalds 已提交
5912
		cpu_rq(cpu)->migration_thread = p;
5913
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5914
		break;
5915

L
Linus Torvalds 已提交
5916
	case CPU_ONLINE:
5917
	case CPU_ONLINE_FROZEN:
5918
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5919
		wake_up_process(cpu_rq(cpu)->migration_thread);
5920 5921 5922

		/* Update our root-domain */
		rq = cpu_rq(cpu);
5923
		raw_spin_lock_irqsave(&rq->lock, flags);
5924
		if (rq->rd) {
5925
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5926 5927

			set_rq_online(rq);
5928
		}
5929
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5930
		break;
5931

L
Linus Torvalds 已提交
5932 5933
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5934
	case CPU_UP_CANCELED_FROZEN:
5935 5936
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5937
		/* Unbind it from offline cpu so it can run. Fall thru. */
5938
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
5939
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
5940
		kthread_stop(cpu_rq(cpu)->migration_thread);
5941
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
5942 5943
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5944

L
Linus Torvalds 已提交
5945
	case CPU_DEAD:
5946
	case CPU_DEAD_FROZEN:
5947
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5948 5949 5950
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
5951
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
5952 5953
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5954
		raw_spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5955
		update_rq_clock(rq);
5956
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
5957 5958
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5959
		migrate_dead_tasks(cpu);
5960
		raw_spin_unlock_irq(&rq->lock);
5961
		cpuset_unlock();
L
Linus Torvalds 已提交
5962 5963
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
5964
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
5965 5966 5967 5968 5969
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
5970
		raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5971
		while (!list_empty(&rq->migration_queue)) {
5972 5973
			struct migration_req *req;

L
Linus Torvalds 已提交
5974
			req = list_entry(rq->migration_queue.next,
5975
					 struct migration_req, list);
L
Linus Torvalds 已提交
5976
			list_del_init(&req->list);
5977
			raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5978
			complete(&req->done);
5979
			raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5980
		}
5981
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5982
		break;
G
Gregory Haskins 已提交
5983

5984 5985
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5986 5987
		/* Update our root-domain */
		rq = cpu_rq(cpu);
5988
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5989
		if (rq->rd) {
5990
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5991
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5992
		}
5993
		raw_spin_unlock_irqrestore(&rq->lock, flags);
G
Gregory Haskins 已提交
5994
		break;
L
Linus Torvalds 已提交
5995 5996 5997 5998 5999
#endif
	}
	return NOTIFY_OK;
}

6000 6001 6002
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
6003
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
6004
 */
6005
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6006 6007 6008 6009
	.notifier_call = migration_call,
	.priority = 10
};

6010
static int __init migration_init(void)
L
Linus Torvalds 已提交
6011 6012
{
	void *cpu = (void *)(long)smp_processor_id();
6013
	int err;
6014 6015

	/* Start one for the boot CPU: */
6016 6017
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6018 6019
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6020

6021
	return 0;
L
Linus Torvalds 已提交
6022
}
6023
early_initcall(migration_init);
L
Linus Torvalds 已提交
6024 6025 6026
#endif

#ifdef CONFIG_SMP
6027

6028
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6029

6030 6031 6032 6033 6034 6035 6036 6037 6038 6039
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

6040
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6041
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6042
{
I
Ingo Molnar 已提交
6043
	struct sched_group *group = sd->groups;
6044
	char str[256];
L
Linus Torvalds 已提交
6045

R
Rusty Russell 已提交
6046
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6047
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6048 6049 6050 6051

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
6052
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
6053
		if (sd->parent)
P
Peter Zijlstra 已提交
6054 6055
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
6056
		return -1;
N
Nick Piggin 已提交
6057 6058
	}

P
Peter Zijlstra 已提交
6059
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6060

6061
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
6062 6063
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
6064
	}
6065
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6066 6067
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
6068
	}
L
Linus Torvalds 已提交
6069

I
Ingo Molnar 已提交
6070
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6071
	do {
I
Ingo Molnar 已提交
6072
		if (!group) {
P
Peter Zijlstra 已提交
6073 6074
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6075 6076 6077
			break;
		}

6078
		if (!group->cpu_power) {
P
Peter Zijlstra 已提交
6079 6080 6081
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
I
Ingo Molnar 已提交
6082 6083
			break;
		}
L
Linus Torvalds 已提交
6084

6085
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6086 6087
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
6088 6089
			break;
		}
L
Linus Torvalds 已提交
6090

6091
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
6092 6093
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
6094 6095
			break;
		}
L
Linus Torvalds 已提交
6096

6097
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6098

R
Rusty Russell 已提交
6099
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6100

P
Peter Zijlstra 已提交
6101
		printk(KERN_CONT " %s", str);
6102
		if (group->cpu_power != SCHED_LOAD_SCALE) {
P
Peter Zijlstra 已提交
6103 6104
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
6105
		}
L
Linus Torvalds 已提交
6106

I
Ingo Molnar 已提交
6107 6108
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
6109
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6110

6111
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
6112
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6113

6114 6115
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
6116 6117
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
6118 6119
	return 0;
}
L
Linus Torvalds 已提交
6120

I
Ingo Molnar 已提交
6121 6122
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6123
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6124
	int level = 0;
L
Linus Torvalds 已提交
6125

6126 6127 6128
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
6129 6130 6131 6132
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6133

I
Ingo Molnar 已提交
6134 6135
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6136
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6137 6138 6139 6140
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6141
	for (;;) {
6142
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6143
			break;
L
Linus Torvalds 已提交
6144 6145
		level++;
		sd = sd->parent;
6146
		if (!sd)
I
Ingo Molnar 已提交
6147 6148
			break;
	}
6149
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6150
}
6151
#else /* !CONFIG_SCHED_DEBUG */
6152
# define sched_domain_debug(sd, cpu) do { } while (0)
6153
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6154

6155
static int sd_degenerate(struct sched_domain *sd)
6156
{
6157
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6158 6159 6160 6161 6162 6163
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6164 6165 6166
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6167 6168 6169 6170 6171
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
6172
	if (sd->flags & (SD_WAKE_AFFINE))
6173 6174 6175 6176 6177
		return 0;

	return 1;
}

6178 6179
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6180 6181 6182 6183 6184 6185
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6186
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6187 6188 6189 6190 6191 6192 6193
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6194 6195 6196
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6197 6198
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6199 6200 6201 6202 6203 6204 6205
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6206 6207
static void free_rootdomain(struct root_domain *rd)
{
6208 6209
	synchronize_sched();

6210 6211
	cpupri_cleanup(&rd->cpupri);

6212 6213 6214 6215 6216 6217
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6218 6219
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
6220
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
6221 6222
	unsigned long flags;

6223
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
6224 6225

	if (rq->rd) {
I
Ingo Molnar 已提交
6226
		old_rd = rq->rd;
G
Gregory Haskins 已提交
6227

6228
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6229
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6230

6231
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6232

I
Ingo Molnar 已提交
6233 6234 6235 6236 6237 6238 6239
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
6240 6241 6242 6243 6244
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6245
	cpumask_set_cpu(rq->cpu, rd->span);
6246
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6247
		set_rq_online(rq);
G
Gregory Haskins 已提交
6248

6249
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
6250 6251 6252

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6253 6254
}

L
Li Zefan 已提交
6255
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6256
{
6257 6258
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
6259 6260
	memset(rd, 0, sizeof(*rd));

6261 6262
	if (bootmem)
		gfp = GFP_NOWAIT;
6263

6264
	if (!alloc_cpumask_var(&rd->span, gfp))
6265
		goto out;
6266
	if (!alloc_cpumask_var(&rd->online, gfp))
6267
		goto free_span;
6268
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6269
		goto free_online;
6270

P
Pekka Enberg 已提交
6271
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
6272
		goto free_rto_mask;
6273
	return 0;
6274

6275 6276
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6277 6278 6279 6280
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
6281
out:
6282
	return -ENOMEM;
G
Gregory Haskins 已提交
6283 6284 6285 6286
}

static void init_defrootdomain(void)
{
6287 6288
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6289 6290 6291
	atomic_set(&def_root_domain.refcount, 1);
}

6292
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6293 6294 6295 6296 6297 6298 6299
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6300 6301 6302 6303
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6304 6305 6306 6307

	return rd;
}

L
Linus Torvalds 已提交
6308
/*
I
Ingo Molnar 已提交
6309
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6310 6311
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6312 6313
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6314
{
6315
	struct rq *rq = cpu_rq(cpu);
6316 6317 6318
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6319
	for (tmp = sd; tmp; ) {
6320 6321 6322
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6323

6324
		if (sd_parent_degenerate(tmp, parent)) {
6325
			tmp->parent = parent->parent;
6326 6327
			if (parent->parent)
				parent->parent->child = tmp;
6328 6329
		} else
			tmp = tmp->parent;
6330 6331
	}

6332
	if (sd && sd_degenerate(sd)) {
6333
		sd = sd->parent;
6334 6335 6336
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6337 6338 6339

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6340
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6341
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6342 6343 6344
}

/* cpus with isolated domains */
6345
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
6346 6347 6348 6349

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
6350
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
6351
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
6352 6353 6354
	return 1;
}

I
Ingo Molnar 已提交
6355
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6356 6357

/*
6358 6359
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
6360 6361
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
6362 6363 6364 6365 6366
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6367
static void
6368 6369 6370
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6371
					struct sched_group **sg,
6372 6373
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
6374 6375 6376 6377
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6378
	cpumask_clear(covered);
6379

6380
	for_each_cpu(i, span) {
6381
		struct sched_group *sg;
6382
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6383 6384
		int j;

6385
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6386 6387
			continue;

6388
		cpumask_clear(sched_group_cpus(sg));
6389
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
6390

6391
		for_each_cpu(j, span) {
6392
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6393 6394
				continue;

6395
			cpumask_set_cpu(j, covered);
6396
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6407
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6408

6409
#ifdef CONFIG_NUMA
6410

6411 6412 6413 6414 6415
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6416
 * Find the next node to include in a given scheduling domain. Simply
6417 6418 6419 6420
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6421
static int find_next_best_node(int node, nodemask_t *used_nodes)
6422 6423 6424 6425 6426
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6427
	for (i = 0; i < nr_node_ids; i++) {
6428
		/* Start at @node */
6429
		n = (node + i) % nr_node_ids;
6430 6431 6432 6433 6434

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6435
		if (node_isset(n, *used_nodes))
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6447
	node_set(best_node, *used_nodes);
6448 6449 6450 6451 6452 6453
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6454
 * @span: resulting cpumask
6455
 *
I
Ingo Molnar 已提交
6456
 * Given a node, construct a good cpumask for its sched_domain to span. It
6457 6458 6459
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6460
static void sched_domain_node_span(int node, struct cpumask *span)
6461
{
6462
	nodemask_t used_nodes;
6463
	int i;
6464

6465
	cpumask_clear(span);
6466
	nodes_clear(used_nodes);
6467

6468
	cpumask_or(span, span, cpumask_of_node(node));
6469
	node_set(node, used_nodes);
6470 6471

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6472
		int next_node = find_next_best_node(node, &used_nodes);
6473

6474
		cpumask_or(span, span, cpumask_of_node(next_node));
6475 6476
	}
}
6477
#endif /* CONFIG_NUMA */
6478

6479
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6480

6481 6482
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
6483 6484 6485
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

6530
/*
6531
 * SMT sched-domains:
6532
 */
L
Linus Torvalds 已提交
6533
#ifdef CONFIG_SCHED_SMT
6534
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6535
static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6536

I
Ingo Molnar 已提交
6537
static int
6538 6539
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
6540
{
6541
	if (sg)
6542
		*sg = &per_cpu(sched_groups, cpu).sg;
L
Linus Torvalds 已提交
6543 6544
	return cpu;
}
6545
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6546

6547 6548 6549
/*
 * multi-core sched-domains:
 */
6550
#ifdef CONFIG_SCHED_MC
6551 6552
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6553
#endif /* CONFIG_SCHED_MC */
6554 6555

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6556
static int
6557 6558
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
6559
{
6560
	int group;
6561

6562
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6563
	group = cpumask_first(mask);
6564
	if (sg)
6565
		*sg = &per_cpu(sched_group_core, group).sg;
6566
	return group;
6567 6568
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6569
static int
6570 6571
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
6572
{
6573
	if (sg)
6574
		*sg = &per_cpu(sched_group_core, cpu).sg;
6575 6576 6577 6578
	return cpu;
}
#endif

6579 6580
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6581

I
Ingo Molnar 已提交
6582
static int
6583 6584
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
6585
{
6586
	int group;
6587
#ifdef CONFIG_SCHED_MC
6588
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6589
	group = cpumask_first(mask);
6590
#elif defined(CONFIG_SCHED_SMT)
6591
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6592
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
6593
#else
6594
	group = cpu;
L
Linus Torvalds 已提交
6595
#endif
6596
	if (sg)
6597
		*sg = &per_cpu(sched_group_phys, group).sg;
6598
	return group;
L
Linus Torvalds 已提交
6599 6600 6601 6602
}

#ifdef CONFIG_NUMA
/*
6603 6604 6605
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6606
 */
6607
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6608
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6609

6610
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6611
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6612

6613 6614 6615
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
6616
{
6617 6618
	int group;

6619
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6620
	group = cpumask_first(nodemask);
6621 6622

	if (sg)
6623
		*sg = &per_cpu(sched_group_allnodes, group).sg;
6624
	return group;
L
Linus Torvalds 已提交
6625
}
6626

6627 6628 6629 6630 6631 6632 6633
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6634
	do {
6635
		for_each_cpu(j, sched_group_cpus(sg)) {
6636
			struct sched_domain *sd;
6637

6638
			sd = &per_cpu(phys_domains, j).sd;
6639
			if (j != group_first_cpu(sd->groups)) {
6640 6641 6642 6643 6644 6645
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6646

6647
			sg->cpu_power += sd->groups->cpu_power;
6648 6649 6650
		}
		sg = sg->next;
	} while (sg != group_head);
6651
}
6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
P
Peter Zijlstra 已提交
6673 6674
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
6675 6676 6677 6678 6679 6680 6681 6682 6683
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

6684
	sg->cpu_power = 0;
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
P
Peter Zijlstra 已提交
6703 6704
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
6705 6706
			return -ENOMEM;
		}
6707
		sg->cpu_power = 0;
6708 6709 6710 6711 6712 6713 6714 6715 6716
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
6717
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6718

6719
#ifdef CONFIG_NUMA
6720
/* Free memory allocated for various sched_group structures */
6721 6722
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6723
{
6724
	int cpu, i;
6725

6726
	for_each_cpu(cpu, cpu_map) {
6727 6728 6729 6730 6731 6732
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6733
		for (i = 0; i < nr_node_ids; i++) {
6734 6735
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6736
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6737
			if (cpumask_empty(nodemask))
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6754
#else /* !CONFIG_NUMA */
6755 6756
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
6757 6758
{
}
6759
#endif /* CONFIG_NUMA */
6760

6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
6775 6776
	long power;
	int weight;
6777 6778 6779

	WARN_ON(!sd || !sd->groups);

6780
	if (cpu != group_first_cpu(sd->groups))
6781 6782 6783 6784
		return;

	child = sd->child;

6785
	sd->groups->cpu_power = 0;
6786

6787 6788 6789 6790 6791
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
6792 6793 6794
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
6795
		 */
P
Peter Zijlstra 已提交
6796 6797
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
6798
			power /= weight;
P
Peter Zijlstra 已提交
6799 6800
			power >>= SCHED_LOAD_SHIFT;
		}
6801
		sd->groups->cpu_power += power;
6802 6803 6804 6805
		return;
	}

	/*
6806
	 * Add cpu_power of each child group to this groups cpu_power.
6807 6808 6809
	 */
	group = child->groups;
	do {
6810
		sd->groups->cpu_power += group->cpu_power;
6811 6812 6813 6814
		group = group->next;
	} while (group != child->groups);
}

6815 6816 6817 6818 6819
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

6820 6821 6822 6823 6824 6825
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

6826
#define	SD_INIT(sd, type)	sd_init_##type(sd)
6827

6828 6829 6830 6831 6832
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6833
	sd->level = SD_LV_##type;				\
6834
	SD_INIT_NAME(sd, type);					\
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

6849 6850 6851 6852
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
6853 6854 6855 6856 6857 6858
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6877
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6878 6879
	} else {
		/* turn on idle balance on this domain */
6880
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6881 6882 6883
	}
}

6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
6904
#ifdef CONFIG_NUMA
6905 6906 6907 6908 6909 6910 6911
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
6912
#endif
6913 6914 6915 6916
	case sa_none:
		break;
	}
}
6917

6918 6919 6920
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6921
#ifdef CONFIG_NUMA
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
P
Peter Zijlstra 已提交
6932
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6933
		return sa_notcovered;
6934
	}
6935
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6936
#endif
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
P
Peter Zijlstra 已提交
6949
		printk(KERN_WARNING "Cannot alloc root domain\n");
6950
		return sa_tmpmask;
G
Gregory Haskins 已提交
6951
	}
6952 6953
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6954

6955 6956 6957 6958
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
6959
#ifdef CONFIG_NUMA
6960
	struct sched_domain *parent;
L
Linus Torvalds 已提交
6961

6962 6963 6964 6965 6966
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
6967
		set_domain_attribute(sd, attr);
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
6982
#endif
6983 6984
	return sd;
}
L
Linus Torvalds 已提交
6985

6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
7001

7002 7003 7004 7005 7006
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
7007
#ifdef CONFIG_SCHED_MC
7008 7009 7010 7011 7012 7013 7014
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7015
#endif
7016 7017
	return sd;
}
7018

7019 7020 7021 7022 7023
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
7024
#ifdef CONFIG_SCHED_SMT
7025 7026 7027 7028 7029 7030 7031
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
7032
#endif
7033 7034
	return sd;
}
L
Linus Torvalds 已提交
7035

7036 7037 7038 7039
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
7040
#ifdef CONFIG_SCHED_SMT
7041 7042 7043 7044 7045 7046 7047 7048
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7049
#endif
7050
#ifdef CONFIG_SCHED_MC
7051 7052 7053 7054 7055 7056 7057
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
7058
#endif
7059 7060 7061 7062 7063 7064 7065
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
7066
#ifdef CONFIG_NUMA
7067 7068 7069 7070 7071
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
7072 7073
	default:
		break;
7074
	}
7075
}
7076

7077 7078 7079 7080 7081 7082 7083 7084 7085
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
7086
	struct sched_domain *sd;
7087
	int i;
7088
#ifdef CONFIG_NUMA
7089
	d.sd_allnodes = 0;
7090
#endif
7091

7092 7093 7094 7095
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
7096

L
Linus Torvalds 已提交
7097
	/*
7098
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7099
	 */
7100
	for_each_cpu(i, cpu_map) {
7101 7102
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
7103

7104
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7105
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7106
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7107
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
7108
	}
7109

7110
	for_each_cpu(i, cpu_map) {
7111
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7112
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
7113
	}
7114

L
Linus Torvalds 已提交
7115
	/* Set up physical groups */
7116 7117
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7118

L
Linus Torvalds 已提交
7119 7120
#ifdef CONFIG_NUMA
	/* Set up node groups */
7121 7122
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7123

7124 7125
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
7126
			goto error;
L
Linus Torvalds 已提交
7127 7128 7129
#endif

	/* Calculate CPU power for physical packages and nodes */
7130
#ifdef CONFIG_SCHED_SMT
7131
	for_each_cpu(i, cpu_map) {
7132
		sd = &per_cpu(cpu_domains, i).sd;
7133
		init_sched_groups_power(i, sd);
7134
	}
L
Linus Torvalds 已提交
7135
#endif
7136
#ifdef CONFIG_SCHED_MC
7137
	for_each_cpu(i, cpu_map) {
7138
		sd = &per_cpu(core_domains, i).sd;
7139
		init_sched_groups_power(i, sd);
7140 7141
	}
#endif
7142

7143
	for_each_cpu(i, cpu_map) {
7144
		sd = &per_cpu(phys_domains, i).sd;
7145
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7146 7147
	}

7148
#ifdef CONFIG_NUMA
7149
	for (i = 0; i < nr_node_ids; i++)
7150
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
7151

7152
	if (d.sd_allnodes) {
7153
		struct sched_group *sg;
7154

7155
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7156
								d.tmpmask);
7157 7158
		init_numa_sched_groups_power(sg);
	}
7159 7160
#endif

L
Linus Torvalds 已提交
7161
	/* Attach the domains */
7162
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7163
#ifdef CONFIG_SCHED_SMT
7164
		sd = &per_cpu(cpu_domains, i).sd;
7165
#elif defined(CONFIG_SCHED_MC)
7166
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7167
#else
7168
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7169
#endif
7170
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
7171
	}
7172

7173 7174 7175
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
7176 7177

error:
7178 7179
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
7180
}
P
Paul Jackson 已提交
7181

7182
static int build_sched_domains(const struct cpumask *cpu_map)
7183 7184 7185 7186
{
	return __build_sched_domains(cpu_map, NULL);
}

7187
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7188
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7189 7190
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7191 7192 7193

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7194 7195
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7196
 */
7197
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7198

7199 7200 7201 7202 7203 7204
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7205
{
7206
	return 0;
7207 7208
}

7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

7234
/*
I
Ingo Molnar 已提交
7235
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7236 7237
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7238
 */
7239
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7240
{
7241 7242
	int err;

7243
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7244
	ndoms_cur = 1;
7245
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
7246
	if (!doms_cur)
7247 7248
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7249
	dattr_cur = NULL;
7250
	err = build_sched_domains(doms_cur[0]);
7251
	register_sched_domain_sysctl();
7252 7253

	return err;
7254 7255
}

7256 7257
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7258
{
7259
	free_sched_groups(cpu_map, tmpmask);
7260
}
L
Linus Torvalds 已提交
7261

7262 7263 7264 7265
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7266
static void detach_destroy_domains(const struct cpumask *cpu_map)
7267
{
7268 7269
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7270 7271
	int i;

7272
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7273
		cpu_attach_domain(NULL, &def_root_domain, i);
7274
	synchronize_sched();
7275
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7276 7277
}

7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7294 7295
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7296
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7297 7298 7299
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7300
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7301 7302 7303
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7304 7305 7306
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
7307 7308 7309 7310 7311 7312
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7313
 *
7314
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7315 7316
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7317
 *
P
Paul Jackson 已提交
7318 7319
 * Call with hotplug lock held
 */
7320
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7321
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7322
{
7323
	int i, j, n;
7324
	int new_topology;
P
Paul Jackson 已提交
7325

7326
	mutex_lock(&sched_domains_mutex);
7327

7328 7329 7330
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7331 7332 7333
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7334
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7335 7336 7337

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7338
		for (j = 0; j < n && !new_topology; j++) {
7339
			if (cpumask_equal(doms_cur[i], doms_new[j])
7340
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7341 7342 7343
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
7344
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
7345 7346 7347 7348
match1:
		;
	}

7349 7350
	if (doms_new == NULL) {
		ndoms_cur = 0;
7351
		doms_new = &fallback_doms;
7352
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7353
		WARN_ON_ONCE(dattr_new);
7354 7355
	}

P
Paul Jackson 已提交
7356 7357
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7358
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7359
			if (cpumask_equal(doms_new[i], doms_cur[j])
7360
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7361 7362 7363
				goto match2;
		}
		/* no match - add a new doms_new */
7364
		__build_sched_domains(doms_new[i],
7365
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7366 7367 7368 7369 7370
match2:
		;
	}

	/* Remember the new sched domains */
7371 7372
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
7373
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7374
	doms_cur = doms_new;
7375
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7376
	ndoms_cur = ndoms_new;
7377 7378

	register_sched_domain_sysctl();
7379

7380
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7381 7382
}

7383
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7384
static void arch_reinit_sched_domains(void)
7385
{
7386
	get_online_cpus();
7387 7388 7389 7390

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7391
	rebuild_sched_domains();
7392
	put_online_cpus();
7393 7394 7395 7396
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
7397
	unsigned int level = 0;
7398

7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7410 7411 7412
		return -EINVAL;

	if (smt)
7413
		sched_smt_power_savings = level;
7414
	else
7415
		sched_mc_power_savings = level;
7416

7417
	arch_reinit_sched_domains();
7418

7419
	return count;
7420 7421 7422
}

#ifdef CONFIG_SCHED_MC
7423
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7424
					   struct sysdev_class_attribute *attr,
7425
					   char *page)
7426 7427 7428
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7429
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7430
					    struct sysdev_class_attribute *attr,
7431
					    const char *buf, size_t count)
7432 7433 7434
{
	return sched_power_savings_store(buf, count, 0);
}
7435 7436 7437
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7438 7439 7440
#endif

#ifdef CONFIG_SCHED_SMT
7441
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7442
					    struct sysdev_class_attribute *attr,
7443
					    char *page)
7444 7445 7446
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7447
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7448
					     struct sysdev_class_attribute *attr,
7449
					     const char *buf, size_t count)
7450 7451 7452
{
	return sched_power_savings_store(buf, count, 1);
}
7453 7454
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7455 7456 7457
		   sched_smt_power_savings_store);
#endif

7458
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7474
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7475

7476
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7477
/*
7478 7479
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7480 7481 7482
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7483 7484 7485 7486
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
7487 7488 7489 7490
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
7491
		partition_sched_domains(1, NULL, NULL);
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7502
{
P
Peter Zijlstra 已提交
7503 7504
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7505 7506
	switch (action) {
	case CPU_DOWN_PREPARE:
7507
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7508
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7509 7510 7511
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7512
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7513
	case CPU_ONLINE:
7514
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7515
		enable_runtime(cpu_rq(cpu));
7516 7517
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7518 7519 7520 7521 7522 7523 7524
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7525 7526 7527
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7528
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7529

7530 7531 7532 7533 7534
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7535
	get_online_cpus();
7536
	mutex_lock(&sched_domains_mutex);
7537
	arch_init_sched_domains(cpu_active_mask);
7538 7539 7540
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7541
	mutex_unlock(&sched_domains_mutex);
7542
	put_online_cpus();
7543 7544

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7545 7546
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7547 7548 7549 7550 7551
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7552
	init_hrtick();
7553 7554

	/* Move init over to a non-isolated CPU */
7555
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7556
		BUG();
I
Ingo Molnar 已提交
7557
	sched_init_granularity();
7558
	free_cpumask_var(non_isolated_cpus);
7559

7560
	init_sched_rt_class();
L
Linus Torvalds 已提交
7561 7562 7563 7564
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7565
	sched_init_granularity();
L
Linus Torvalds 已提交
7566 7567 7568
}
#endif /* CONFIG_SMP */

7569 7570
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
7571 7572 7573 7574 7575 7576 7577
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7578
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7579 7580
{
	cfs_rq->tasks_timeline = RB_ROOT;
7581
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7582 7583 7584
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7585
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7586 7587
}

P
Peter Zijlstra 已提交
7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7601
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7602
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
7603
#ifdef CONFIG_SMP
7604
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
7605 7606
#endif
#endif
P
Peter Zijlstra 已提交
7607 7608 7609
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
7610
	plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
7611 7612 7613 7614
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7615
	rt_rq->rt_runtime = 0;
7616
	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7617

7618
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7619
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7620 7621
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7622 7623
}

P
Peter Zijlstra 已提交
7624
#ifdef CONFIG_FAIR_GROUP_SCHED
7625 7626 7627
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7628
{
7629
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7630 7631 7632 7633 7634 7635 7636
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7637 7638 7639 7640
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7641 7642 7643 7644 7645
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7646 7647
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7648
	se->load.inv_weight = 0;
7649
	se->parent = parent;
P
Peter Zijlstra 已提交
7650
}
7651
#endif
P
Peter Zijlstra 已提交
7652

7653
#ifdef CONFIG_RT_GROUP_SCHED
7654 7655 7656
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7657
{
7658 7659
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7660 7661 7662
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
P
Peter Zijlstra 已提交
7663
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7664 7665 7666 7667
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7668 7669 7670
	if (!rt_se)
		return;

7671 7672 7673 7674 7675
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7676
	rt_se->my_q = rt_rq;
7677
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7678 7679 7680 7681
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7682 7683
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7684
	int i, j;
7685 7686 7687 7688 7689 7690 7691
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7692
#endif
7693
#ifdef CONFIG_CPUMASK_OFFSTACK
7694
	alloc_size += num_possible_cpus() * cpumask_size();
7695 7696
#endif
	if (alloc_size) {
7697
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7698 7699 7700 7701 7702 7703 7704

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7705

7706
#endif /* CONFIG_FAIR_GROUP_SCHED */
7707 7708 7709 7710 7711
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7712 7713
		ptr += nr_cpu_ids * sizeof(void **);

7714
#endif /* CONFIG_RT_GROUP_SCHED */
7715 7716 7717 7718 7719 7720
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7721
	}
I
Ingo Molnar 已提交
7722

G
Gregory Haskins 已提交
7723 7724 7725 7726
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7727 7728 7729 7730 7731 7732
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7733
#endif /* CONFIG_RT_GROUP_SCHED */
7734

D
Dhaval Giani 已提交
7735
#ifdef CONFIG_CGROUP_SCHED
P
Peter Zijlstra 已提交
7736
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7737 7738
	INIT_LIST_HEAD(&init_task_group.children);

D
Dhaval Giani 已提交
7739
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7740

7741 7742 7743 7744
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
7745
	for_each_possible_cpu(i) {
7746
		struct rq *rq;
L
Linus Torvalds 已提交
7747 7748

		rq = cpu_rq(i);
7749
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7750
		rq->nr_running = 0;
7751 7752
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
7753
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7754
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7755
#ifdef CONFIG_FAIR_GROUP_SCHED
7756
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7757
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7773
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7774 7775 7776 7777
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7778
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7779
#endif
D
Dhaval Giani 已提交
7780 7781 7782
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7783
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7784
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7785
#ifdef CONFIG_CGROUP_SCHED
7786
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7787
#endif
I
Ingo Molnar 已提交
7788
#endif
L
Linus Torvalds 已提交
7789

I
Ingo Molnar 已提交
7790 7791
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7792
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7793
		rq->sd = NULL;
G
Gregory Haskins 已提交
7794
		rq->rd = NULL;
7795
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7796
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7797
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7798
		rq->push_cpu = 0;
7799
		rq->cpu = i;
7800
		rq->online = 0;
L
Linus Torvalds 已提交
7801
		rq->migration_thread = NULL;
7802 7803
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
7804
		INIT_LIST_HEAD(&rq->migration_queue);
7805
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7806
#endif
P
Peter Zijlstra 已提交
7807
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7808 7809 7810
		atomic_set(&rq->nr_iowait, 0);
	}

7811
	set_load_weight(&init_task);
7812

7813 7814 7815 7816
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7817
#ifdef CONFIG_SMP
7818
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7819 7820
#endif

7821
#ifdef CONFIG_RT_MUTEXES
7822
	plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7823 7824
#endif

L
Linus Torvalds 已提交
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7838 7839 7840

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7841 7842 7843 7844
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7845

7846
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7847
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7848
#ifdef CONFIG_SMP
7849
#ifdef CONFIG_NO_HZ
7850
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7851
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7852
#endif
R
Rusty Russell 已提交
7853 7854 7855
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7856
#endif /* SMP */
7857

7858
	perf_event_init();
7859

7860
	scheduler_running = 1;
L
Linus Torvalds 已提交
7861 7862 7863
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7864 7865
static inline int preempt_count_equals(int preempt_offset)
{
7866
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7867 7868 7869 7870

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

7871
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7872
{
7873
#ifdef in_atomic
L
Linus Torvalds 已提交
7874 7875
	static unsigned long prev_jiffy;	/* ratelimiting */

7876 7877
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7878 7879 7880 7881 7882
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7883 7884 7885 7886 7887 7888 7889
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7890 7891 7892 7893 7894

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
7895 7896 7897 7898 7899 7900
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7901 7902 7903
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7904

7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7916 7917
void normalize_rt_tasks(void)
{
7918
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7919
	unsigned long flags;
7920
	struct rq *rq;
L
Linus Torvalds 已提交
7921

7922
	read_lock_irqsave(&tasklist_lock, flags);
7923
	do_each_thread(g, p) {
7924 7925 7926 7927 7928 7929
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7930 7931
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7932 7933 7934
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7935
#endif
I
Ingo Molnar 已提交
7936 7937 7938 7939 7940 7941 7942 7943

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7944
			continue;
I
Ingo Molnar 已提交
7945
		}
L
Linus Torvalds 已提交
7946

7947
		raw_spin_lock(&p->pi_lock);
7948
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7949

7950
		normalize_task(rq, p);
7951

7952
		__task_rq_unlock(rq);
7953
		raw_spin_unlock(&p->pi_lock);
7954 7955
	} while_each_thread(g, p);

7956
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7957 7958 7959
}

#endif /* CONFIG_MAGIC_SYSRQ */
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7978
struct task_struct *curr_task(int cpu)
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7989 7990
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7991 7992 7993 7994 7995 7996 7997
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7998
void set_curr_task(int cpu, struct task_struct *p)
7999 8000 8001 8002 8003
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8004

8005 8006
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8021 8022
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8023 8024
{
	struct cfs_rq *cfs_rq;
8025
	struct sched_entity *se;
8026
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8027 8028
	int i;

8029
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8030 8031
	if (!tg->cfs_rq)
		goto err;
8032
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8033 8034
	if (!tg->se)
		goto err;
8035 8036

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8037 8038

	for_each_possible_cpu(i) {
8039
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8040

8041 8042
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8043 8044 8045
		if (!cfs_rq)
			goto err;

8046 8047
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8048
		if (!se)
8049
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8050

8051
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8052 8053 8054 8055
	}

	return 1;

8056 8057
 err_free_rq:
	kfree(cfs_rq);
8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8072
#else /* !CONFG_FAIR_GROUP_SCHED */
8073 8074 8075 8076
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8077 8078
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8090
#endif /* CONFIG_FAIR_GROUP_SCHED */
8091 8092

#ifdef CONFIG_RT_GROUP_SCHED
8093 8094 8095 8096
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8097 8098
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8110 8111
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8112 8113
{
	struct rt_rq *rt_rq;
8114
	struct sched_rt_entity *rt_se;
8115 8116 8117
	struct rq *rq;
	int i;

8118
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8119 8120
	if (!tg->rt_rq)
		goto err;
8121
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8122 8123 8124
	if (!tg->rt_se)
		goto err;

8125 8126
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8127 8128 8129 8130

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8131 8132
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8133 8134
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8135

8136 8137
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8138
		if (!rt_se)
8139
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
8140

8141
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8142 8143
	}

8144 8145
	return 1;

8146 8147
 err_free_rq:
	kfree(rt_rq);
8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8162
#else /* !CONFIG_RT_GROUP_SCHED */
8163 8164 8165 8166
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8167 8168
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8180
#endif /* CONFIG_RT_GROUP_SCHED */
8181

D
Dhaval Giani 已提交
8182
#ifdef CONFIG_CGROUP_SCHED
8183 8184 8185 8186 8187 8188 8189 8190
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8191
struct task_group *sched_create_group(struct task_group *parent)
8192 8193 8194 8195 8196 8197 8198 8199 8200
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8201
	if (!alloc_fair_sched_group(tg, parent))
8202 8203
		goto err;

8204
	if (!alloc_rt_sched_group(tg, parent))
8205 8206
		goto err;

8207
	spin_lock_irqsave(&task_group_lock, flags);
8208
	for_each_possible_cpu(i) {
8209 8210
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8211
	}
P
Peter Zijlstra 已提交
8212
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8213 8214 8215 8216 8217

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8218
	list_add_rcu(&tg->siblings, &parent->children);
8219
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8220

8221
	return tg;
S
Srivatsa Vaddagiri 已提交
8222 8223

err:
P
Peter Zijlstra 已提交
8224
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8225 8226 8227
	return ERR_PTR(-ENOMEM);
}

8228
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8229
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8230 8231
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8232
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8233 8234
}

8235
/* Destroy runqueue etc associated with a task group */
8236
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8237
{
8238
	unsigned long flags;
8239
	int i;
S
Srivatsa Vaddagiri 已提交
8240

8241
	spin_lock_irqsave(&task_group_lock, flags);
8242
	for_each_possible_cpu(i) {
8243 8244
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8245
	}
P
Peter Zijlstra 已提交
8246
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8247
	list_del_rcu(&tg->siblings);
8248
	spin_unlock_irqrestore(&task_group_lock, flags);
8249 8250

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8251
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8252 8253
}

8254
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8255 8256 8257
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8258 8259
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8260 8261 8262 8263 8264 8265 8266 8267 8268
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8269
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8270 8271
	on_rq = tsk->se.on_rq;

8272
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8273
		dequeue_task(rq, tsk, 0);
8274 8275
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8276

P
Peter Zijlstra 已提交
8277
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8278

P
Peter Zijlstra 已提交
8279 8280
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
8281
		tsk->sched_class->moved_group(tsk, on_rq);
P
Peter Zijlstra 已提交
8282 8283
#endif

8284 8285 8286
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8287
		enqueue_task(rq, tsk, 0, false);
S
Srivatsa Vaddagiri 已提交
8288 8289 8290

	task_rq_unlock(rq, &flags);
}
D
Dhaval Giani 已提交
8291
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8292

8293
#ifdef CONFIG_FAIR_GROUP_SCHED
8294
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8295 8296 8297 8298 8299
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8300
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8301 8302 8303
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8304
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8305

8306
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8307
		enqueue_entity(cfs_rq, se, 0);
8308
}
8309

8310 8311 8312 8313 8314 8315
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

8316
	raw_spin_lock_irqsave(&rq->lock, flags);
8317
	__set_se_shares(se, shares);
8318
	raw_spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8319 8320
}

8321 8322
static DEFINE_MUTEX(shares_mutex);

8323
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8324 8325
{
	int i;
8326
	unsigned long flags;
8327

8328 8329 8330 8331 8332 8333
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8334 8335
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8336 8337
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8338

8339
	mutex_lock(&shares_mutex);
8340
	if (tg->shares == shares)
8341
		goto done;
S
Srivatsa Vaddagiri 已提交
8342

8343
	spin_lock_irqsave(&task_group_lock, flags);
8344 8345
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8346
	list_del_rcu(&tg->siblings);
8347
	spin_unlock_irqrestore(&task_group_lock, flags);
8348 8349 8350 8351 8352 8353 8354 8355

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8356
	tg->shares = shares;
8357 8358 8359 8360 8361
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8362
		set_se_shares(tg->se[i], shares);
8363
	}
S
Srivatsa Vaddagiri 已提交
8364

8365 8366 8367 8368
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8369
	spin_lock_irqsave(&task_group_lock, flags);
8370 8371
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8372
	list_add_rcu(&tg->siblings, &tg->parent->children);
8373
	spin_unlock_irqrestore(&task_group_lock, flags);
8374
done:
8375
	mutex_unlock(&shares_mutex);
8376
	return 0;
S
Srivatsa Vaddagiri 已提交
8377 8378
}

8379 8380 8381 8382
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8383
#endif
8384

8385
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8386
/*
P
Peter Zijlstra 已提交
8387
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8388
 */
P
Peter Zijlstra 已提交
8389 8390 8391 8392 8393
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8394
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8395

P
Peter Zijlstra 已提交
8396
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8397 8398
}

P
Peter Zijlstra 已提交
8399 8400
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8401
{
P
Peter Zijlstra 已提交
8402
	struct task_struct *g, *p;
8403

P
Peter Zijlstra 已提交
8404 8405 8406 8407
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8408

P
Peter Zijlstra 已提交
8409 8410
	return 0;
}
8411

P
Peter Zijlstra 已提交
8412 8413 8414 8415 8416
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8417

P
Peter Zijlstra 已提交
8418 8419 8420 8421 8422 8423
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8424

P
Peter Zijlstra 已提交
8425 8426
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8427

P
Peter Zijlstra 已提交
8428 8429 8430
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8431 8432
	}

8433 8434 8435 8436 8437
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8438

8439 8440 8441
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8442 8443
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8444

P
Peter Zijlstra 已提交
8445
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8446

8447 8448 8449 8450 8451
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8452

8453 8454 8455
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8456 8457 8458
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8459

P
Peter Zijlstra 已提交
8460 8461 8462 8463
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8464

P
Peter Zijlstra 已提交
8465
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8466
	}
P
Peter Zijlstra 已提交
8467

P
Peter Zijlstra 已提交
8468 8469 8470 8471
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8472 8473
}

P
Peter Zijlstra 已提交
8474
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8475
{
P
Peter Zijlstra 已提交
8476 8477 8478 8479 8480 8481 8482
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8483 8484
}

8485 8486
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8487
{
P
Peter Zijlstra 已提交
8488
	int i, err = 0;
P
Peter Zijlstra 已提交
8489 8490

	mutex_lock(&rt_constraints_mutex);
8491
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8492 8493
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8494
		goto unlock;
P
Peter Zijlstra 已提交
8495

8496
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8497 8498
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8499 8500 8501 8502

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

8503
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8504
		rt_rq->rt_runtime = rt_runtime;
8505
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8506
	}
8507
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8508
 unlock:
8509
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8510 8511 8512
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8513 8514
}

8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8527 8528 8529 8530
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8531
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8532 8533
		return -1;

8534
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8535 8536 8537
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8538 8539 8540 8541 8542 8543 8544 8545

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8546 8547 8548
	if (rt_period == 0)
		return -EINVAL;

8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8563
	u64 runtime, period;
8564 8565
	int ret = 0;

8566 8567 8568
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8569 8570 8571 8572 8573 8574 8575 8576
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
8577

8578
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8579
	read_lock(&tasklist_lock);
8580
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
8581
	read_unlock(&tasklist_lock);
8582 8583 8584 8585
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8586 8587 8588 8589 8590 8591 8592 8593 8594 8595

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

8596
#else /* !CONFIG_RT_GROUP_SCHED */
8597 8598
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8599 8600 8601
	unsigned long flags;
	int i;

8602 8603 8604
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

8605 8606 8607 8608 8609 8610 8611
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

8612
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8613 8614 8615
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

8616
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8617
		rt_rq->rt_runtime = global_rt_runtime();
8618
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8619
	}
8620
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
8621

8622 8623
	return 0;
}
8624
#endif /* CONFIG_RT_GROUP_SCHED */
8625 8626

int sched_rt_handler(struct ctl_table *table, int write,
8627
		void __user *buffer, size_t *lenp,
8628 8629 8630 8631 8632 8633 8634 8635 8636 8637
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

8638
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8655

8656
#ifdef CONFIG_CGROUP_SCHED
8657 8658

/* return corresponding task_group object of a cgroup */
8659
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8660
{
8661 8662
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8663 8664 8665
}

static struct cgroup_subsys_state *
8666
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8667
{
8668
	struct task_group *tg, *parent;
8669

8670
	if (!cgrp->parent) {
8671 8672 8673 8674
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

8675 8676
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8677 8678 8679 8680 8681 8682
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
8683 8684
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8685
{
8686
	struct task_group *tg = cgroup_tg(cgrp);
8687 8688 8689 8690

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8691
static int
8692
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8693
{
8694
#ifdef CONFIG_RT_GROUP_SCHED
8695
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8696 8697
		return -EINVAL;
#else
8698 8699 8700
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8701
#endif
8702 8703
	return 0;
}
8704

8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
8724 8725 8726 8727
	return 0;
}

static void
8728
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8729 8730
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
8731 8732
{
	sched_move_task(tsk);
8733 8734 8735 8736 8737 8738 8739 8740
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
8741 8742
}

8743
#ifdef CONFIG_FAIR_GROUP_SCHED
8744
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8745
				u64 shareval)
8746
{
8747
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8748 8749
}

8750
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8751
{
8752
	struct task_group *tg = cgroup_tg(cgrp);
8753 8754 8755

	return (u64) tg->shares;
}
8756
#endif /* CONFIG_FAIR_GROUP_SCHED */
8757

8758
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8759
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8760
				s64 val)
P
Peter Zijlstra 已提交
8761
{
8762
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8763 8764
}

8765
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8766
{
8767
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8768
}
8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8780
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8781

8782
static struct cftype cpu_files[] = {
8783
#ifdef CONFIG_FAIR_GROUP_SCHED
8784 8785
	{
		.name = "shares",
8786 8787
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8788
	},
8789 8790
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8791
	{
P
Peter Zijlstra 已提交
8792
		.name = "rt_runtime_us",
8793 8794
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8795
	},
8796 8797
	{
		.name = "rt_period_us",
8798 8799
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8800
	},
8801
#endif
8802 8803 8804 8805
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8806
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8807 8808 8809
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8810 8811 8812 8813 8814 8815 8816
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8817 8818 8819
	.early_init	= 1,
};

8820
#endif	/* CONFIG_CGROUP_SCHED */
8821 8822 8823 8824 8825 8826 8827 8828 8829 8830

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

8831
/* track cpu usage of a group of tasks and its child groups */
8832 8833 8834
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
8835
	u64 __percpu *cpuusage;
8836
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8837
	struct cpuacct *parent;
8838 8839 8840 8841 8842
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8843
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8844
{
8845
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8858
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8859 8860
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8861
	int i;
8862 8863

	if (!ca)
8864
		goto out;
8865 8866

	ca->cpuusage = alloc_percpu(u64);
8867 8868 8869 8870 8871 8872
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
8873

8874 8875 8876
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

8877
	return &ca->css;
8878 8879 8880 8881 8882 8883 8884 8885 8886

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
8887 8888 8889
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8890
static void
8891
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8892
{
8893
	struct cpuacct *ca = cgroup_ca(cgrp);
8894
	int i;
8895

8896 8897
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
8898 8899 8900 8901
	free_percpu(ca->cpuusage);
	kfree(ca);
}

8902 8903
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
8904
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8905 8906 8907 8908 8909 8910
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
8911
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8912
	data = *cpuusage;
8913
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8914 8915 8916 8917 8918 8919 8920 8921 8922
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
8923
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8924 8925 8926 8927 8928

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
8929
	raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8930
	*cpuusage = val;
8931
	raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8932 8933 8934 8935 8936
#else
	*cpuusage = val;
#endif
}

8937
/* return total cpu usage (in nanoseconds) of a group */
8938
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8939
{
8940
	struct cpuacct *ca = cgroup_ca(cgrp);
8941 8942 8943
	u64 totalcpuusage = 0;
	int i;

8944 8945
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
8946 8947 8948 8949

	return totalcpuusage;
}

8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

8962 8963
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
8964 8965 8966 8967 8968

out:
	return err;
}

8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

9003 9004 9005
static struct cftype files[] = {
	{
		.name = "usage",
9006 9007
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9008
	},
9009 9010 9011 9012
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
9013 9014 9015 9016
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
9017 9018
};

9019
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9020
{
9021
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9022 9023 9024 9025 9026 9027 9028 9029 9030 9031
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9032
	int cpu;
9033

L
Li Zefan 已提交
9034
	if (unlikely(!cpuacct_subsys.active))
9035 9036
		return;

9037
	cpu = task_cpu(tsk);
9038 9039 9040

	rcu_read_lock();

9041 9042
	ca = task_ca(tsk);

9043
	for (; ca; ca = ca->parent) {
9044
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9045 9046
		*cpuusage += cputime;
	}
9047 9048

	rcu_read_unlock();
9049 9050
}

9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067
/*
 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
 * in cputime_t units. As a result, cpuacct_update_stats calls
 * percpu_counter_add with values large enough to always overflow the
 * per cpu batch limit causing bad SMP scalability.
 *
 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
 */
#ifdef CONFIG_SMP
#define CPUACCT_BATCH	\
	min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
#else
#define CPUACCT_BATCH	0
#endif

9068 9069 9070 9071 9072 9073 9074
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;
9075
	int batch = CPUACCT_BATCH;
9076 9077 9078 9079 9080 9081 9082 9083

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
9084
		__percpu_counter_add(&ca->cpustat[idx], val, batch);
9085 9086 9087 9088 9089
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

9090 9091 9092 9093 9094 9095 9096 9097
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
9183
		raw_spin_lock_irqsave(&rq->lock, flags);
9184
		list_add(&req->list, &rq->migration_queue);
9185
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9186 9187 9188 9189 9190 9191 9192
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
9193
		raw_spin_lock_irqsave(&rq->lock, flags);
9194 9195 9196
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
9197
		raw_spin_unlock_irqrestore(&rq->lock, flags);
9198 9199
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9200
	synchronize_sched_expedited_count++;
9201 9202 9203 9204 9205 9206 9207 9208
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */